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Abstract: Federated learning (FL) has developed rapidly in recent years as a privacy-preserving machine learning method, and it has been
gradually applied to key areas involving privacy and security such as finance, medical care, and government affairs. However, the current so-
lutions to FL rarely consider the problem of migration from centralized learning to federated learning, resulting in a high practical threshold
for federated learning and low usability. Therefore, we introduce a reliable, efficient, and easy-to-use federated learning framework named
Neursafe-FL. Based on the unified application program interface (API), the framework is not only compatible with mainstream machine learn-
ing frameworks, such as Tensorflow and Pytorch, but also supports further extensions, which can preserve the programming style of the origi-
nal framework to lower the threshold of FL. At the same time, the design of componentization, modularization, and standardized interface
makes the framework highly extensible, which meets the needs of customized requirements and FL evolution in the future. Neursafe-FL is al-

ready on Github as an open-source project'.
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1 Introduction
ederated learning (FL) is a distributed machine learn-
ing method that uses decentralized data residing on the
client side to complete model training with the coordi-
nation of a central server!' °. It is a general method of
“bringing the code to the data, instead of the data to the

"Bl and focuses on the security and privacy of data. Since

code
the data are limited in the client domain during the training
process and the intermediate data are encapsulated by the
privacy-preserving algorithm, it could avoid privacy leakage
in the training and inference process of machine learning. Es-
pecially with data protection laws and regulations, like the Eu-
ropean General Data Protection Regulation (GDPR)', feder-
ated learning has been regarded as a hotspot in Al research.
Federated learning has many practical cases in the fields of

ol 1 and smart city”. Fig. 1(a) shows the

finance'”, medical care
scene in medical care. It is expected to integrate the data of
multiple hospitals to train a model, but the patient’s informa-
tion is very sensitive and private, which cannot be shared
among hospitals. Fig. 1(b) shows that more and more intelli-

gent edge devices with computing power, such as mobile

phones, sensors, and cameras, join the smart city ecosystem.
A large number of valuable data are generated on the devices.
Since the data are private and impractical to collect, federated
learning is very suitable for solving the problems in the above
mentioned scenarios.

Federated learning breaks the data silos caused by privacy
and security issues, which broadens the prospects of Al appli-
cations in many fields. However, FL introduces some unique

00 shown as

challenges due to its distributed characteristics
follows. 1) The problem of privacy leakage is caused by attack
technologies such as membership inferring and feature infer-
ring through intermediate data including model weights and
gradients'"’ " '; 2) The low efficiency of model convergence is
caused by non-independent identically distribution (IID)
data™ % 3) The robustness of a model can be decreased by
data poisoning®, model poisoning!'” and other attack meth-
ods. There also exist efficiency problems which are caused by
insufficient client-side computing power, data transmission
bandwidth, etc!".

We have developed a reliable, efficient, and easy-to-use
open source framework to address the challenges mentioned

1. Neursafe-FL can be seen on the website of Github: https://github.com/neursafe/federated-learning.
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A Figure 1. Federated learning scenarios

above in federated learning. Compared with the existing open
source implementation for federated learning, more consider-
ation is given to the migration of existing machine learning
models from centralization to federation. The proposed frame-
work cooperates well with mainstream machine learning frame-
works and supports further upgradation, and it also retains the
programming features of the original framework to simplify the
implementations for various federated learning algorithms. Fi-
nally, the framework has advantages in future upgrades and
evolution due to the componentization, modularization, and
standardized interface.

The rest of this paper is organized as follows. Section 2 in-
troduces the current research work on federated learning, in-
cluding the technical challenges faced by federated learning,
the comparison, and shortcomings of mainstream federated
learning frameworks. In Section 3, we propose efficient and
easy-to-use design solutions and principles. The design archi-
tecture, working principles, and the process of the system are
introduced in Section 4. Section 5 presents experimental veri-
fication of multiple scenarios based on Neursafe FL. Finally,
we summarize the contributions of this paper and point out di-
rections for future work.

2 Related Work

With the increasing popularity of federated learning, a large
amount of research work has been published to overcome the
technical challenges of federated learning shown as follows.
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[24 - 28]

privacy multi-party

[29 - 33]

secure computa-

tion , homomorphic encryption and other privacy
computing techniques were proposed to protect intermediate
data such as the model weights and gradients, which avoids
possible privacy leaks. Optimization and aggregation algo-
rithms of FL such as FedAvg", FedNova™!, FedProx*",
SCAFFOLD™!. FedNas®” were introduced to solve the prob-
lems of convergence efficiency caused by non-IID data. In
Ref. [38 - 43], the authors proposed robust federated algo-
rithms, such as Krum, FLRA, and Sageflow, to address the
challenge of model robustness in the face of model attacks.
The techniques of client-side incentives, quantization, models,
and data compression were proposed to address the communi-
cation and computational efficiency problems in federated
learning™ %%, The incentive mechanism was adopted to solve
the fairness problem in federated learning!™ !,

With the development of theoretical research on FL, a num-
ber of open source frameworks or libraries have emerged in-
cluding Tensorflow Federated (TFF) 7 FATER®, PySyftlsgj,
FedML!*". and PaddleFL!°". Among them, TFF, PySyft, and
FedML are presented as the libraries for the research, while
FATE and PaddleFL are frameworks or platforms for the pro-
duction applications. However, these open source implementa-
tions have their own limitations as follows.

1) Most of the above work is developed based on a single
underlying machine learning framework. For example, TFF is
developed based on Tensorflow, FedML is implemented based
on Pytorch, and PaddleFL is based on PaddlePaddle. Poorly
substantial framework support leads to unnecessary costs for
migrating FL applications.

2) The existing work supports limited application scenarios.
For example, TFF only supports single-machine distributed
simulation for research purposes; FATE and PaddleFL mainly
solve cross-silo scenarios across data silos, while they are not
suitable for cross-device scenarios. Although FedML supports
a variety of application scenarios, the deployment process is
very complicated. For example, the premise of FedML for vari-
ous scenarios is that users must perform topology manage-
ment, which makes user implementation more complex be-
cause network changes require the implementation change.

3) Most APIs of current frameworks are too complicated.
Developers must learn proprietary API interfaces and program-
ming specifications to implement federated learning, resulting
in high costs for the migration of existing Al models.

4) Trade-offs between flexibility and usability are unso-
phisticated. On the one hand, some FL frameworks have a
relatively high level of API encapsulation, which loses a
certain degree of flexibility. On the other hand, the library
represented by FedML has high flexibility, but the design
makes development complicated, which leads to a high
threshold for users.

Table 1 presents a comparison of open source projects. To
solve the main challenges of federated learning mentioned
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VTable 1. Comparison of open source frameworks

Concerns Features TFF PySyft FedML FATE PaddleFL Neursafe-FL
Standalone N N J V N N
Supported running mode Cross-device x x v x x J
Cross-silo X X J \/ \/ \/
) ) 1D (FedAvg, etc.) N N N N N N
Aeregation dlgorithms Non-IID (FedProx, etc.) x x N N - J
. Tensorflow N N X N X N
Supported underlying framework Pytorch N J J J y J
DP N N J X N J
Privacy protection methods MPC X v X N J V
HE X N X N X X
Device management X x x x x N

Flexibility

Customization X X \/ X X \/

DP: differential privacy ~FL: federated learning HE: homomorphic encryption  IID: independent identically distribution  MPC: multi—party computation  TFF: tensorflow federated

above, Neursafe-FL is proposed as an efficient, simple, and
easy-to-use federated learning framework without losing flex-
ibility.

3 Design of Neursafe-FL

Neursafe-FL adopts the principles of componentization and
modularization in the design. According to different functions
and characteristics, we divide the system into several compo-
nents and modules such as job scheduling, client management
and selection, privacy protection, and optimization aggrega-
tion. The components are decoupled to reduce system com-
plexity and provide feature-level scalability. Through compo-
nentized design, Neursafe-FL enables reliable services based
on microservice management, the high availability (HA)
mechanism, and job-level fault tolerance processing. In order
to improve the usability and meet the requirements of long-
term evolution for federated learning, we have made more ef-
forts in the following areas:

*Portability: There are a large number of existing center-
based learning programs to be migrated to federated learning
programs. Therefore, it is valuable to simplify the FL migra-
tion and even complete the migration with zero coding. To
achieve this goal, Neursafe-FL has the following designs: 1) A
minimalist unified API design is adopted; 2) On the basis of
the unified API, it supports mainstream machine learning
frameworks that support Tensorflow and Pytorch currently,
and it also supports new frameworks by implementing the cor-
responding interfaces. In this way, it retains the programming
style of the original framework, which significantly simplifies
the program development of FL. Fig. 2 is an example of the FL
migration of training on MNIST.

*Multi—running mode: Neursafe-FL. supports standalone
modes for research purposes. In this scenario, Neursafe-FL
only deploys the server-side coordinator and one or more cli-
ent processes on a single node for distributed simulation. For
cross-silo and cross-device, we comprehensively consider the

compatibility of two running modes in client management and
scheduling design. In the cross-device mode, it enables cli-
ents to join in and log out of the system by registering and
quitting, and provides a set of client selection algorithms with
extension capabilities, which meets the requirements of train-
ing efficiency and model robustness”. There are fewer partici-
pants in the cross-silo mode, where clients can join the system
by configuration, and can be selected by configuration or label
matching. At the same time, each participant can deploy the
server and client simultaneously, and the client also supports
multi-task parallelism. Figs. 3(a), 3(b), and 3(c) are examples
of the above running mode respectively.

*Extensibility: Federated learning is a fast-growing field,
with new requirements and more advanced algorithms emerg-
ing. It requires the system with a high degree of flexibility,
which may rise complexity in use. To trade off the flexibility
and usability, we provide a user-friendly API for normal users,
and an advanced interface for researchers to make further ex-

#1. load data
dataset = "/path/to/mnist"
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, _) = mnist.load_data(dataset)
#1. load data x_train, x_test = x_train / 255.0, x_test / 255.0
dataset = "/path/to/mnist"
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, _) = mnist.load_data(dataset)
x_train, x_test = x_train / 255.0, x_test / 255.0

#2. load model

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation="softmax’)

# 2. load model

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation="softmax’)

)]

model.compile(optimizer="adam’,
loss="sparse_categorical_crossentropy’,
metrics=['accuracy'])

)
model.compile(optimizer="adam’,
loss="sparse_categorical_crossentropy',
metrics=["accuracy'])

#3. Load weights from server
nsfl.load_weights(model)

#4. local train
#3. local train history = model.fit(x_train, y_train, epochs=1)

history = model.fit(x_train, y_train, epochs=1)
\ #5. upload updates to server
nsfl.commit_weights(model)
metrics = {
‘sample_num': len(x_train),
‘loss': history.history['loss'][-1],
*accuracy’: history.history[‘accuracy'][-1]
}
# 6. upload metrics to server

nsfl.commit_metrics(metrics)

metrics = {
‘sample_num': len(x_train),
‘loss': history.history['loss'][-1],
‘accuracy': history.history['accuracy'][-1]

A Figure 2. Example of model migration for MNIST
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tensions. In the second case, Neursafe-FL. provides two ap-
proaches for the extension. 1) It extends the standardized algo-
rithm interface and integrates it into the system as a part of
the framework. 2) It extends through the callback interface for
more customized requirements, but only one callback is vali-
dated at the same time. A detailed description of the extensi-
bility is shown as follows.

e Extension of security algorithms: Users can implement
new security and privacy algorithms through the form of librar-
ies. To facilitate this form of extension, we provide the stan-
dardized interfaces such as “encrypt” and “decrypt”, and de-
couple the security algorithms from federated learning pro-
cesses. Users can integrate the security algorithm into the fed-
erated training process by extending the above standardized
interface and referencing it in the configuration file. Based on
the standard interface, the framework provides security algo-

46 ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

rithms such as differential privacy and secret sharing aggrega-
tion, and users can extend other security algorithms, homomor-
phic encryption, and secure multi-party computation as well.

*Extension of client selection algorithms: In a scenario with
a large number of devices, selecting unreasonable training de-
vices leads to resource mismatch, unfairness, and stragglers.
Therefore, two expansion interfaces are provided for pre-
selection and on-selection during the client selection process.
Users can add filtering rules through the pre-selection inter-
face, and prioritize qualified devices through the on-selection
interface. For example, users can add trusted device matching
rules through the pre-selected interface to filter out untrusted
devices in the case of malicious parties. They can also use pri-
ority scores through an on-selection interface to select a more
stable and reliable device based on the computing resources
of the device, network status, and other information. We have
provided rules for tag matching, resource matching, perfor-
mance priority, and data priority. Users can add custom rules
according to the above extension interface in two ways: by file
and by webhook.

*Extension of aggregation algorithms: Aggregation algo-
rithms have different effects in different scenarios. For ex-
ample, the traditional FedAvg algorithm cannot face the
challenges such as data heterogeneity and imbalance. There-
fore, we provide two ways to extend the aggregation algo-
rithm. 1) We inherit the base class of aggregator and integrate
it directly into the framework; 2) Through the callback inter-
face, we abstract the training process of federated learning
into three steps: server-side broadcast, client-side reporting,
and server-side aggregation, corresponding to the callback in-
terfaces to broadcast custom data, aggregate updates on the
server side, and process the final result. Users can implement
the callback functions and validate them in the coordinator’ s
configuration file. For example, we implement the SCAFFOLD
aggregation algorithm with the second method to solve the
problem in the non-1ID scenario.

*Extension of machine learning framework: In order to be
compatible with different machine learning frameworks such
as Tensorflow, Pytorch, and Caffe, we encapsulate the frame-
work and provide a unified standard interface for the upper
layer. To support a new machine learning framework, users
just need to complete the following adaptations through the
standard interface: 1) adaptation of model operations such as
loading, saving, and evaluation; 2) adaptation of weight opera-
tions, such as weight acquisition, weight assignment, and
weight operations; 3) preprocessing operations on datasets for
model evaluation and verification; 4) implementation of some
security and privacy interfaces. An adapted ML framework
can be integrated into the federated learning framework and
run by the configuration parameters. The framework currently
supports Tensorflow and Pytorch, and users can also extend
the support of other machine learning frameworks according to
the above steps.
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4 Architecture of Neursafe-FL

The architecture of Neursafe-FL is shown in Fig. 4, and the
cooperation between the components is shown in Fig. 5. Core
components of Neursafe-FL are presented as follows.

*Infrastructure layer: Neursafe-FL has completed the adap-
tation at the infrastructure layer. On the server side, we deploy
it on the Container as a Service (CaaS), which is Kubernetes
by default. High reliability of FL core component services is
guaranteed through the HA mechanism of CaaS. In the cross-
device scenario, the client side supports two process modes:
native OS process or containerized process. Containerized de-
ployment improves system portability. In the cross-silo sce-
nario, CaaS deployment is still used on the client side, which
enables better parallel scheduling of tasks.

*Job scheduler: It is the core component of job management
and scheduling. We schedule jobs according to job queuing
and the current system resource status. The scheduling algo-
rithm needs to consider the efficiency and fairness of the sys-
tem resource when satisfying job requirements.

*Coordinator: It is dynamically created by the job scheduler
for each job. It is responsible for the organization and coordi-
nation of federated training, including client selection, task
dispatching, and model aggregation.

*Client selector: It is responsible for managing clients and re-
sponding to client selection requests. A client selector supports
clients to join the system by registration or configuration. The
client selection algorithm includes filtering and prioritization.
The basic filters include whether there is a required dataset,
whether it supports the specified machine learning framework

(Runtime) or operating systems, etc., and whether it supports
the extension of the filtering algorithm. The basic priorities in-
clude the number of data, computing power, parallelism, band-
width, etc. The scalability of the client selection algorithm is ex-
pected to meet the needs of federated learning for client selec-
tion in terms of efficiency, robustness, and fairness**~*/,

* Task manager: It is the daemon component of the client.
The main functions include the client’ s resources and status
reporting, responding to the task issued by the server, and
completing the task scheduling. In the cross-silo scenario, the
client needs to execute tasks concurrently, and the task man-
ager needs to schedule tasks according to the task queue and
its local resource status.

* Task executor: The client-side local executor of the feder-
ated task, which is dynamically created by the task manager
when it receives tasks issued by the server. One task executor
only manages one task to ensure the decoupling between tasks.

* Algorithms and basic libraries: Neursafe-FL encapsulates
privacy security algorithms, federated optimization and aggre-
gation algorithms, federated robustness algorithms, and low-
level communications to simplify frameworks and application
development. Users can extend the algorithm through the stan-
dardized algorithm interface, and benefit from the loose cou-
pling between the algorithm and the framework.

Fig. 5 illustrates the interaction between Neursafe-FL core
components in the job scheduling procedure as an example.
1) The user submits a job request to the job scheduler via the
API server. 2) The job scheduler starts the coordinator when
the system resources are satisfied. 3) The coordinator starts

System Architecture
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A Figure 4. Architecture of Neursafe-FL
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the job execution process and requires clients to participate in
federated training from the client selector. 4) The coordinator
sends federated training tasks to clients. 5) After receiving the
federated task, the client dynamically starts the local task ex-
ecutor. 6) The task executor uses local data to train the model.
7) Clients submit the model weight delta and the measurement
generated by local training to the job coordinator. 8) The coor-
dinator aggregates the client models to obtain a new global
model. The coordinator decides to finish the federated training
according to various criteria, such as model convergence and
the max number of rounds reached.

5 Results of Neursafe-FL

In order to evaluate the performance of Neursafe-FL, we de-
sign the following experiments: the comparison of convergence
efficiency and accuracy of centralized learning and federated
learning, the convergence comparison of federated training
with different client numbers, the comparison of convergence
efficiency of different federated aggregation algorithms under
non-1ID data, and the impact of privacy security algorithms on
model accuracy and training efficiency. All experiments adopt
a CNN model on two datasets: MNIST and CIFAR10.

The experiment in Fig. 6 is based on the CIFAR10 dataset.
Three clients participate in federated training and the sample
data for federated training are split according to the IID
method. In order to compare the convergence efficiency, we
set the client to perform only one epoch iteration per round.
The experimental results in Fig. 6 show that the convergence
efficiency and model accuracy of federated training and cen-
tralized training are almost the same under the IID data.
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In Fig. 7, we compare the convergence performance of fed-
erated learning and centralized learning in terms of loss and
accuracy. Data are evenly distributed to different clients by
[ID sampling. We test the scenario of federated learning with
1 client, 20 clients, and 50 clients. From the convergence
curve of loss and accuracy in Fig. 7, the convergence of cen-
tralized learning is better than that of federated learning. On
the other hand, the convergence performance of federated
learning with multiple clients is significantly better than that
of a single client, and it is close to the centralized learning.
It can be seen that the convergence rate of federated learn-
ing and centralized learning are consistent. In addition, fed-
erated learning can ensure the privacy and security of clients.

Five federated clients participate in federated training, and
the data are split in an extremely unbalanced manner, in
which there are no samples with the same label among clients.
Three federated aggregation algorithms, FedAvg, FedProx and
SCAFFOLD, are used in the experiment. The results in Fig. 8
show that FedAvg is difficult to converge under this extreme
data distribution, while FedProx and SCAFFOLD can converge
with similar convergence efficiency. The results prove that it s
necessary to select appropriate federated optimization and ag-
gregation algorithms according to different data distributions to
ensure the convergence efficiency of the model.

Two security algorithms, differential privacy and secret
share aggregation (SSA) are tested in terms of overhead, model
accuracy, and convergence efficiency. Both algorithm experi-
ments are based on the MNIST and CIFAR10 datasets. The
impact of differential privacy on the accuracy of a model is
evaluated in the experiment. The results are shown in Fig. 9.



Neursafe-FL: A Reliable, Efficient, Easy-to-Use Federated Learning Framework

Special Topic

TANG Bo, ZHANG Chengming, WANG Kewen, GAO Zhengguang, HAN Bingtao

Centralized learning

Federated learning

90 | | - ~rQ

70

50

Accuracy

30

10

0 10 20 30 40 50 60 70 80 90 100

Round number

2.4
2.0
1.6

Loss

1.2
0.8
0.4

~0
a

0 10 20 30 40 50 60 70 80 90 100

Round number

A Figure 6. Comparison of federated training and centralized training

— Centralized learning
— FLwith 1 client

— FL with 20 clients
~— FL with 50 clients

0.9

0.8

0.7

Accuracy

0.6

0 10 20 30 40 50 60 70 80 90 100

Round number

2.0

1.5

Loss

1.0

0.5

0 10 20 30 40 50 60 70 80 90 100

Round number

FL: federated learning

A Figure 7. Convergence comparison of federated training with differ-
ent client numbers

After 100 rounds of training, the model accuracy with differen-
tial privacy is 0.912, while the accuracy of the model without

FedAvg
SCAFFOLD
e FedProx
70
g.
£ 50
S
8
-
30
10
0 10 20 30 40 50 60 70 80 90 100
Round number
4.5
35
£ s
3
1.5
0.5
0 10 20 30 40 50 60 70 80 90 100
Round number

A Figure 8. Results of different aggregation algorithms under non-I1ID
data

differential privacy is 0.914. The results show that differential
privacy has a limited impact on the model’ s accuracy. The
overhead of differential privacy is shown in Table 2. Com-
pared with the overall overhead of federated training, the over-
head of differential privacy accounts for a small proportion.
Neursafe-FL reduces the times of adding noise by adding cor-
responding noise to the updated weights of the client complet-
ing one round of model training. The budget of Neursafe-FL is
much smaller than that of the method of adding noise during
gradient update.

A comparative test of introducing SSA and not introducing
SSA is conducted, and the results in Fig. 10 show that the
curves of convergence and accuracy are completely consis-
tent. The SSA algorithm based on the principle of cryptogra-
phy is lossless. Therefore, the SSA-based algorithm has no ef-
fect on the convergence and accuracy of federated training.

The SSA algorithm is tested in the scenario where the
client is disconnected. The results in Fig. 11 show that the
convergence curve is almost the same as that in the normal
scenario, and the SSA algorithm remains lossless. The SSA
algorithm randomly selects disconnected clients every
round, which only causes slight differences in the discon-
nected case.

The impact of the number of federated training clients on the
SSA algorithm is studied in the experiment, and we analyze the
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A Figure 9. A comparative test of introducing DP and not introducing
differential privacy

VTable 2. Results of different parameters for differential privacy

Type Rounljl Num- Noise_multiplier Time Cost/s Accuracy
er
100 - 2873.22 0914 3
Without DP
50 - 1396.56 0.898 4
100 0.01 2 879.36 0.9122
With DP 100 0.005 2 882.86 0.8910

50 0.01 1390.42 0.876 3

DP: differential privacy

effect of clients’ number on the overhead of federated training
in the models without using the SSA algorithm, using the SSA
onemask, and using the SSA doublemask respectively. The re-
sults are shown in Fig. 12. In the one-mask mode, the perfor-
mance of SSA is basically the same as the performance when
SSA is not used. The number of clients nearly has no impact on
it, because each client only needs to send its own Diffie-
Hellman (DH) public key to other clients under the one-mask
model. This process is performed concurrently with model
training, and the performance is not affected. In the double-
mask mode, the performance of SSA increases with the number
of clients. When the results are aggregated, additional communi-
cation is required to recover the mask. Therefore, the perfor-
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mance overhead will also increase with the increase in the num-
ber of clients.

The SSA algorithm is tested in the case of different drop
rates of clients participating in the federated training, and we
analyze the effect of different drop rates on the performance of
federated training without using the SSA algorithm, using the
SSA one-mask, and using the SSA double-mask respectively
in Fig. 13. In the figure, “10, no SSA” denotes the training
with 10 clients participating without using SSA algorithm, and
the other abbreviations can be translated similarly. As shown
in the figure, the overhead of using SSA increases substan-
tially as the drop rate increases, and as the number of dropout
clients increases, the overhead also increases. The overhead
increases, because it requires the SSA algorithm to process
the mask related to the disconnected clients, which leads to
additional communication.

Average running time per round

Time/s

0% 20% 50%

Client dropout rate

=& 10, no SSA 10, doublemask =#= 20, no SSA
== 20, doublemask == 30, no SSA =o— 30, doublemask

SSA: secret share aggregation

A Figure 13. Impacts of different dropout rates on the performance of
federated training

It can be seen that the two privacy security algorithms have
their own advantages. Differential privacy introduces noise,
which has an impact on the convergence of model training, but
the impact is relatively small for the overhead. On the other
hand, SSA can guarantee secure aggregation as a crypto-
graphic algorithm without accessing the original data. This is

a lossless algorithm, which ensures the accuracy and conver-
gence of the model compared with the differential privacy, but
it introduces a large overhead in calculation and transmission.
Therefore, users can choose different security algorithms ac-
cording to the requirements of the accuracy, calculation, and
transmission for the applications.

6 Conclusions and Future Work

This paper introduces a new federated learning framework:
Neursafe-FL, which focuses on the main challenges of federated
learning, such as privacy, security, efficiency, and robustness,
and on the usability to reduce the cost of model migration. In
the design, we simplify the API, make it compatible with mul-
tiple mainstream machine learning frameworks, and enable
framework extensions. All of these designs lower the threshold
for federated learning. Through componentization, moduliza-
tion, and standardization design, the scalability of the system is
improved to meet the diverse needs of users. Experiments show
that this framework has a good performance in terms of model
convergence and accuracy under various settings.

In the future, we will focus on the following aspects: 1) Inte-
grating more algorithms into Neursafe-FL to improve the effi-
ciency, security, and robustness of federated learning. 2) Sup-
porting vertical and transfer federation to meet the needs of
different data distribution scenarios. 3) Enriching system fea-
tures such as enabling more infrastructure and OS, and ex-
panding support for more machine learning frameworks, feder-
ated inference, etc., to facilitate more FL applications.
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