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Abstract: Efficient perception of the real world is a long-standing effort of computer vision. Mod⁃
ern visual computing techniques have succeeded in attaching semantic labels to thousands of
daily objects and reconstructing dense depth maps of complex scenes. However, simultaneous se⁃
mantic and spatial joint perception, so-called dense 3D semantic mapping, estimating the 3D ge⁃
ometry of a scene and attaching semantic labels to the geometry, remains a challenging problem
that, if solved, would make structured vision understanding and editing more widely accessible.
Concurrently, progress in computer vision and machine learning has motivated us to pursue the
capability of understanding and digitally reconstructing the surrounding world. Neural metric-se⁃
mantic understanding is a new and rapidly emerging field that combines differentiable machine
learning techniques with physical knowledge from computer vision, e.g., the integration of visual-
inertial simultaneous localization and mapping (SLAM), mesh reconstruction, and semantic un⁃
derstanding. In this paper, we attempt to summarize the recent trends and applications of neural
metric-semantic understanding. Starting with an overview of the underlying computer vision and
machine learning concepts, we discuss critical aspects of such perception approaches. Specifical⁃
ly, our emphasis is on fully leveraging the joint semantic and 3D information. Later on, many im⁃
portant applications of the perception capability such as novel view synthesis and semantic aug⁃
mented reality (AR) contents manipulation are also presented. Finally, we conclude with a dis⁃
cussion of the technical implications of the technology under a 5G edge computing scenario.
Keywords: visual computing; semantic and spatial joint perception; dense 3D semantic map⁃
ping; neural metric-semantic understanding
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1 Introduction

The perception of the real world in a meaningful recon⁃
structive way has been one of the primary driving forc⁃
es for the development of sophisticated computer vi⁃
sion techniques. The semantic and spatial joint per⁃

ception of a variety of scenes is shown in Fig. 1. Computer vi⁃
sion approaches span a range from real-time mapping, which
enables the latest generation of robots, to sophisticated seman⁃
tic identification for the meaningfully structured information
in various big data applications. In both cases, one of the main
bottlenecks is the exact and consistent context understanding
in terms of occlusion, view-angle, and illumination conditions,
i.e., despite of the noticeable progress in fine-grained seman⁃
tic scene understanding tasks like detection and instance seg⁃

mentation, computers still perform unsatisfactorily on visually
understanding humans in crowded scenes. Concurrently, pow⁃
erful consistent context understanding models have emerged
in the computer vision and machine learning communities.
The seminal works related to semantic and spatial joint per⁃
ception, the so-called dense 3D semantic mapping framework
by HERMANS et al. [1], have evolved in recent years into joint
volumetric 3D reconstruction and semantic segmentation for⁃
mulas for both the unmanned system and the human-involved
virtual/augmented reality (VR/AR) immersive experience.
Here, the synthesis of more plausible depth in parts of the
scene or more reliable semantic image classification can be
achieved by jointly optimizing geometry and semantics in 3D.
Very recently, such an area has been explored as“metric-se⁃
mantic understanding”. One of the first publications that used

ZHU Fang1,2

(1. State Key Laboratory of Mobile Network
and Mobile Multimedia Technology,
Shenzhen 518057, China;
2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202101008

http: //kns.cnki.net/kcms/detail/34.1294.
TN.20210218.1753.002.html, published online
February 19, 2021

Manuscript received: 2020-12-25

61



Review Next Generation Semantic and Spatial Joint Perception —— Neural Metric-Semantic Understanding

ZHU Fang

ZTE COMMUNICATIONS
March 2021 Vol. 19 No. 1

the term metric-semantic understanding is Kimera[2]. It en⁃
ables machines to learn to perceive their surroundings by com⁃
bining the-state-of-the-art geometric and semantic understand⁃
ing into a modern perception way. Furthermore, the authors al⁃
so argue that the semantic information based on the geometric
information provides the ideal level of abstraction to provide
humans with models of the environment that are easy to under⁃
stand. Instead of implicitly combining the geometry and se⁃
mantic segmentation of 3D, a variety of other methods more ex⁃
plicitly follow this notion of collaboration to exploit compo⁃
nents of the perception pipeline.
While classical computer vision starts from the affine imag⁃

ing of the physical world to addressing the geometrical consis⁃
tency by modeling, for example, the camera’s viewpoint,
odometry, and depth map properties, machine learning comes
from an end-to-end trainable (differentiable) and statistical
perspective. It is a well-known fact that the differentiable ma⁃
chine learning technique can capture more complex dependen⁃
cies and achieve a high level of expressiveness, while, if used
only, cannot be metric or explicitly follow the strict consisten⁃
cy behind the physical world. To this end, the quality of main⁃
ly traditional computer vision-based dense 3D semantic map⁃
ping relies on the physical correctness of the employed mod⁃
els. Direct joint estimation of geometry and semantics in a
multi-view 3D reconstruction setting, which implicitly com⁃
bines the geometry and semantic information in the scenes, is
hard and error-prone and leads to artifacts in the reconstruct⁃
ed map. Thus, the classic computer vision-based geometry re⁃
constructions suffer from not only classical issues, such as
poorly textured areas, repetitive patterns, and occlusions, but
also several additional challenges, such as higher noise level,
and, often, the presence of shake and motion blur. To this end,
traditional metric-semantic understanding methods try to over⁃
come these issues by using heuristic regularization, like con⁃
vex anisotropic regularizers, to combine captured imagery. But
in the complex scenery, these methods require thousands of it⁃
erations for convergence or are unable to fully capture the
complex semantic and geometric dependencies behind them.
Neural metric-semantic understanding brings the promise of
addressing both geometry reconstruction and fusion of geome⁃
try and semantic information by using deep networks to learn
complex mappings from captured images to 3D semantic
maps. The underlying principle is to combine the differentia⁃
ble machine learning techniques with physical knowledge
from computer vision to yield new and powerful algorithms for
semantic and spatial collaborative perception.
Neural metric-semantic understanding does not yet have a

clear definition in the literature. Here, we define neural met⁃
ric-semantic understanding as: deep image or video semantic
& spatial collaborative perception approaches and also sub-
modules that enable the explicit or implicit fusion of semantic
and geometric context properties of the scene, such as deep
convolutional neural networks in volumetric space for 3D se⁃

mantic segmentation, incorporation of conventional multi-view
stereo concepts within a deep learning framework, fine-tuning
of the deep network by using the extracted geometric con⁃
straints, and a representation of semantics as an invariant
scene for medium-term continuous tracking of large scale 3D
scanning.
This paper defines the components of the semantic and

spatial collaborative perception pipeline and exploits the dif⁃
ferent directions of neural metric-semantic understanding
formulations, embedded in corresponding components. One
central scheme around which we structure this paper is the
combination of computer vision imaging principles and learn⁃
ing-based primitives to yield new and powerful algorithms for
visual content’s consistent understanding, since consistency
in the real-world understanding is essential for many media
editing and structural data indexing applications. We start
by discussing previous explorations’fundamental concepts
and components of metric-semantic understanding, which
are prerequisites for the semantic and spatial collaborative
perception pipeline. Afterwards, we discuss critical aspects
of emerging neural-based metric-semantic understanding ap⁃
proaches, fusions of learning-based primitives and affine im⁃
aging principles, such as type of fusion, how the fusion is pro⁃
vided, which components of the metric-semantic understand⁃
ing pipeline are learned, and explicit v.s. implicit fusion. Fol⁃
lowing, we discuss the panorama of applications that is en⁃
abled by semantic and spatial collaborative perception. The
applications range from relighting, novel view synthesis, to
the manipulation of semantic contents for augmented reality
(AR). The semantic manipulation of AR contents, achieving
natural interaction between the virtual and real world and fi⁃
nally facilitating natural interaction between“digital twins”
and the real world, has many technical implications on the
evolving storage-computing network, especially when instant
response computing and privacy preserving strategies can be
carried out with the help of edge computing based on 5G. We
then conclude with these implications.

▲Figure 1. Semantic and spatial joint perception of a variety of scenes[2–3]
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2 Related Surveys
Metric-semantic understanding, sometimes called“dense

3D semantic mapping”, has been continuously studied in the
literature, such as Ref. [2] and Refs. [4–8]. It includes robot
perception and mixed reality. The perceptional understanding
using classic computer vision or with some convolutional neu⁃
ral networks (CNNs) as classification assistance has been stud⁃
ied extensively. The thorough analysis survey[9] of such classi⁃
cal computer vision methods, for the implicit combination of
the geometry and semantic segmentation of 3D, focuses on
specific heuristic regularization, such as surface normal direc⁃
tions[10] and special treatment for highly reflective objects[11].
Recent explorations regarding explicitly semantic and spatial
collaborative perception through the components of the per⁃
ception pipeline, with the emerging machine learning tech⁃
niques, have also been discussed in Refs. [12–15]. Recent re⁃
ports, like Refs. [16– 19], discuss various applications with
the help of metric-semantic understanding techniques, such
as novel view synthesis, relighting, and semantic AR contents
manipulation. However, none of the above reports or literature
provides a structured or comprehensive look into the new and
rapidly emerging field, neural metric-semantic understanding,
which combines differentiable machine learning techniques
with physical knowledge. Such a comprehensive approach, es⁃
pecially linking clues from classic computer vision to the

“new”neural assistance, is critical, since the“next generation”
semantic and spatial collaborative perception can reach new
heights in the performance of these tasks, which motivates us to
pursue the modern computer vision capability of understanding
and digitally reconstructing the surrounding world.

3 Theoretical Fundamentals
In this section, we discuss the theoretical fundamentals of

working in the semantic and spatial collaborative perception
space. First, we discuss dense depth map formation models in
computer vision, followed by the classic methods of high-quali⁃
ty 3D scanning of large-scale scenes. Next, we discuss ap⁃
proaches to semantic generative models in deep learning. In
the end, we discuss the core principles of volumetric semantic
3D reconstruction.
3.1 Dense Depth Map Formation
Classical computer vision methods approximate the reverse

prediction process of image formation in the real world. Light
sources emit photons that interact with the objects in the
scene, as a function of their geometry and material properties,
before being recorded by multiple cameras with overlapping
views. This process is known as dense depth estimation. Early
passive stereo methods, referred to as an in-depth analysis in
Ref. [20], relied on at least two recorded frames based on the
known camera geometry to extract stereo correspondence, the
so-called dense disparity map. Among them, some multi-view

stereo methods use multi-valued, voxel-based, or layer-based
presentations, while most stereo correspondence methods com⁃
pute a univalued disparity function d (x, y) with respect to a
reference image. The central element to methods that produce
a univalued disparity map d (x, y) is the concept of a disparity
space (x, y, d). The term disparity describes the difference in
the location of corresponding features seen by the left and
right eyes. The correspondence between a pixel (x, y) in refer⁃
ence image r and a pixel (x’, y’) in matching image m is then
given by Eq. (1). And the common steps in the stereo algo⁃
rithms generally include matching cost computation, support
aggregation, disparity computation, and disparity optimization.
The actual sequence of steps taken depends on the specific al⁃
gorithm.
x’ = x + sd ( x,y ), y’ = y . (1)
Passive stereo matching algorithms work well on textured

scenes but require demanding computation. Later on, active
stereo methods (e.g, Kinect), which triangulate correspondenc⁃
es between a structured active illumination and a camera,
have raised a lot of interest. While unstructured surfaces are
no longer a problem, the lateral resolution of the active stereo-
only methods is limited by the resolution of the projection sys⁃
tem under the constraint of size or power. Currently, accurate
real-time dense depth estimation is mostly fulfilled with the fu⁃
sion of sensors, which ultimately improves speed, robustness
and quality. A thorough re-inspection regarding the classical
paradigm and the fusion between the time of flight (ToF) and
stereo, can refer to Ref. [21]. To exploit the complementary
strengths, accurate but sparse active range measurements and
the ambiguous but dense passive stereo information must be
fused under the principle described in Eq. (2) below.
E (d ) = wstereoEStereo (d ) +

wToFEToF (d | d ToF ) + Rsmooth + R temp, (2)
where wstereo and wToF represent confidence/weights, E repre⁃sents the objective energy to be minimized, and R represents
the regularizer.
Different optimization strategies can refer to variably con⁃

crete formulas corresponding to the principle described in Eq.
(2), such as the local method in Eq. (3) and the variational
framework in Eq. (4).
E ( zi ) = wEToF ( zi|zToFi ) + (1 - w )Estereo ( z ), (3)

Edata (u ): = ∫ΩχToF ( x ) ρToF (u ( x ) ) + χStereo ( x ) ρStereo (u ( x ) )dx.
(4)

In Eq. (4), ρ represents the local term for penalizing the de⁃
viation from the ToF or stereo data, and Χ represents spatial
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indicator functions for valid/trusted ToF/stereo.
3.2 3D Scanning of Large-Scale Scenes
Given the accurate dense depth map of the observed view,

high-quality consistent 3D scanning of large-scale scenes is
the next key step to the geometric and photometric registration
between the virtual and real world. The most important tasks
under the objective are estimating globally optimized poses,
robust tracking with recovery from gross tracking failures, and
re-estimating the 3D model to ensure global consistency, as
mentioned by DAI et al.[22]. The core of the above tasks is a ro⁃
bust pose estimation strategy, which globally optimizes the
camera trajectory per frame, considering the complete history
of the single view depth and image input in an efficient local-
to-global hierarchical optimization framework, as described in
Refs. [22–24]. While each has trade-offs, global optimization
methods based on implicit bundle adjustment (BA) are the de
facto methods for the highest quality reconstructions. Finally,
the optimization for both dense photometric and geometric
alignment is based on the energy illustrated in Eq. (5):
Eicp =∑

k
( ( vk - exp ( ζ∧ )Tvkt ) ⋅ nk )2 ,

Ergb =∑
u ∈ Ω

( I (u,Clt ) - I (π (K exp ( ξ∧ )Tp (u,Dl
t )), C∧ t - 1 ))2,

Etrack = Eicp + wrgbErgb, (5)
where vk represents the back-projection of the k-th vertex and
nk is the corresponding normal；D represents the live depth
map and C represents the live color image；ξ is the motion pa⁃
rameter and exp(ξ) is the matrix exponential that maps a mem⁃
ber of the Lie Algebra se3 to a mem⁃
ber of the corresponding Lie group
SE3；T is the current estimate of the
transformation from the previous cam⁃
era pose to the current one；E repre⁃
sents the cost function that needs to
be minimized and w represents manu⁃
ally defined weights.
3.3 Semantic Understanding
Besides the geometric and photo⁃

metric registration following the
above methods, semantic generative
models assist in semantic content reg⁃
istration of the corresponding large-
scale scenes. Such scene comprehen⁃
sion, which necessitates recognizing
instances of scene participants along
with general scene semantics, can be
addressed by the panoptic segmenta⁃
tion task with corresponding semantic
generative models such as those in

Refs. [25– 26]. Such semantic generative models generally
need a deep neural network (e.g, Feature Pyramid Network) as
a backbone to efficiently encode and fuse semantically rich
multi-scale features, which is followed by a panoptic head net⁃
work to extract coherently understandable visual scenes at
both the fundamental pixel level and distinctive object in⁃
stance level, as shown in Fig. 2. The model predicts four out⁃
puts: semantics prediction from the semantic head, class,
bounding box, and mask prediction from the instance head.
All the aforementioned predictions are then fused in the pan⁃
optic fusion module to yield the final panoptic segmentation
output. Moreover, advances in the state-of-the-art deep learn⁃
ing methods continually boost the performance of these tasks
to new heights.
3.4 Volumetric Semantic 3D Reconstruction
With the above programs, depth maps and pixel-wise se⁃

mantic classification scores are achieved as inputs to the final
objective, the semantic understanding of 3D environments.
The core processing will be carried by the volumetric seman⁃
tic reconstruction, which is cast as a volumetric fusion of
depth maps and pixel-wise semantic classification scores. In
practical applications, 3D reconstruction systems or semantic
segmentation algorithms are not robust enough and often lead
to challenging results given surfaces observed under very cer⁃
tain viewing angles. Many of these limitations under such fu⁃
sion processes can be overcome by casting dense 3D recon⁃
struction and semantic segmentation as a joint optimization
formulation, shown in Fig. 3. The general idea of the formula⁃
tion is that each of the voxels gets assigned one out of L + 1 la⁃
bels where label i = 0 denotes the free space label and the L

▲Figure 2. Overview of the overall architecture for the classical panoptic segmentation (pictures tak⁃
en from Ref. [26])
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labels with i > 0 indicate the occupied space, which is seg⁃
mented into several semantic classes. Such formulation, so-
called objective function of the volumetric multi-label ap⁃
proaches, can be resolved with the objective function of the
convex multi-label energy extended from the volumetric 3D re⁃
construction energy, as described in Eq. (6). The energy E(x)
consists of two parts, in which the former data term is a func⁃
tion of a given label, and is parameterized by the internal prob⁃
ability distribution of the voxel/surfel. The subsequent pair⁃
wise smoothness term is a function of the labeling of two con⁃
nected voxels/surfels in the graph, and is parameterized by the
geometry of the map.

E ( x ) =∑
s ∈ Ω( )∑

i
ρis xis + ∑

i, j:i < j
Фij
s ( xijs - xjis ) , (6)

where E represents the objective function of the convex multi-
label energy, Xsi represents the label assigned to voxel s, ρsi rep⁃resents a cost for assigning label i to voxel s, and Фs

i repre⁃
sents transition-specific, direction-and-location-dependent pe⁃
nalizer of the surface area formed as an interface between la⁃
bels i and j.
This type of formulation describes a convex relaxation pro⁃

cedure, which is closely related to linear programming (LP) re⁃
laxations for approximate maximum a posteriori (MAP) estima⁃
tion inference in Markov random fields (MRFs). The classical
solutions to addressing this procedure include the Bayesian,
conditional random field (CRF), MRF and variation frame⁃
work. The work of HÄNE et al. [9] can be referred to for thor⁃
ough exploration regarding such formations and approaches.
HAN et al. [15] also address some latest emerging technique
problems, inspired by the continually boosted deep learning
achievement.

4 Neural Metric-Semantic
Understanding
Following the above overview of

the underlying computer vision and
machine learning concepts, we will
discuss the new explorations regard⁃
ing fully leveraging the joint semantic
& 3D information, neural metric-se⁃
mantic understanding. Given the
high-quality geometric and semantic
scene understanding specification,
classic semantic and spatial collabor⁃
ative perception methods can recon⁃
struct global 3D semantic dense maps
for a variety of real-world scenes.
Moreover, such dense 3D semantic
mapping techniques give us explicit
editing control over all the elements
of the perception pipeline, and strict⁃

ly follow physical knowledge from computer vision—camera
viewpoint, lighting, geometry and materials. However, build⁃
ing high-quality semantic & 3D reconstruction, especially di⁃
rectly from poorly textured areas, under a higher noise level,
in dynamic surrounding environments, requires significant
manual effort, and automated high consistent context under⁃
standing from images is an open research problem. On the oth⁃
er hand, the emerging learning-based techniques are now start⁃
ing to produce a plausible dense depth map or even 3D scan⁃
ning of scenes, which is either from random noise or condi⁃
tioned on certain user specifications. However, they do not yet
allow geometrical consistency and cannot always handle the
true depth by a single scale factor. In contrast, neural metric-
semantic understanding brings the promise of combining these
approaches to enable high quality co-consistency under both
semantic and geometric scenarios. Neural metric-semantic un⁃
derstanding techniques are diverse, differing in the fusion that
they provide over the perception pipeline, the type of fusion
and the network structures they utilize. A typical neural met⁃
ric-semantic understanding approach takes red-green-blue
depth (RGBD) sequences corresponding to certain scenes as
input, builds a dense 3D reconstruction from them, and adopts
the volumetric 3D convolution for point cloud segmentation to
extract the final semantic 3D understanding. The dense 3D re⁃
construction is not restricted by directly using classical com⁃
puter vision methods to geometric modeling of the environ⁃
ment and can be optimized with the combination of differentia⁃
ble machine learning techniques for high quality consistent
understanding. At the same time, neural metric-semantic un⁃
derstanding approaches incorporate ideas from classical com⁃
puter vision in the form of orthogonal approaches to reduce
drift, traditionally-obtained geometric constraints, and net⁃
work architectures—to make the learning task easie and the
output more consistent.

▲Figure 3. Dense semantic 3D reconstruction[9]
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We propose a taxonomy of neural metric-semantic under⁃
standing approaches along the axes that we consider the most
important:
·Joint volumetric multi-label formulation
·Semantically geometric and photometric registration
·Semantical depth map regulation
In the following, we will discuss current state-of-the-art

methods under these axes.
4.1 Neural Joint Volumetric Multi-Label Formulation
According to the general pipeline of metric-semantic under⁃

standing, depth maps and pixel-wise semantic classification
scores are achieved as inputs of the final objective, the“se⁃
mantic understanding of 3D environments”. Various approach⁃
es are proposed to tackle joint optimization formulation. Au⁃
thors in Refs. [15, 27–28] directly use 3D convolutional neu⁃
ral networks approache on voxels (representation of 3D
scenes), like 2D convolution on pixels, while the methods in
Ref. [13]，such as variational methods for convex relaxation,
incorporate the physical knowledge to an emerging differentia⁃
ble learning network.
3D convolutional neural network methods rely on generic

3D convolutional neural network architectures, and take the
three-dimensional representation of 3D scenes as input. The
curse of dimensionality applies, in particular, to data that lives
on grids, which have three or more dimensions. The number of
points on the grid grows exponentially with its dimensionality.
In such scenarios, as the counterpart of 2D convolutional pro⁃
cessing for two-dimensional pictures, it becomes increasing⁃
ly important to reduce the computational resources needed
for 3D data convolutional processing, such as exploiting spar⁃
sity and reduces the number of global memory accesses. Pri⁃
or work in Ref. [28] implements sparse convolutions (SCs)
and introduces a novel convolution operator termed submani⁃
fold sparse convolution (SSC) that restricts computation and
storage to“active”sites. The utilization of the sparsity na⁃
ture of points in the 3D volumetric space forms the basis for
a new mainstream solution, submanifold sparse convolution⁃
al networks (SSCNs), which are optimized for efficient seman⁃
tic segmentation of 3D representation of scenes. A later trial
in Ref. [15] extends the SSCN with explorations in address⁃
ing the efficiency bottleneck of sparse 3D CNN, which lies in
the unorganized memory access of the sparse convolution
steps, for the demand of online computations.
Directly applying 3D convolutional neural networks to vox⁃

els like 2D convolution on pixels will introduce some limita⁃
tions, such as the insufficient capacity of deep learning tech⁃
niques to delineate visual objects. This, for instance, can re⁃
sult in non-sharp boundaries and blob-like shapes in seman⁃
tic segmentation tasks. While in the classical perception
pipeline, probabilistic graphical models have been devel⁃
oped as effective methods to enhance the accuracy of the
above task, as illustrated in Section 3.4. To this end, com⁃

pared with the classic convex relaxation procedure which al⁃
ways requires regularizers with hand-designed priors, a new
differentiable learning network method[13] combines the ad⁃
vantages of classical variational approaches with recent ad⁃
vances in deep learning, and improves the inference/optimi⁃
zation formulation from hand-tuned and not-easy conver⁃
gence to a simple, generic, and substantially more scalable
way. A reason for the improvement is that previously em⁃
ployed priors are not rich enough to capture the complex rela⁃
tionships of our 3D world, while learning-based differentia⁃
ble networks break through automatically in an end-to-end
trainable model. Furthermore, such an explicitly reused con⁃
cept of variational energy minimization has led to great ad⁃
vances when dealing with noise and missing information.
On a separate track to the progress of joint optimization

with neural deep learning techniques, some novel frameworks
in Ref. [29] aggregate inputs from the initial stage of the previ⁃
ous pipeline and the information of multiple 2D observations
from different view angles, and straightly reconstruct the final
3D semantic results with full deep learning framework. Rather
than using the above methods, projecting color data into a vol⁃
umetric grid and operating solely in 3D, with end-to-end net⁃
work architecture, directly extracting feature maps from asso⁃
ciated RGB images and then mapping into the volumetric fea⁃
ture grid of a 3D network using a differentiable back projec⁃
tion layer can result in more sufficient details.
4.2 Neural Semantically Geometric and Photometric

Registration
Despite of the full exploration of the joint optimization for⁃

mulation with geometry and semantic map as the input, emerg⁃
ing neural network techniques have also tried to leverage the
combination of differentiable machine learning techniques
with physical knowledge from computer vision in the submod⁃
ules of the perception pipeline, to enable the classic metric-se⁃
mantic understanding performance in complex scenes. The
seminal methods in Refs.[14] and [31] aim to address the un⁃
derlying key challenges of such scenarios, namely globally
consistent geometric and photometric registration, with some
revolutionary thinking, such as fine-tuning the deep network
by using the extracted geometric constraints and representing
semantics as an invariant scene for medium-term continuous
tracking of large scale 3D scanning.
Robust data association is a core problem of visual odome⁃

try and the cornerstone of large-scale geometry reconstruc⁃
tions. Currently, the state-of-the-art classic metric-semantic
understanding methods use short-term tracking to obtain
continuous frame-to-frame constraints, while long-term con⁃
straints are established using loop closures, as illustrated in
Ref. [14]. Although these two approaches are orthogonal and
greatly reduce drift by collaboration, invariant representa⁃
tion of scenes to viewpoint and illumination changes cannot
always be guaranteed, because of the gap between action in⁃
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terval spans. The author originally proposes using semantics
for medium-term continuous tracking of points to improve
the first drift correction strategy. The underlying intuition is
that changes in viewpoint, scale, illumination, etc., only af⁃
fect the low-level appearance of objects but not their seman⁃
tic meaning. By readily integrating semantic reprojection er⁃
rors into existing video odometry (VO) approaches and com⁃
bining differentiable machine learning techniques with phys⁃
ical knowledge from computer vision, translational drift in
fast or complex scenes has reduced significantly, as reported
in the literature.
The reverse thinking of the above method, emerging as an⁃

other optimizing direction of deep learning in computer vision,
is reflected in the method proposed by LUO et al.[31]. The meth⁃
od leverages a convolutional neural network trained for single-
image depth estimation along with conventional structure-
from-motion reconstruction to establish geometric constraints
on pixels in the image sequence. The authors firstly train a sin⁃
gle-image depth estimation network to synthesize plausible
depth for general color images, and then fine-tune the network
by using the extracted geometric constraints via traditional re⁃
construction methods at the test time. This novel formula,
which combines the strengths of traditional techniques and
learning-based techniques, addresses the geometrical consis⁃
tency of the reconstruction over time even under a gentle
amount of dynamic scene motion.
4.3 Neural Semantically Depth Map Regulation
As the basic input of the semantic understanding of 3D en⁃

vironments, input geometry and semantic maps, recorded by
the overlapped views or“active”sensing, always suffer from
inaccuracy and incompatible resolutions because of the differ⁃
ent sensing schemes. Plenty of progress as shown in Refs. [30,
32–33] has been made to reduce the noise and boost geomet⁃
ric details, especially after consumer depth sensors coming in⁃
to our daily lives, marked by the recent integration in the lat⁃
est iPhone. In many classic metric-semantic understanding ap⁃
proaches, volumetric depth map“fusion”has become a stan⁃
dard method, which shows geometric details boosting with
sparse depth and dense RGB information, based on truncated
signed distance functions. Due to the disadvantages and the
real-time requirement of related classic methods, neural-
based novel depth map regulation approaches emerge in multi⁃
ple ways for new heights of performance: 1) semantic informa⁃
tion which enriches the scene representation and is incorporat⁃
ed into the fusion process; 2) leveraging the multi-frame fused
geometry and the accompanying high-quality color image
through a joint training strategy; 3) depth upsampling method
which is tolerant to outlier factors (such as mismeasured depth
points, flipping points, and disocclusion) and to spontaneously
adapt to each scene by a self-learning framework in an online
update manner.
Instead of explicitly combining the geometry and semantic

segmentation of 3D in the former, others follow that by includ⁃
ing this notion of collaboration more implicitly. However, effi⁃
ciently encoding and fusing“semantically”rich multi-scale
features from an end-to-end trainable (differentiable) way is
abnormally obvious. Furthermore, recently there has also been
immense progress on learning-based methods that operate on
single images. These methods result in the pleasing ability to
synthesize plausible depth, in particular, in dynamic scenes
as well as limitations of the sensing range. In order to con⁃
struct fine-grained depth sensing, one of the seminal works by
TULSIANI et al[3] specializes those object’s representation in
scenes to some particular instances, signaling that both top-
down and bottom-up cues influence the perception, and per⁃
fectly deform into shapes even slightly different from those in
the training. Fig. 1 illustrates the pleasing semantic object re⁃
construction result, which reflects the impressive influence in⁃
troduced by neural semantic depth map regulation.

5 Applications of Semantic and Spatial Col⁃
laborative Perception
Semantic and spatial collaborative perception has many

important use cases including, but not limited to, relighting,
novel view synthesis, as well as semantic AR contents manip⁃
ulation. The following is a detailed discussion of various ap⁃
plications.
5.1 Relighting
Relighting is known as a procedure for the photo-realistically

rendering of a scene under a novel illumination. It is a funda⁃
mental component for a number of media editing applications
including AR and visual effects. The previously challenging set⁃
tings like large-scale outdoor scene relighting can be addressed
with the help of multi-view-based semantic and spatial collabor⁃
ative perception. Relighting in the wild[18] casts the problem as
a multi-modal image synthesis problem, which takes a rendered
deep buffer as input, containing depth and color channels, to⁃
gether with a semantic label (also known as an“appearance
code”), and outputs realistic views of tourist landmarks under
various lighting conditions, as shown in Fig. 4. Fig. 4a shows
that the model is rendered into a deep buffer of depth, color and
semantic labels, and Fig. 4b shows that a relighting method
translates these buffers into realistic renderings under multi⁃
ple appearances. The input views including depth and color
channels are used to reconstruct the 3D geometry of the scene;
the semantic labels are also taken as the input to indicate the
location of transient objects like pedestrians. Using the above
corresponding rendered deep buffers and pairs of real photos,
a multi-modal image synthesis pipeline learns an implicit
model of appearance, which represents the time of the day,
weather conditions and other properties not presented in the
3D model. A similar principle is also adopted by the multi-
view relighting method[34]. Furthermore, the author considers
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(a) Input deep buffer

(b) Output relighting
▲Figure 4. Relighting in the wild[18] reconstructs a proxy 3D model
from a large-scale Internet photo collection

that such geometry is coarse and erroneous, and directly re⁃
lighting it would produce poor results. Instead, the geometry is
used to construct intermediate buffers—normals, reflection
features, and RGB shadow maps—as auxiliary inputs to guide
a neural network-based relighting method. The above methods
all generalize real scenes, producing high-quality results for
applications like the creation of time-lapse effects from multi⁃

ple images.
5.2 Novel View Synthesis
Rendering of a scene under novel camera perspectives of the

scene with a fixed set of images given— a procedure known as
“novel view synthesis”or“free viewpoint videos”—is a critical
component of the emerging media entertainment applications,
360 VR. The topic has gained a lot of interest in the research
community and reached compelling quality results with the
work of COLLET et al.[35] and its real-time counterpart by DOU
et al.[36–37]. Key challenges of such applications are inferring the
scene’s 3D structure through given sparse observations, for ex⁃
ample, the painting of unseen parts of the scene. Recently, re⁃
constructing a learned representation of the scene from the ob⁃
servations, and learning of priors on geometry, appearance and
other scene properties in learned feature space with a differen⁃
tiable renderer, has become a hot topic and made significant
progress in previously open challenges such as learning from
extremely sparse observations, as shown in Fig. 5. Such seman⁃
tic and spatial collaborative perception-based approaches range
from explicit 3D disentanglement of multi-plane images[38] to
proposing 3D-structured representations such as voxel grids of
features in Refs. [16] and [17]. Among them, HoloGAN[16] im⁃
plements an explicit affine transformation layer that directly ap⁃
plies view manipulations to learn 3D features to build an uncon⁃
ditional generative model that allows explicit viewpoint chang⁃
es. Scene representation networks (SRNs)[17] encode both scene
geometry and appearance in a single fully connected neural net⁃
work, to parameterize surface geometry via an implicit function.
Although such approaches show better results compared with
previous ones, they still have limitations, i.e., they are restricted
to a specific use case and limited by the training data.
5.3 Semantic AR Contents Manipulation
Semantic AR contents manipulation is, but not only, the

key procedure of the emerging AR experience paradigm, the
so-called“retargetable AR”[19]. As the authors illustrate, re⁃

▲Figure 5. Scene representation networks[17] allow full 3D reconstruction from a single image (bottom row, surface normals and color render) by
learning strong priors via a continuous, 3D-structure-aware neural scene representation
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targetable AR is a novel AR framework that yields an AR ex⁃
perience that is aware of scene contexts set in various real
environments, achieving natural interaction between the vir⁃
tual and real world, as shown in Fig. 6, in which images are
taken from Ref. [19]. It is expressed as an abstract AR scene
graph based on the relationships among objects. Such a retar⁃
getable correspondence, which is between the realistic scene
and the constructed graph, provides a semantically regis⁃
tered content arrangement, and finally facilitates natural in⁃
teraction between“digital twins”and the real world. The key
procedure, semantic AR contents manipulation, is an exten⁃
sion of the original solution, only a geometric and photomet⁃
ric registration between the virtual and real world[39], to the
integration of virtual objects into real environments accurate⁃
ly and naturally. It is achieved by the integration of the ad⁃
vanced abstraction (3D scene graph), and the accurately un⁃
derlying semantic and spatial collaborative perception,
which is the fusion of geometric and semantic information
densely reconstructed and labeled in the scene. A similar
idea is also proposed by ROSINOL et al. [2], stating that the
ideal level of abstraction will be more practical and crucial
for the later augmented reality/mixed reality (AR/MR) sys⁃
tems. Even more, linked by such mechanism, the massive
knowledge map combined with natural language expressions,
and also the above deep understanding of physical environ⁃
ments can be collaboratively learned and managed.

6 Technical Implications
In the above sections, we present a multitude of applica⁃

tions with various target domains by semantic and spatial col⁃
laborative perception. While some applications are mostly in⁃
sensitive to the processing time and response time, others,
with legitimate and extremely useful use cases, should be
used in an instant reaction manner (e. g., semantic AR con⁃
tents manipulation). Methods for image and video manipula⁃
tion are as old as the media themselves, and understanding-
based structured visual editing is currently common, for exam⁃
ple, in the Internet industry. Neural metric-semantic under⁃
standing approaches have the potential to lower the barrier for
entry, making manipulation technology accessible to non-ex⁃
perts with limited resources. Although we believe that all the
methods discussed in this paper have the potential to positive⁃
ly influence the world via better content creation and storytell⁃
ing, we must not be complacent. It is important to proactively
discuss and devise a plan to systematically arrange the sub-
modules of the above methods under the 5G edge computing
scenario for instant reaction and also privacy protection pur⁃
pose. We believe it is critical that understanding-based syn⁃
thesizing images and videos are extremely resource- and pow⁃
er-consuming. We also believe that it is essential to raise sig⁃
nificant privacy concerns before directly uploading visual raw
data to cloud-based semantic and spatial collaborative percep⁃
tion systems, like, for the localization purpose, even if only de⁃
rived image features are uploaded.
Such related topics regarding“to cloud or not to cloud”

were first explored by NAQVI et al. [40], and then extended to
edge computing architectures, even with 5G, by BARESI et
al. [41–43]. Given the evaluation regarding the added value of
cloud computing as a key enabler for AR applications on mo⁃

Target AR context:a virtual character is sitting on a chair in front of a TV(display). Scene 2: open space Scene 3: meeting room

3D scene graph/semantic map of scene 1Scene 1: living room (AR view)

Assumed scene context(AR scene graph)

AR characterChairTV(display)
in front of sitting on

Attributes: sittable,…

select and sit on a chair with
“TV in front of chair”

▲Figure 6. Illustration of semantic AR contents manipulation: (a) retargetable AR; (b) framework that retargets the AR scene to various real scenes
by comparing the AR scene graph with 3D scene graphs constructed in each of the scenes[19]

(a)
AR: augmented reality

(b)
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bile devices[40], the authors disclose an important principle
that the latency due to connectivity type and the amount of da⁃
ta to be communicated is a major trade-off, and the dynamic
deployment and reconfiguration of the framework components
between mobile and cloud ends are really important. Further⁃
more, with respect to the final quality of experience require⁃
ments, context-awareness based resource allocation at the
wireless network edge[40, 42] and the adoption of serverless edge
computing architecture[41–43] become the consensus. With the
deployment of services to the cloud, the initially widely ig⁃
nored privacy concerns become an emerging key challenge.
The possibility was strikingly demonstrated in Ref. [44], even
when only the extracted features are uploaded.
The importance of developing corresponding safe disclosure

technologies and building corresponding communities has ris⁃
en to an urgent position. Such safeguarding measures would
reduce the potential for misuse while allowing creative uses of
semantic and spatial collaborative perception technologies. In
one recent example in the field of image-based localization[45],
the authors adopted a cloud-based“obfuscate upload”ap⁃
proach, refraining from uploading the full 3D points of struc⁃
ture-from-motion maps immediately, instead of uploading ran⁃
dom line features, lifted from 2D/3D feature points.
Learning from this example, we believe researchers and re⁃

lated business operators must make privacy preserving strate⁃
gies a key part of all the edge-based semantic and spatial col⁃
laborative perception systems with a potential for misuse, but
not an afterthought. Also, it is important that we, as a commu⁃
nity, continue to develop responsible neural metric-semantic
understanding techniques to enable cloud-based semantic and
spatial collaborative perception solutions without sacrificing
the privacy of users by hiding the privacy concerning contents
of the uploading media information.

7 Conclusions
Neural metric-semantic understanding and also the newly

neural extension have raised a lot of interest in the past few
years. This paper investigates the linkage between the clas⁃
sical and concurrent explorations and a variety of directions
related to the topic, which reflects the immense increase of
research in this field. The target application is not bound to
a specific one but spans a variety of use cases that range
from novel view synthesis, relighting, to the manipulation of
semantic contents for AR. We believe that metric-semantic
understanding will have a profound impact on making com⁃
plex structured vision understanding and editing tasks ac⁃
cessible to a much broader audience. We hope that this arti⁃
cle, which especially focuses on neural metric-semantic un⁃
derstanding, can introduce such modern perception capabili⁃
ty to a large research community, which in turn will help to
develop the next generation of computer vision applications
under the direction.
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