
D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

Fast, Exact and Robust SetFast, Exact and Robust Set
Operations on PolyhedronsOperations on Polyhedrons
Using Localized ConstructiveUsing Localized Constructive
Solid Geometry TreesSolid Geometry Trees
Ping Lu1, Xudong Jiang2, Wei Lu2, Ran Wei1,
and Bin Sheng3

(1. ZTE Corporation, Nanjing 210012, China;
2. Autodesk China Research & Development Center, Shanghai 200061, China;
3. Shanghai Jiao Tong University, Shanghai 200240, China)

Regularized Boolean operations have been widely used in 3D
modeling systems. However, evaluating Boolean operations
may be quite numerically unstable and time consuming, espe⁃
cially for iterated set operations. A novel and unified tech⁃
nique is proposed in this paper for computing single and iter⁃
ated set operations efficiently, robustly and exactly. An adap⁃
tive octree is combined with a nested constructive solid geom⁃
etry (CSG) tree by this technique. The intersection handling
is restricted to the cells in the octree where intersection actu⁃
ally occurs. Within those cells, a CSG tree template is in⁃
stanced by the surfaces and the tree is converted to plane ⁃
based binary space partitioning (BSP) for set evaluation; More⁃
over, the surface classification is restricted to the cells in the
octree where the surfaces only come from a model and are
within the bounding ⁃ boxes of other polyhedrons. These two
ways bring about the efficiency and scalability of the opera⁃
tions, in terms of runtime and memory. As all surfaces in
such a cell have the same classification relation, they are clas⁃
sified as a whole. Robustness and exactness are achieved by
integrating plane⁃based geometry representation with adaptive
geometry predicate technique in intersection handling, and by
applying divide⁃and⁃conquer arithmetic on surface classifica⁃
tion. Experimental results demonstrate that the proposed ap⁃
proach can guarantee the robustness of Boolean computations
and runs faster than other existing approaches.

Boolean operations; polyhedrons; constructive solid geometry;
binary space partitioning tree

Abstract

Keywords

DOI: 10.3969/j. issn. 1673􀆼5188. 2015. 03. 007
http://www.cnki.net/kcms/detail/34.1294.TN.20150909.1509.006.html, published online September 9, 2015

The work is supported by the Natural Science Foundation of China under
Grant No. 61202154 and No. 61133009, the National Basic Research Project
of China under Grant No. 2011CB302203, Shanghai Pujiang Program under
Grant No.13PJ1404500, the Science and Technology Commission of
Shanghai Municipality Program under Grant No. 13511505000, and the
Open Project Program of the State Key Lab of CAD&CG of Zhejiang
University under Grant No. A1401.

1 Introduction
egularized Boolean operations [1] are defined as a
closure of corresponding set ⁃ theoretic operations
on the interior of two solids. The combination of
set operations on polyhedrons, such as regularized

union (U*), regularized intersection (∩*) and regularized differ⁃
ence (⁃ *) can construct an arbitrary complex 3D model from
simpler inputs. Thus, these operations have been widely used
in interactive modeling systems, CAD/CAM applications, simu⁃
lation systems and many other areas of computer graphics.

In order to evaluate the iterated set operations, an arbitrary
set of polyhedrons is often organized into a constructive solid
geometry (CSG) tree in which the leaf nodes are polyhedrons
and the internal nodes are specific set operators. Then the eval⁃
uation of the CSG tree is generated by decomposing it into a
combination of serial binary set operations with conventional
methods.

The accumulation of numerical errors is introduced in the
evaluation procedure of set operations. It often leads to system
crashes or failure to generate correct result, such as holes and
surface overlap (Fig. 1) when evaluating very complex models
or when iterative set operations are required. Achieving geo⁃
metric robustness by overcoming the problem is easy in the ab⁃
sence of efficiency. Thus, the major challenge of implementing
such set operations is to take into account both robustness and
efficiency for interactive applications. By carefully handling
degeneracies and implementing set operations with arbitrary
precision arithmetic, the algorithms [2]- [5] that can realize
both goals have been proposed. However, they are too costly to
be practical. In order to avoid these drawbacks, some methods
[6]-[11] tried to implement set operations with voxels based on
volumetric representations. However, all of these have to per⁃
form conversion between boundary representation (B⁃rep) and
volumetric representation. Therefore, it is inevitable to lose
geometric details and precision for input models in the conver⁃
sion procedure. Another research stream for solving the robust⁃
ness and exactness problem in set operations is to marry plane⁃
based geometry representation and binary space partition
(BSP) structure together with the adaptive geometry predicates
technique [12], [13]. Nevertheless, the state⁃of⁃art BSP⁃based

R

▲Figure 1. Topology inconsistency arising from accumulation of
numerical error in Boolean operations.

A

B

A′

B′

A″

B″

Research Papers

September 2015 Vol.13 No.3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 57

1

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

method [13] still suffers from robustness issues in some special
cases because the method needs to split surfaces along with
the boundary of critical cells, although the efficiency was im⁃
proved by localized intersection handling. Moreover, in these
methods, repetitive conversion between different representa⁃
tions and BSP merge operations may lead to robustness issues
and poor performance when evaluating iterated set operations.

In contrast to B⁃rep⁃based methods [2], [3], [14], BSP⁃based
methods have unique abilities for handling non⁃manifold sur⁃
faces and simplifying the procedure of processing all possible
intersections and degeneracies among polyhedrons. Thus, the
motivation of our study is to develop a fast and unified method
for single and iterated set operations. This method can inherits
the robustness and exactness of BSP ⁃ based approaches, and
limits the cost of conversion between different representations.

In this paper, we exploit a new approach that uses localized
CSG trees to efficiently compute Boolean operations on polyhe⁃
drons. Similar to the previous BSP⁃based work, our method im⁃
plements robustness and exactness by integrating a plane ⁃
based geometry representation with adaptive geometry predi⁃
cates technique. In order to significantly improve performance,
we also apply an operation localization scheme to change the
surface topology only at an intersection region. The surfaces at
non⁃intersection region remain unchanged by employing a new
adaptive octree construction algorithm which will be detailed
discussed later. Unlike the method in [13], numeric errors are
not introduced in the procedure of octree construction by avoid⁃
ing split surfaces in ours. The main ingredient, which is the
key to implementing the unified method for single or iterated
set operations, is embedding a CSG tree into each octree cell
where polyhedrons intersect with the help of an adaptive oc⁃
tree. Regularized set operations are evaluated on each CSG
tree by converting it into a BSP tree and then extracting the
boundary from the BSP tree.

A side effect caused by the operation localization scheme is
that surface classification has to be performed for the polygon
surface at non⁃intersecting regions. However, the procedure is
quite time consuming when the number of those surfaces is
very big. In order to improve classification efficiency, a partial
surface classification scheme is employed based on the fact
that classification of actual surfaces can be made only at the re⁃
gions that are completely inside the bounding box of other poly⁃
hedrons, and the regions are covered by a set of octree cells.
By classifying each cell as a whole, surface classification is fur⁃
ther accelerated with the help of the octree. Through this divide
⁃and⁃conquer strategy, the accuracy and robustness of classifi⁃
cation is guaranteed because classification always performs be⁃
tween surfaces with original polyhedrons.

2 Related Work
Regularized Boolean operations have been investigated for

many years. Corresponding methods can be classified into

three categories: volumetric methods, approximate methods,
and exact methods.

By converting B⁃rep into a volumetric representation, regu⁃
larized set operations can be easily and robustly evaluated with
voxels [6], [7]. However, the precision for models is inversely
proportional to the size of voxel. Small voxels are quite expen⁃
sive in terms of sampling time and memory consumption. More⁃
over, the sharp edges and corners of input models are lost in
the converting process. In order to alleviate the problems, the
methods in [8], [15] reconstruct the geometric details on surfac⁃
es of the resultant model by encoding the normal information
of surfaces into the sampling process. Some [9]-[11], [16] also
made efforts to preserve topology or manifold information in
the results by applying dual⁃contour algorithms. Nevertheless,
it is unavoidable for those methods to damage the geometric de⁃
tails and precision of the resulting models due to the conver⁃
sion between different representations.

The performance penalty of exact Boolean operation is inevi⁃
table, so some researchers try to compute approximate Boolean
operations instead. Biermann et al. [17] implemented approxi⁃
mated set operations on two free⁃form solids bounded by para⁃
metric surfaces based on a multi⁃resolution subdivision repre⁃
sentation [18]. Robustness is achieved by applying the numer⁃
ic perturbation [19] in intersection computation between the
coarse meshes in the method. However, in the case when an in⁃
tersection result is uncertain, the technology has to use new
perturbation to compute the intersection again. Thus, the meth⁃
od is time⁃consuming for complex models. Smith and Dodgson
[20] presented a topologically robust method for set operations
on B⁃rep models. By carefully defining a series of interdepen⁃
dent operations, this approach can always guarantee the result
with correct connectivity if the input models have valid connec⁃
tivity. However, due to interdependent operations, this method
cannot benefit from the power of parallel computation, which is
common for modern processors,. Until recently, Wang [21] has
proposed an approach to efficiently evaluate approximated set
operations on two polygon meshes with the help of Layered
Depth Images (LDI) [22]. A trimmed adaptive contouring algo⁃
rithm is used to reconstruct the surfaces in the intersected re⁃
gion from the LDI/mesh hybrid, and then the surfaces are
stitched together with the surfaces in non⁃intersected regions.
In this way, the same robustness with that in the methods
based on volumetric representation is obtained and geometric
details are preserved at meaning time. Nevertheless, the
trimmed adaptive contouring algorithm may damage the topo⁃
logical consistency of the resultant model.

The algorithms for exact Boolean operations have been ac⁃
companied with notorious robustness issues since they were in⁃
troduced in 1980s [2]-[5]. Even though the arbitrary precision
arithmetic and careful handling of degeneracies can be used in
these algorithms to implement robustness, such implementa⁃
tions are too costly to be practical.

Naylor and Thibaut [23]- [25] have found that a BSP tree

Research Papers

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

September 2015 Vol.13 No.3ZTE COMMUNICATIONSZTE COMMUNICATIONS58

2

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

can facilitate Boolean operations of manifold or non⁃manifold
solids. They proposed a much simpler alternative algorithm for
B⁃rep ones by converting Boolean operation into BSP structure
merging. BSP⁃based methods avoid handling all possible inter⁃
sections and degeneracies. However, this approach is fragile
due to error accumulation in the merging stage. Sugihara and
Iri [26] introduced plane representation for polyhedrons for
solving the robustness issue with geometry computation. By
representing polygons with a supporting plane and a set of
bounding planes, the rudimentary modeling operation can ro⁃
bustly performs. In 2009, Bernstein and Fusel [12] combined
these two methods—plane based geometry representation and
BSP structure—together with the adaptive geometry predicates
technique [27], and proposed a robust BSP⁃based Boolean op⁃
eration method in the true sense. However, this approach
spends too much time on pre⁃computation. Both the time and
space complexity of the merging algorithm is almost O(n2) , ma⁃
king it impractical for large scale meshes. A year later,
Camped and Kobbelt [13] improved this approach by introduc⁃
ing operations localization scheme. The improved algorithm
subdivides input polyhedrons by an adaptive tree and marks
the cells in which operant polyhedrons intersect as critical
cells. BSP merge is then performed only in those critical cells.
This optimization dramatically saves time and memory space
for plane⁃based BSP Boolean operation while keeping robust⁃
ness. However, the approach still suffers from the robustness
issue in some special cases because it needs to split surfaces
along with the boundary of critical cells. Moreover, in these
methods, repetitive conversion between different representa⁃
tions and BSP merge operations may lead to robustness issues
and poor performance when evaluating iterated set operations.

3 Overview
Given any two polyhedrons Pi and Pj , the evaluation of

regularized Boolean operations between them implies the selec⁃
tion of boundary surfaces according to following equations
[28].
Pi ∪* Pj ={ }Fi Out Pj ∪{ }Fj Out Pi ∪ { }Fi With Pj (1)

Pi ∩ *Pj ={ }Fi In Pj ∪ { }Fj In Pi ∪ { }Fi With Pj (2)

Pi -* Pj ={ }Fi Out Pj ∪{ }Fj In Pi ∪ { }Fi Anti Pj (3)
The surfaces set Fx is the boundary surfaces of Px. The

classification sets FxOutPy, FxInPy, Fx With Py, and Fx AntiPy

correspond to the subsets of boundary surfaces Fx that are re⁃
spectively outside, inside, on the boundary with same orienta⁃
tion, and on the boundary with an orientation opposite to the
polyhedron Py . Moreover, the boundary surfaces of Px can be
classified into the union of three kinds of disjoint sets, i.e.

Px ={ }Sin, Sout, Sintersected , Sin ∩ Sout = Sin ∩ Sintersected = Sout ∩ Sintersected= ∅ , where Sin , Sout, and Sintersected correspond to the set ofsurfaces that are completely inside, outside, and intersect with
the minimum Axis ⁃ Aligned Bounding Box (AABB) of other
models respectively. Then through the use of the classification,
Fx can be generated from the classification set Sin, Sout,
Sintersected respectively.
Fx = Fx1 ∪ Fx2 ∪ Fx3 , Fx1 ⊂ Sin, Fx2 ⊂ Sout,

Fx3 ⊂ Sintersected

(4)

Thus, the evaluation of regularized Boolean operations be⁃
tween Pi and Pj can be discomposed to three procedures:
•to get Fx2 from Sout of each polyhedron through expression

simplification rules given in Table 1 since all surfaces in
Sout are outside the others.

• to collect Fx1 from Sin of each polyhedron by classifying
surfaces in the set since they are either completely outside
or inside the other polyhedrons.

•to obtain Fx3 form Sintersected of each polyhedron by intersec⁃
tion handling.
The same strategies can be adopted to the evaluation of regu⁃

larized set operations based on a CSG tree. Given a CSG tree T
and a set of polyhedrons Pi =(1.. n) in its leaf nodes, T can also be
decomposed into the union of three disjoint sub ⁃ trees, i.e.
T = Tin ∪ Tout ∪ Tintersected , where Tin , Tout ,Tintersected are CSG trees
composed of Sin , Sout , Sintersected from all polyhedrons respec⁃
tively. A leaf node of any sub⁃tree can contain an empty sur⁃
face set in case of the corresponding S is ∅ . The evaluation
of T can be simplified to the results collection of all sub⁃tree’s
evaluation. Fig. 2 shows an example of CSG decomposition.

By using an octree, T can efficiently be decomposed into a
series of sub⁃trees. Thus, our algorithm can compute set opera⁃
tions on a set of polyhedrons in four steps.
1) CSG tree construction

The first step of our algorithm is to convert input Boolean ex⁃
pression into a CSG tree in which the leaf nodes are polyhe⁃
drons and the internal nodes are specific Boolean operators.
For single set operations, the CSG tree is trivial, which only
has two leaf nodes and one non⁃leaf node.
2) Localized intersection handling

The purpose of this step is to decompose the CSG tree into
disjoint sub ⁃ trees, and restrict intersection handling in the
trees which contain the surfaces in an intersection region with
▼Table 1. Boolean operation simplification rules for the polygons
outside other polyhedrons

* a and b mean the polygon from left polyhedrons and that from right polyhedronsrespectively.

Operation
∪*
∩*
-*

Left operand
a
a
a

Right operand
b
b
b

Result
a ∪ b
∅
a

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

Research Papers

September 2015 Vol.13 No.3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 59

3

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

the help of an adaptive octree. We first construct an octree to
classify input polyhedrons into three kinds of nodes: internal
nodes, external nodes, and intersected nodes (Section 4.1). In⁃
tersection computation is restricted to those intersected nodes
where surfaces belong to at least two models. Before process⁃
ing each intersected node, a CSG template is created based on
the CSG tree constructed in the first step in order to improve
performance (Section 4.2). Within each intersected node, all
surfaces are converted to plane ⁃ based representation, then
grouped according to the polyhedrons they belong to. If a sur⁃
face spans at least two intersected nodes, the surface will be
clipped along with six bounding planes of current node, and
the remaining parts will associate to original surface. The CSG
template is instanced with the grouped surfaces, then convert⁃
ed to BSP. The result of Boolean operations on the instanced
CSG tree is obtained by extracting the boundary from the BSP.
3) Partial surfaces classification

In order to evaluate the CSG sub⁃tree where all surfaces are
either entirely inside other models, or entirely outside other
models, or on other models, we need to determine every sur⁃
face relation with respect to other polyhedrons by a point ⁃ in⁃
polyhedron test. Several strategies are employed in surface
classification either to speed up the classification or to make
the procedure robust. First, the classification is restricted to
the internal nodes where surfaces only come from a model and
are within the AABBs of other polyhedrons. All surfaces in
each internal node are clustered as a whole for classification.
The point⁃in⁃polyhedron test arithmetic based on spatial struc⁃
ture is then employed to further improve efficiency.

Distinct from conventional classification based on CSG, The
divide⁃and⁃conquer method is used to achieve the robust and
exact classification (Section 4.3).
4) Boolean operation result generation

The result of a Boolean operation is obtained by collecting
the evaluation results from different CSG sub ⁃ trees. In this
step, all surfaces in the intersected nodes and internal nodes
are evaluated. Therefore, we only need to evaluate the set oper⁃
ations on the surfaces within external nodes where all surface
only come from a model and are outside the AABBs of other
polyhedrons. Knowing the relations of surfaces in each exter⁃
nal node with respect to other polyhedrons, we can quickly
evaluate those surfaces according to the simplification rules in

Table 1.
4 Localized Evaluation and Classi-
fication

4.1 Adaptive Octree Construction
In recent years, an adaptive octree has been

employed to find intersected areas of input poly⁃
hedrons by several Boolean algorithms [13], [20],
[27]. Different from those methods, the adaptive
octree constructed in this paper allows a single

surface to add into multiple nodes, which avoids the numerical
error caused by clipping the surface during the tree construc⁃
tion. Meanwhile, the nodes of the octree are classified into
three categories: external nodes, internal nodes, and intersect⁃
ed nodes, and different schemes for different nodes can be ap⁃
plied to accelerate the algorithm execution.

The adaptive octree algorithm takes all the surfaces of all
polyhedrons as input, recursively subdivides the minimum
AABB encompassing whole input polyhedrons along X axis, Y
axis and Z axis of its Cartesian coordinates, and then classifies
the surfaces according to the sub⁃bounding⁃boxes to generate
the tree. Different from the conventional construction strategy,
the procedure subdivides the current node if and only if the
node contains surfaces from different models and the surfaces
in the nodes exceed an adjustable parameter m. In this way,
the octree can automatically adapt to the complexity of the
model. During the generation period of the octree, each node is
classified to one type of the following three categories:
•Intersected node: surfaces in the node belong to at least two

models;
•Internal node: surfaces in the node only come from a model

and are within the AABBs of other polyhedrons;
•External node: surfaces in the node only come from a model

and are outside the AABBs of other polyhedrons.
All surfaces of the octree spread over the leaf nodes classi⁃

fied by spatial relation, and the surfaces in each leaf node are
either entirely within the cell or intersected with it. Therefore,
a surface can span multiple leaf nodes. To manage this case,
our algorithm defines the priorities of different node types: the
priority of an intersected node is higher than that of an internal
node, while internal node is higher than external node. It
means when a surface is shared by several nodes with different
types, the surface is considered to belong to the node with high⁃
est priority and will be handled in this node. For example, if a
surface is shared by an internal node and an external node, it
will be handled in the internal node. To determine the owner⁃
ship of each shared surface, those surfaces are set one of the
following flags:
•Multi⁃intersected: the surface spans at least two intersected

nodes.
• Single ⁃ Intersected: the surface only spans a intersected

node;

▲Figure 2. An example of CSG tree decomposition.

U*

n* C

A B

U*

n* Cout

Aout Bout

U*

n* Cin

Ain Bin

U*

n* Cinter

Ainter Binter

= U U

Research Papers

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

September 2015 Vol.13 No.3ZTE COMMUNICATIONSZTE COMMUNICATIONS60

4

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

•Internal: the surface can at least be shared by an internal
node while cannot be shared by intersected nodes;

•External: the surface can only be shared by external nodes.
The four flags correspond to the node categories respective⁃

ly. These flags define how to traverse the surfaces of the octree.
When visiting external nodes, all the surfaces with single⁃inter⁃
sected or internal flags are skipped because they are traversed
by the corresponding intersected or internal nodes; the surfac⁃
es with multi⁃ intersected flag are checked if and only if there
are the remaining sub⁃surfaces after clipping. When visiting in⁃
ternal nodes, all single ⁃ intersected surfaces are skipped be⁃
cause they are traversed by the corresponding intersected
nodes, and the surfaces with multi ⁃ intersected flag are pro⁃
cessed as before. Fig. 3 illustrates spatial subdivision on two
2D polygons by using adaptive octree.

The octree generated by this algorithm has three properties:
1) The internal and external nodes can only be leaf nodes, and

only the intersected nodes may have children.
During the octree construction, the node is not be recursive⁃

ly subdivided unless it is an intersected node with the surfaces
that exceed the threshold. This explains why the parent of an
internal or external node can only be an intersected node, and
the node cannot be subdivided any more.
2) All the surfaces within an internal node have the same rela⁃

tionship. They are either totally outside other models, or to⁃
tally inside other models, or totally on the same surface with
other models.
According to the definition and property 1, an internal node

is a leaf node with all surfaces belonging to a single model. As⁃
suming there exists a surface outside other models while the re⁃
maining surfaces are inside the model, those surfaces will
cross the boundary of model, which means the surfaces inter⁃
secting with them are also in this node. This assumption does
not meet the definition of internal node, so this propositions is
true.
3) Only the surfaces of intersected nodes have the probability

to intersect with other models.
Assuming there is a surface in an internal or external node

of the octree intersecting with models, the node contains sur⁃
faces from other models, or the surface is shared by a single/
multi⁃intersected node. In the first situation, the node is an in⁃

tersected node, unconformable to the assumption; in the sec⁃
ond situation, the surface is handled by the intersected node,
and this propositions is true.

The octree construction strategy implicitly divides the sur⁃
faces of each input model into three different regions: the inter⁃
sected region, internal region, and external region. The regions
consist of the surfaces from same model among all intersected
nodes, all internal nodes and all external nodes respectively.
Fig. 4 shows an example of different regions on each polyhe⁃
dron. Different strategies can be applied on the surfaces of dif⁃
ferent regions. In summation, the algorithm only needs to do
the intersection handling on the surfaces of intersected re⁃
gions, classifies the surfaces of internal regions, and directly
evaluate the surfaces of external regions. The triangles from
the exclusive group can be evaluated in early stage according
to Table 1. Triangle ⁃ triangle intersection tests are limited to
within each intersected group. A point ⁃ in ⁃ polyhedron test is
performed for the triangulating results of every intersection test
and performed only once for each inclusive group.
4.2 Localized Intersection Handling

In intersection handling, it is inevitable that operations
change the topology of polyhedrons. By using predicates rather
than constructions, it is easier to make the operations robust
since no new geometric data are generated from existing geo⁃
metric information [29]. Hence, vertex coordinates are not
used in the operations such as intersection computation and
clipping polygons, but the surfaces are converted to planed ⁃
based representation before further processing. The plane ⁃
based representation of a polyhedron consists of a support
plane and a set of bounding planes. With the representation, a
vertex of the polyhedron is defined implicitly by the intersec⁃
tions among the support plane and two bounding planes, while
an edge is defined implicitly by the support plane and a bound⁃
ing plane. Given a polygon P = ()V1, V2 , ... Vn , where Vi is a
vertex defined in counter clock wise order, we can get its plane⁃
based representation P ={S, B1, B2, ... Bn } , where S is the
support plane and Bi is a bounding plane by the plane equa⁃
tions in the forms:

f ()S = ()()V3 - V2 × ()V1 - V2 ⋅ ()p - V1 = 0 (5)

◀Figure 3.
2D illustration of subdividing
two polygons by adaptive
octree. Blue denotes exclusive
cells; red denotes intersected
cells; and green denotes
inclusive cell.

▲Figure 4. An example of different regions on each polyhedron con⁃
structed by an adaptive octree. Green, pink and yellow denote the exter⁃
nal, internal, intersected region respectively.

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

Research Papers

September 2015 Vol.13 No.3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 61

5

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

f ()Bi = ()()Vi + 1 - Vi × ()()V3 - V2 × ()V1 - V2 ⋅ ()p - Vi = 0 (6)
where f is the implicit function of a plane and p is a point in
the defined plane. Related geometric operations based on the
representation were proposed in [12].

With the constructed octree, the intersection handling is re⁃
stricted to the intersected nodes. Before processing intersected
nodes, a CSG tree template is constructed in order to improve
the efficiency in terms of runtime and memory. The CSG tree
template is instanced by filling the polygons based on plane
representation, and then converted to BSP for set operations
evaluation in each intersected node. The evaluation results of
are obtained by extracting the boundary from the BSP tree. The
procedure is implemented in the three steps: constructing a
CSG tree template, instancing the template in each intersected
node, and converting CSG to BSP and extracting boundary.
4.2.1 Constructing CSG Tree Template

A general CSG template inherits the CSG tree constructed
in the first step (Section 3). It is reused in the whole procedure
of intersection handling, and instanced with the surfaces based
on plane representation in each intersected node. In order to
construct the template, we copy the original CSG tree, and re⁃
place the primitive in each leaf node with a pair of key⁃value,
where the key is the identifier of the primitive while the value
is a list of faces from each intersected node of the octree. Fig.
5 shows a CSG tree template.
4.2.2 Instancing Template in Each Intersected Node

Within each intersected node, an empty group list is created
corresponding to the set of input polyhedrons, and each group
has a unique identifier for quickly finding the polyhedron
where the surfaces in the group come from. A copy of each sur⁃
face is converted into the plane⁃based representation, and then
different processing strategies are taken according to surface
flags. If a surface has a multi⁃intersected flag, the plane⁃based
representation is clipped by six boundary planes of the cell by
the clipping algorithm presented in [12], and the inner parts
are added into the corresponding group by matching, while the
outer parts are associated to the original surface, which will be
clipped again when another relevant intersected cell is pro⁃
cessed, otherwise, it is added into the corresponding group di⁃
rectly. After all surfaces are processed, the CSG template is in⁃
stanced by filling the faces list in each leaf node with the sur⁃

faces from the group. The identifier of a group is used to quick⁃
ly locate the leaf node by matching it. Many technologies can
be used for this purpose such as a hash table.
4.2.3 Converting CSG into BSP and Extract Boundary

There are two ways converting the instanced CSG into BSP.
One is converting each primitive in leaf nodes into BSP, and
then evaluating the tree down⁃to⁃up by performing BSP merg⁃
ing operation [24]. The other is converting the CSG tree into
BSP tree directly [23]. In order to evaluate the CSG tree effi⁃
ciently and avoid massive merging operations, we use the latter
method. After the conversion, the results of set operations on
the CSG tree are obtained by extracting the boundary from the
BSP tree [23]. The results must be converted into B ⁃ rep and
generate the final output by being combined with the evalua⁃
tion results from other CSG sub⁃trees.
4.3 Partial Surfaces Classification

Such classification is used to determine the relationship of
surfaces within an internal node of an octree with respect to
other input models. This way helps determine whether the sur⁃
faces should be remained in the final results. The surfaces
within an internal node are either entirely inside other models,
or entirely outside other models, or on other models. Therefore,
the relationship of a surface and a polygon is abstracted to
specifying the relationship between the centroids of the poly⁃
gon and the polyhedron. The classification based on CSG tree
starts from bottom, and passes the classification results up⁃
wards to the parent node of the current node. The intermediate
results are classified with respect to the models representing
the brother nodes of the current node. This process ends at the
root node and the final classification is achieved.

However, conventional approaches are confined to directly
applying classification on the models that are represented by
the two children of a CSG tree. When the two children are leaf
nodes, the classification is executed between the models repre⁃
sented by them. If one of the two children is a non⁃leaf node,
the intermediate result represented by the node always partici⁃
pates in the classification. This scheme makes the numerical
errors propagated upwards, which may impair the topological
consistency (such as holes or splits on the resultant polyhe⁃
dron). In order to avoid such the issue, our algorithm uses a di⁃
vide ⁃ and ⁃ conquer method to ensure the classification always
happens between the surfaces and the original input model.
We further optimize the performance of surface classification
by using clustering strategy and octree.

Given a candidate surface p, ourmethod first decides wheth⁃
er the brother node n of the node containing p is a leaf node. If
so, the algorithm of point ⁃ in⁃polyhedron is used to determine
the relationship of the centroid of p with the input model corre⁃
sponding to n . Otherwise, the relationship between t and the
models represented by two children of n will be checked. The
recursion is performed downwards to the leaf nodes to classify

◀Figure 5.
In a CSG tree template, every
primitive is replaced by a pair
of key⁃value with mesh ID and
face⁃list when instancing.

U*

n* <Mesh ID, Faces list>

<Mesh ID, Faces list><Mesh ID, Faces list>

Research Papers

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

September 2015 Vol.13 No.3ZTE COMMUNICATIONSZTE COMMUNICATIONS62

6

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

t with respect to the models corresponding to the two leaf
nodes. After the classification, the results are propagated up⁃
wards again to the father node, and then the classification re⁃
sults are obtained from the predefined rule tables (Tables 2-
4) based on required Boolean operations. The clasification re⁃

sults keep on propagating to the brother node of n. The con⁃
crete process is described in Algorithm 1, in which the func⁃
tion Combine makes use of the Boolean operations defined on
n and the classification results of left and right sub⁃trees to get
the classification results of the surface p by querying Tables 2
to 4.

Our algorithm uses the octree to complete classification in
linear time by combining clustering strategy with the optimized
point ⁃ in⁃polyhedron test based on spatial structure. First, the
surfaces within each external node of an octree are known to
be outside the bounding boxes of other models while the surfac⁃
es of each intersected node have been estimated through em⁃
bedded in the CSG tree. Therefore, we only need to decide the
surfaces within internal node with respect to other models. Re⁃
garding Property 2, all surfaces within the internal nodes of an
octree have the same relationship. Therefore, we can cluster all
surfaces as a whole in an internal node and take only one ran⁃
domly for testing to decide the relationships of all surfaces of
an internal node, which dramatically optimizes the perfor⁃
mance of classification.

The point⁃in⁃polyhedron test is a basic geometric issue, and
many researchers have proposed different methods for it [30]-
[33]. Those approaches are divided into non ⁃ spatial structure
methods and spatial structure methods, according to whether
spatial structure for acceleration is used. Non⁃spatial structure
methods test all surfaces of the model, while spatial structure
methods only need to test a part of the surfaces from the model.
Common spatial structure methods include octree, k ⁃ d tree,
and BSP tree. Since the point⁃in⁃polyhedron test based on spa⁃
tial structure only needs partial geometric information of the
polyhedron, its performance is much better than a non⁃spatial
structure method. However, it usually requires pre ⁃ process
time to construct the spatial structure. The time complexity of
classification between two models based on non⁃spatial struc⁃
ture method is O (n*k), where n is the surface number of tested
models and k is the number of tested surfaces. By adapting the
ray ⁃casting algorithm based on octree, the time complexity of
classifying two models can be decreased to O (n*logn) yet plus
the time of octree traversal. However, octree traversal can be
accelerated by parameterization methods [34].
Algorithm 2 shows the pseudo ⁃ code of the classification

procedure. This algorithm begins with the root node of the CSG

Algorithm 1 ClassifyFacet (Polygon p, CSG⁃tree⁃node n)
1: if n is a leaf node then
2: return Point⁃in⁃polyhedron (p.barycenter, n.mesh);
3: else
4: return Combine (ClassifyFacet (p, n.left), ClassifyFacet

(p, n.right), n.operator);
5: end if

▼Table 2. Classification relation between model C and A ∪* B

CinA
CoutA
CwithA
CantiA

CinB
In
In
In
In

CoutB
In
Out
With
Anti

CwithB
In

With
With
In

CantiB
In

Anti
In
Out

▼Table 3. Classification relation between model C and A ∩* B

CinA
CoutA
CwithA
CantiA

CinB
In
Out
With
Anti

CoutB
Out
Out
Out
Out

CwithB
With
Out
With
Out

CantiB
Anti
Out
Out
Anti

▼Table 4. Classification relation between model C and A - * B

CinA
CoutA
CwithA
CantiA

CinB
Out
Out
Out
Out

CoutB
In
Out
With
Anti

CwithB
Anti
Out
Out
Anti

CantiB
With
Out
With
Out

“In”denotes a face is inside the model while“Out”has opposite meaning,“With”
denotes a face is on the model with same normal, and“Anti”means a face is on the
model with opposite normal.

“In”denotes a face is inside the model while“Out”has opposite meaning,“With”
denotes a face is on the model with same normal, and“Anti”means a face is on the
model with opposite normal.

“In”denotes a face is inside the model while“Out”has opposite meaning,“With”
denotes a face is on the model with same normal, and“Anti”means a face is on the
model with opposite normal.

Algorithm 2 Evaluate (CSG⁃tree⁃node n)
1: if n.left is a leaf node then
2: Store all facet groups in n.left into Gl ;3: else
4: Gl = Evaluate (n.left);
5: end if
6: if n.right is a leaf node then
7: Store all facets groups in n.right into Gr ;8: else
9: Gr = Evaluate (n.right);
10: end if
11: for each facet group g in Gl do12: store the first facet in g into f;
13: if IsAcceptable(ClassifyFacet(f, n.right), n.operator)) then
14: store g in node n;

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

Research Papers

September 2015 Vol.13 No.3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 63

7

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

tree in which each leaf node has a list of facet groups. The lists
are formed by grouping all surfaces from each internal node of
the octree as a whole and then by storing the surfaces into the
corresponding list. The recursive process collects the facet
groups from child nodes at every stage. Since the surfaces in a
group have the same membership, only the first facet in each
group involves in the membership test with respect to the poly⁃
hedron representing by the brother child node implicitly. The
test results, along with the specific selection rules (Section 3),
determine whether the group that contains the tested facet is re⁃
tained in the current node. This process ends at the root node
and the final results are achieved in the node.

5 Experiments

5.1 Setup
The implementation of our method is written in C++. Also,

the Intel TBB multi⁃thread library is used to improve the per⁃
formance. In order to reach a balance between the depth of oc⁃
tree and the number of polygon pairs for intersection test, the
max polygon count in each octree leaf node is around 17.

We evaluated the performance of our method on a system
with Intel i5⁃4200 1.53 GHz CPU and 16 GB RAM. In order to
compare the quality of the results and the overall performance,
we tested other systems including Maya Campen’s method
[13]. The input is closed triangle meshes with only vertices po⁃
sition and face indices information. The running time present⁃
ed below includes pre⁃processing time.
5.2 Single Boolean Test

A single Boolean test is often used in interactive modeling
systems which pursue robust and efficient solutions. We evalu⁃
ate the robustness and speediness of our method from two as⁃
pects. First, we confirm the consistency of performance by per⁃
forming regularized intersection, union and difference on a se⁃
ries of polyhedral pairs with increasing facet count (Fig. 6).
The average execution time of the methods was then compared
(Table 5). Second, we inspected the relationship between the
execution time of our method and the number of the facets by
constantly subdividing a polyhedron and by performing differ⁃
ent set operations on it. The corresponding experimental re⁃

sults are shown in Table 6.
The results in Table 5 show that Maya2015 and Campen’s

approach went well for simple models. But their performance
dropped significantly when models contain over about 200,000
facets. Moreover, the two methods also experienced robust⁃
ness problems when models contain over 4000,000 facets.

On the contrary, our method can correctly evaluate all exam⁃
ples with high efficiency. Especially, our method is 5 times
faster than Maya2015, and 10 times faster than Campen’s ap⁃
proach for complex models (over 150,000 facets). This is due
to the fact that our method only splits the facets that span over
two intersected cells in intersection handling, and speeds up
the classification by partial surface classification scheme.

▲Figure 6. Models and its Boolean results: (a) Scorpion; (b) Head;
(c) Banana; (d) Bunny; and (e) Dino.

(a) (b) (c)

(d) (e)

15: end if
16: end for
17: for each facet group g in Gr do
18: store the first facet in g into f;
19: if IsAcceptable(ClassifyFacet(f, n.left), n.operator)) then
20: store g in node n;
21: end if
22: end for
23: return all facet groups in node n;

▼Table 5. Average time for Boolean operations (intersection, union,
difference) of different polyhedrons in Fig. 6

“Fail”means we get a wrong evaluation result from programs.
“Out of memory”means program crashed because system ran out of memory.

Models

Scorpion

Head

Banana

Bunny

Dino

Facet count
2400
9600
38,200
10,000
40,000
160,000
48,000
192,000
768,000
170,000
680,000
4430,000
770,000

Maya2015 (ms)
62
219
920
281
1217
5679
983
4946
24,960
20,187
110,885
Fail

131,711

Campen’s (ms)
113
272
800
349
1192
5481
1725
11,576
89,852
37,774
333,072

Out of memory
92,793

Our method (ms)
31
79
254
97
258
934
368
1303
6757
5370
29,343
50,200
5,202

Research Papers

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

September 2015 Vol.13 No.3ZTE COMMUNICATIONSZTE COMMUNICATIONS64

8

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

Moreover, our method spent much more processing time on
Bunny ⁃ Dragon (680,000) than Dino ⁃ Monster (770,000) al⁃
though they have similar facet count. The reason is that the
computing time of our method is spent on both intersected han⁃
dling and membership classification. Our method has to take
more time to classify facets when there are a lot of internal
cells in the constructed octree. Taking the model pair of Bunny
⁃Dragon as an example, each model has many facets inside the
other, which leads to many internal cells in the octree. In gen⁃
eral, the system spends the least time on classification for two
mutually orthogonal models.

To evaluate the complexity of the algorithm, we prepared a
list of mesh pairs with increasing facet count by iteratively sub⁃
dividing mesh pair Banana (Fig. 6c). Each subdivision increas⁃
es the facet count by four times. Then we performed set opera⁃
tions on each mesh pair and recorded the average processing
time. Table 6 shows that our algorithm is more efficient than
the other two methods. This is because the octree constructed
in our method only increases the number of intersected cells,
while the number of internal and external cells stay fairly con⁃
stant with the increase of facet count, when the position of two
models remains unchanged. As a result, the efficiency of our
method is determined by the processing time of intersection
handling. Table 6 also shows that the complexity is approxi⁃
mately O(n) , where n is the polygon count of mesh, because
our method can complete intersection handling in linear time.
5.3 Iterative Boolean Test

In order to test the iterative Boolean operation performance
and robustness of our method, we cut out a large polyhedral ob⁃
ject, a ring, by performing iterative intersection operations
among a series of small spheres and the ring. Meanwhile, we
constantly increase the number of spheres so as to evaluate dif⁃
ferent methods. Fig. 7 shows the ring and partial results of the
intersection operation.

The experiment results (Fig. 8) show that Maya experiences
an exponential growth in the process time with constantly in⁃
creasing spheres, and performance of Campen’s method falls
dramatically after over 400 spheres. This is because the ap⁃
proaches decompose iterative set operations into a series of bi⁃
nary Boolean operation and then perform them one by one.
However, each iteration needs to clip facets, and thereby gener⁃
ates new facets by intersection handling. The situation be⁃

comes worse for Campen’s method because the method re⁃
quires extra effort on splitting surfaces along with the boundary
of critical cells and performing conversion between different
representations. Consequently, the time spent on iterative Bool⁃
ean operations for the method is greater than the sum of time
for all single operations, and the performance and robustness
of the method get more and more serious with the growth in it⁃
erations. On the contrary, our approach can parse and execute
the whole Boolean operation once for all by two major steps:
constructing an adaptive octree and embedding a CSG tree into
each intersected cell to evaluate all facets in the intersected re⁃
gion, and then using divide ⁃and ⁃conquer method and cluster
classification strategy to classify all surfaces in the internal re⁃
gion with the help of the constructed octree. Thus, our method
greatly increases the processing speed, and also implements ro⁃
bustness and exactness by integrating plane ⁃ based geometry
representation with adaptive geometry predicates technique.

6 Conclusion
In this paper, we propose a unified method for efficiently

computing single and iterated set operations on polyhedrons.
By using localized CSG Trees evaluation strategy, the proposed
method can evaluate very complex polyhedrons or massive iter⁃
ated operations in a few seconds. This method uses the partial
surface classification strategy to complete set membership clas⁃
sification in linear time with octree. Moreover, plane⁃based ge⁃
ometry computation is integrated in this method to make it ro⁃
bust. Experiments have verified that our system is very effi⁃

▼Table 6. Average time for Boolean operations with increasing
facet count

Facet count
8000
32,000
128,000
512,000
2048,000

Maya2015 (ms)
250
797
3406
16,438
87,453

Campen’s (ms)
319
971
4516
34,113
32,790

Our method (ms)
139
313
771
2554
12,371 ▲Figure 7. Sculpting a ring: (a) original mesh (b) 400 spheres cut

out (c) after 800 spheres cutting.

▲Figure 8. Iterative Boolean operation for different methods.

(a) (b) (c)

8007006005004003002001000

1000
800
600
400
200

0
Pro

ces
sin

gti
me

(s)
Number of operants

Our method Maya Campen′s

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

Research Papers

September 2015 Vol.13 No.3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 65

9

D:\EMAG\2015-05-46/VOL12\RP1.VFT——10PPS/P

cient for CSG trees with different sizes while keeping good
quality and stability.

References
[1] T. Ertl, Computer Graphics—Principles and Practice. Berlin, Germany: Springer,

1996.
[2] A. A. Requicha and H. B. Voelcker,“Boolean operations in solid modeling:

boundary evaluation and merging algorithms,”Proceedings of the IEEE, vol. 73,
no. 1, pp. 30-44, 1985. doi: 10.1109/PROC.1985.13108.

[3] D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes,“Constructive solid geometry
for polyhedral objects,”ACM SIGGRAPH Computer Graphics, vol. 20, no. 4, pp.
161-170, 1986.

[4] F. Yamaguchi and T. Tokieda,“A unified algorithm for Boolean shape opera⁃
tions,”IEEE Computer Graphics and Applications, vol. 4, no. 6, pp. 24- 37,
1987. doi: 10.1109/MCG.1984.275959.

[5] P. Hachenberger and L. Kettner,“Boolean operations on 3D selective Nef com⁃
plexes: optimized implementation and experiments,”in Proc. ACM Symposium
on Solid and Physical Modeling, Cambridge, USA, 2005, pp. 163-174.

[6] S. F. Frisken, R. N. Perry, A. P. Rockwood and T. R. Jones,“Adaptively sam⁃
pled distance fields: a general representation of shape for computer graphics,”in
Proc. 27th Annual Conference on Computer Graphics and Interactive Techniques,
New Orleans, USA, 2000.

[7] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr,“Level set surface edit⁃
ing operators,”ACM Transactions on Graphics, vol. 21, no. 3, pp. 330-338, Jul.
2002.

[8] T. Ju, F. Losasso, S. Schaefer, and J. Warren,“Dual contouring of hermite data,”
ACM Transactions on Graphics, vol. 21, no. 3, pp. 339-346, Jul. 2002.

[9] G. Varadhan, S. Krishnan, Y. J. Kim, and D. Manocha,“Feature⁃sensitive subdi⁃
vision and isosurface reconstruction,”in IEEE Visualization, Seattle, USA,
2003, pp. 99-106. doi: 10.1109/VISUAL.2003.1250360.

[10] G. Varadhan, S. Krishnan, T. V. N. Sriram, and D. Manocha,“Topology pre⁃
serving surface extraction using adaptive subdivision,”in Proc. Second Euro⁃
graphics Symposium on Geometry processing, Nice, France, 2004, pp. 235-244.

[11] N. Zhang, W. Hong, and A. Kaufman,“Dual contouring with topology⁃preserv⁃
ing simplification using enhanced cell representation,”IEEE Visualization, pp.
505-512, Oct. 2004. doi: 10.1109/VISUAL.2004.27.

[12] G. Bernstein and D. Fussell,“Fast, exact, linear Booleans,”Computer Graphics
Forum, vol. 28, no. 5, pp. 1269- 1278, Jul. 2009. doi: 10.1111/j.1467-
8659.2009.01504.

[13] M. Campen and L. Kobbelt,“Exact and robust (self⁃) intersections for polygo⁃
nal meshes,”Computer Graphics Forum, vol. 29, no. 2, pp. 397- 406, Jun.
2010. doi: 10.1111/j.1467-8659.2009.01609.

[14] F. R. Feito, C. J. Ogáyar, R. J. Segura, and M. Rivero,“Fast and accurate evalu⁃
ation of regularized Boolean operations on triangulated solids,”Computer⁃Aid⁃
ed Design, vol. 45, no. 3, pp. 705- 716, Mar. 2013. doi: 10.1016/j.
cad.2012.11.004.

[15] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H. P. Seidel,“Feature sensitive
surface extraction from volume data,”in Proc. 28th Annual Conference on Com⁃
puter Graphics and Interactive Techniques, New York, USA, 2001. doi: 10.1145/
383259.383265.

[16] S. Schaefer, T. Ju, and J. Warren,“Manifold dual contouring,”IEEE Transac⁃
tions on Visualization and Computer Graphics, vol. 13, no. 3, pp. 610- 619,
2007. doi: 10.1109/TVCG.2007.1012.

[17] H. Biermann, D. Kristjansson, and D. Zorin,“Approximate boolean operations
on free⁃form solid,”in 28th Annual Conference on Computer Graphics and Inter⁃
active Techniques, New York, USA, 2001, pp. 185- 194. doi: 10.1145/
383259.383280.

[18] M. Lounsbery, T. D. DeRose, and J. Warren,“Multiresolution analysis for sur⁃
faces of arbitrary topological type,”ACM Transactions on Graphics, vol. 16, no.
1, pp. 34-73, 1997. doi: 10.1145/237748.237750.

[19] R. Seidel,“The nature and meaning of perturbations in geometric computing,”
Discrete & Computational Geometry, vol. 19, no. 1, pp. 1-17, Jan. 1998. doi:
10.1007/PL00009330.

[20] J. M. Smith and N. A. Dodgson,“A topologically robust algorithm for Boolean
operations on polyhedral shapes using approximate arithmetic,”Computer⁃Aid⁃
ed Design, vol. 39, no. 2, pp. 149-163, Feb. 2007. doi: 10.1016/j.cad.2006.
11.003.

[21] C. C. Wang,“Approximate boolean operations on large polyhedral solids with
partial mesh reconstruction,”IEEE Transactions on Visualization and Comput⁃
er Graphics, vol. 17, no. 6, pp. 836-849, Jun. 2011. doi: 10.1109/TVCG.

2010.106.
[22] J. Shade, S. Gortler, L. W. He, and R. Szeliski,“Layered depth images,”in

Proc. 25th Annual Conference on Computer Graphics and Interactive Tech⁃
niques, Orlando, USA, 1998, pp. 231-242. doi: 10.1145/280814.280882.

[23] W. C. Thibault and B. F. Naylor,“Set operations on polyhedra using binary
space partitioning trees,”ACM SIGGRAPH computer graphics, vol. 21, no. 4,
pp. 153-162, 1987. doi: 10.1145/37402.37421.

[24] B. Naylor, J. Amanatides, and W. Thibault,“Merging BSP trees yields polyhe⁃
dral set operations,”ACM SIGGRAPH Computer Graphics, vol. 24, no. 4, pp.
115-124, Aug. 1990. doi: 10.1145/97880.97892.

[25] W. C. Thibault,“Application of binary space partitioning trees to geometric
modeling and ray⁃tracing,”Ph.D. dissertation, Georgia Institute of Technology,
Atlanta, Georgia, USA, 1987.

[26] K. Sugihara and M. Iri,“A solid modelling system free from topological incon⁃
sistency,”Journal of Information Processing, vol. 12, no. 4, pp. 380-393, 1990.

[27] J. R. Shewchuk,“Adaptive precision floating⁃point arithmetic and fast robust
geometric predicates,”Discrete & Computational Geometry, vol. 18, no. 3, pp.
305-363, Oct. 1997. doi: 10.1007/PL00009321.

[28] K. Kuratowski and A. Mostowski, Set Theory. Waltham, USA: Elsevier, Aca⁃
demic Press, 1968.

[29] J. R. Shewchuk,“Lecture notes on geometric robustness,”in Eleventh Interna⁃
tional Meshing Roundtable, 1999, pp. 115-126.

[30] F. R. Feito and J. C. Torres,“Inclusion test for general polyhedra,”Computers
& Graphics, vol. 21, no. 1, pp. 23- 30, 1997. doi: 10.1016/S0097- 8493(96)
00067-2.

[31] J. Liu, Y. Q. Chen, J. M. Maisog, and G. Luta,“A new point containment test al⁃
gorithm based on preprocessing and determining triangles,”Computer ⁃ Aided
Design, vol. 42, no. 12, pp. 1143-1150, 2010. doi: 10.1016/j.cad.2010.08.002.

[32] C. J. Ogayar, R. J. Segura and F. R. Feito,“Point in solid strategies,”Comput⁃
ers & Graphics, vol. 29, no. 4, pp. 616- 624, Aug. 2005. doi: 10.1016/j.
cag.2005.05.012.

[33] W. Wang, J. Li, H. Sun, and E. Wu,“Layer ⁃based representation of polyhe⁃
drons for point containment tests,”IEEE Transactions on Visualization and
Computer Graphics, vol. 14, no. 1, pp. 73-83, 2008. doi: 10.1109/TVCG.
2007.70407.

[34] J. Revelles, C. Urena, and M. Lastra,“An Efficient Parametric Algorithm for
Octree Traversal,”in WSCG, Plzen⁃Bory, Czech Republic, 2000, pp. 212-219.

Manuscript received: 2015⁃06⁃05

Ping Lu (lu.ping@zte.com.cn) received his ME degree in automatic control theory
and applications from South East University. He is the chief executive of the Cloud
Computing and IT Institute of ZTE Corporation. His research interests include aug⁃
mented reality and multimedia services technologies.
Xudong Jiang (denny.jiang@gmail.com) received his master’s degree in computer
science and technology from Shanghai Jiao Tong University. He is currently working
at the Autodesk China Research & Development Center. His research interests in⁃
clude computer graphics and solid modeling.
Wei Lu (ddhansh@gmail.com) received her PhD degree in computer science and
technology from Nanjing University. She is currently working at the Autodesk China
Research & Development Center. Her research interests include computer graphics,
mesh deformation, and virtual reality.
Ran Wei (wei.ran233@zte.com.cn) received his master’s degree in communications
and electronic information from Chongqing University of Posts and Telecommunica⁃
tions. He is currently a pre⁃research engineer of ZTE Corporation. His research in⁃
terests include machine vision and graphics and image processing.
Bin Sheng (shengbin@cs.sjtu.edu.cn) received his MS degree in software engineer⁃
ing from University of Macau in 2007, and PhD degree in computer science from
The Chinese University of Hong Kong in 2011. He is currently an associate profes⁃
sor at Department of Computer Science and Engineering, Shanghai Jiao Tong Uni⁃
versity. He also works with the Institute of Software, Chinese Academy of Sciences.
His research interests include virtual reality, computer graphics, and image based
techniques.

BiographiesBiographies

Research Papers

Fast, Exact and Robust Set Operations on Polyhedrons Using Localized Constructive Solid Geometry Trees
Ping Lu, Xudong Jiang, Wei Lu, Ran Wei, and Bin Sheng

September 2015 Vol.13 No.3ZTE COMMUNICATIONSZTE COMMUNICATIONS66

10

