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Abstract: Open-set recognition (OSR) is a realistic problem in wireless signal recogni⁃
tion, which means that during the inference phase there may appear unknown classes not
seen in the training phase. The method of intra-class splitting (ICS) that splits samples of
known classes to imitate unknown classes has achieved great performance. However, this
approach relies too much on the predefined splitting ratio and may face huge performance
degradation in new environment. In this paper, we train a multi-task learning (MTL) net⁃
work based on the characteristics of wireless signals to improve the performance in new
scenes. Besides, we provide a dynamic method to decide the splitting ratio per class to get
more precise outer samples. To be specific, we make perturbations to the sample from the
center of one class toward its adversarial direction and the change point of confidence
scores during this process is used as the splitting threshold. We conduct several experi⁃
ments on one wireless signal dataset collected at 2.4 GHz ISM band by LimeSDR and one
open modulation recognition dataset, and the analytical results demonstrate the effective⁃
ness of the proposed method.
Keywords: open-set recognition; dynamic method; adversarial direction; multi-task learn⁃
ing; wireless signal
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1 Introduction

With the rapid development of wireless communica⁃tion technology, the wireless spectrum is getting
crowded, especially in the Industrial, Scientific
and Medical (ISM) band which is open to the pub⁃

lic and takes no authorization. A large number of wireless
communication signals share the ISM band, such as Wi-Fi,
Bluetooth and ZigBee. These coexisting signals interfere with
each other and may cause performance reduction to the com⁃
munication system[1]. The technology of wireless signal recog⁃
nition (WSR) is a foundational work to deal with this problem.
The WSR technology can be used to identify the wireless sig⁃
nal and hence help to improve the communication system by
choosing a better channel or other strategies.
Traditional algorithms of WSR could mainly be separated

into two groups: likelihood-based and feature-based meth⁃
ods[2]. Likelihood-based methods obtain the optimal decision
based on hypothesis testing theory but suffer high computation
complexity[3–4]. Feature-based methods usually extract several
features and employed classifiers to realize signal recognition.
These features are normally chosen using expert’s knowledge.
Although feature-based methods may not be optimal, they are
usually simple to implement, with near-optimal performance,
when designed properly. Feature-based methods heavily rely
on expert’s knowledge, which may perform well on special⁃
ized solutions but poor in generality[5–6]. With the increasing
number of wireless signals in the ISM band, communication
systems tend to be complex and diverse. As a result, tradition⁃
al feature-based methods used to detect and recognize the
complex signals are confronted with a new dilemma.
In recent years, the method of deep learning has emerged

and achieved great success in the fields of image, speech, text
and so on. Deep learning is an end-to-end approach that can
automatically learn signal representation directly from the
original wireless data without the need for designing expert
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features such as high-order cyclic moments. Inspired by the
advantages of deep learning compared to conventional feature-
based approaches, more and more researchers use deep learn⁃
ing methods to solve the problem of WSR. Generally, these
deep learning methods utilize raw data obtained from devices
such as channel state information (CSI) [7–8] and In-phase/
Quadrature (I/Q) data[9–10] as the input of a deep neural net⁃
work. However, most of these methods are under a close-set
assumption that the classes in the inference phase all appear
in the training phase, which is unpractical. When facing a real
scene, we have to deal with classes not seen in the training
phase (also known as unknown unknown classes (UUCs) while
KKCs means known known classes[11]). As shown in Fig. 1, six
classes from the modulation recognition dataset[12] are selected
as KKCs during the training phase and all eleven classes are
served as testing samples during the inference phase. It chal⁃
lenges the traditional classifiers that they have to predict the
unknown classes as one of the known class. In fact, the UUCs
will be labeled as one of the KKCs with high probability, gen⁃
erally. Therefore, the purpose of open-set recognition (OSR) is
to identify unknown classes while correctly classify known
classes[13].
The difficulty of OSR is that there is no knowledge of UUCs

during the training stage. Current OSR methods mainly fall in⁃
to two main categories: discriminative methods and generative
methods. The discriminative methods choose an empirical
threshold based on samples of KKCs to determine whether
testing samples belong to KKCs or UUCs[14]. To take full ad⁃
vantage of the knowledge of KKCs, a few studies use Extreme
Value Theory (EVT) to model the tail of evaluation scores so
as to determine a better threshold[15–17]. The discriminative

methods are sensitive to thresholds but there is no principle of
how to choose thresholds. Furthermore, the generative meth⁃
ods utilize a generative model to generate fake data as
UUCs[18–20]. The fake data is used in the training phase togeth⁃
er with the known data, thus the OSR problem is turned into
an N+1 classification problem. In addition, the intra-class
splitting (ICS) method selects a certain percentage of samples
from known data as atypical samples to imitate UUCs. This
method is simple and efficient but also has some drawbacks.
For instance, it is very sensitive to the predefined splitting ra⁃
tio and the method of directly using splitting samples as UUCs
is coarse. Besides, the performance of the ICS method de⁃
grades significantly in a new environment. We intend to ad⁃
dress these drawbacks in this article.
Multi-task learning trains multiple tasks at the same time

and uses shared representations to learn the common ideas be⁃
tween a collection of related tasks[21]. There are few literatures
studying multi-task learning (MTL) in OSR[22–24]. Most of
these studies use discriminative methods applied in the image
field and thresholds are calculated based on KKCs. Specifical⁃
ly, some researchers train two tasks simultaneously, one for
the traditional close-set classification task and the other for
evaluating testing samples. The evaluation score of the second
task is compared with the threshold to determine whether it
belongs to KKCs or UUCs. Besides, the auxiliary task is used
to force the network to learn more informative features to im⁃
prove separation of classes from each other and from KKCs.
Different from the above works, we propose an MTL network
based on the characteristics of communication signals on a
generative method to improve the performance of open-set
classifier.
In this paper, we propose an MTL network with a dynamic

method to determine the splitting ratio for the OSR problem.
The splitting ratio will be used to split known data into two
subsets: inner samples and outer samples, which are applied
to imitate UUCs[25]. The contributions of the proposed method
are described as follow: Firstly, we propose an MTL network
based on the characteristic of wireless signal to improve the
OSR performance in new environment. Secondly, we provide a
dynamic method to automatically select the splitting ratio. Spe⁃
cifically, we perturb a sample from the center of one class to⁃
ward its adversarial direction and the change point of confi⁃
dence scores during this process is used as the splitting
threshold. Thirdly, we perform numerical experiments to dem⁃
onstrate the effectiveness of the proposed method.

2 Related Work
This paper studies the OSR problem of wireless signals by

using an MTL network with the dynamic splitting method.
Some studies are related to this work. We will review these
studies in three subsections that present the research of WSR,
OSR, MTL, respectively.▲Figure 1. An example of known known classes (KKCs) and UUCs us⁃
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2.1 Wireless Signal Recognition
WSR is a fundamental task to enable any form of cross-tech⁃

nology ISM band signals’coexistence mechanism. Traditional
feature based algorithms extract features for preprocessing
and then employ them to realize classification. PALICOT et
al. used channel bandwidth and its shape as reference fea⁃
tures, which was found to be the most discriminating parame⁃
ter among others[5]. KIM et al. used cyclostationary features
that was caused by the periodicity in the signal or in its statis⁃
tics like mean and autocorrelation or they can be intentionally
induced to assist spectrum sensing[6]. However, these algo⁃
rithms rely heavily on expert’s knowledge to extract features
and are poor in generality.
On the other hand, deep learning based approaches have

shown great advantages in terms of performance and no need
for expert’s knowledge. These approaches utilize different in⁃
formation to train deep neural networks. YI et al. used Re⁃
ceived Signal Strength Indication (RSSI) values as input data
to train a Convolutional Neural Network (CNN) classifier[26].
The proposed model can achieve an accuracy of over 93% for
detecting the different classes of interference with minimal
computational resources. KIM et al. used k-nearest neighbor
(kNN) and neural networks to train models with CSI values as
the input[7]. The proposed model can classify tens of signal
sources with over 90% accuracy. CROCE et al. adopted the ar⁃
tificial neural network, with which a Wi-Fi device could de⁃
tect the presence of an LTE-U signal by examining the error
pattern of a received Wi-Fi signal[27]. The proposed method
reached an average accuracy of over 95% in recognizing Zig⁃
Bee, microwave, and LTE (in unlicensed spectrum) interfer⁃
ence. In Ref. [9], a CNN classifier trained on In-phase/Quadra⁃
ture (IQ) vectors and amplitude/phase vectors can recognize
ZigBee, Wi-Fi, and Bluetooth signals and achieve an average
accuracy of more than 98% in a high signal-to-noise ratio
(SNR) scenario. Thus we choose IQ data as the input of deep
neural network considering its rich information. However,
open-set recognition of WSR is rarely studied, which is very
common in real world.
2.2 Open-Set Recognition
The discriminative methods usually identify unknown sam⁃

ples based on an empirical threshold. MENDES et al.[14] intro⁃
duced an open set version of Nearest Neighbor classifier (OS⁃
NN) to deal with the OSR problem based on the traditional
Nearest Neighbor classifier. Some studies used the extreme
value theory (EVT) to model the tail of data so as to determine
a better threshold. BENDALE and BOULT[15] proposed the
OpenMax model by replacing the SoftMax layer with an Open⁃
Max layer. Specifically, the training samples’distances from
their corresponding class mean activation vectors (MAV) are
calculated and used to fit the separate Weibull distribution for
each class. SCHEIRER et al. [16] proposed a Weibull-Calibrat⁃
ed SVM (W-SVM) model, which combined the statistical

eEVT for score calibration with two separated SVMs. YOSHI⁃
HASHI et al. [17] presented the classification-reconstruction
learning algorithm for open set recognition (CROSR), which
utilized latent representations for reconstruction and enabled
robust UUCs’detection without harming the KKCs’classifi⁃
cation accuracy. However, these EVT-based methods provide
no principled means of selecting the size of tail for fitting.
The generative methods usually use generative neural net⁃

works to generate fake data imitating UUCs. Although such
methods suffer from the difference between the fake data gen⁃
erated by generative models and the real data of UUCs, they
are still highly promising to turn an OSR problem into an N+1
classification problem. Counterfactual image generation (OS⁃
RCI)[18] adopts an encoder-decoder GAN architecture to gener⁃
ate the synthetic open set examples that are close to KKCs,
yet do not belong to any KKCs. JO et al. [19] adopted the GAN
technique to generate fake data as the UUCs’data to further
enhance the robustness of the classifiers for UUCs. The ICS
method[28] used a pretrained close-set network to score known
samples and select atypical samples as samples of UUCs. In
the meantime, a closed regular term was proposed in order to
ensure the accuracy of close-set classification. Although the
ICS method is simple and effective, the selection of atypical
samples is very sensitive to the predefined splitting ratio and
pretrained network. SCHLACHTER et al. [29] proposed a one-
stage method based on alternating between ICS and the train⁃
ing of a deep neural network, which removed the need for the
pretrained network but still relied on the predefined splitting
ratio. MIYATO et al.[30] provided a fast way to calculate the ad⁃
versarial direction of the current network. Here, the adversari⁃
al direction for a given datum is the direction to which the
probabilities of each class change most and it is toward the de⁃
cision boundary[31]. Inspired by the DICS method and adversar⁃
ial direction, we propose a novel dynamic method to automati⁃
cally select the splitting ratio.
2.3 Multi-Task Learning
In recent years, some researchers have tried to use multi-

tasking learning to solve the open-set recognition problem.
PERERA et al.[22] proposed a multi-task network to learn more
descriptive features where an auxiliary classifier performed
self-supervision. The self-supervision task had to determine
which transformation was applied and thus the network need⁃
ed to learn structural properties of image content such as
shape and orientation. OZA et al.[23] combined a classifier net⁃
work and a decoder network with a shared feature extractor
network within a multi-task learning framework. Reconstruc⁃
tion errors from the decoder network were utilized for open-set
rejection and the tail of the reconstruction error distribution
from KKCs was modeled by the EVT to improve the overall
performance. YU et al. [24] proposed a multi-task curriculum
learning framework to perform the task of detecting out-of-dis⁃
tribution samples and semi-supervised learning. The in-distri⁃
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bution samples in unlabeled data having small out-of-distribu⁃
tion scores were selected and used with labeled data for train⁃
ing the deep neural networks in a semi-supervised manner.
SONG et al. [32] proposed a framework incorporating GAN with
a multi-task discriminator, which simultaneously discriminat⁃
ed category, reality, and client identity of input samples. In
this paper, based on the characteristics of communication sig⁃
nals, we propose an MTL network on a dynamic generative
method.

3 Proposed Method
In this section, we first describe the MTL network architec⁃

ture of our method, and then we present the dynamic method
to automatically select the splitting ratio. Finally, we demon⁃
strate the procedure of the proposed scheme.
3.1 MTL Network
To deal with the OSR problem of WSR, we propose an MTL

network architecture (Fig. 2). Inspired by the idea of ICS, we
use dynamically split samples to imitate unknown classes, and
thus turn the OSR problem into an (N+1)-class signal recogni⁃
tion task. However, the split samples are actually from known
classes and their new labels differ from the ground truth.
Hence, a naive neural network with (N+1)-class output will re⁃
sult in low closed-set accuracy, because the split samples are
incorrectly predicted. To prevent this situation, we take the
same strategy as that proposed in Ref. [28] of training a closed-
set regularization subnetwork simultaneously which forces the
split samples to be correctly classified. Meanwhile, in order to
mitigate the decline of identification accuracy of a trained net⁃

work applied in new scenes, we introduce an auxiliary task of
modulation recognition to learning more generalized expres⁃
sion. The MTL network consists of one shared deep neural net⁃
work and three individual task-specific layers. The purpose of
the (N+1)-class signal recognition task is to classify all testing
samples, including KKCs and UUCs, where the (N+1)-th class
represents UUCs and is trained with dynamically split sam⁃
ples with data augmentation. The modulation recognition task
is designed as an auxiliary task to help learn more generalized
expression. Besides, we keep the N-class signal recognition
task of classifying known classes to guarantee a high closed-
set classification performance. The shared deep neural net⁃
work is composed of four residual blocks and two dense lay⁃
ers. Each residual block includes two convolutional layers
(Conv), an activation layer with a leaky rectified linear unit
(LReLU), an average pooling (AvgPool) and a batch normaliza⁃
tion layer. Each of three individual task-specific layers con⁃
tains one output layer. The MTL network takes IQ data sam⁃
ples as the input and maps them to a specific category. The di⁃
mensions of one sample are 4 096×2. In the inference phase,
only the (N+1)-class signal recognition task is used as an end-
to-end classifier for open-set recognition.
Formally, given a training set of samples xi, where i indi⁃cates one of the known N classes, we divide xi into two sub⁃sets: inner samples xi, inner and outer samples xi, outer using thedynamic splitting method. The number of outer samples is too

small to learn knowledge about UUCs at the beginning of train⁃
ing. To keep the network training in a good direction, we em⁃
ploy data augmentation on the outer samples. The augmented
outer samples xi, aug are served as samples of unknown classes

▲Figure 2. Multi-task learning (MTL) network architecture of the proposed method
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with a new label yN + 1 while the inner samples xi, inner are alsoused to train the (N+1) -class signal recognition task. In the
meantime, all xi are used as the input of the N-class signal rec⁃
ognition task and modulation recognition task with the original
label yi . The cross entropy loss functions of three tasks are de⁃noted as:
LOS = - 1B∑b = 1

B ∑
j = 1

N + 1
y (b)OS ( j )log ( ŷ (b)OS ( j ) ), (1)

LCS = - 1B∑b = 1
B∑

j = 1

N

y (b)CS ( j )log ( ŷ (b)CS ( j ) ), (2)

LMR = - 1B∑b = 1
B∑

j = 1

N′
y (b)MR ( j )log ( ŷ (b)MR ( j ) ), (3)

where B indicates the batch size of one epoch. y (b)OS ( j ) and
ŷ (b)OS ( j ) present the j-th element of a true one-hot type OSR la⁃bel and the predicted one of the b-th sample, by which the
augmented outer samples are assigned with UUCs label. Mean⁃
while, yCS and yMR are the true signal category label and modu⁃lation category label of known classes. Therefore, the loss
function of the shared deep neural network is given as:
L total = αLOS + βLCS + λLMR + ηL2, (4)

where L2 represents the L2-norm regularization term. The totalloss L total is a linear combination of the loss of each task andregularization term. α, β, λ and η indicate the weight of each
item. By training with shared weights, the deep neural network
can learn generalized expression between multiple related
tasks. Consequently, minimizing the first term forces the net⁃
work to classify between the inner and outer samples, i. e.,
completing the task of open-set recognition. On the other
hand, minimizing the second and third terms corresponds to
reducing the empirical risk on the known classes. Hence, the
classifier learns to identify unknown classes while correctly
classifying known classes.
3.2 Dynamic Splitting Method
The original ICS method[28] is restricted to the predefined

splitting ratio and pretrained network. The improved version[29]
removes the restriction on the pretrained network but still re⁃
lies on the predefined splitting ratio. In this subsection, we
propose a dynamic method to automatically select the splitting
ratio by continuously perturbing samples toward the adversari⁃
al direction of current network. An approximate curve of confi⁃
dence score and deviation during this process is constructed
and the change point of this curve is acquired and used to de⁃
termine the splitting ratio.
First, we select some candidate samples of the class center

by ranking the evaluation confidence score of known samples.

Formally, let f ( x ) represent the predicted probability of a
trained classifier on sample x, which is one-dimensional vec⁃
tor after softmax. The confidence score represents the degree
to which the sample belongs to the category. The higher the
score, the more centralized the sample is. It is denoted as:
score = max (f ( x ) ) ⋅ I (foh ( x ) = y) , (5)

where y is the label, foh ( x ) is the predicted result in one-hotand I ( ⋅ ) is an indicator function that returns 1 if the predict⁃
ed class is the same as the true label and otherwise returns 0.
We choose several samples per class with the highest score as
candidate samples of the class center. Then we continuously
disturb these samples toward adversarial direction to generate
adversarial samples. Here, the adversarial direction for a giv⁃
en datum is the direction to which the probabilities of each
class change most and it is toward the decision boundary[31].
The adversarial direction radvr ( x, ε ) for given ε is calculated by
radvr ( x, ε ) = arg max

r ;  r ≤ ε
DKL (f ( x )  f ( x + r )) , (6)

where DKL indicates Kullback-Leibler divergence and r indi⁃
cates slight perturbation constrained by parameter ε; f ( x ) and
f ( x + r ) represent the predicted probabilities of the samples
before and after perturbation. Generally, it is hard to obtain a
closed form for the exact adversarial direction radvr, so we use afast approximation method to compute it the same as in Ref.
[30]. Thereby, the adversarial samples are formulated as
xadv ( δ ) = x + δradvr ( x,ε ) /  radvr ( x,ε ) , (7)

where δ is a parameter that denotes the degree of disturbance
toward the adversarial direction. We continuously vary this pa⁃
rameter to generate adversarial samples from the center of a
class to the decision boundary. The scores of adversarial sam⁃
ples will be calculated and used to approximate a curve.
As shown in Fig. 3, the horizontal axis shows the degree to

which the sample deviates from the center of one class, and
the vertical axis shows the corresponding confidence score.
When the sample of class is moved away from the center, the
confidence score begins to plummet at some points. Similar to
Ref. [33], the point with the furthest distance from the straight
line connected by two points of the maximum and minimum
confidence scores, is selected as the change point. Thereby,
the sample whose confidence score is lower than the change
point is selected as the outer sample. The change point is im⁃
proper and the candidate sample should be discarded if the
confidence score is almost constant within a certain range of
disturbance or the confidence score of change point is less
than 0.9. The former means this sample is hard to achieve the
decision boundary toward current approximate adversarial di⁃
rection. For convenience, we abandon this kind of candidate
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samples. The latter usually indicates this sample is not in the
center of class while the confidence scores of the most known
samples are normally higher than 0.9, which will lead to too
many outer samples. To prevent this situation, we also aban⁃
don this kind of candidate samples. When the candidate sam⁃
ples of one class drop more than a certain number, which
means that the current network may not be trained well, the
samples of this class will not be spilt and all used as inner
samples to retrain the network. After a certain period of train⁃
ing, the splitting ratio of the neural network is adjusted by the
method above until the stable performance is achieved.
It may happen that the outer samples are too many or too

few so that the neural network becomes worse and worse or re⁃
mains unchanged during the training process. To avoid such a
situation, we choose to set a maximum splitting ratio and per⁃
form data augmentation for the segmented samples. In our ex⁃
periment, the maximum splitting ratio was set to 0.2 and the
automatically calculated splitting ratio exceeding the thresh⁃
old will be limited to 0.2. In Ref. [34], three augmentation
methods based on the characteristics of modulated signals are
considered, i.e., rotation, flip, and Gaussian noise, and remark⁃
able results are achieved. We choose to use a combination of
these methods to enhance the outer samples. The enhanced
outer samples are randomly chosen at an appropriate amount.
3.3 Training Procedure
The proposed scheme enhances the generalization ability of

the network by using multi-task learning and dynamically se⁃
lects the splitting ratio. The training procedure of the proposed
scheme is summarized in Algorithm 1. The input of this
scheme are samples of known classes including data and multi⁃
ple labels. At first, we pretrain the (N+1)-class classifier fOS ( ⋅ )with N-class data x since there is no samples of unknown
classes in the training data. Then we utilize the pretained clas⁃
sifier fOS ( ⋅ ) to evaluate all samples as Eq. (5) and a few sam⁃

ples with the highest score of each class are selected as candi⁃
date samples. We continuously disturb the candidate sample
toward its adversarial direction of the current network and re⁃
cord the confidence score to approximate a curve. The change
point of this curve is modified as splitting ratio ρ if it is appro⁃
priate. The samples with confidence scores less than ρ are se⁃
lected as xouter and the rest are x inner. The data xouter are en⁃hanced to xouter, aug using the method of rotation, flip, and Gauss⁃ian noise. The fOS ( ⋅ ) is retrained with x inner served as KKCs and
xouter, aug served as UUCs. At the same time, the fCS ( ⋅ ) and fMR ( ⋅ )with x, yCS and yMR are trained to learn a generalized expres⁃sion. The loss functions are shown as Eqs. (2), (3) and (4). The
fOS ( ⋅ ) is then used to calculate the splitting ratio ρ again untilthe performance of the open-set classifier is stable. Finally, on⁃
ly the (N+1)-class network is used as the open-set classifier.
Algorithm 1. Proposed scheme
Inputs:
x: Data of KKCs
yCS: Signal type label of KKCs
yMR: Modulation type label of KKCs

Output:
fOS ( ⋅ ): Open-Set Classifier

1: Pretrain the (N+1) -class classifier fOS ( ⋅ ) with x and yCS,where all KKCs are used as inner samples
2: Calculate the splitting ratio ρ of each class using the pro⁃
posed dynamic method based on fOS ( ⋅ )3: Modify the splitting ratio and spilt x into two subsets: x innerand xouter. Enhance the data xouter to xaug4: Train fOS ( ⋅ ) with x inner and xaug that assigned with new la⁃bels. Meanwhile, train fCS ( ⋅ ) and fMR ( ⋅ ) with x, yCS and yMR tolearn a generalized expression.
5: Return to 2 until the stable performance is achieved.

4 Experiment
In the section, we will firstly introduce the two wireless sig⁃

nal datasets used in our experiment. The evaluation criteria of
the proposed method are shown next. Then we describe six
baseline methods including four state-of-the-art methods from
the literature and two variations with different configurations
for comparison. Finally, a number of experimental results and
analysis are presented.
4.1 Datasets
A wireless signal dataset collected at 2.4 GHz ISM band by

LimeSDR and a publicly available modulation dataset, which
are used for evaluating the performance of the proposed mod⁃
el, are detailed in this section. For convenience, we use WS to
represent the wireless signal dataset and RML to represent the
radio modulation dataset.
The dataset of WS contains 10 kinds of signals that mainly

work on the 2.4 GHz unlicensed frequency band, namely Wi-

▲Figure 3. An example of confidence score approximate curve
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Fi, ZigBee, Bluetooth, microwave oven, analog video monitor,
narrowband digital signal, wideband OFDM signal, game con⁃
trol signal, cordless phone signal and wideband FM signals.
We collect the IQ orthogonal data of all classes except for nar⁃
rowband digital signals and wideband OFDM signals by using
a LimeSDR receiver to receive wireless signals from different
transmitters. The seven main transmitters are shown in Fig. 4.
From top to bottom and left to right, they are microwave oven,
ZigBee, smartphone, game controller, analog video monitor,
cordless phone and camera. The smartphone is used for trans⁃
mitting Bluetooth and Wi-Fi signals. The analog video monitor
together with the camera is used for creating wideband FM sig⁃
nals. Besides, the narrowband digital and wideband OFDM
signal are both generated by MATLAB R2019a, where non-
ideal power amplifiers are considered therein. The nonlineari⁃
ty of the power amplifier is modeled in a memoryless polyno⁃
mial form. Each class is collected at six scenes including line-

of-sight (LOS) and non-line-of-sight (NOS) conditions with dif⁃
ferent communication distances between the transmitter and
the LimeSDR receiver. The synthetic signal is added noise
with corresponding degree to simulate six collecting scenes.
Table 1 shows the specific dataset collection settings of differ⁃
ent signals including the center frequency, bandwidth and
communication distance between the transmitter and receiver.
Furthermore, each class has 7 500 samples of which there are
1 250 samples for each scenes and the dimensions of each
sample are 4 096×2.
To further verify the performance of the proposed method, we

also test it on one public modulation signal dataset. O’SHEA et
al. [12] provide two different types of the datasets, both of which
are synthetically generated datasets using GNU Radio with
commercially used modulation parameters. Some realistic chan⁃
nel imperfections are included in the datasets, including chan⁃
nel frequency offset, sample rate offset, and additive white
Gaussian noise along with multipath fading. The“Normal”da⁃
taset consists of 11 classes that are all with relatively low infor⁃
mation density and are commonly seen in impaired environ⁃
ments. These 11 signals can be used for classification tasks at a
high SNR. The“Difficult”dataset contains 24 modulations.
These include a number of high order modulations (QAM256
and APSK256), which are used in the real world in very high
SNR and low-fading channel environments. Detailed specifica⁃
tions and generation details of the datasets can be found in Ref.
[12]. The specific modulations along with the parameter list can
be found in Table 2. The dimensions of one sample are 1 024×
2. In this paper, we use 4 096 samples each class of one high
SNR scene in the Normal dataset to train the proposed network
and use samples of different SNR scenes to test the perfor⁃
mance of the trained network. We design a related task of dis⁃
tinguishing the modulation type of phase modulation, frequency
modulation and amplitude modulation to help the task of modu⁃
lation recognition learn richer knowledge.

▼Table 1. WS dataset parameters
Signal Types

Wi-Fi, Bluetooth, cordless phone, wide-band FM,
ZigBee, microwave oven, analog video monitor,
narrow-band digital signal, wide-band OFDM

signal, game control signal

Scenes

Line-of-sight (1, 3, 5, 7 m);
Non-line-of-sight (1, 3 m)

Frequency

2.442 GHz

Bandwidth

20 MHz

Samples per Classes

7 500

OFDM: orthogonal frequency-division multiplexing WS: the wireless signal dataset

▼Table 2. RML dataset parameters

Normal Classes

OOK, 4ASK, BPSK, QPSK, 8PSK,
16QAM,AM-SSB-SC, AM-DSB-SC,

FM, GMSK, OQPSK

Difficult Classes

OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK,
16PSK, 32PSK, 16APSK, 32APSK, 64APSK,

128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC,AM-DSB-WC, AM-
DSB-SC, FM, GMSK, OQPSK

Sample
Length

1 024

SNR Range

-20 dB to
30 dB

Samples
per
Classes

106 496

AM: amplitude modulation
APSK: amplitude phase shift keying
ASK: amplitude shift keying
BPSK: binary phase shift keying

DSB: double sideband
FM: frequency modulation
GMSK: Gaussian filtered minimum shift keying
OOK: on-off keying

OQPSK: offset- quadrature phase shift keying
PSK: phase shift keying
QAM: quadrature amplitude modulation
QPSK: quadrature phase shift keying

RML: the radio modulation dataset
SC: suppressed carrier
SSB: single side band
WC: with carrier

▲Figure 4. Pictures of main transmitters used in WS dataset collection
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4.2 Evaluation
In the field of open-set recognition, there are N known class⁃

es and K unknown classes. The concept of openness is to de⁃
fine how open the problem is[13]. Larger openness corresponds
to more open problems, while the problem is completely
closed when the openness equals 0. We changed the number
of N and K to get different openness in the following experi⁃
ments. The openness is denoted by O, and its definition is the
same as that in Ref. [13] and can be simplified to:
O = 1 - 2N

2N + K . (8)
The close-set accuracy P is used to evaluate the perfor⁃

mance of an close-set recognizer and denoted as
P = 1

m∑j = 1
m

I ( )f ( xj ) = yj , (9)
where m is the total number of known samples. xj and yj repre⁃
sent the j-th sample of known classes and the corresponding
label. The balanced accuracy (T) is used to evaluate the perfor⁃
mance of an open-set recognizer. T balances the accuracy of
unknown classes and unknown classes with the same weights.
Accordingly, it is defined as
T = 12 (P + 1n∑k = 1

n

I ( )f ( xk ) = yk ) , (10)
where n is the total number of unknown samples. xk and yk rep⁃
resent the k-th sample of unknown classes and the correspond⁃
ing label. In the end, the area under curve (A) is taken into
consideration for keeping consistent with prior studies.
4.3 Baseline Methods
We selected five baseline methods including three state-of-

the-art methods from the literature and two variations with dif⁃
ferent configurations for comparison. In the baseline methods,
six categories of both datasets are selected as KKCs during
the training phase and all categories are used in the inference
phase. The networks are basically the same as that in Fig. 2
but with different tasks. The Adam optimizer is adopted
among these methods and the batch size is set to 32. The ratio
of training set to testing set is set to 4:1.
1) Intra-class splitting (ICS): The ICS method was imple⁃

mented in Ref. [28]. The pretrained network is similar to the
proposed network but only has the N-class classifier. The net⁃
work with the best performance was saved during 50 pretrain⁃
ing epochs. The splitting ratio was set to 0.2 for both datasets
and the training epochs of open-set network was set to 100.
2) Dynamic intra-class splitting (DICS): The DICS method

was implemented in Ref. [29]. The hyper-parameters were set
the same as those for ICS.
3) Open-set interference signal recognition using boundary

samples (OSISR): The OSISR method was implemented in
Ref. [25]. The hyperparameter ε used in adversarial-sample
generation was equal to 10-6 and the corresponding learning
rate η and the number of iteration epochs were set to 0.01 and
100. The splitting ratio μ of adversarial samples was selected
as 80 for both datasets.
4) Deep CNN-based multi-task learning for open-set recog⁃

nition (MLOSR): The MLOSR method was implemented ac⁃
cording to Ref. [23]. We modified the network structure to fit
the sample shape of WS and RML datasets. The hyperparame⁃
ters were kept as those in Ref. [23]. The MLOSR method is a
discriminative method and does not have an open-set classifi⁃
er. So we just evaluated T and P of this method.
5) ICS with data augmentation (ICS-aug): In order to ex⁃

plore the difference between the proposed dynamic splitting
method and the predefined method, we consider ICS-aug the
same as the proposed method to get rid of the impact of data
augmentation. The method of data augmentation consists of ro⁃
tation, flip, and Gaussian noise. The hyperparameters were
kept the same as those in Ref. [34].
6) The proposed method without MTL (P-w/o MTL): In or⁃

der to explore the importance of using MTL, we considered to
train a network without MTL as a baseline. The difference be⁃
tween using or not using MTL is whether modulation recogni⁃
tion task is employed. Specifically, the loss function of the pro⁃
posed method without MTL is given as:
L total = αLOS + βLCS + ηL2, (11)

where the symbol meanings are the same as those in the pro⁃
posed method. The performance of the trained network with
and without MTL was measured in new scenes.
4.4 Basic Experiment
Firstly, the proposed method and the other baselines were

compared on both the datasets. In each experiment on one da⁃
taset, we selected six classes as the known classes used in the
training phase and all classes were used in the testing phase
to evaluate the capabilities of network. Each experiment was
repeated three times and the means and standard deviations
(STD) of evaluation were reported.
The results with performance metrics (STD) on both datas⁃

ets are shown in Table 3. The proposed method outperforms
four baseline methods and achieves comparable performance
to the proposed method without MTL. Specifically, the pro⁃
posed method achieved an improvement of T by more than 4%
on the WS dataset and by more than 7% on the RML dataset
compared with the state-of-the-art method OSISR. The method
of ICS-aug has an increase of T by about 2% than OSISR on
the WS dataset, which indicates that the operation of data aug⁃
mentation effectively expands the simulated samples of un⁃
known classes. Meanwhile, the proposed method has better
performance of T by about 2% on the RML dataset compared
with ICS-aug, which means that the dynamic method of select⁃
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ing the splitting ratio is superior to the predefined method by
automatically selecting the suitable splitting ratio of each
class. Thereby, we argue that the proposed method can auto⁃
matically select the appropriate splitting ratio per training pe⁃
riod. This means that more precise outer samples are selected
for imitating unknown classes, which leads to better perfor⁃
mance of the open-set recognizer on more complex datasets.
P is a measurement of the ability of an open-set recognizer

to correctly classify a sample from known classes while A is a
measurement of the effect of the open-set classifier. As shown
in Table 3, P and A show a similar trend as T and the pro⁃
posed method outperforms the other baseline methods except
the method of not using MTL. The values of A are generally
larger than those of P and the proposed method seems to be
more superior for the RML dataset. Besides, the MLOSR meth⁃
od achieves the best performance of P, due to its use of a
close-set classifier to classify known classes.
4.5 MTL Experiment
We also compared the performance of the proposed method

using MTL and that not using MTL in new scenes. We used
part of the WS dataset collected in the scene of LOS condition
with 1 m communication distance to train the networks and
the samples of the other five scenes were used to test the per⁃
formance. Different kinds of signals in the training set have
different SNRs and the total SNR of the training set ranges
from 20 dB to 50 dB. As for the RML dataset, we use the sam⁃
ples with an SNR equal to 8 dB to train the two kinds of net⁃
works and test them with other 25 scenes with various SNRs
from −20 dB to 30 dB.
The results of the proposed methods with and without MTL

trained on one scene and tested on other collecting scenes on
two datasets are shown in Figs. 5 and 6. Firstly, on the RML
dataset, the networks trained in the 8 dB SNR scene main⁃
tained their performance in higher SNR scenes. Secondly,
the performance declined rapidly with the decrease of SNR
from 4 dB to −4 dB and then tended to be stable on the RML
dataset. While on the WS dataset, T also decreased with the
increase of communication distance and complexity. Thirdly,
the MTL method had a comparable performance with the
method not using it in higher SNR scenes but outperforms in

low SNR scenes on both datasets. Specifically, the proposed
method achieved an improvement of T by about 10% on the
scene“7 m”of the WS dataset and by more than 10% on the
scene“−2 dB”of the RML dataset. Thereby, we argue that
the proposed method can benefit from learning shared ex⁃

▼Table 3. Results with performance metrics (STD)
Metrics
T

P

A

Dataset
WS
RML
WS
RML
WS
RML

ICS/%
91.2(±1.1)
88.7(±3.0)
92.3(±0.9)
88.3(±2.9)
95.6(±1.3)
94.1(±3.1)

DICS/%
91.5(±0.7)
88.6(±2.3)
91.6(±0.6)
87.8(±2.1)
96.0(±1.0)
94.0(±2.9)

OSISR/%
93.1(±0.5)
90.3(±2.1)
93.2(±0.4)
91.4(±2.0)
97.2(±0.5)
91.3(±3.4)

MLOSR/%
81.6(±0.3)
80.3(±0.5)
98.8(±0.3)
98.6(±0.4)

-

-

ICS-aug/%
95.0(±0.6)
96.3(±2.1)
95.3(±0.5)
97.5(±2.1)
98.5(±0.9)
98.8(±2.3)

P-w/o MTL/%
97.1(±1.3)
98.0(±2.1)
97.2(±1.4)
98.3(±1.9)
99.3(±1.1)
99.8(±2.2)

Proposed/%
97.2(±0.9)
97.9(±2.3)
97.3(±1.0)
98.2(±2.4)
99.4(±0.8)
99.8(±2.4)

DICS: dynamic intra-class splitting
ICS: intra-class splitting
ICS-aug: ICS with data augmentation

MLOSR: deep CNN-based multi-task learning for open-set recognition
OSISR: open-set interference signal recognition using boundary samples
P-w/o MTL: the proposed method without multi-task learning

RML: the radio modulation dataset
STD: standard deviation
STWS: the wireless signal dataset

▲Figure 5. T of proposed methods with and without MTL on the radio
modulation dataset (RML) dataset

MTL: multi-task learning SNR: signal-to-noise ratio

▲Figure 6. T of proposed methods with and without MTL on the wire⁃
less signal dataset (WS) dataset
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pression of a collection of related tasks and improve the per⁃
formance in new scenes.
4.6 Openness Experiment
Openness is an important parameter in the problem of OSR,

which describes how open an OSR problem is. The definition
of openness is denoted as in Eq. (8). On the RML dataset, we
used six classes from the Normal dataset to train the network
and used different numbers of unknown classes from the Diffi⁃
cult dataset to test. Specifically, the number of KKCs were set
from 1 to 18. In this case, a larger number of UUCs means
larger openness. While on the WS dataset, we used different
numbers of classes as KKCs to train the network and the rest
were served as UUCs on the WS dataset. The number of KKCs
was chosen from 3 to 9 and the corresponding openness was
from 0.32 to 0.03.
The results of the proposed method and two baseline meth⁃

ods under different openness on each dataset are shown in
Figs. 7 and 8, respectively. It can be seen that the perfor⁃
mance of three methods decreases with the increase of open⁃
ness. This is because that the proportion of KKCs and all
classes becomes small so that it is difficult to learn enough
knowledge from KKCs. The accuracy of KKCs stays high but
the accuracy of recognizing UUCs gets lower and T declines.
Besides, the performance of the proposed method outperforms
the other two baseline methods regarding T. As discussed be⁃
fore, this improvement is brought by the efficient data augmen⁃
tation and better robustness of the proposed method that is
achieved by dynamic splitting ratio determining.
4.7 Data Augmentation Experiment
In order to solve the problem that there are too few outer

samples at the beginning of the training process and to make
the experiment in a good direction, we used the method of da⁃
ta augmentation to enhance the split outer samples. The spe⁃
cific methods are basically the same as those in Ref. [34]. In
this work, we evaluate the effects of different data augmenta⁃
tion methods on the proposed method under different scenes.
Formally, let (I,Q) represent the original IQ orthogonal sig⁃

nal, which has a length of 1 024 in the RML dataset, and
( Î, Q̂) represent the augmented signal. According to the rota⁃
tion formula in two dimensional planes, the rotated signal is
defined as:
Î = I cosθ - Q sinθ, Q̂ = I sinθ + Q cosθ, (12)

where θ is the angle of rotation, which was set to π/2, π, and
3π/2. The flip of a signal is given as:
Î = ±I, Q̂ = ∓Q. (13)
The two types of flips were both used in this study. We also

augmented signal samples by adding a Gaussian noise. The

standard deviation of the Gaussian noise was set to 0.000 1,
0.000 5 and 0.001. Besides, we also considered a combination
of three methods and only part of the augmented samples were
randomly selected to keep the data balanced.
Figs. 9 and 10 show the T of the proposed method using four

data augmentation methods trained on different scenes of two da⁃
tasets. It can be seen that the performance declined under low-
SNR or complex scenes. On both datasets, the hybrid method
achieves the greatest performance at a higher SNR (≥ − 8 dB).
The rotation and flip data augmentation methods achieve sec⁃
ondary performance and the noise data augmentation method
performs the worst. Intuitively, adding Gaussian noise reduces
the SNR of the original data sample, which in turn generates
more signal samples with low SNRs. However, the improvement
of the noise method is trivial because the resulting classifica⁃
tion accuracy in a low SNR is small. Therefore, the hybrid ap⁃
proach was selected for our experiments.

▲Figure 7. T of the proposed, OSISR and ICS methods under different
O on the radio modulation dataset (RML) dataset

▲Figure 8. T of the proposed, OSISR and ICS methods under different
O on the wireless signal dataset (WS) dataset
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5 Conclusions
In this paper, we propose an MTL network with dynamical

splitting ratio determining for wireless signal open-set recogni⁃
tion. Specifically, the dynamic method automatically selects
the splitting ratio per class by continuously perturbing class
center samples toward the adversarial direction of the current
network. The change point of a sample’s confidence score dur⁃
ing this process is acquired and used to determine the splitting
threshold. After adjusting improper splitting thresholds, the
original samples of KKCs with higher scores than the thresh⁃
old are selected as inner samples while the rest are served as
outer samples. We use a hybrid data augmentation method to
enhance the outer samples, which are used to imitate UUCs
later. The network will keep training using the latest splitting
data until the performance is stable. Besides, we simultaneous⁃
ly train the original signal classification task and the auxiliary
modulation classification task using the MTL method. By
learning a shared expression of the related tasks, the network
extracts generalized feature and improves the performance
loss when applied in a new environment. We conducted our ex⁃

periments on one wireless signal dataset collected at 2.4 GHz
ISM band by LimeSDR and one open modulation recognition
dataset. The results of different experiments show the superior⁃
ity of the proposed method over state-of-the-art methods re⁃
garding a compromise of closed set accuracy and rejection ca⁃
pability. The experiments indicate that the proposed method
still has poor performance in high openness, although it is bet⁃
ter than baseline methods. Therefore, future work could focus
on improving the identification accuracy under high openness.
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