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Abstract: The sum rate maximization beamforming problem for a multi-cell multi-user multiple-input single-output interference channel 
(MISO-IC) system is considered. Conventionally, the centralized and distributed beamforming solutions to the MISO-IC system have high com⁃
putational complexity and bear a heavy burden of channel state information exchange between base stations (BSs), which becomes even much 
worse in a large-scale antenna system. To address this, we propose a distributed deep reinforcement learning (DRL) based approach with lim⁃
ited information exchange. Specifically, the original beamforming problem is decomposed of the problems of beam direction design and  
power allocation and the costs of information exchange between BSs are significantly reduced. In particular, each BS is provided with an inde⁃
pendent deep deterministic policy gradient network that can learn to choose the beam direction scheme and simultaneously allocate power to 
users. Simulation results illustrate that the proposed DRL-based approach has comparable sum rate performance with much less information 
exchange over the conventional distributed beamforming solutions.
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1 Introduction

To meet the increasing wireless communication traffic 
demand, the frequency reuse factor of cellular systems 
is expected to be slackened as one, which indicates that 
all the cells operate in the same frequency band. How⁃

ever, the small frequency reuse factor brings an inter-cell inter⁃
ference problem, heavily degrading the achievable sum rate per⁃
formance of the wireless system. Therefore, inter-cell interfer⁃
ence should be managed carefully. A multi-cell multiple-input 
single-output (MISO) downlink beamforming technique with co⁃
operation among the base stations (BSs) is introduced as a 
promising solution. The typical zero-forcing beamforming[1] 
works in a highly coordinated scenario where each piece of user 
equipment (UE) is served by all the BSs, which needs all the 
transmit data and channel state information (CSI) to be shared 
among the BSs. Nevertheless, it is impractical due to the heavy 

data-sharing burden[2]. A centralized solution[3] collects the 
global CSI and jointly design beamforming vectors based on 
fractional programming (FP). Although it can achieve near-
optimal performance, it has high computational complexity and 
leads to unavoidable delays when collecting CSI and sending 
beamforming vectors, thereby making it impossible to be ap⁃
plied in a dynamic channel environment.

Many distributed schemes are proposed to reduce the com⁃
putational cost of centralized solutions. In particular, an 
achievable rate region of the multi-cell MISO Gaussian inter⁃
ference channel (MISO-IC) system is analyzed in Ref. [4], 
which proves that the well-designed distributed schemes can 
reach the Pareto boundary. To reduce information sharing 
among BSs, a data-sharing-based distributed scheme is pro⁃
posed in Ref. [5]. A fully distributed scheme with no CSI or 
data sharing is discussed in Ref. [6], which works well at a 
high signal-to-interference-plus-noise-ratio (SINR). However, 
these works assume that the BSs are capable of obtaining the 
instantaneous downlink CSI of the UE in other cells without This work is supported by the joint research project with ZTE Corpora⁃

tion under Grant No. HC-CN-2020120002.
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CSI sharing, which is also infeasible in a practical system.
Deep reinforcement learning (DRL) has shown great poten⁃

tial in decision-making problems. By converting the multi-cell 
downlink beamforming problem into a decision-making prob⁃
lem, several distributed approaches based on DRL are devel⁃
oped[7–8]. Particularly, a multi-agent deep Q-learning based 
approach is introduced in Ref. [7], in which each BS learns to 
make the decisions of beam direction and power for each UE 
based on the local CSI and the exchanged information among 
the BSs. However, because of the curse of dimensionality[9], 
the Q-learning based approach in Ref. [7] is almost impossible 
to be applied in the cases where there are multiple user de⁃
vices in the same cell or the BSs are equipped with large-scale 
antennas, since the discrete action space expands exponen⁃
tially with the number of user devices and antennas.

In this paper, we develop a distributed-training distributed-
execution (DTDE) multi-agent deep deterministic policy gradi⁃
ent (MADDPG) based algorithm to maximize the instanta⁃
neous sum rate of the multicell multi-user MISO-IC system un⁃
der the power constraint for each BS. Thanks to the features of 
DDPG, the policy network gives continuous value directly, 
which significantly reduces the dimension of actions. Our 
main contributions are summarized as follows:

1) A new distributed MADDPG-based scheme is proposed, ca⁃
pable of solving the instantaneous sum rate maximization prob⁃
lem when cells have multiple user devices and BSs are equipped 
with large-scale antennas. By decomposing the original beam⁃
forming problem into the beam direction design and power alloca⁃
tion problems, each BS as an agent can learn to choose beam di⁃
rection and power allocation based on the wireless environment.

2) A new limited information exchange protocol is proposed 
for the distributed BSs to share information for beamforming 
design. Instead of sharing CSI directly, we choose the equiva⁃
lent channel gains of UE, the received interference of UE, and 
the sum rate of UE in one cell as the shared information. Dif⁃
ferent from other DRL-based algorithms which only consider 
equivalent channel gains and the sum rate of UE, we consider 
the received interference (also known as the interference tem⁃
perature) as the crucial information.

3) Extensive experiments are conducted to evaluate the effi⁃
ciency and scalability of the proposed MADDPG approach by 
comparing the conventional distributed and centralized solu⁃
tions. The simulation results show that the proposed 
MADDPG can reach the state-of-the-art sum rate performance 
with a much smaller amount of information sharing among BSs.

As far as we know, this is the first attempt to tackle the 
multi-cell MISO beamforming via MADDPG-based DRL. In 
contrast to the related work[7], this paper aims to solve the 
multi-cell sum rate maximization problem in the continuous 
action space by using the MADDPG method which is more 
flexible for different wireless environments and is easy for 
agents (e.g., BSs) to learn since the dimension of action space 
is much smaller than that of codebook space in Ref. [7].

In this paper, we use Cm × n and Rm × n to represent the 
spaces of the m × n dimensional complex number and real 
number, respectively. The superscripts “∗”, “T”, and “H” de⁃
note the conjugate, the transpose, and the conjugate transpose, 
respectively. In addition, we use ≜ -1 , E {⋅}, and  ⋅  as the 
imaginary unit, the expectation operator, and the ℓ2 norm, re⁃
spectively.
2 System Model

We consider a wireless cellular downlink system of N cells, 
in each of which there is a multi-antenna transmitter (e. g., a 
BS) with M antennas to serve K single-antenna receivers (e.g., 
UE). We use N = {1,⋯,N } to denote the set of all BSs. We as⁃
sume that all UE in this system shares the same frequency 
band, thereby leading to both intra-cell and inter-cell interfer⁃
ence with each UE. As a result, the received signal of the k-th 
UE in the n-th cell at time t can be expressed as:

yn,k ( t ) =            hT
n,n,k ( t )wn,k ( t ) xn,k ( t )

desired signal
+

               
∑

j = 1,j ≠ k

K

hT
n,n,k ( t )wn,j ( t ) xn,j ( t )

intra - cell interference

 +

                 
∑

i = 1,i ≠ n

N ∑
  j = 1

K

hT
i,n,k ( t )w i,j ( t ) xi,j ( t )

inter - cell interference

+ zn,k ( t ),
(1)

where h i,n,k ( t ) ∈ CM denotes the downlink channel vector 
from the BS in the i-th cell to the k-th UE in the n-th cell, 
w i,n,k ( t ) ∈ CM denotes the beamforming vector for the j-th 
UE in the i-th cell, xi,j denotes the transmitted symbol to the 
j-th UE in the i-th cell, and zi,j ( t )~CN (0,σ2

n,k ) denotes the 
additive noise with σ2

n,k being the noise power. Under the 
single user detection mechanism, the instantaneous SINR 
and achievable rate of the k-th UE in the n-th cell are given 
by:

γn,k ( t ) = || hT
n,n,k ( t )wn,k ( t ) 2

β intra
n,k ( t ) + β inter

n,k ( t ) + σ2
n,k

, (2a)

Rn,k ( t ) = log2(1 + γn,k ( t ) ) , (2b)

where β intra
n,k ( t ) = ∑

j = 1,j ≠ k

K |hT
n,n,k ( t )wn,j ( t )|2 and β inter

n,k ( t ) =
∑

i = 1,i ≠ n

N ∑
j = 1

K |hT
i,n,k ( t )w i,j ( t )|2 represent the intra-cell and inter-

cell interferences.
We assume that the BS in each cell is equipped with the 

uniform rectangular array (URA) structure with M = MxMy an⁃
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tenna elements,1 where Mx and My denote the horizontal and 
vertical scales of the URA, respectively. According to the ray-
based channel modeling[10], the dynamic URA channel re⁃
sponse of hn,j,k ( t ) with L-paths for the n-th BS to the k-th UE 
in the cell j can be expressed as:
hn,j,k ( t ) = κn,j,k ∑

l = 1

L

gn,j,k,l ( t ) ā (un,j,k,l) ⊗ b̄ ( vn,j,k,l), (3)
where κn,j,k is the large-scale fading factor related to the path 
loss and shadowing and gn,j,k,l ( t ) is the dynamic small-scale 
Rayleigh fading factor. The steering vectors ā and b̄ of URA in 
Eq. (3) are given by:
ā (un,j,k,l) = é

ë1,e-un,j,k,l,⋯,e-( )Mx - 1 un,j,k,lù
û

⊤
, (4a)

b̄ ( vn,j,k,l) = é
ë
êêêê1,e-vn,j,k,l,⋯,e-( )My - 1 vn,j,k,lù

û
úúúú

⊤
, (4b)

where un,j,k,l = 2πd1
λ sin (θn,j,k,l) cos (ϕn,j,k,l) , vn,j,k,l = 2πd2

λ

cos ( )θn,j,k,l , d1 = d2 = λ
2 , and λ is the signal wave length. The 

elevation angle-of-departure (AoD) θn,j,k,l and azimuth AoD 
ϕn,j,k,l of each path are given by:

θn,j,k,l~U (θn,j,k - Δ
2 ,θn,j,k + Δ

2 ), (5a)

ϕn,j,k,l~U (ϕn,j,k - Δ
2 ,ϕn,j,k + Δ

2 ), (5b)
where θn,j,k and ϕn,j,k are the nominal AoD between the cell n 
and the UE k in cell j, respectively, and Δ is the associated an⁃
gular perturbation.

To characterize the small-scale fading dynamics of the time 
varying channel, we utilize the following first-order Gauss-
Markov process[11].

gn,j,k,l ( t + 1) = ρ gn,j,k,l ( t ) + 1 - ρ δn,j,k,l ( t ), (6)
where ρ denotes the fading correlation coefficient between any 
two consecutive time slots and δn,j,k,l ( t )~CN (0,1).
3 Problem Statement

Considering the channel variation, we aim to solve the fol⁃
lowing instantaneous achievable sum-rate maximization prob⁃
lem at the time slot t:

max
wn,k ( t ) Rsum ( t ) = ∑

n = 1

N ∑
k = 1

K

Rn,k ( t )

 s.t.  ∑
k = 1

K

 wn,k ( t ) 2 ≤ Pmax,∀n, (7)
where Pmax denotes the maximum transmit power for each BS. 
Unfortunately, Problem (7) is generally NP-hard even with 
global CSI, and finding its globally optimal solution requires ex⁃
ponential running time[3]. Conventionally, several centralized 
methods are proposed to find a sub-optimal solution. All cen⁃
tralized algorithms assume that there is a central node to collect 
global CSI from all BSs, and then the central node computes 
and returns beamformers of all BSs. However, it is hard to ob⁃
tain the global CSI for all BSs. Moreover, due to the dynamics of 
channels, the beamformers are already outdated when the BSs 
obtain the returns. Therefore, it is more reasonable to apply a 
distributed approach. However, information sharing design be⁃
tween the BSs is also a problem for the distributed methods. 
Generally, the BSs communicate with other BSs through the 
backhaul links. Conventional beamforming methods need the 
BSs to exchange global or cross-talk CSI, which is an unaccept⁃
able burden for the rate-limited backhaul links. Therefore, the 
amount of shared information for beamforming should be lim⁃
ited, and we try to seek a sub-optimal distributed solution with 
limited information exchange between the BSs in different cells.

From the perspective of the BS n, the beamformer wn,k can 
be expressed as:
wn,k ( t ) = Pn,k ( t ) -w n,k ( t ), (8)

where Pn,k ( t ) =  wn,k ( t ) 2 denotes the transmit power of the 
BS n to user k and -w n,k ( t ) denotes the corresponding normal⁃
ized beamformer, which represents the direction of the trans⁃
mit beam. Note that once the beam direction is fixed, the 
beam power allocation only needs the equivalent channel and 
interference information, which significantly reduces the cost 
of the information exchange[3].

The typical beam direction solutions include the virtual 
SINR[12] and the weighted minimum-mean-square-error 
(WMMSE) [13]. However, these solutions are closely coupled 
with power allocation strategies, which cannot be easily ad⁃
opted to guide the beam direction design. According to Ref. 
[14], given global CSI in the multi-cell scenario, the optimal 
beamformer can be expressed as a linear combination of the 
conventional zero-forcing (ZF) and maximum ratio transmis⁃
sion (MRT). However, it is difficult to obtain the instantaneous 
global CSI. This inspires us to apply the available ZF and 
MRT to give heuristic solutions to our proposed approach 
based on only local CSI[5]. Specifically, the ZF and the MRT 
solutions are given by:

1. We assume the URA model here for simplicity. Nevertheless, the proposed scheme can be applicable to arbitrary array geometry.
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-w
ZF
n,k = (H H

n (HnH
H
n )-1 )T[ :,k ]

||(H H
n (HnH

H
n )-1 )T[ :,k ]|| , (9a)

-w
MRT
n,k  = h*

n,n,k||hn,n,k|| , (9b)
where Hn ∈ CK × M denotes the downlink channel of all K users 
in the n-th cell. Note that the MRT works well at low SNR re⁃
gions[15], especially in the case that most UE is at the edge of 
the cell, since it only focuses on the maximization of the re⁃
ceived signal power. In contrast, ZF tries to minimize the re⁃
ceived interference for the UE, which makes it outperform the 
MRT at high SNR regions where it is dominated by intra-cell 
interference. Therefore, we introduce the DRLbased method to 
choose an appropriate approach according to the dynamic wire⁃
less communication environment, which can be viewed as a 
typical decision-making problem. On the other hand, the DRL-
based approaches, e. g., deep Q-learning[17], have been intro⁃
duced to solve the power allocation task. However, the conven⁃
tional deep Q-learning approach can only output discrete 
power levels, which may make training intractable with the in⁃
crease of the action dimension. This motivates us to apply the 
deep deterministic policy gradient (DDPG) approach, which 
will be introduced in the following section, to tackle the chal⁃
lenging beam direction and power allocation tasks for each BS.
4 Proposed Limited Information Exchange 

Protocol
In principle, all the BSs share information through the back⁃

haul links between BSs. However, it is an unaffordable burden 
for the backhaul links to transmit the global CSI among all 
BSs, especially when the BSs are equipped with large-scale 
antennas. Therefore, we develop a limited information ex⁃
change protocol, in which BSs only need to share a small 
amount of equivalent channel gain and interference informa⁃
tion rather than the global CSI.

Assuming a flat and block-fading downlink channel, we pro⁃
pose a framework for the downlink data transmission process as 
shown in Fig. 1. In this framework, the channels are invariant 
during one time slot. Each time slot is divided into two phases. 
The first phase is a preparation phase for the BSs to collect lo⁃
cal information, information exchange and beamforming design. 
The second phase is the downlink data transmission phase. Con⁃
ventionally, the BSs only estimate downlink channels in the lo⁃
cal information collection phase. To be specific, the BSs send 
reference symbols to UE first, then the UE estimates the down⁃
link channel according to the reference symbols, and finally 
give the local CSI back to the corresponding BSs.

In our proposed protocol, in the local information collection 
phase, the UE needs to give back not only the local CSI but 
also the received interference from the other BSs. Let us take 
the UE k in cell n as an example. The BSs need to send or⁃

thogonal reference symbols to UE k, so that UE k can estimate 
the downlink local CSI hn,n,k ( t ) and the received interference 
ci,n,k ( t - 1) = ∑

j = 1

K |hT
i,n,k ( t )w i,j ( t - 1)|2,∀i ∈ N,i ≠ n from the 

other BSs before the BSs update their beamformers.
During the information exchange phase, the BSs first calculate 

the equivalent channel gain of each UE based on the local CSI 
and the previous beamformer. Meanwhile, the achievable rate of 
each UE can also be obtained according to Eq. (2b). Then the BSs 
concatenate the equivalent channel gains, the achievable sum 
rate of the served UE, and the interference information together, 
and then send them to the other BSs. Fig. 2 shows the information 
exchange process of the BS n. In cell n, the BS n collects the feed⁃
back information from all UE and calculates the equivalent chan⁃
nel gain of UE as -h n,k ( t ) = |hT

n,n,k ( t )wn,k ( t - 1)|. Besides, the BS 
n computes the achievable rate of each UE according to Eq. (2b) 
and obtains the sum rate Rn( t -  1) of UE in the cell n at time slot 
t-1. Then the BS n concatenates these information as the set 
{Cn ( t - 1),h̄n ( t ), Rn ( t - 1)}, where Cn ( t - 1) ∈ RK × (N - 1) is a 
matrix formed by concatenating the interference vectors of all UE 
in cell n and h̄n ∈ RK is a column vector composed of the equiva⁃
lent channel of all UE in cell n. Note that in this information pro⁃
tocol, the BSs do not need to share the global or cross-talk CSI 
and the amount of exchanged information is only related to the 
number of cells and UE. Although other information exchange 
protocols try to further cut down the cost of information shared by 
the only exchange between adjacent cells[7–8], the sum-rate per⁃
formance cannot be guaranteed when the interference generated 
by nonadjacent cells becomes nonnegligible. Therefore, we de⁃
sign the BSs to exchange information with all the other BSs.
5 MADDPG-Based Approach for Distrib⁃

uted Multi-Cell Multi-User MISO Beam⁃
forming
In this section, we introduce a DTDE MADDPG-based 

scheme for the MISO-IC system, as illustrated in Fig. 3, 
where each BS acts as a trainable agent. In the following, 
we take BS n as an example to elaborate on the online deci⁃

▲ Figure 1. Framework of the designed downlink data transmission 
process
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sion and offline training processes in detail.
5.1 Online Decision Process

In the online decision process, BS n observes the states from 
the wireless communication environment and takes actions 
based on the online policy network.

At the time slot t, the BS n observes the wireless communica⁃
tion environment and collects the state vector sn(t). To be specific, 
during the online decision process in the DRL method at the time 
slot t, BSs firstly collect the information from UE and exchange in⁃
formation with each other according to the proposed information 
exchange protocol. With the received information from other BSs, 
the BS n can form the state vector sn(t). The action an(t) is taken by 
the online policy network based on the observed state. Note that 
all the distributed agents take actions simultaneously, which 
means that none of them has instantaneous information about other 
BSs. To make the DDPG fully ex⁃
plore the action space, the output of 
the online policy network is added 
with action noise na ∈ N (0,σ2

a ). 
With the training process moving on, 
the action noise decreases to zero 
gradually. With the action vector an (t) decided, the beamformers { wn,k } 
can be formed and utilized for down⁃
link data transmission. The reward r
(t) and the next state vector sn(t+1) 
can be obtained in the next time slot 
t+1 through the proposed information 
exchange protocol. Meanwhile, the 
transition {sn(t), an(t), r(t), sn(t+1)} is 
stored in the memory replay buffer. 
The action vector an(t) is designed as
an ( t ) = [ pT

n ( t ),Pn,sum ( t ),Dn ( t ) ]T.
(10)

In the action vector an(t), pn ∈ RK, ∑
k = 1

K

pn,k = 1 denotes the 
normalized allocated power levels for UE and Pn, sum ∈ (0,1 ] de⁃
notes the normalized total transmit power of the cell n. Then the 
real transmit power for user k can be expressed as Pn,k ( t ) =
Pmax Pn,sum ( t ) pn,k ( t ). Dn ∈ { 0,1 } is a Boolean value that denotes 
the selected beam direction solution in Eq. (8). When Dn=0, the 
BS n chooses ZF as the beam direction solution; when Dn = 1, 
the BS n chooses MRT. With the selected beam direction Dn(t) and power strategy Pn,k( t), the beamformer for UE k becomes
wn,k ( t ) = Pn,k ( t ) w̄Dn ( t )

n,k ( t ). (11)
The state vector sn(t) is given by
sn ( t ) = [ vec (-H ( t ) ), vec (-C n ( t - 1) ) ] , (12)

where -H ( t ) ∈ RN × K denotes the equivalent channel gain of 
all UE, -H ( t ) [ i,j ] = | hT

i,i,j ( t )w i,j ( t - 1) |; -C n ( t - 1) ∈ R(N - 1) × K 
denotes generated interference from cell n to the UE in the 
other cells, and -C n ( t - 1)[ i,j ] = ∑

k = 1

K

|| hT
n,i,j ( t - 1)wn,k ( t - 1) . 

For convenience, we use vec(⋅) to convert the matrix into a row 
vector by concatenating its rows. Note that all the elements in 
the state vector sn(t) can be obtained through the above pro⁃
posed information exchange protocol . The equivalent channel 
gain -H ( t ) contains the knowledge of receiving signal power of 
all UE and the generated interference -C n ( t - 1) can lead the 
agent n to adjust actions to reduce the inter-cell interference 
to other cells. Since our goal is to maximize the achievable 

▲Figure 3. Illustration of the MADDPG-based scheme for multi-cell multi-user multiple-input single-
output interference channel (MISO-IC) system

▲Figure 2. Illustration of information exchange process for the BS n
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sum rate, we thus set the reward r(t)=Rsum(t - 1), which can be 
calculated based on the shared local information according to 
the limited information exchange protocol in Section 4.
5.2 Offline Training Process

In the offline training process, the sampler first randomly 
samples a batch of transition data {sn(i), an(i), r(i), sn(i+1)} from 
the memory replay buffer for training. By inputting the train⁃
ing transition i into the two target networks, the output of the 
target Q-network yi can be expressed as:

yi = r (i ) + ηQ′n(sn (i + 1), μ′n(sn (i + 1)∣θ′n ) ∣θQ′
n ), (13)

where η denotes the discount factor, and θμ′
n  and θQ′

n  represent 
the network parameters of the target policy network μ′ and Q-
network Q′, respectively. The Q-value is defined as the expec⁃
tation of the future reward that can be obtained from the given 
state-action pair {sn(i),an(i)} when applying the strategy μ[18–19]. 
The Bellman equation of the Q-value can be expressed as：

Qμ (s (i ),a (i ) ) = E [ r (i ) + ηQμ (s (i + 1),a (i + 1) ) ], (14)
where the Q-value of the state-action pair{sn(i), an(i)} is com⁃
posed of an instantaneous reward r(i) and the Q-value of the 
next state-action pair{sn(i+1), an(i+1)}. Note that the output of 
the target Q-network yi  is actually the estimated Q-value of 
the state-action pair {sn(i),an(i)}.According to the deterministic policy gradient theorem[19], 
the gradients of the online Q-network and policy network are:

∇θQ
n

= 1
Nb

é

ë

ê
êê
ê ù

û

ú
úú
ú∂∑

i = 1

Nb ( )yi - Qn( )sn (i ),an (i )∣θQ
n

2

∂θQ
n , (15a)

∇θμ
n

= 1
Nb

∑
i = 1

Nb

[ ]∇aQn( )sn (i ),an (i ) ∇θ μθ( )sn (i ) , (15b)
where Nb is the batch size of the sampled training data. The 
parameters in the online networks are updated by the opti⁃
mizer. For the target networks, the parameters are softly up⁃
dated as

θQ′
n ← τθQ

n + (1 - τ )θQ′
n , (16a)

θμ′
n ← τθμ

n + (1 - τ )θμ′
n , (16b)

where τ ∈ (0,1) is the soft update factor.
The basic structures of the Q and policy networks, as shown 

in Fig. 4, are similar, which both include the fully connected 
input layer, hidden layers and the output layer. To reduce the 
computational complexity, we design two hidden layers for the 
Q and policy networks. The number of neurons in the input 

layer is the same as the dimension of the input vector. Hence, 
the scale of the input layer in the policy network is the same 
as the length of the input vector sn(t). On one hand, the input 
vector for the Q-network is the concatenating of sn(t) and μn( t). 
We apply ReLU as the activation function due to its simplic⁃
ity. Note that the output layer of the policy network consists of 
two sub-layers that apply the softmax and sigmoid activation 
function for pn(t) and [Pn,sum(t), Dn(t)], respectively. On the 
other hand, the output of the Q-network is a real value denot⁃
ing the Q-value of the corresponding state-action pair.

For clarification, we summarize the overall procedure for 
distributed multi-cell multi-user beamforming in Algorithm 1, 
referred to as the MADDPG algorithm. The proposed 
MADDPG algorithm requires the perfect CSI resulting from 
the proposed information exchange protocol. However, imper⁃
fect CSI may lead to the shifting of the objective function in 
Eq. (7), resulting in significant performance degradation of the 
current approach. A possible solution to the imperfect CSI is 
redesigning the reward function based on appropriate histori⁃
cal information, which will be addressed in our future work.
Algorithm 1: MADDPG Algorithm
1: Randomly initialize the weights of critic θQ and actor θμ for 
all agents.
2: Initialize the weights of target networks as θQ′ ← θQ, 
θμ′ ← θμ for all agents.
3: Initialize replay memory buffer for all agents.
4: repeat
5: Agent n observes the state sn ( t ) in time slot t, ∀n ∈ N.
6: Agent n selects an action an ( t ) = μ ( sn ( t )∣θμ ) + na accord⁃

▲Figure 4. Structures of the action and Q⁃networks
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ing to the current policy network output and exploration 
noise, ∀n ∈ N.
7: Agent n takes an action an ( t ), obtains a reward r ( t ) and 
observe a new state sn ( t + 1),∀n ∈ N.
8: Agent n stores the new transition {sn ( t ),an ( t ),r ( t ),sn ( t +
1)} into memory buffer, ∀n ∈ N.
9: Agent n samples a random batch of Nb transitions 
{sn (i ),an (i ),r (i ),sn (i + 1)} from memory buffer, ∀n ∈ N.
10: Agent n calculates yi according to Eq. (12), ∀n ∈ N.
11: Agent n updates the online critic network θQ

n  according to 
Eq. (14a), ∀n ∈ N.
12: Agent n updates online actor network θμ

n according to Eq. 
(14b), ∀n ∈ N.
13: Agent n updates target networks according to Eqs. (15a) 
and (15b), respectively, ∀n ∈ N.
14: until a termination criterion is reached
15: End

5.3 Information Exchange Analysis
We list the required information and the information ex⁃

change of different schemes in Table 1. Note that the frac⁃
tional programming[3] (FP) and the zero-gradient[6] (ZG) need to 
exchange much more instantaneous CSI than that of 
MADDPG while the MADDPG only needs to exchange real 
values of previous information of the wireless environment. 
Moreover, thanks to the local CSI beam direction design, our 
proposed MADDPG based scheme does not rely on the num⁃
ber of antennas M and requires much less information ex⁃
change than those of FP and ZG, and is therefore suitable for 
the case of a large number of antennas.
5.4 Computational Complexity Analysis

The computational complexity of the proposed MADDPG al⁃
gorithm mainly comes from the network computation and the 
beamformer formation. In Algorithm 1, the agent n firstly ini⁃
tializes the weights of the networks. We denote the number of 
hidden layers as LH and the number of neurons in each hidden 
layer as NH, and the complexity of the network initialization is 
O (LHNH ) . In the repeat steps, we assume the number of rep⁃
etitions as Nr, the complexity of Step 6 can be expressed as 
O (NKH + LH N 2

H ), which consists of the linear multiplication 
in hidden layers. In Step 7, the agent n needs to compute the 
normalized beamformers according to Eqs. (9a) and (9b). The 
complexity of ZF and MRT is O (M 3 ) and O (MK ) and ZF has 
higher complexity due to matrix inversion operations. Then in 
Step 10, the target networks need to calculate yi for each 
sample I and the complexity of Step 10 is O (Nb NKH +
Nb LH N 2

H ). For the parameter update in Steps 11–13, the com⁃
plexity is also O (Nb NKH + Nb LH N 2

H ) according to the error 
back propagation algorithm. Hence, the total computational 
complexity of the whole MADDPG algorithm, including the on⁃

line decision and offline training processes, is given as 
O (Nr (Nb NKH + Nb LH N 2

H + M 3 )).
5.5 Convergence Discussion

The convergence behavior of the DRL algorithm, including 
the proposed MADDPG algorithm, depends on many factors 
such as the dynamics of the environment, the power of action 
noise σ2

a and the size of the memory replay buffer Nb. Up to 
now, the theoretical convergence analysis of the the DRL 
based algorithm is still an open problem and is generally 
based on empirical attempt. For example, when the action 
noise σ2

a is small, the MADDPG algorithm can converge 
faster. However, the performance of the MADDPG algorithm 
will degrade since the agents cannot explore the whole action 
space. Therefore, we need a large number of simulations to 
choose appropriate network hyper-parameters for achieving 
fast convergence and good performance.

To test the convergence behavior of the proposed MADDPG 
approach, we give an experimental result in Fig. 5, which illus⁃
trates the achievable sum rate versus the time slot under dif⁃
ferent initializations of network weights. The simulation set⁃
tings are the same as that of Fig. 6 in Section 6. There are 7 
simulation curves with different initial network weights in the 
same environment and all weights are randomly initialized fol⁃
lowing the standard Gaussian distribution. The simulation re⁃
sult shows that the different network initialization will basi⁃
cally converge to a similar performance around 4 000 time 
slots. This indicates that the proposed MADDPG method is in⁃
sensitive to different network initialization.
6 Simulation Results

This section conducts numerical experiments to corroborate 
the performance of the proposed MADDPG algorithm in a wire⁃
less cellular system with (N, K)=(19, 4) and (Mx, My)=(8, 4). The 
distance between the centers of each hexagonal cell is 500 m 

▲Figure 5. Convergence behavior of the proposed multi-agent deep de⁃
terministic policy gradient (MADDPG) algorithm under different ini⁃
tialization of network weights

75



ZTE COMMUNICATIONS
December 2022 Vol. 20 No. 4

JIA Haonan, HE Zhenqing, TAN Wanlong, RUI Hua, LIN Wei 

Research Paper   Distributed Multi-Cell Multi-User MISO Downlink Beamforming via Deep Reinforcement Learning

and the radius of each cell is rcell=290 m. The first cell is located 
at the center, cells 2–7 are located at the first tier, and cells 8–
19 are located in the second tier. We only count the achievable 
rates of cells 1–7 since the cells at the second tier suffer no in⁃
terference from the outer cells. We define an inner region with ra⁃
dius rinner where active UE does not exist. We define the UE distri⁃
bution factor as ϵ = r inner /rcell , where the factor ϵ determines how 
far the UE is from the BS. The received noise power σ2

n is set to 
10−4 mW. The carrier frequency is fc = 3.5 GHz. The large-scale 
fading factor is set as κ = 28+22 lg dis3D+20 lg fc/dB, where dis3D 
is the 3D distance between the UE and the BS. The total number 
of multipath L is 5 and the angular perturbation of each path Δ is 
5° . The maximum transmit power of the BSs Pmax and the time 
correlation coefficient ρ are set to 105 mW and 0.8, respectively. 
The action noise is initialized as σ2

a = 1.
The MADDPG scheme is deployed with the PyTorch frame⁃

work and the hyper-parameters are set as follows. Both policy and 
Q-network parameters are designed as LH = 2 fully-connected 
hidden layers with NH = 200 neurons. The discount factor η is set 
to 0.6 and the soft update factor τ is equal to 0.01. The size of the 
memory replay buffer is set to 2 000 and the size of the sampled 
batch Nb is set to 64. Furthermore, we choose the Adam optimizer 
to update parameters with the learning rate being 10−3.

Fig. 6 depicts the average achievable rate of various 
schemes versus the number of time slots. A random choice 
scheme means that each agent takes a random action in each 
time slot. For the ZF and MRT[5], the power allocation strategy 
is Pn,k = Pmax hn,k

2 /∑
i
 hn,i

2. ZF and MRT exhibit the 
worst performance due to no extra information of the whole 
wireless environment. We see that the MADDPG based 
scheme learns to gradually improve the achievable sum rate 
of the system with the training process, as each agent updates 
the policy network to learn a better action policy for the sys⁃
tem sum-rate maximization. The MADDPG converges to a 
fairly stable situation in 7 000 time slots and the variance is 
reasonable since the channels are dynamic. The MADDPG 
can achieve approximately 85% of the sum-rate performance 
of the FP algorithm, by using local CSI and limited informa⁃
tion exchange only. It is worth noting that although the cen⁃
tralized FP algorithm has the largest achievable sum rate, it 
has a very high computational cost so we have to simulate the 
FP scheme every 500 time slots. Besides, FP[3] needs a large 
amount of instantaneous global CSI, which is unattainable in 
practical systems.

In Fig. 7, we evaluate the average achievable rate of differ⁃
ent schemes vs the UE distribution factor. As the UE distri⁃
bution factor increases, the average received power of UE 
can be reduced and the inter-cell interference problem be⁃
comes worse. The ZG algorithm, which is derived under high 
SINR assumption, has the worst performance under the 19 
cells scenarios. The FP algorithm with global instantaneous 
CSI has undoubtedly the best performance in all scenarios. 
While as the users are getting closer to the cell edge, the per⁃
formance gap between the FP and our proposed MADDPG is 
shrinking.

▲Figure 6. Average achievable rate of various schemes versus the num⁃
ber of time slots, where each point is a moving average over the previ⁃
ous 300-time slots with the UE distribution factor ϵ= 0.3

▼Table 1. Comparison of the information exchange
Schemes

MADDPG
FP[3]

ZG[6]

MRT/ZF[5]

Required Information
-H ( t ),-C n ( t - 1),R ( t - 1)

h i,j,k ( t ),∀i,j,k
h i,j,k ( t ),∀j,k for the BS i

h i,i,k ( t ),∀k

Information Exchange
O (NK )
O ( MNK )
O ( MNK )

0
FP: fractional programming       MADDPG: multi-agent deep deterministic policy gradient
MRT: maximum ratio transmission                                           ZF: zero-forcing
ZG: zero-gradient

▲Figure 7. Average achievable rate of various schemes versus the UE 
distribution factor ϵ
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7 Conclusions
In this paper, we reflect on the instantaneous sum rate maxi⁃

mization problem in the multi-cell MISO interference channel 
scenario. We propose a MADDPG scheme, in which each BS 
learns to choose an appropriate beam direction solution and al⁃
locate power based on the local CSI and limited exchange in⁃
formation among the BSs. The simulation results show that the 
proposed MADDPG scheme can achieve a relatively high sum 
rate with much less information exchange than the conven⁃
tional centralized and distributed solutions.
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