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Abstract: As more medical data become digitalized, machine learning is regarded as a promising tool for constructing medical decision sup⁃
port systems. Even with vast medical data volumes, machine learning is still not fully exploiting its potential because the data usually sits in
data silos, and privacy and security regulations restrict their access and use. To address these issues, we built a secured and explainable ma⁃
chine learning framework, called explainable federated XGBoost (EXPERTS), which can share valuable information among different medical
institutions to improve the learning results without sharing the patients’data. It also reveals how the machine makes a decision through eigen⁃
values to offer a more insightful answer to medical professionals. To study the performance, we evaluate our approach by real-world datasets,
and our approach outperforms the benchmark algorithms under both federated learning and non-federated learning frameworks.
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1 Introduction

Machine learning (ML) has played an important role
in the healthcare industry, serving as a decision
support system for medical diagnosis, and actively
promotes smart medicine development[1–2]. It can

be used to complete some laborious and often time-consuming
routine tasks for better resource utilization. More importantly,
ML can offer meaningful support for clinical decision-making
by comprehensively analyzing electronic healthcare records
(EHR)[3–5]. More than 70% of medical institutions worldwide
have implemented EHR systems, but just 3% of them can ex⁃
change data over the network[6]. Without a secured frame⁃
work for managing the use of EHR[7], patients’information is
at a high risk of cyber threats. Meanwhile, the performance
of ML could be severely degraded by the limited data avail⁃
able locally.
The data security concerns lead to EHRs which are often

used locally for analysis and learning, as depicted in Fig. 1(a).
On the other hand, the medical data available in a single
place are often not enough to fully exploit the advancement of
ML. The lack of data can be solved by using a centralized sys⁃
tem as shown in Fig. 1(b) to store the data from multiple
sources. However, the security threats to the centralized sys⁃

tem come from multiple aspects, such as data transmission
over the network, data leaking from the centralized server, and
manipulation and misconduct in handling patient data. All
these threats pose unique technical and ethical challenges for
this solution. Federated learning (FL) is a burgeoning distrib⁃
uted ML paradigm to collectively train a model as a whole
without explicitly exchanging data samples[8]. It enables a
party (such as medical institutions and organizations) to trans⁃
parently and securely share knowledge with other parties[9].
FL can be roughly divided into three groups, namely, horizon⁃
tal FL, vertical FL, and transfer FL[10]. The horizontal FL
means that the datasets used for training have the same fea⁃
ture space across all parties. The vertical FL uses different da⁃
tasets of different feature spaces to jointly train a global
model. The transfer FL refers to using transfer learning to uti⁃
lize a pre-trained model that is trained on a similar dataset for
solving a different problem. In this study, the federated learn⁃
ing applied to different medical institutions is horizontal
FL[11–12]. Horizontal FL can help solve the problem of lack of
data for some hospitals, and only the model parameters are ex⁃
changed among parties while developing a global diagnostic
model, as shown in Fig. 1(c).
Furthermore, clinical heterogeneity, lack of specific moni⁃
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toring markers, and interpretive uncertainty may lead to misdi⁃
agnosis in computer-aided diagnosis. Therefore, in addition to
data privacy, a secured medical decision-support system also
involves generating reliable and trustful results by providing
instrumental clues to medical professionals on why the deci⁃
sion is made, which is also known as explainable/interpretable
machine learning[13–15]. Some of the explainable ML tech⁃
niques are model-dependent, especially for linear models and
decision trees, while the others are model agnostic and can be
applied to any supervised ML model. The model interpretabil⁃
ity is often available for those trained locally, but it is still an
open question for FL.
In this study, we develop an explainable XGBoost model (a

tree-based extreme gradient boost model) under a horizontal
federated learning framework, EXPERTS, to construct a se⁃

cured medical decision-support system. In the system, we can
achieve the desired learning performance without sharing pa⁃
tient data and provide consistent global interpretability among
parties. To fully demonstrate and understand the system, we
extended the edge analytics framework[16] to collect the same
set of features (demographic characteristics, clinical features,
vital signals, and laboratory tests) of COVID-19 patients from
different places and store the collected data locally. Then
EXPERTS is applied to predict the status of the hospitalized
COVID-19 patients during their stay. The main contributions
of this paper are summarized as follows:
• We propose an explainable XGBoost under the horizontal

FL framework, called EXPERTS, to construct a secured medi⁃
cal decision-support system. In this system, only model param⁃
eters are shared among parties to build a global model without
sharing any patient’s data, thereby protecting patients’pri⁃
vacy without losing performance.
• We implement the Shapley value to provide the horizontal

FL model interpretability by revealing the detailed feature im⁃
portance at each party. Within the system, the feature impor⁃
tance is consistent between parties, which means we can pro⁃
vide global model interpretability for all parties.
• We demonstrate the practicality of EXPERTS by a real-

world COVID-19 dataset and an open medical dataset named
Cerebral Vasoregulation in the elderly with stroke. Our results
confirm that EXPERTS can achieve the same performance
level as the centralized learning approach.
The remainder of this paper is organized as follows. Section

2 gives the motivation for our work. Section 3 shows the de⁃
sign of our study. Section 4 reveals the experimental results of
our design. Section 5 concludes this work and sketches the fu⁃
ture work.
2 Related Work
Data-driven ML has emerged as a promising option for de⁃

veloping accurate and efficient diagnostic tools from large vol⁃
umes of medical data. In Ref. [17], the authors argued that an
AI-based tumor detector requires massive and a wide range of
data, including possible anatomies, pathologies and many oth⁃
ers, to make valuable clinical suggestions, and to be practical
and generalizing well to new patients. However, it is impracti⁃
cal to include all of them among medical institutions as the
data are highly sensitive and the usage is strictly regulated.
Even when the patients are de-identified by removing their
personal information, their privacy could still be exposed by
reconstructing faces from computed tomography (CT) or mag⁃
netic resonance imaging (MRI) data[18].
Federated learning[8] is one of the emerging approaches to ad⁃

dress security challenges by introducing the idea of sharing the
characteristics of the ML model rather than the data itself. More
specifically, it keeps the patient data locally for each partici⁃
pant and only transmits the intermediate results of the model at
local servers to the centralized server for model iteration and

▲Figure 1. Different types of learning
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update, thereby reducing communication intensity and improv⁃
ing data privacy. Since proposed by Google first in 2017[8], FL
has attracted more and more attention among researchers and
has been widely utilized in various privacy-sensitive domains.
It has great potential for medical and healthcare applica⁃
tions[19–21].
Nevertheless, there are still several issues that remain in FL.

For example, to improve performance, researchers focus heavily
on neural networks but ignore other machine learning models,
such as decision trees. Not only that, by emphasizing perfor⁃
mance using neural networks, researchers also ignore the inter⁃
pretability of the model, which is crucial for medical profession⁃
als to understand what drives the ML to make the decision. The
study on the interpretability of FL is very limited. The authors
in Ref. [22] studied the model interpretability under the frame⁃
work of vertical FL. In this work, a party contributes to the verti⁃
cal FL model by sharing its features with others. The contribu⁃
tion of the party can thus be represented by the combined con⁃
tributions of its shared features. In other words, the interpret⁃
ability of the federated model is provided by the group Shapley
values instead of the individual ones. To our knowledge, this
work is the first interpretability analysis based on original fea⁃
tures under the horizontal FL framework, and will not affect the
global interpretability for using different data samples stored in
medical institutions for model training.
3 Method
The technical detail of EXPERTS is given in this section.

To make the entire system clearer, we illustrate the detailed
processing flow in Fig. 2. As can be seen, the local data in
each hospital will never leave the local physical area. In the
local database, data pre-processing is first performed through
the patients/variables filter and abnormal removal. Then, we
rely on statistical transferring and one-hot sampling to further
refine the pre-screened data. After getting the available data,
we use the tree-based SHapley Additive exPlanations (SHAP)
to rank all the features by correlation, and select the top-20
features for subsequent local learning. Consequently, we per⁃
form local fast learning through the initialized model, and up⁃
load the local model’s parameters to the central processor in
the federated node. By applying certain mathematical methods
to weight or average the various parameter sets from different
hospitals, which generalizes local model parameters to global
parameters, we send them back to each local node for model
update and learning. In this section, we briefly describe these
steps encompassing the learning strategy, like data pre-
processing, followed by horizontal federated-XGBoost and
model interpretability.
3.1 Data Pre-Processing
Before the data analysis model is performed, the raw data

are obtained, organized, and pre-processed locally. The data
pre-processing includes variable extraction, unification, arti⁃

fact removal, feature generation and others. In this regard, we
first need to obtain patient data from the local hospital data⁃
base. The data can be retrieved in different forms and need to
be turned into a table-like structure. The steps of data unifica⁃
tion involve timestamp unification (unifying time count), unit
unification (unifying measurement unit for each variable), cat⁃
egorical variables form unification (converting categorical vari⁃
ables to numeric variables), and representation unification (uni⁃
fying the name of the feature). In the artifact removal step, mul⁃
tiple procedures are performed to ensure the validity and qual⁃
ity of the data. For example, the timestamp artifact removal pro⁃
cedure is used to remove unrelated medical records. The out-of-
range artifact removal procedure is used to remove the values of
the feature that greatly exceed its physiological range. The data
normalization is still valuable to reduce the adverse effects asso⁃
ciated with the use of physiological data. More specifically, Z-
score is used to normalize all included features to obtain a nor⁃
malized version of variables, which is computed by
Normalized ( x) = x - x̄

std ( x ) , where x̄ and std ( x ) represent the
mean and standard deviation of x, respectively. The time-series
variables are converted into static features via discretization.
3.2 Horizontal Federated-XGBoost
Although neural networks are currently the most popular

ML models, the lack of clear interpretability makes them hard
to justify their decisions, which is a prerequisite for the wide⁃
spread adoption of machine learning approaches by healthcare
communities. Instead, decision trees (DT) are regarded as reli⁃
able alternatives for balancing accuracy and interpretability.
DT is a tree-like ML model that consists of nodes and edges,
where the internal nodes present the test instances, the edges
present the results, and the leaf nodes present the prediction
results. In short, the path from the root to the leaf represents
the prediction rule. Although the gradient boosting decision
tree (GBDT) has not yet received enough attention under the
FL framework, the representative XGBoost is a promising can⁃
didate to achieve the desired ML performance.
We first give a recap of the the XGBoost algorithm. For a

given set of n independently identically distributed and la⁃
beled examples { ( xi, yi ) , i = 0,…,n }, where X ∈ Rn × d and d
represents the feature dimension. The goal of XGBoost is to
train a learning model with a set of parameters to minimize the
objective loss function for the K iterations, which can be repre⁃
sented as follows:
Objective =∑

i = 1

n

l ( yi, ŷi ) + ∑
k = 1

K Ω( fk ), (1)

where∑
i = 1

n

l ( yi, ŷi ) is the total training loss after K iterations to
measure how well the model fits. More specifically, yi is thereal label, and ŷi presents the predicted output for the i-th
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data sample after K iterations through using K CARTs, which
can be calculated as:

ŷi = ∑
k = 1

K

fk ( xi ) . (2)

∑
k = 1

K Ω( fk ) in Eq. (1) is the regularization term to measure
the complexity of the model, and Ω( fk ) can be depicted as:
Ω ( fk ) = γ T + 12 λ| | ω | |2, (3)

▲Figure 2. Complete workflow of EXPERTS
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with the component ωj of ω being the score/weight of the j-thleaf node of the tree. T is the number of leaf nodes, and1
2 λ| | ω | |2 is the L2 regularization term of the leaf node score.
The score of each leaf node is increased by L2 smoothing to
prevent overfitting. In short, by minimizing the objective func⁃
tion of Eq. (1), both the accuracy and stability of the model
can be considered, and it is the balance between the deviation
and the variance.
Moreover, XGBoost is an additive model and the newly gen⁃

erated tree needs to fit the last predicted residual, which
means the objective is no longer to directly optimize the entire
objective function, but to optimize the objective function step
by step from the first tree to the K-th tree. Then, ŷi can be re⁃written as ŷ ki = ŷi (k - 1) + fk ( x ) for the k-th iteration.After that, we need to find the best split of samples of the
tree from root to leaf. By using the greedy algorithm to search
for the best split which aims to maximize the learning gain at
each iteration, the gain can be calculated as follows:

Gain = 12
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where IL and IR represent the left and right sets of data sampleindices. When searching for the best split point, instances giand hi in the left and right space will be calculated for gettingthe value of Gain. When a CART structure is fixed, the weight
ωj of a leaf node j is calculated by:

ω†j = - ( )∑
i ∈ I
gi

2

∑
i ∈ I
hi + λ . (5)

Considering the generality, we apply a particular logistic
loss function l ( yi, ŷ ( )t - 1

i ) = yi ln (1 + e- ŷi ) + (1 - yi ) ln (1 +
eŷi ) as our picked loss function. Then, the first and second or⁃
der gradient of the loss function can be derived as:
gi = 1

1 + e- ŷ (k - 1) - yi, (6)
and
hi = 1

1 + e- ŷ (k - 1) × (1 - 1
1 + e- ŷ( )k - 1 ) , (7)

separately.
In this work, we study the horizontally partitioned data for

different nodes, which means the nodes have the same feature

dimension and each node holds the entire features of an in⁃
stance. For better understanding, we modeled this method as
the following. Assuming there are L distributed parties
P0,…,PL that hold sample sets X0, …, XL, where each
Xl =

é

ë

ê

êê
ê
ê

ê ù

û

ú

úú
ú
ú

úXl0…
Xlm

involves m samples in the l-th party, entities ac⁃
companied with the label involved in the l-th party can be
shown as [ ( x0l0,…, xdl0, yl0 ), …, ( x0lm,…, xdlm, ylm ) ]. To imple⁃
ment the XGBoost under the federated-learning framework,
the key idea is to calculate the parameters gi and hi at each lo⁃cal party discussed in Eqs. (6) and (7), and then pass them to
the central aggregator to determine an optimal split through it⁃
erative model averaging to further update the model. In short,
XGBoost under the FL framework is summarized as follows:
• Each party downloads the latest XGBoost model from the

central aggregate server.
• Each party uses local data to train the downloaded XG⁃

Boost model and uploads the gradient to the central aggregate
server, and the server aggregates the gradient of each user to
update the model parameters.
• The central aggregate server distributes the updated model

to each party.
• Each party updates the local model accordingly.

3.3 Model Interpretability
When the final model updates, we will conduct a feature

importance analysis on local nodes and compare the explana⁃
tion from each local node to check the robustness of our
model.
In the past, people used Gain[23] or Split[24] to explain the

model as they could summarize a complicated ensemble model
and provide insight into what features drive the model’s predic⁃
tion. However, it cannot be ignored that in some cases, the rank⁃
ings of Gain and Split are often inconsistent even for the same
features. To solve the problem of inconsistency in the feature at⁃
tribution method, we choose Shapley value as an explanatory
tool for our model. As defined in Ref. [25], the Shapley value
for the j-th feature is a solution concept in the cooperative game
theory, which can be obtained by:
ϕj (val) =

∑
S ⊆ { }X1,…, Xd \ { X j }

||S !( )d - ||S - 1 !
d! é

ë
val (S ∪ {X j}) -

val (S )ù
û
, (8)

where S is the sub-set of features used in the model, X is the
vector of features of the instance to be explained, and d is the
number of features defined above. valX (S) is the prediction ofthe eigenvalues in the set S, and the features excluded in the
set S are marginalized as:
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valX(S ) = ∫ f ̂ ( )x1,…,xd dPX ∉ S - EX ( f ̂ ( )X ) , (9)
which performs multiple integrations for each excluded fea⁃
ture. The Shapley value obtained in this way can satisfy effi⁃
ciency, symmetry, dummy, and additivity[26] at the same time,
which can be regarded as the definition of fair expenditures.
However, the exact Shapley value must be estimated using

the j-th feature and all possible subsets that exclude the j-th
feature. As more features are involved, the computational com⁃
plexity of the accurate solution to this problem increases expo⁃
nentially. To reduce the complexity, we adopt SHapley Addi⁃
tive exPlanations as an alternative. SHAP is the Shapley value
estimate based on the game theory, and it has two variants,
namely KernelSHAP and TreeSHAP. The computation cost of
KernelSHAP is very high as it aims for serving all ML models,
so it can only approximate the actual Shapley value. TreeS⁃
HAP is fast; it can calculate the accurate Shapley value, and
even correctly estimate the Shapley value when the features
are correlated.
The TreeSHAP value is defined below:
f ( x ) = g ( x') = ϕ0 +∑

j = 1

M

ϕj z'j, (10)
where f ( x ) represents the predicted value of the sample in the
decision tree, z'j ∈ {0, 1}M represents how many features of all
d features are included in the decision path where the sample
is located. For example, if the feature k is not in its decision
path, the SHAP value of the corresponding feature is 0, that is,
ϕk = 0, which means that the feature k will not contribute tothe final predicted value. Moreover, ϕi is represented as below:
ϕj = ∑

S ⊆ N { j }
||S !( )M - || S - 1 !

M! [ fx(S ⋃ { j}) - fx (S ) ] ,
(11)

where N is the collection of all the features in the training set,
and its dimension is M; S is a subset extracted from N and its
dimension is |S | .
The pseudo code of our proposed algorithm EXPERTS is

provided in Algorithm 1, which is formed by the above process.
Algorithm 1: EXPERTS
Input: each party Pl inputs m samples, and each sample hasall d features and the corresponding label ylm
Output: K decision trees with global feature interpretability
1: Perform pre-processing steps discussed in Section 3.1 in
each local party for every sample
2: Aggregate server
3: for each round t = 1, 2,… do
4: set L local parties with hyper-parameters
5: for the maximal score, aggregate server sends gain to other

local Ps
6: end for
7: Local client:
8: for l = 1 → L do
9: split samples in Pl into Ω batches10: receive default hyper-parameter from aggregate server
11: for each local epoch from 1 to E do
12: for batch ω ∈ Ω do
13: Pl initializes{ŷ}ml with hyper-parameters14: end for
15: end for
16: end for
17: for k = 1 → K do
18: for l = 1 → L do
19: Pl computes gi and hi described in Eqs. (6) and (7)20: end for
21: for each node in the current tree do
22: for j = 1 → d do
23: Pl run Eq. (4) for split24: end for
25: for the maximal score, Pl sends gain to other Ps26: end for
27: update y0, …, yd based on the weights in Eq. (5)28: calculate the approximate Shapley value through Eq. (10)
29: end for
4 Performance Evaluation
This section first presents our experiments’setup, which in⁃

volves both a testbed study and a numerical study. The testbed is
a real-world prototype for COVID-19 diagnosis. To study the
flexibility of the proposed framework EXPERTS, we also used a
publicly available dataset for stroke in our experiments. For
each medical application, we treated the data collected from two
different hospitals but the approach can be extended to multiple
parties. The framework’s performance was comprehensively
evaluated using multiple metrics, including accuracy, precision,
recall, F1 score, receiver operating characteristic (ROC) curve,
and Precision-Recall (PR) curve. We also implemented numer⁃
ous benchmark algorithms involving the federated learning
framework and its counterparts, namely, federated-multilayer
perceptron (MLP), XGBoost, MLP, and Random forest. All algo⁃
rithms are performed after the missing values imputed with the
mean, except for EXPERTS and XGBoost.
4.1 Experiment Setting
To evaluate the performance of our proposed algorithm

and to conduct a fair comparison, all data analytics were car⁃
ried out on the same setting servers, which was a laptop with
a 2.3 GHz Intel Core i5 CPU and 8 GB memory. Additionally,
all computational steps involved in this study, such as pre-
processing and learning, and the proposed algorithm, along
with the selected benchmark algorithms, were all imple⁃
mented in Python 3.8 with PyTorch and TensorFlow.

08



ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

NAN Yucen, FANG Minghao, ZOU Xiaojing, DOU Yutao, Albert Y. ZOMAYA

A Collaborative Medical Diagnosis System Without Sharing Patient Data Special Topic

4.1.1 Dataset
• Real-world dataset: Our study was performed at two desig⁃

nated hospitals for treating COVID-19 patients during the out⁃
break. We retrospectively analyzed 1 012 and 1 642 hospital⁃
ized patients separately, involving patients with the mild symp⁃
tom, severe symptom, and critical symptom diagnosed according
to WHO interim guidance[27]. Laboratory confirmation of SARS-
CoV-2 infection was performed by the local health authority1. In
total, 24 items within CBC (shown in Table 1), two demographic
variables (gender and age), five types of comorbidities (includ⁃
ing hypertension, coronary heart disease, diabetes, stroke, and
cancer), and five time-series vital signals (breath, blood pres⁃
sure, SpO2, pulse, and temperature) were used to represent the
physical condition of patients in this study.

• Open dataset: We also used a public non-image based real-
world dataset, known as Cerebral Vasoregulation in the Elderly
with Stroke2 [28] in our experiment. Cerebral Vasoregulation in
the Elderly with Stroke with numerous feature values can be
identified as a binary category (stroke or non-stroke). This data⁃

set involves 164 patient instances and contains a large number
of missing values, since it was produced from the data collected
in a real medical care environment after a long period of time.
To simulate the framework of federated learning, we first split
this data into 70% training set, 20% validation set, and 10%
test set. Then we randomly split the training set to simulate data
from two different institutions. In this study, we divided the
training set into 65% and 35% for performance evaluation.
4.1.2 Benchmark Algorithm
To quantitatively evaluate the performance of our

EXPERTS algorithm, we implemented multiple algorithms as
our performance benchmarks, including:
• Federated-MLP (with mean value imputation): a multi⁃

layer perceptron model under the federated learning frame⁃
work. Additionally, MLP cannot handle the missing values, so
we used the mean value for the imputation.
• XGBoost (without data imputation): an extreme tree-based

model under a non-federated learning framework.
• MLP (with mean value imputation): MLP model under

non-federated learning framework for data processing and the
mean value is used for the imputation.
• Random forest (with mean value imputation): a tree-based

model under the non-federated learning framework. Like MLP,
the random forest cannot handle the missing values as well, so
we used the mean value for imputation.
4.2 Results Analysis

4.2.1 Performance Evaluation of Federated-XGBoost
In these tests, we evaluated the performance of EXPERTS on

the COVID-19 dataset. We used 70% of the samples as the
training set, 20% of the samples as the validation set, and the
rest as the testing set. Our approach can achieve 93% accuracy
in predicting the patients’clinical courses. However, accuracy
is not always enough to evaluate the clinical performance of the
algorithm. We also employed the averaged Precision, Recall,
and F1-score as performance metrics in our experiments. Preci⁃
sion and recall are both used to evaluate the quality of classifi⁃
cation to show the accuracy of the model. More specifically, pre⁃
cision indicates the percentage of the relevant results retrieved,
and recall refers to the percentage of the total relevant results
correctly classified. The F1-Score is the harmonic mean of Pre⁃
cision and Recall. The results of predicting COVID-19 pa⁃
tients’clinical course are shown in Table 2.
Moreover, the results of the tests are plotted in Fig. 3, and

Fig. 3(a) shows the areas under the receiver operator curves
(AUROCs) for different COVID-19 patients. The accuracy for
the mild, severe and critical patients reaches 0.994, 0.981 and

1.The studies involving human participants were reviewed and approved by the ethical committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Tech⁃
nology, China. Informed patient consent was waived by the Ethics Commission due to the retrospective and observational nature of this study.
2.The dataset is available on the website: https://physionet.org/content/cves/1.0.0/.

▼Table 1. Feature abbreviation checklist within complete blood count
(CBC) test

Abbreviation
EON (#)
EON (%)
EOP (#)
EOP (%)
HCT
HGB
LYM (#)
LYM (%)
MCH
MCHC
MCV

MONON (#)
MONON (%)

MPV
NEU (#)
NEU (%)
PCT
PDW
P-LCR
PLT
RBC

RDW-CV
RDW-SD
WBC

Full Name
Eosinophils (#)
Eosinophils (%)
Basophils (#)
Basophils (%)
Hematocrit
Hemoglobin
Lymphocyte (#)
Lymphocyte (%)

Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration

Mean corpuscular volume
Monocyte (#)
Monocyte (%)

Mean platelet volume
Neutrophils (#)
Neutrophils (%)
Procalcitonin

Platelet distribution width
Platelet-large cell ratio

Platelet
Red blood cell

Red blood cell distribution width CV
Red blood cell distribution width SD

White blood cell

09



ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

NAN Yucen, FANG Minghao, ZOU Xiaojing, DOU Yutao, Albert Y. ZOMAYA

Special Topic A Collaborative Medical Diagnosis System Without Sharing Patient Data

0.991, respectively. The embedded figure enlarges the details
of the top left corner of Fig. 3(a). The PR curve is a non-
decreasing function of the true positive rate (TPR) with re⁃
spect to the false positive rate (FPR). The PR curve is shown
in Fig. 3(b) with Precision as the Y-axis and Recall as the X-
axis. It can be seen that when Recall is less than 0.5, Preci⁃
sion is always 1; while Recall is greater than 0.5, Precision
gradually decreases from 1 to around 0.7.
The loss value of our iteration-like method is shown in Fig.

3(c). The x-axis of Fig. 3 (c) is the number of update iterations
of the training, and the y-axis represents the loss function of
our model. It can be seen from the figure that the loss value
drops greatly in the initial iteration of the training stage, indi⁃
cating that the learning rate is appropriate and the gradient de⁃
scent process is carried out. After the six-th iteration, it can be
seen obviously that the loss curve tends to be stable, and the
change in the loss was not as obvious as in the beginning.
4.2.2 Feature Importance
In this experiment, we studied the model interpretability of

EXPERTS by identifying the important features. We performed
the averaging on the aggregated server to update the parameters
gathered from local parties and returned the updated parameters
to each party for the next iteration. In our tests, we found that the
feature importance of EXPERTS derived from each party was
the same no matter how the data varied. This suggests that
EXPERTS can address the unevenly distributed datasets and
avoid using the local optima for a global explanation.
Fig. 4 shows the top 20 important features and their indi⁃

vidual contribution to the final diagnosis results. Figs. 4(a), 4
(b), and 4(c) represent that the summary plot of COVID-19 pa⁃
tients is in mild, severe, and critical status. In these figures,
the y-axis lists the features in the reverse order of their impor⁃
tance from top to bottom, and the x-axis represents the SHAP
value. Besides, the features that drive the prediction toward
positive are in red, and those pushing the prediction negative
are in blue. By reviewing the influence of the selected features
in the model, it is obvious that age plays a crucial role for mild-
symptom patients shown in Fig. 4(a) and severe-symptom pa⁃
tients shown in Fig. 4(b). The elder the age, the less likelihood
for those patients to be less affected by COVID-19, and they
will develop into a severe or worse situation. For the comorbidi⁃
ties, cancer could be a useful bio-marker to identify the risk of
COVID-19 patients being mild shown in Fig. 4(a) or severe
shown in Fig. 4(b). Cancer will increase the chance of poor

▲Figure 3. Performance metrics for federated XGBoost on COVID-19
cases

▼Table 2. Classification results for EXPERTS

Mild
Severe
Critical

Macro average
Weighted average

Precision
0.96
0.94
0.89
0.93
0.93

Recall
0.91
0.96
0.87
0.91
0.93

F1-Score
0.93
0.95
0.88
0.92
0.93
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prognosis, but comorbidities are not the main factors for criti⁃
cally ill patients. The vital signal SpO2 also plays a key role in
our experiments. The greater the minimum value of SpO2 in an
observation period, the more likely for the patients to stay in a
mild condition shown in Fig. 4(a). Otherwise, the possibility of
turning severe condition is higher shown in Fig. 4(b). For those
critically ill patients in Fig. 4(c), the SpO2 current reading be⁃
comes more important. Our findings are consistent with the
earlier medical studies[29–30]. In summary, Fig. 4 shows the top
20 important features among all features in descending order
of their mean absolute SHAP values, and plots their distribu⁃
tion across all predictions accordingly.
4.2.3 Model Generalization
To prove the generalization of EXPERTS, we also tested it

on a public dataset, called Cerebral Vasoregulation in the El⁃
derly with Stroke. In Fig. 5(a), we can see that the area under
the curve (AUC) achieves 70.8% after ten times the model up⁃
date, and the PR curve can be seen in Fig. 5(b). Furthermore,
in Fig. 5(c), it is obvious that within the process of the ten
times iteration, the loss curve shows a non-increasing trend.
EXPERTS cannot achieve the same performance level of the
COVID-19 case as ML is restricted by the relatively small
sample size. Meanwhile, we also showed the top 20 important
features in Fig. 5 (d).
4.2.4 Performance Comparison with Benchmark Algo⁃

rithms
In this part, we compared EXPERTS with the selected

benchmark algorithms, and all the experiments were per⁃
formed on the COVID-19 dataset.
In our tests, the best accuracy of Federated-MLP can only

reach 78% on the COVID-19 dataset, which lags far behind
EXPERTS. A possible reason for this limited performance is
that MLP cannot properly handle a large number of missing
data. As we used the mean imputation method, it might
change the distribution of the original data and affect the final
performance. Another possible cause is that MLP is a rela⁃
tively simple neural network, so its capacity is not as strong as
the complex deep neural networks. Fig. 6 shows the learning
results based on a fully connected neural network MLP which
is typically simple under the framework of federated learning.
As can be seen from Fig. 6(a), for different COVID-19 pa⁃
tients, their AUC can only reach 89%, 87%, and 92% respec⁃
tively. Fig. 6(b) shows its PR curve, which is a non-increasing
curve. As can be seen, within the interval of Recall from 0 to
1, the value of Precision drops from 1 to 0.3. Fig. 6(c) shows
the loss curve of Federated-MLP within the process of itera⁃
tion and model update, and the loss gradually decreases from
0.78 to 0.56 in these continuous update iterations.
We also implemented three non-federated benchmark algo⁃

rithms in our experiments, including two tree-based methods
and one neural network method. We evaluated their perfor⁃ ▲Figure 4. Feature importance among different patients types
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mance on the centralized dataset (bigger size) and the distrib⁃
uted local datasets (smaller size). Fig. 7 presents all ROC▲Figure 5. Performance evaluation of EXPERS on the stroke cases

▲Figure 6. Performance metrics for federated MLP
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▲Figure 7. Comparison among ROCs
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curves for the benchmarks. Fig. 7(a) shows the result of the
XGBoost algorithm on the centralized dataset. Correspond⁃
ingly, Fig. 7(b) shows the result of the XGBoost algorithm on
the distributed local dataset. It is easy to observe that XGBoost
works well in both cases. Figs. 7(c) and 7(d) respectively show
the performance of MLP on the centralized data set and the dis⁃
tributed local datasets. We can see that the learning effect of

the distributed data sets is slightly worse than the centralized
data set. Finally, in Figs. 7(e) and 7(f), we studied the perfor⁃
mance difference of the random forest on different dataset
cases. It shows that the performance of the random forest sig⁃
nificantly drops when the size of the data reduces.
Fig. 8 shows the PR curves of all the benchmark algorithms

without running under the federated learning framework, and

▲Figure 8. Comparison among Precision-Recall (PR) curves
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it can be seen that they are all non-increasing curves. Within
the range of Recall from 0 to 1, Precision all reduces from 1 to
less than 0.5 except for the two XGBoost cases. In addition,
comparing them with the ROC curves shown in Figs. 3(a) and
Fig 6(a) under the federated learning framework, we find that
EXPERTS inherits the legacy of the XGBoost and can achieve
the same performance of the XGBoost under the centralized
data setting. This would suggest that EXPERTS can achieve
the desired performance without sharing patients’data.
In addition to the excellent performance of learning, an⁃

other advantage of federated learning is that it consumes fewer
transmission resources. As depicted, the difference between
federated learning and traditional centralized learning is that
the original data transmission is replaced by the transmission
of model parameters only, which greatly reduces the overload
of data transmission and effectively improves the overall per⁃
formance. From the perspective of time consumption, the re⁃
sults are shown in Fig. 9. It can be seen that no matter what
model is used, the federated model is far superior to the one
without the federated architecture.

5 Conclusions
The effective application of federated learning in the medi⁃

cal field is essential to address the security threats of personal
medical data and the resource imbalance at all levels of hospi⁃
tals. We show that EXPERTS could build a global model for
COVID-19 patients’diagnoses without sharing their data. It
also gives the leading factors of the COVID-19 patients in dif⁃
ferent statuses. To test the flexibility of EXPERTS that
handles different medical applications, our system has also
been verified with an open dataset for stroke. EXPERTS can
adapt to the new application with traceable decision support,
making it more suitable than static scoring that requires
manual processing.

There are several limitations to this study. Our study is now
designed as retrospective ones, and we will extend our frame⁃
work to prospective studies. EXPERTS is tested as a horizon⁃
tal federated learning model, and vertical federated learning
should also be considered to further prove the reliability of the
model since the features collected in different hospitals are
usually not the same.
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