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Abstract: One particular challenge for large⁃scale software systems is anomaly detection.
System logs are a straightforward and common source of information for anomaly detec⁃
tion. Existing log⁃based anomaly detectors are unusable in real⁃world industrial systems
due to high false⁃positive rates. In this paper, we incorporate human feedback to adjust
the detection model structure to reduce false positives. We apply our approach to two in⁃
dustrial large⁃scale systems. Results have shown that our approach performs much better
than state⁃of⁃the-art works with 50% higher accuracy. Besides, human feedback can re⁃
duce more than 70% of false positives and greatly improve detection precision.
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1 Introduction

L
arge⁃scale software systems face one particular chal⁃lenge which is anomaly detection. System logs provide
a straightforward and common information source for
anomaly detection. Typically, administrators manually

check log files and search for problem⁃related log entries,
which is error⁃prone and time⁃tedious. To reduce human ef⁃
forts, researchers have proposed many automatic log⁃based
anomaly detectors[1⁃19]. However, these detectors are ineffec⁃
tive in real⁃world industrial systems. First, most detectors typi⁃
cally operate by identifying statistical outliers. The utility of a
particular detector for a system depends on how well its statis⁃
tical outliers align with system anomaly symptoms. In general,
the gap between statistical outliers and real system anomalies
can result in high false⁃positive rates and easily render an
anomaly detector unusable. Second, new types of anomalies
may arise during system updates and conflict with existing
anomaly detectors to produce false positives. Third, heteroge⁃
neous and complex log data contains massive noise. This
noise may mislead detectors and further increase false posi⁃
tives.
One way to reduce the false⁃positive rate is to build domain

knowledge into a detector. For example, a designer might ap⁃
ply domain expertise to label training logs that are more likely
to produce correct anomalies and/or filter anomalies based on
semantically defined white lists. Unfortunately, this requires
significant expertise in both the system and anomaly detec⁃
tion. Besides, a large number of logs from industrial
large⁃scale systems are almsot impossble to label; e. g., a Mi⁃
crosoft online service system even generates over one petabyte
(PB) of logs every day[20].
In this paper, we consider an approach to reduce false posi⁃

tives based on incorporating human feedback. In our settings
of feedback⁃aware anomaly detection, humans only provide
feedback about whether the detected anomaly is false positive
or not. This feedback is used by the detector to adjust the
anomaly detection model structure. This approach has the ad⁃
vantage of an easy and concise feedback process with little
overhead on time. The main contributions of this paper in⁃
cludes:
1) To the best of our knowledge, we are the first to incorpo⁃

rate human feedback to reduce false positives for the
log⁃based anomaly detection task.
2) We propose a feedback⁃aware online anomaly detection

approach that builds a graph model from an online log stream
and adjusts the graph structure through human feedback.
3) We apply our approach to two industrial large⁃scale sys⁃

tems. Results have shown that human feedback can reduce
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most false positives and greatly improve detection precision.
The rest paper is organized as follows. Section 2 discusses

the related work, Section 3 proposes the approach, Section 4
shows the experiment results, and Section 5 concludes this
paper.
2 Related Work

2.1 Human‑in‑the‑Loop Anomaly Detection
In existing works, incorporating human feedback into anom⁃

aly detection has been introduced. These works leverage the
idea of active learning and focus on tuning the weights and
scores in machine learning models. For instance, the online
mirror descent (OMD) algorithm[21] associates a convex loss
function to each feedback response which rewards the anoma⁃
ly score. Active anomaly discovery (AAD) algorithm[22–23] de⁃
fines and solves an optimization problem based on all prior
feedback, which results in new weights for the model.
2.2 Log‑Based Anomaly Detection
Log⁃based anomaly detection first parses logs into log tem⁃

plates based on static code analysis or clustering mechanism,
and then builds anomaly detection models. These models in⁃
clude template frequency⁃based model, graph⁃based model,
and deep learning⁃based model. The template
frequency⁃based model[1–4] usually counts the number of dif⁃
ferent templates in a time window and sets up a vector for
each time window. Then it utilizes methods such as machine
learning algorithms to distinguish outliers.
This model sacrifices the abundant information and the di⁃

agnosis ability of logs and it is not accurate and efficient. Thus
it cannot provide help for problem identification and diagno⁃
sis. The graph⁃based model[5–17] is the current research hot⁃
spot. It extracts template sequence at first and then generates
a graph⁃based model to compare with log sequences in the pro⁃
duction environment to detect conflicts. This model has three

advantages. First, it can diagnose problems deeply buried in
log sequences, for example, performance degradation. Second,
it can provide engineers with the context log messages of prob⁃
lems. Third, it can provide engineers with the correct log se⁃
quence and tell engineers what should have happened. The
deep learning⁃based model[18–19] leverages long short⁃term
memory (LSTM) to model the sequence of templates. This
model takes a long time for training and inference, and thus
cannot support online anomaly detection and diagnosis.
3 Approach

3.1 Overview
To solve the problems mentioned above, we design a human

feedback⁃aware anomaly detection approach, called LogFlash,
as shown in Fig. 1. The input is an online log stream l : =
(l1,l2,l3,...), which is a log entry. Our approach consists of
three main components, namely the online log parser, the on⁃
line model learner, and the online anomaly detector. In the on⁃
line log parser, multiple log templates are mined from the log
stream and each log entry is replaced by its corresponding
template. In this way, the log stream is transformed into a tem⁃
plate stream p : = (p1,p2,p3,...). This template stream then goes
through online model learner and online anomaly detector con⁃
currently. The online model learner infers and updates a
graph model called time⁃weighted control flow graph (TCFG)
through mining the template stream. The online anomaly de⁃
tector utilizes the latest TCFG model to detect anomalies in
the template stream. Humans provide false positives in anoma⁃
lies as feedback to the online model learner. The learner then
adjusts the TCFG structure based on the feedback.
We leverage the existing online template mining algo⁃

rithm[24] in the online log parser. Due to space limitations, we
will only describe the TCFG model, online model learner, on⁃
line anomaly detector, and human feedback loop.

TCFG: time-weighted control flow graph
▲Figure 1. Approach overview
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3.2 Time‑Weighted Control Flow Graph
A TCFG is a directed graph consisting of edges and nodes

and each edge has a time weight recording the transition time.
The TCFG model stitches together various log templates and
represents the healthy state of the baseline system. It is used
to flag deviations from expected behaviors at runtime. A tem⁃
plate is an abstraction of a print statement in a source code,
which manifests itself in logs with different embedded parame⁃
ter values in different executions. Represented as a set of in⁃
variant keywords and parameters (denoted by parameter place⁃
holder *), a template can be used for summarization of multi⁃
ple log lines. The TCFG is such a graph where the nodes are
templates and the edges represent the transition from one tem⁃
plate to another. Besides, every log has a timestamp indicating
its print time, and thus the difference between two log time⁃
stamps represents the program execution time between the two
logs. The time weight on each edge in the TCFG records the
longest normal transition time between two templates. If the
execution time between two logs exceeds the time weight, it
means the system is suffering from performance problems.
Fig. 2 shows an example of log templates and TCFG model.

Each log has some invariant keywords and some variable pa⁃
rameters (shown in green), and log templates only reserve in⁃
variant keywords. Nodes in the TCFG are different log tem⁃
plates. Edges represent how each request flow passes between
nodes, and the weight of edges indicates the transition time be⁃
tween two nodes.
3.3 Online Model Learner
We aim to construct a TCFG model in a black⁃box manner

with only the template stream p. Our key idea is to define a dy⁃
namic pairwise transition rate αj,i which models how frequent⁃ly a request flows from template j to template i and trains/up⁃
dates the transition rate αj,i overtime with template stream p.

We further define f (ti|tj,αj,i) to be the conditional likelihood
of transition between template j and template i, where tj and tiare the timestamps of two occurrences of template j and tem⁃
plate i in p. We assume the conditional likelihood depends on
the transition time (tj,t i) and the transition rate αj,i. To model
this parametric likelihood, we first conduct a statistical analy⁃
sis of the distribution of template transitions.
We collect system logs of 5 minutes from an industrial

cloud system Ada. Then we record the transition time between
every occurrence of two neighboring templates in the same re⁃
quest by calculating the difference of their timestamps. Next,
we count the number of occurrences with the same transition
time and plot the distribution of each template transition. Re⁃
sults are shown in Fig. 3. The distributions of these transitions
show obvious long⁃tail distribution characteristics and the
most transitions cost less than 0.2 norm⁃value of time.
Based on the above observations, the power⁃law likelihood

is appropriate to model f (ti|tj,αj,i), that is:

f (ti|tj,αj,i) =
ì

í

î

ïï
ïï

αj,i
δ ( )ti - tj

δ

-1 - αj,i
if tj + δ < ti

0 otherwise
,

(1)
where δ states the minimum transition time from template j to
template i. In Section 4, the power⁃law distribution proves to
be generic enough to adapt anomaly detection methods to test⁃
ing logs from diverse industrial systems. Then we apply net⁃
work inference algorithm to train the structure of TCFG.
1) Template stream likelihood. In the template stream p,

transitions from different templates to a certain template are
independent, that is, each occurrence of template i can only
be transmitted from the occurrence of one parent template.
Then the likelihood of occurrence of template i at time ti, giv⁃

 

▲Figure 2. Log templates and TCFG model

TCFG: time-weighted control flow graph

TCFG
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en a collection of previous occurred templates (t1,...,tN|tk ≤ ti),results from summing over the likelihood of the mutually dis⁃
joint transition from each previously occurred template to tem⁃
plate i:
f (ti|t1,...,tN\ti,Α) = ∑

j:tj < ti
f (ti|tj,αj,i) × ∏

k:k ≠ j,tk < ti
S ( )ti|tk,αk,i , (2)

where Α = { αj,i|i,j = 1,...,N,i ≠ j }, and S (ti|tk,αk,i) is a defined
survival function of transition j → i as
S (ti|tk,αk,i) = 1 - F (ti|tk,αk,i) , (3)

where F (ti|tk,αk,i) = ∫
tj

ti
f ( t|tj,αj,i )dt is the cumulative transition

density function computed from the transition likelihood.
To simplify the modeling process, we assume that transi⁃

tions are conditionally independent, given a set of parent
templates. The likelihood of all transitions in the template
stream is
f (t≤ T,Α) =∏

ti ≤ T
f ( )ti|t1,...,tN\ti,Α , (4)

where t≤ T denotes that the time of template stream is up to T.
After plugging Eq. (2) into Eq. (4) and removing the condition
k ≠ j, the product result is independent of j:

f (t≤ T,Α) = ∏
i:ti ≤ T
∏
k:tk < ti

S ( )ti|tk,αk,i × ∑
j:tj < ti

f ( )ti|tj,αj,i
S ( )ti|tj,αj,i

.
(5)

The fact that some templates are not shown in the observa⁃
tion window is also informative. We therefore add multiplica⁃
tive survival terms to Eq. (5) and rearrange it with hazard func⁃

tion[25] or instantaneous transition rate of transition j → i as
H (ti|tj,αj,i) = f ( )ti|tj,αj,i S ( )ti|tj,αj,i . Then the likelihood of
the template stream is reformulated as
f (t,Α) =
∏
i:ti ≤ T
∏
m:tm > T

S ( )T|ti,αi,m × ∏
k:tk < ti

S ( )ti|tk,αk,i (∑
j:tj < ti

H ( )ti|tj,αj,i ) . (6)
2) TCFG structure inference problem. Our purpose is to in⁃

fer a TCFG structure that is most possible to generate the tem⁃
plate stream p. Given a TCFG with constant edge transition
rate Α, the TCFG structure inference problem problem reduc⁃
es to solving a maximum likelihood problem:
maximizeΑ logf (t,Α)
subject to αj,i ≥ 0, i, j = 1,...,N, i ≠ j , (7)

where Α = { αj,i|i,j = 1,...,N,i ≠ j } are the edge transitions weaim to train. The edges in TCFG are those pairs of templates
with transition rates αj,i ≥ 0.To support online model update, we generalize the infer⁃
ence problem to dynamic TCFG structure with edge transition
rates Α ( t ) that may change over time. To this aim, we first
split the template stream p to a set of sub⁃streams c =
(c1,c2,c3,...) based on the arrival of new templates. Given a
time window size w, each time a template i arrives, we split
out a sub⁃stream in which i is the latest template. An example
is shown in Fig. 4. At time t1, log stream in the red block isthe current sub⁃stream. At time t2, a new template T2 is ob⁃served and the current sub⁃stream becomes {T3,T4,T3,T2}.When it comes to time t3 when T5 is observed, the currentsub⁃stream becomes {T4,T3,T2,T5}. In this way, at any given

▲Figure 3. Template transition distributions of an industrial software
system Ada
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▲Figure 4. A TCFG example and different types of anomalies
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time t, we solve the maximum likelihood problem over the set
of sub⁃streams:
maximizeΑ( t ) ∑c ∈ c f ( tc,Α ( t ) )
subject to αj,i (t) ≥ 0,i,j = 1,...,N,i ≠ j , (8)

where c ∈ c. Next, we show how to efficiently solve the above
optimization problem for all time points t.
3) Training method. The problem defined by Eq. (8) is seri⁃

ous for the power⁃law transition model. Therefore, we aim to
find optimal training solution at any given time t. Since in the
condition of power⁃law model, the edge transition rates usually
vary smoothly, classical stochastic gradient descent[26] can be
a perfect method for our training as we can use the inferred
TCFG structure from the previous time step as initialization
for the inference procedure in the current time step. The train⁃
ing phase uses iterations of the form:
αkj,i (t) = (αk - 1j,i (t) - γ∇αj,i Lc (Αk - 1 (t))) +, (9)

where k is the iteration number, ∇αj,i Lc (∙) is the gradient of the
log⁃likelihood Lc (∙) of sub⁃stream c with respect to the edge
transition rate αj,i, γ is the update step size, and (z) + =
max (0,z). The computations of log survival function, hazard
function and gradient of sub⁃stream c for power⁃law model in
Eq. (1) are given in Table 1.
Importantly, in each iteration of the training phase, we only

need to compute the gradients ∇αj,i Lc (Αk) for edges between
template j and template i, as node j has been observed in
sub⁃stream c, and the iteration cost and convergence rate are
independent of | c |.
3.4 Online Anomaly Detector
The basic idea for anomaly detection is to compare the log

stream with TCFG to find the deviation. We first define three
types of deviations/anomalies, namely sequence anomaly, re⁃
dundancy anomaly, and latency anomaly. A sequence anomaly
is raised when the log that follows the occurrence of a parent
node cannot be mapped to any of its children. A redundancy

anomaly is raised when unexpected logs that cannot be
mapped to any node in the TCFG occur. A latency anomaly is
raised when the child of a parent node is seen but the transi⁃
tion time exceeds the time weight recorded on the edge. Fig. 4
shows an example of different types of anomalies. Fig. 4(a) is
an example of TCFG with 7 nodes. As shown in Fig. 4(b), sup⁃
pose the transition time between Node 1 and Node 2 exceeds
the time weight 0.2, they suffer from a latency anomaly. Node
5 appears after Node 2 unexpectedly and suffers from a se⁃
quence anomaly. Node 8 appears after Node 6 while Node 8 is
a new template that has not been recorded in the TCFG, and
thus a redundancy anomaly occurs.
3.5 Human Feedback Handling
As mentioned before, users report false positives in anoma⁃

lies through detection results webpage as human feedback.
The online model learner receives the feedback and adjust the
TCFG based on the feedback. For different types of anomalies,
the online model learner takes different operations. These op⁃
erations are shown in Algorithm 1.
Algorithm 1. Human Feedback Handling Algorithm
Input: Human feedback Anomaly.
Definition: TCFG denotes the current TCFG model
1. if Anomaly. type =“Sequence”
2. then TCFG. addEdge (Anomaly. parentNode,

Anomaly. childNode)
3. if Anomaly. type =“Redundancy”
4. then TCFG. addNode (Anomaly. redundantNode)
5. if Anomaly. type =“Latency”
6. then TCFG. setTimeWeight (Anomaly. parentNode,

Anomaly. childNode, Anomaly. transitionTime)
• Sequence anomaly. A sequence anomaly is raised when

the log that follows the occurrence of a parent node cannot be
mapped to any of its children. If a sequence anomaly is a
false positive, it means the log that follows the occurrence of
the parent node should be its child. In other words, the tran⁃
sition between the parent and the child has not been correct⁃
ly learned. For instance, in Fig. 4(b) Node 5 appears after
Node 2 unexpectedly and suffers from a sequence anomaly.
If it is a false positive, it means there should be a transition
edge from Node 2 to Node 5. Therefore, the online model
learner takes the operation to add a transition edge from the
parent and the child in TCFG.
• Redundancy anomaly. A redundancy anomaly is raised

when unexpected logs occur that cannot be mapped to any node
in TCFG. If a redundancy anomaly is a false positive, it means
the template of the unexpected log should be in TCFG. For in⁃
stance, in Fig. 4(b) Node 8 appears unexpectedly and raises a
redundancy anomaly. If it is a false positive, it means Node 8
should be in the path. Therefore, online model learners take the
operation to add the template of the unexpected log to TCFG.
• Latency anomaly. The time weight on each edge in the

▼Table 1. Computations of transition likelihood for power-law model
Computation Entity
Log survival
function:

logS (ti|tk,αk,i)
Hazard function:
H (ti|tj,αj,i)

Gradient for unobserved ones in c:
∇αj,i Lc (Α)

Gradient for observed ones in c:
∇αj,i Lc (Α)

Computation Method

-αj,i log ( ti - tjδ
)

αj,i∙ 1
ti - tj

log ( T - t
c
j

δ
)

log ( tci - tcjδ ) - ( tci - tcj )-1∑k:tck < tci
αk,i ( tci - tck )-1
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TCFG records the longest normal transition time between two
nodes. An intuitive way to determine time weight is to update
the time weight once it meets a longer transition time in the
log stream. However, it is hard to determine whether the lon⁃
ger transition time is a real latency anomaly or normal latency
fluctuation. Therefore, we rely on human feedback to update
the time weight. If a latency anomaly is a false positive, it
means the time weight is too small and should be updated.
Therefore the online model learner updates the time weight
once it receives feedback of latency anomaly. For instance, in
Fig. 4(b) the transition time between Node 1 and Node 2 ex⁃
ceeds the time weight 0.2, and then they suffer a latency anom⁃
aly. If it is a false positive, it means the transition time 1.3 is
normal. Therefore, the online model learner takes the opera⁃
tion to update the time weight from 0.2 to 1.3.
4 Experiment and Evaluation

4.1 Experiment Setup
We test our approach on three industrial large⁃scale sys⁃

tems called Ada, Bob, and Dockerd. Ada is an online image
identification and analytics system that serves thousands of us⁃
ers. Bob is a software distribution system for 5G stations and
chipboards. It distributes upgrade or bug fixing patches to
thousands of 5G chipboards. We collect system logs of two
days from Ada and Bob and use logs for training. Dockerd is a
component of a Platform as a Service (PaaS) platform which
contains 10 components and 957 nodes producing more than
8.1 million system logs per day. We collect logs of 20 days
with a size of 52.94 G to verify the effectiveness of our ap⁃
proach.
We choose the state⁃of⁃the-art log⁃based anomaly detection

DeepLog[18] and LogSed[6] as baselines. DeepLog leverages
LSTM to model template sequences and detect anomalies
through computing the distance between observed templates
and predicted templates. LogSed first proposes TCFG model
and infers the TCFG model based on frequent sequence mining.
We use typical Recall and Precision as our evaluation met⁃

rics, which are defined as follows:
Precision = TP

TP + FP , (10)

Recall = TP
TP + FN , (11)

where TP, FP, TN, FN are referred to as true positive, false pos⁃
itive, true negative, and false negative.
4.2 Evaluation Results
Logs in real⁃world industrial systems are much more com⁃

plex and heterogeneous than lab systems, and it is very hard for
today’s anomaly detectors to produce satisfying results. Table 2

shows the evaluation results of Ada. Both LogSed and DeepLog
show poor precision which means they produce lots of false pos⁃
itives. Our approach outputs 74 anomalies in which 31 anoma⁃
lies are true positives leading to a precision of 0.42 without hu⁃
man feedback (statistics in parentheses). After we incorporate
human feedback, our approach produces 36 anomalies. We also
record the times of human feedback during training. Experts la⁃
beled 28 false positives as feedback to guide the system and the
labeling task only costs about 5 minutes.
Bob is even more complex than Ada. Each 5G station and

chipboard are in different environments with different network
status, load status, etc. Logs of many processes such as net⁃
work test, heartbeat, software download, reconnect, software
security and consistency check are interleaved together. It is
almost impossible for existing detectors to learn a usable mod⁃
el from such noisy system logs. As shown in Table 3, LogSed
and DeepLog show a precision of 0.04 and 0.09 separately.
Our approach detects 137 anomalies without human feedback
in which 10 anomalies are true positives. After incorporating
human feedback, the number of detected anomalies reduces to
13 leading to 0.77 precision. During training, experts label 52
false positives as feedback in total that costs about 15 minutes.
As evaluating the performance of the framework on Dock⁃

erd logs, our approach detects 1 515 sequence anomalies with⁃
out human feedback, of which less than 160 are true positives.
After dropping duplicates and incorporating human feedback,
the accuracy rate increases to 0.82. In summary, our approach
achieves much better precision than baseline works. Incorpo⁃
rating human feedback effectively reduces false positives and
significantly improves model performance. Besides, the feed⁃
back process is very easy for experts and saves a lot of time.
5 Conclusions and Future Work
In this paper, we propose a feedback⁃aware anomaly detec⁃

tion approach. It builds a TCFG model to describe normal sys⁃
tem status and incorporates human feedback to adjust the
graph structure to reduce false positives. Experiment results
on two industrial large⁃scale systems show that our approach
enjoys much better precision than baselines. Besides, human
feedback can significantly reduce false positives and improve
model performance.
▼Table 2. Evaluation results of Ada

Approaches

LogSed[18]

DeepLog[6]

Our approach

Precision/%

0.34
0.45
0.86(0.42)

Recall/%

1.00
1.00
1.00

#Human Feedback

/
/
28

▼Table 3. Evaluation results of Bob
Approaches

LogSed[18]

DeepLog[6]

Our approach

Precision/%

0.04
0.09
0.77(0.07)

Recall/%

0.89
0.99
0.96

#Human Feedback

/
/
52
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In the future, we will improve the human feedback handling
process and perform more sophisticated tuning on the model
with human feedback.
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