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Abstract: Crowd counting is a challenging task in computer vision as realistic scenes are al⁃
ways filled with unfavourable factors such as severe occlusions, perspective distortions and di⁃
verse distributions. Recent state-of-the-art methods based on convolutional neural network
(CNN) weaken these factors via multi-scale feature fusion or optimal feature selection through
a front switch-net. L2 regression is used to regress the density map of the crowd, which is
known to lead to an average and blurry result, and affects the accuracy of crowd count and po⁃
sition distribution. To tackle these problems, we take full advantage of the application of gen⁃
erative adversarial networks (GANs) in image generation and propose a novel crowd counting
model based on conditional GANs to predict high-quality density maps from crowd images.
Furthermore, we innovatively put forward a new regularizer so as to help boost the accuracy of
processing extremely crowded scenes. Extensive experiments on four major crowd counting
datasets are conducted to demonstrate the better performance of the proposed approach com⁃
pared with recent state-of-the-art methods.
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1 Introduction

With the population density of major cities increasing
in recent years, crowd scene analysis has already
become an important safety index in the field of vid⁃
eo surveillance, especially the crowd count and

high-quality density map which has a wide range of applica⁃
tions in public safety, traffic monitoring, scene understanding
and flow monitoring. However, predicting accurate crowd count
while ensuring high-quality density map is a really challenging
task, because complex crowd scenes are always accompanied
with severe occlusions, perspective distortions and diverse dis⁃
tributions, and also put forward a great challenge to the algo⁃
rithm model. Several typical still crowd images from the Shang⁃
haiTech dataset[1] are shown in Fig. 1.
In order to solve these problems in computer vision field, a

great many algorithms have been proposed, which can be
mainly divided into two categories, namely, the hand-crafted
feature based regression and the convolutional neural network
(CNN) based regression. Recent works[1–3] indicate that the

CNN based regression has a more excellent performance.
Such methods obtain the number of people from a still image
by mapping the image to its density map through a CNN archi⁃
tecture. They have achieved significant improvements on
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(a) pictures with dense crowd

(b) pictures with relatively sparse crowd
▲Figure 1. Examples of crowd scene from the ShanghaiTech dataset[1].
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count estimates, whereas the quality of their estimated density
map is unfortunately poor due to the throng scene and self-de⁃
fect of Euclidean loss.
In the past two years, generative adversarial networks

(GANs)[4] have become the most popular frameworks in all rel⁃
evant fields of image generation. Some of its derivatives such
as conditional GANs (cGANs) [5] and information maximizing
generative adversarial nets (InfoGANs) [6] can generate ex⁃
tremely realistic images. Therefore, the key point is whether
we can draw the advantages of GANs to generate high-quality
and high-resolution density maps. Inspired by this, we pro⁃
pose a novel crowd counting model based on cGANs called
Crowd Counting Network for Real Monitoring Scene.
The initial inspiration of Crowd Counting Network for Real

Monitoring Scene derives from Ref. [7] which uses cGANs to
realize pixel-to-pixel translation. Usually, most existing CNN-
based approaches on crowd counting add several max-pooling
layers in their networks, forcing them to regress on down-sam⁃
pled density maps, and traditional Euclidean loss is employed
to optimize their network parameters which will eventually
lead to a relatively blurry result. While in our proposed ap⁃
proach, the generator of cGANs is designed to generate densi⁃
ty maps having the same size as input images through a U-
net[8] structure with the same amount of convolutional and de-
convolutional layers. In other words, it executes a pixel-wise
translation from a crowd image to its estimated density map.
Thanks to the combination of pixel-wise Euclidean loss, per⁃
ceptual loss, inter-frame loss and the adversarial training loss
provided by GANs, the density map predicted by the genera⁃
tor overcomes blurry results obtained by optimizing only over
Euclidean loss and achieves higher quality than that of the
previous methods. Besides, we innovatively propose a novel
regularizer which provides a very strong regularization con⁃
straint on the consistency of parent-child-relationship density
maps between different scales to excavate multi-scale consis⁃
tent information. Unlike using different sizes of filters to ex⁃
tract multi-scale features, we care more about local and over⁃
all interrelation between adjacent image patches.
Contributions of this paper are summarized as follows.
• We propose a novel crowd counting framework based on

cGANs, called Crowd Counting Network for Real Monitoring
Scene. It implements end-to-end training. The use of adversari⁃
al training loss helps generate high-quality crowd density map.
• A novel regularizer is introduced to help solve perspec⁃

tive distortions and diverse distributions problems in crowd
scenes by providing a very strong constraint on the consisten⁃
cy of parent-child-relationship patches to excavate multi-scale
consistent information.
• An inter-frame loss is denoted for the crowd counting in

video stream, which can improve the continuity of detection
by constraining the number of people calculated by density
map between adjacent frames. The loss can also enhance the
stability of the network in predicting the density map of video

information.
• Our method obtains state-of-the-art performance on four

major crowd counting datasets involving the ShanghaiTech da⁃
taset, WorldExpo’10 dataset, UCF_CC_50 dataset and UCSD
dataset.

2 Related Work
A large number of algorithms have been proposed to tackle

crowd counting task in computer vision. Early works estimate
the number of pedestrians via head or body detection[9–11]. Such
detection based methods are limited by severe occlusions in ex⁃
tremely dense crowd scenes. Methods in Refs. [12–15] use re⁃
gressors trained with low-level features to predict global counts,
and Ref. [16] makes a fusion of hand-crafted features from mul⁃
tiple sources, including the histogram of oriented gradients
(HOG), scale-invariant feature transform (SIFT), Fourier analy⁃
sis, and detections. These methods cannot provide the distribu⁃
tion of crowd, and such low-level features are outperformed by
features extracted from CNN which have better and deeper rep⁃
resentations.
Several works focus on crowd counting in videos by trajecto⁃

ry-clustering. RABAUD et al. [17] utilized a highly parallelized
version of the Kanade-Lucas-Tomasi Tracking (KLT) tracker
to extract a set of feature trajectories from videos. Fragmenta⁃
tion of trajectories is restrained by conditioning the trajecto⁃
ries spatially and temporally. BROSTOW et al.[18] proposed an
unsupervised data driven Bayesian clustering algorithm,
which uses space-time proximity and trajectory for clustering.
However, such tracking based methods are limited in crowd
counting from arbitrary still image for lack of temporal infor⁃
mation.
In recent years, crowd counting has entered the era of CNN.

WANG et al. [19] trained a classic Alexnet style CNN model to
predict crowd counts. Regrettably, this model has limitation in
crowd analysis as it does not provide the estimation of crowd
distribution. ZHANG et al. [3] proposed a deep convolutional
neural network for crowd counting which is alternatively re⁃
gressed with two related learning objectives: the crowd count
and the density map. Such switchable objective-learning helps
improve the performance of both objectives. However, the ap⁃
plication of this method is limited as it requires perspective
maps which are not easily available in practice during the pro⁃
cess of both training and testing. Multi-column CNN is em⁃
ployed by Refs. [1] and [20]. Different CNN columns with var⁃
ied receptive fields are designed to capture scale variations
and perspectives, and then features from these columns are
fused together by a 1×1 convolutional layer to regress crowd
density. Switch-CNN[2] based on the multi-column convolution⁃
al neural network (MCNN)[1] is a patch-based switching archi⁃
tecture before the crowd patches go into multi-column regres⁃
sors. The switch-net is trained as a classifier to choose the
most appropriate regressor for a particular input patch, which

75



Research Paper Crowd Counting for Real Monitoring Scene

LI Yiming, LI Weihua, SHEN Zan, NI Bingbing

ZTE COMMUNICATIONS
June 2020 Vol. 18 No. 2

takes advantage of patch-wise variations in density within a
single image. These methods have made great contributions to
the progress of crowd counting by deep learning; at the same
time, they add max-pooling layers in their networks and use
L2 loss to optimize the whole model. Namely, they pay more
attention to the accuracy of predicted crowd count, and ne⁃
glect the quality of the regressed density map. The latest pro⁃
posed contextual pyramid CNN (CP-CNN) [21] is a contextual
Pyramid CNNs for incorporating global and local contexts
which are obtained by learning various density levels. This
contextual information is fused with high dimensional feature
maps extracted from a multi-column CNN[1] by a fusion-CNN
consisting of a set of convolutional and fractionally-strided lay⁃
ers. Adversarial loss is used to help generate high-quality den⁃
sity maps in the last fusion-CNN. Up to now, this approach ac⁃
quires the lowest counting error on three major crowd datasets
in addition to generating high-quality density maps.
The above methods utilize multi-scale features fusion or

optimum feature selection to deal with crowd in varied
scales, but to some extent they only consider crowd in differ⁃
ent scales having different sensitivities to diverse convolu⁃
tional kernel, which is a relatively local consideration. The
latest one incorporates contextual information by classifying
images or patches into five density levels independently,
while ignoring the correlation between adjacent patches. In
other words, none of them research on the statistical consis⁃
tency of the crowd counts in multi-scale joint patches; for ex⁃
ample, a patch is supposed to be equally divided into four
sub-patches and the estimated crowd count of the patch
ought to be equal to the sum of the estimated crowd counts of
these four sub-patches. Such multi-scale consistency offers
an effective and strong regularization constraint for crowd
count and density estimation. Unfortunately, these methods
do not take it into consideration.

3 Our Approach
We proposed a novel GANs-based crowd counting frame⁃

work called Real Monitoring Scene Network (RMSN) for
Crowd Counting. Many of the previous state-of-the-art meth⁃
ods[1–2] choose L2 loss to regress density map, which is widely
acknowledged to result in low-quality and blurry results espe⁃
cially for image reconstruction tasks[7], [22]. To overcome this
flaw and generate high-quality and high-resolution density
maps, we design a weighted combination of loss including: ad⁃
versarial training loss, perceptual loss and pixel-wise Euclide⁃
an loss, and a new regularizer is proposed in our GANs-based
model to excavate multi-scale consistent information. After
generating the density map, we will get the density matrix in⁃
formation between −1 and 1 and then normalize it. The count
number from density map can be obtained by summing the
normalized matrix divided by a certain coefficient 0.12.

3.1 Architecture
RMSN is based on the idea of pixel-to-pixel translation, and

in order to leverage the proposed regularizer, our network ar⁃
chitecture consists of two complementary conditional GANs:
GANlarge and GANsmall. A classic GAN architecture usually con⁃tains two models: a generator G trained to produce outputs and
a discriminator D trained to distinguish the real target and
fake outputs from G. In our method, the generator G learns an
end-to-end mapping from input crowd image to its density
map. Fig. 2 shows the integral architecture of RMSN. The gen⁃
eral structures of the two GANs are quite similar. Specific de⁃
tails are discussed below.
A general problem of pixel-to-pixel translation is the diffi⁃

culty to efficiently map a high resolution input image to a high
resolution output image. Fortunately, previous works[7], [23–24]
have provided an excellent solution by using an encoder-de⁃
coder network[25]. In RMSN, a U-net[8] structure is introduced
to the generator G as an encoder-decoder. Let us start with the
large GANs in our proposed architecture. In the generator
Glarge, eight convolutional layers along with batch normaliza⁃tion layers and LeakyReLU activation layers are stacked in
the encoder part which serves as a feature extractor. Then,
eight de-convolutional layers along with batch normalization
layers and ReLU activation layers (except for the last one) are
added in the decoder part, followed by a tanh function. Note
that the de-convolutional layers are a mirrored version of the
foregone convolutional layers. We set a stride of 2 in all lay⁃
ers, which means convolutions in the encoder down-sample by
a factor of 2, whereas deconvolutions upsample by a factor of
2. In addition, three dropout layers are added behind the first
three de-convolutional layers with dropout ratio set to 0.5 in
order to alleviate over-fitting. Skip connections are also added
between mirror-symmetry convolutional and de-convolutional
layers to help improve the performance and efficiency, similar
to Ref. [7]. The architecture of Glarge can be depicted as: C(64,6)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-
DCD(64,4)-DCD(64,4)-DCD(64,4)-DC(64,4)-DC(64,4)-DC(64,
4)-DC(64,4)-DC(3,6)-Tanh, where C is a Conv-BN-LReLU lay⁃
er, DCD is a deConv-BN-Dropout-ReLU layer, DC is a de⁃
Conv-BN-ReLU layer and the first number in every parenthe⁃
sis represents the number of filters while the second number
represents filter size.
The generator Gsmall which is similar to Glarge contains 7 con⁃volutional layers and 7 deconvolutional layers. 4 × 4 filters are

used in all layers with a stride of 2. The architecture of genera⁃
tor Gsmall can be depicted as: C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-DCD(64,4)-DCD(64,4)-DC(64,4)-DC
(64,4)-DC(64,4)-DC(64,4)-DC(3,4)-Tanh. The inputs of gener⁃
ator Glarge are 240×240×3 sized crowd patches, and the inputsof generator Gsmall are 120×120×3 sized crowd patches equa⁃tionally cropped from the input of the generator Glarge withoutoverlapping, as shown in the upper left corner of Fig. 2 Their
outputs are of the same size as their inputs. That means the

density maps generated from our RMSN contain more details
and have better characterization capabilities than previous
density-map-based works[1–3] as their density maps are always
much smaller than the origin images.
The discriminators Dlarge and Dsmall have the same struc⁃ture, displayed at the bottom of Fig. 2. Five convolutional

layers along with batch normalization layers and LeakyRe⁃
LU activation layers (except for the last one) act as a feature
extractor. A tanh function is stacked at the end of these con⁃
volutional layers to regress a probabilistic score ranges from
−1.0 to 1.0. The architecture of discriminators Dlarge and Ds⁃
mall can be depicted as: C(48,4)-C(96,4)-C(192,4)-C(384,4)-C(1,4) -Tanh. The inputs of the discriminators Dlarge and Dsmallare 240×240×6 and 120×120×6 sized concatenated pairs of
crowd patch and density map, respectively. The values of
the output matrix indicate whether the input is real (close to
1.0) or fake (close to −1.0).
3.2 Loss Function
In our problem, motivated by recent success of GANs, we

propose an adversarial loss of generating crowd density map
from image patch. The adversarial loss involves a discrimina⁃
tor D and a generator G playing a two-player minimax game: D
is trained to distinguish synthetic images from ground truth
while G is trained to generate images to fool D. The adversari⁃

al loss is denoted as:
LA (G,D) = Ex, y~Pdata (x, y ) [ logD ( x, y ) ] +

Ex~Pdata (x ) [ log (1 - D ( x,G ( x ) ) ) ] , (1)
where x denotes a training patch and y denotes corresponding
ground-truth density map. G tries to minimize this objective,
whereas D tries to maximize it.
Due to the lack of direct constraint from ground truth, just

using an adversarial loss may sometimes lead to aberrant spa⁃
tial structure. Thus, we include two conventional losses to
smooth and improve the solution, which is denoted as follows.
In our problem, l2 loss LE(G) can force the generated estimat⁃ed density map to fool D and be close to the ground truth in an

L2 sense.
LE (G) = 1C∑c = 1

C

 pG ( )c - pGT ( )c
2
2 , (2)

where pG (c) represents the pixels in generated density map
and pGT (c) represents the pixels in ground-truth density map,
with c=3.
Perceptual loss is first introduced by JOHNSON et al.[24] for

image transformation and super resolution task. By minimiz⁃
ing the perceptual differences between the two images, the
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density maps generated from our RMSN contain more details
and have better characterization capabilities than previous
density-map-based works[1–3] as their density maps are always
much smaller than the origin images.
The discriminators Dlarge and Dsmall have the same struc⁃ture, displayed at the bottom of Fig. 2. Five convolutional

layers along with batch normalization layers and LeakyRe⁃
LU activation layers (except for the last one) act as a feature
extractor. A tanh function is stacked at the end of these con⁃
volutional layers to regress a probabilistic score ranges from
−1.0 to 1.0. The architecture of discriminators Dlarge and Ds⁃
mall can be depicted as: C(48,4)-C(96,4)-C(192,4)-C(384,4)-C(1,4) -Tanh. The inputs of the discriminators Dlarge and Dsmallare 240×240×6 and 120×120×6 sized concatenated pairs of
crowd patch and density map, respectively. The values of
the output matrix indicate whether the input is real (close to
1.0) or fake (close to −1.0).
3.2 Loss Function
In our problem, motivated by recent success of GANs, we

propose an adversarial loss of generating crowd density map
from image patch. The adversarial loss involves a discrimina⁃
tor D and a generator G playing a two-player minimax game: D
is trained to distinguish synthetic images from ground truth
while G is trained to generate images to fool D. The adversari⁃

al loss is denoted as:
LA (G,D) = Ex, y~Pdata (x, y ) [ logD ( x, y ) ] +

Ex~Pdata (x ) [ log (1 - D ( x,G ( x ) ) ) ] , (1)
where x denotes a training patch and y denotes corresponding
ground-truth density map. G tries to minimize this objective,
whereas D tries to maximize it.
Due to the lack of direct constraint from ground truth, just

using an adversarial loss may sometimes lead to aberrant spa⁃
tial structure. Thus, we include two conventional losses to
smooth and improve the solution, which is denoted as follows.
In our problem, l2 loss LE(G) can force the generated estimat⁃ed density map to fool D and be close to the ground truth in an

L2 sense.
LE (G) = 1C∑c = 1

C

 pG ( )c - pGT ( )c
2
2 , (2)

where pG (c) represents the pixels in generated density map
and pGT (c) represents the pixels in ground-truth density map,
with c=3.
Perceptual loss is first introduced by JOHNSON et al.[24] for

image transformation and super resolution task. By minimiz⁃
ing the perceptual differences between the two images, the

▲Figure 2. Architecture of the proposed Crowd Counting Network for Real Monitoring Scene (RMSN): The top level is the structure of generator
Glarge, the middle part is the structure of generator Gsmall, and the bottom part is the discriminators Dlarge and Dsmall that have the same structure.
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synthetic image can be more semantically similar to the objec⁃
tive image. The perceptual loss is defined as:
LP (G) = 1C∑c = 1

C

 f G ( )c - f GT ( )c
2
2 , (3)

where f G (c) represents the pixels in high level perceptual fea⁃
tures of generated density map and f GT (c) represents the pix⁃
els in high level perceptual features of ground-truth density
map, with c=128.
Therefore, the integrated loss is expressed as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) , (4)

where λe and λp are predefined weights for Euclidean lossand perceptual loss. Suggested by previous works[26], we set
λe= λp=150.In our problem, we propose a new inter-frame loss for the
prediction in video stream, which can improve the continuity
of detection by constraining the number of people between ad⁃
jacent frames and enhance the stability of the network in pre⁃
dicting the density map of video information. The loss is de⁃
fined as the distance between two adjacent frames of generat⁃
ed density maps, which is denoted as:
Li (G) = 1

Npix
 nG ( )c - n*G ( )c

2
2 , (5)

where Npix represents the whole numbers of pixels in generat⁃ed density maps, nG (c) represents the number of pedestrians
calculated from the current frame in generated density map,
and n*G (c) represents the number of pedestrians calculated
from the previous frame.
Therefore, for video stream information, the integrated loss

L I should be denoted as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) +

λiLi (G) , (6)
where λi=150 is predefined weights for inter-frame loss.To restrain the cross-scale consistency of parent-child-rela⁃
tionship density maps, we propose a Cross-Scale Consistency
Pursuit loss[27] defined as the discrepancy/distance between
Pconcat and Pparent. The CSCP loss of a W×H density map withchannels is defined as:
LC (G) = 1C∑c = 1

C

 pprt ( )c - pcnt ( )c
2
2 , (7)

where pprt (c) represents the pixels in density map Pparent and
pcnt (c) represents the pixels in density map Pconcat, with c=3.As pointed out above, the four loss functions are weightedly
combined to a final objective,

L II = L I + λcLC (G ) , (8)
where λc=10 is the predefined weight for cross-scale consis⁃tency pursuit loss.
3.3 Training Details
During training, the input is an image pair consisting of a

crowd patch and its corresponding density map. Such an im⁃
age pair is first input to the large-scale subnet G large, and thenevenly divided into four equidistant image pairs without over⁃
lapping and finally input to the small-scale subnet Gsmall. Bothsubnets are jointly trained. The RMS prop optimizer has a
learning rate set to 0.00005 and is used to update the parame⁃
ters of the network. We follow the update rule: in each itera⁃
tion, Gsmall’s four updates are followed by a G large.To increase the training data, one of the general methods is
to resize the input image pair to a larger size and randomly
crop the image pair of a particular size. However, such data in⁃
creases are not appropriate in our crowd counting tasks be⁃
cause image interpolation algorithms such as recent and bilin⁃
ear algorithms inevitably change the number of people in the
density map. Therefore, in our experiments, we use filled and
flipped images to replace image size adjustments with a proba⁃
bility of 50% for data enhancement.
Our model requires approximately 300 periods of training

to converge. In order to balance the training of the two sub-net⁃
works, in the first 100 periods, the predefined weight λc inEq. (6) is set to 0, then it is adjusted to 10 and the training
process is continued. Finally, the well-trained generator G largeis used to predict the density map of the test image. Training
and testing of the proposed network is implemented on the
Torch7 framework.
3.4 Parameter λc StudyWe did comparative experiments performed on Part_B of
the ShanghaiTech dataset to choose the optimum value of λc.As shown in Fig. 3, mean absolute error (MAE) decreases

▲Figure 3. Comparisons of MAE for different λcvalues on Shanghai⁃
Tech Part_B.
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synthetic image can be more semantically similar to the objec⁃
tive image. The perceptual loss is defined as:
LP (G) = 1C∑c = 1

C

 f G ( )c - f GT ( )c
2
2 , (3)

where f G (c) represents the pixels in high level perceptual fea⁃
tures of generated density map and f GT (c) represents the pix⁃
els in high level perceptual features of ground-truth density
map, with c=128.
Therefore, the integrated loss is expressed as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) , (4)

where λe and λp are predefined weights for Euclidean lossand perceptual loss. Suggested by previous works[26], we set
λe= λp=150.In our problem, we propose a new inter-frame loss for the
prediction in video stream, which can improve the continuity
of detection by constraining the number of people between ad⁃
jacent frames and enhance the stability of the network in pre⁃
dicting the density map of video information. The loss is de⁃
fined as the distance between two adjacent frames of generat⁃
ed density maps, which is denoted as:
Li (G) = 1

Npix
 nG ( )c - n*G ( )c

2
2 , (5)

where Npix represents the whole numbers of pixels in generat⁃ed density maps, nG (c) represents the number of pedestrians
calculated from the current frame in generated density map,
and n*G (c) represents the number of pedestrians calculated
from the previous frame.
Therefore, for video stream information, the integrated loss

L I should be denoted as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) +

λiLi (G) , (6)
where λi=150 is predefined weights for inter-frame loss.To restrain the cross-scale consistency of parent-child-rela⁃
tionship density maps, we propose a Cross-Scale Consistency
Pursuit loss[27] defined as the discrepancy/distance between
Pconcat and Pparent. The CSCP loss of a W×H density map withchannels is defined as:
LC (G) = 1C∑c = 1

C

 pprt ( )c - pcnt ( )c
2
2 , (7)

where pprt (c) represents the pixels in density map Pparent and
pcnt (c) represents the pixels in density map Pconcat, with c=3.As pointed out above, the four loss functions are weightedly
combined to a final objective,

L II = L I + λcLC (G ) , (8)
where λc=10 is the predefined weight for cross-scale consis⁃tency pursuit loss.
3.3 Training Details
During training, the input is an image pair consisting of a

crowd patch and its corresponding density map. Such an im⁃
age pair is first input to the large-scale subnet G large, and thenevenly divided into four equidistant image pairs without over⁃
lapping and finally input to the small-scale subnet Gsmall. Bothsubnets are jointly trained. The RMS prop optimizer has a
learning rate set to 0.00005 and is used to update the parame⁃
ters of the network. We follow the update rule: in each itera⁃
tion, Gsmall’s four updates are followed by a G large.To increase the training data, one of the general methods is
to resize the input image pair to a larger size and randomly
crop the image pair of a particular size. However, such data in⁃
creases are not appropriate in our crowd counting tasks be⁃
cause image interpolation algorithms such as recent and bilin⁃
ear algorithms inevitably change the number of people in the
density map. Therefore, in our experiments, we use filled and
flipped images to replace image size adjustments with a proba⁃
bility of 50% for data enhancement.
Our model requires approximately 300 periods of training

to converge. In order to balance the training of the two sub-net⁃
works, in the first 100 periods, the predefined weight λc inEq. (6) is set to 0, then it is adjusted to 10 and the training
process is continued. Finally, the well-trained generator G largeis used to predict the density map of the test image. Training
and testing of the proposed network is implemented on the
Torch7 framework.
3.4 Parameter λc StudyWe did comparative experiments performed on Part_B of
the ShanghaiTech dataset to choose the optimum value of λc.As shown in Fig. 3, mean absolute error (MAE) decreases

when the value of λc increases. The lowest MAE value is ob⁃tained at λc=10. After that, when the value of λc increases,the error rises rapidly, because the comparison of the weight
of cross-scale consistency loss and L1 loss becomes too signifi⁃cant. Therefore, we finally assign 10 to λc.

4 Experiments
We evaluate our method in four major crowd counting datas⁃

ets, including the ShanghaiTech dataset, WorldExpo’10 datas⁃
et, UCF CC 50 dataset and UCSD dataset. Compared with the
state-of-the-art methods, our method gains a superior or at
least competitive performance in all datasets used for evalua⁃
tion. Training and testing of the proposed network are imple⁃
mented on Torch7 framework.
We use MAE and mean squared error (MSE) to evaluate the

performance of our method on existing works.
Adversarial pursuit seeks to exploit adversarial loss, per⁃

ceptual loss and U-net structured generator to improve the
quality of generated density maps. It is worth noting that our
predicted density map is better distributed than the MCNN
population, with less blur and noise. In addition, compara⁃
tive experiments were performed on the ShanghaiTech[1] and
WorldExpo’10[3] datasets in Table 1 above. It can be ob⁃
served that training with additional adversarial loss and per⁃
ceptual loss (i. e. LI) results in far less errors than training
with Euclidean loss only.
4.1 ShanghaiTech
The ShanghaiTech dataset is created by ZHANG et al. [1]，

which that consists of 1 198 annotated images. The dataset is
divided into two parts. Part A contains 482 images download⁃
ed from the Internet with extremely dense crowd, and Part B
contains 716 images taken from the busy street in Shanghai
with normal flow of crowd. Our model is trained and tested on
the training and testing set split by author respectively. To
augment the training data, we resize all the images to 720×
720 and cropped patches from each image. Each patch is 1
size of origin image and is cropped from different locations.
Ground-truth density maps are generated by geometry-adap⁃
tive Gaussian kernels. At the test time, a window of size 240×
240 slides on the test image to crop patches with 50% overlap⁃
ping as inputs of the well trained generator. Then, outputs
from the generator are integrated to a weight-balanced density
map which has the same size of the test image. Finally, the es⁃
timated crowd count of the image can be calculated by the
sum of the density map. The proposed method is compared
with four current state-of-the-art CNN-based approaches: a
switchable objective-learning CNN[3], MCNN[1], Switch-CNN[2]
and CP-CNN[21]. ZHANG et al.[3] proposed a switchable objec⁃
tive-learning CNN which is alternatively regressed with two re⁃
lated learning objectives: crowd count and density map. This
method is highly dependent on the perspective maps during

training and testing. ZHANG et al.[1] employed a MCNN to ex⁃
tract multi-scale features and to fuse them to get a better repre⁃
sentation. Switch-CNN[2] trained a prepositive switch-net to in⁃
telligently choose the optimal regressor instead of multi-col⁃
umn feature fusion. CP-CNN[21] incorporated global and local
contextual information with fused multi-column features, and
is trained in an end-to-end fashion using a combination of ad⁃
versarial loss and pixel-level Euclidean loss. From Table 2
we can see, on Part B of which images are closer to the real
monitoring screens, the proposed approach obtains apprecia⁃
ble improvement in contrast to the best model CP-CNN at the
time. On Part A, besides CP-CNN, our method has also
achieved the best results, compared with the other three ones.
In order to fairly evaluate the quality of the generated density
map, we choose the same set of test images published in
MCNN[1] paper along with ground-truth and predicted density
maps, shown in Fig. 4. It can be intuitively seen that our pre⁃
dicted density maps conform to the distribution of crowd much
better than MCNN’s with noticeable blur and noise, which ben⁃
efits from our GANs-based architecture and new regularizer.
4.2 WorldExpo’10 Dataset
The WorldExpo’10 dataset is created by ZHANG et al. [3]

with 1 132 annotated video sequences captured by 108 sur⁃
veillance cameras from Shanghai 2010 World Expo. A total
of 199 923 pedestrians in 3 980 frames are labeled at the
centers of their heads. In these frames, 3 380 frames are
treated as the training set; the rest 600 frames are used as
the test set, which are sampled from five different scenes,
each containing 120 frames. The pedestrian number in the
test scene ranges from 1– 220. This dataset also provides
perspective maps, the value of which represents the number

▼Table 1. Comparisons of errors for training with different losses

Objective
LE
LI
LII

Part A
MAE
95.8
83.2
75.7

MSE
149.4
131.3
102.7

Part B
MAE
24.1
18.4
17.2

MSE
36.4
28.8
27.4

WorldExpo’10
AMAE
9.95
8.48
7.5

AMAE: average mean absolute error MAE: mean absolute error MSE: mean squared error
▼Table 2. Comparison of RMSN with other three state-of-the-art CNN-
based methods on ShanghaiTech dataset

Methods
The approach in Ref. [3]

MCNN[1]
Switch-CNN[2]

The proposed RMSN

Part A
MAE
181.8
110.2
90.4
86.2

MSE
277.7
173.2
135.0

145.4

Part B
MAE
32.0
26.4
21.6
17.2

MSE
49.8
41.3
33.4
27.4

MAE: mean absolute errorMCNN: multi⁃column convolutional neu⁃ral network
MSE: mean squared errorRMSN: real monitoring scene network
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of pixels in the image covering one square meter at real loca⁃
tion. For fair comparison, we choose the crowd density distri⁃
bution kernel introduced by Ref. [3], which contains two
terms: a normalized Gaussian kernel as a head part and a bi⁃
variate normalized distribution as a body part, to generate den⁃
sity maps with perspective information. To follow the previous
methods, only the crowd in region of interest (ROI) are taken
into consideration. So we multiply predicted density map by
specifing ROI mask, which means that the area out of ROI is
set to zero. MAE is suggested by ZHANG et al. [3] to evaluate
the performance of crowd counting model on this dataset.

Table 3, in which MAE is used to evaluate the perfor⁃
mance on each scene and the average result across scenes,
reports the performance of our method on five different test
scenes in comparison to other four state-of-the-art methods.
Our method refreshes the scores of three scenes: Scene2,
Scene3 and Scene5，while achieving comparable perfor⁃
mance on the rest two scenes, and outperforms the leader CP-
CNN[21] by a margin of 0.41 points in terms of average MAE
across scenes.
4.3 UCF_CC_50 Dataset
The UCF_CC_50 dataset, which is a very challenging datas⁃

et composed of 50 annotated crowd images with a large vari⁃
ance in crowd counts and scenes, is firstly introduced by
IDREES et al. [28]. The crowd counts range from 94 to 4 543.
We follow Ref. [28] and use 5-fold cross-validation to evaluate
the proposed method.
We compare our method with five existing methods on

UCF_CC_50 dataset using MAE and MSE as metrics in Table
4. IDREES et al.[28] proposed to use multi-source features like
head detections, Fourier analysis and texture features. Our ap⁃
proach acquires the best MAE and comparable MSE among
existing approaches.

4.4 UCSD Dataset
We also evaluate our method on the single-scene UCSD da⁃

taset with video stream. This dataset consists of 2 000 labeled
frames with size of 158×238. Ground truth is labeled at the
center of every pedestrian and the largest number of people is
under 46. The ROI and perspective map are provided as well.
In order to cover the pedestrian contour, we choose a bivariate
normalized distribution kernel shaped ellipse to generate den⁃
sity maps. We follow the same train-test setting in Ref. [13].
The 800 frames from 601 to 1 400 are treated as training set
and the rest 1 200 frames as test set. At the test time, MAE

▼Table 3. Comparison of RMSN with other four state-of-the-art CNN-
based methods on the WorldExpo’10 dataset

Methods
The approach in Ref. [3]

MCNN[1]
Switch-CNN[2]
CP-CNN[21]

The proposed RMSN

Scene 1
9.8
3.4
4.4
2.9

4.1

Scene 2
14.1
20.6
15.7
14.7
14.05

Scene 3
14.3
12.9
10.0
10.5
9.6

Scene 4
22.2
13.0
11.0
10.4

11.8

Scene 5
3.7
8.1
5.9
5.8
2.9

Average
12.9
11.6
9.4
8.9
8.49

CP-CNN: contextual pyramid convolutional neural networkMCNN: multi-column convolutional neural networkRMSN: real monitoring scene network
▼Table 4. Comparative results on the UCF_CC_50 dataset

Methods
The approach in Ref. [28]
The approach in Ref. [3]

MCNN[1]
Switch-CNN[2]
CP-CNN[21]

The proposed RMSN

MAE
419.5
467.0
377.6
318.1
295.8
291.0

MSE
541.6
498.5
509.1
439.2
320.9
404.6

MAE: mean absolute errorMCNN: multi-column convolutional neu⁃ral network
MSE: mean squared errorRMSN: real monitoring scene network

▲Figure 4. Two test images sampled from the ShanghaiTech Part A dataset (From left to right, the four columns successively denote test images,
ground-truth density maps, our estimated density maps and the multi-column convolutional neural network（MCNN）’s[1] respectively).
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and MSE are used as evaluation metrics.
Table 5 exhibits the comparison of our method with other

state-of-the-art methods on UCSD dataset. Crowd count is cal⁃
culated within the given ROI. The first two methods[12], [14]
adopts hand-crafted features, while the rest three are CNN-
based. All their results are relatively close due to the compara⁃
tively simple scene with low variation of crowd density. Never⁃
theless, our method outperforms most of the methods, which
shows that our approach is also applicable in relatively sparse
and single crowd scene.

Fig. 5 shows the application of our method under video in⁃
formation from UCSD dataset. In practical applications, we
calculate the pedestrian flow and retention based on the densi⁃
ty map. In the velocity map, we can see the small arrows
around pedestrian area which represents the direction of pe⁃
destrian movement. In the retention map, we use the chromat⁃
ic area of different colors near head to indicate the length of
retention of the corresponding pedestrian, based on the resi⁃
dence time of the pedestrian in a certain place.

5 Conclusions
In this paper, we propose a GANs-based crowd counting

network which takes full advantage of excellent performance
of GANs in image generation. To better reduce errors caused

by different scales of the crowd, we propose a novel regulariz⁃
er which provides a strong regularization constraint on multi-
scale crowd density estimation. Extensive experiments indi⁃
cate that our method achieves the state-of-the-art performance
on major crowd counting datasets used for evaluation.
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