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Abstract: Estimating time ⁃ selective millimeter wave wireless channels and then deriving
the optimum beam alignment for directional antennas is a challenging task. To solve this
problem, one can focus on tracking the strongest multipath components (MPCs). Aligning
antenna beams with the tracked MPCs increases the channel coherence time by several or⁃
ders of magnitude. This contribution suggests tracking the MPCs geometrically. The de⁃
rived geometric tracker is based on algorithms known as Doppler bearing tracking. A re⁃
cent work on geometric⁃polar tracking is reformulated into an efficient recursive version. If
the relative position of the MPCs is known, all other sensors on board a vehicle, e.g., lidar,
radar, and camera, will perform active learning based on their own observed data. By learn⁃
ing the relationship between sensor data and MPCs, onboard sensors can participate in
channel tracking. Joint tracking of many integrated sensors will increase the reliability of
MPC tracking.
Keywords: adaptive filters; autonomous vehicles; directive antennas; doppler measure⁃
ment; intelligent vehicles; machine learning; millimeter wave communication
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1 Introduction
illimeter wave (mmWave) frequency bands
have been a candidate for vehicular communi⁃
cation for several decades [1]- [3]. MmWave
train⁃to⁃infrastructure path loss was measured

in [2], while the transmission behaviour of mmWave for com⁃
munication between vehicles was examined in [1]. Recent ad⁃
vances in mmWave circuit technology have aroused interest in
mmWave vehicular communication [3] and in joint vehicular
communication and radar [4]. MmWaves offer large band⁃
widths and enable raw data exchange between vehicles [5].
The main problems with vehicular mmWave communication
are the direct proportionality of the maximum Doppler shift
and the carrier frequency as well as the beam alignment chal⁃
lenge in the dynamic environment. In [6] and [7], however, it

has been shown theoretically that directional antennas intend⁃
ed for mmWaves function as spatial filters. The Doppler effect
and thus the time selectivity is drastically reduced by beam⁃
forming. This is shown experimentally in [8] and [9]. There
seems to be a consensus that channel tracking tackles the sec⁃
ond challenge of the dynamic environment [10]-[21]. Channel
tracking is the process of causally estimating the current or fu⁃
ture direction of the line ⁃ of ⁃ sight (LOS) component or other
strong multipath components (MPCs) based on previous mea⁃
surements. The main advantage of channel tracking is the ex⁃
tended coherence time after successful beamforming. The
channel coherence time of the beam aligned channel is several
orders of magnitude longer than that for omnidirectional recep⁃
tion [7]. A subsequent channel estimation therefore runs on a
coarser time grid.

The work in [10] adopts the idea and formalism of [21] and
applies them directly to THz lens antennas. Extended Kalman
filters are used in [11], [18], and [19] to track the beam direc⁃
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knowledge is used and it is argued that the road implicitly de⁃
termines the direction in which a vehicle is expected. Beam
training is avoided by using this geometric prior knowledge.
Assuming a constant angular acceleration that is motion along
circles, [20] proposes an algorithm based on the unscented Kal⁃
man filter. Probabilistic beam tracking is suggested in [16].
Moreover, in [13] and [14] the stochastic Newton method is
used, and these algorithms surpass IEEE 802.11ad based ap⁃
proaches and compressive sensing based approaches [17]; the
work in [13] and [14], shows good performance for angular ve⁃
locities of up to 5°/s.

In [22], it was first proposed to utilize the Doppler informa⁃
tion for mmWave beam tracking. Measurements in [23] clearly
demonstrate that interacting objects, such as overtaking cars,
produce distinguishable MPCs in the Doppler profile. The pro⁃
posed algorithm herein, exploiting Doppler information, is as⁃
sessed in scenarios where the angular velocity exceeds 100°/s
for a short duration.

This contribution proposes to track the MPCs geometrically
given quantized angular (azimuth) measurements and noisy
Doppler observations. The quantized angular information is ob⁃
tained by an analog or hybrid beamforming array or a dielec⁃
tric lense [24].“Geometric”refers to the (x,y) coordinates
originating in the antenna array and the relative velocity (ẋ, ẏ)
to the receiver motion. We assume that the transmitter, the re⁃
ceiver, and the interacting objects move without acceleration.
Under these assumptions, algorithms performing target⁃motion
analysis by means of Doppler⁃bearing measurements [25]-[27]
are directly applicable. The work in [25]-[28] proposes a for⁃
mulation called“pseudolinear.”Pseudolinear refers to a formu⁃
lation where the nonlinearities are either hidden in a measure⁃
ment (regression) matrix or are lumped within the noise term.
This leads to the undesirable consequence of noise correlation
of the measurements and the measurement matrix, eventually
leading to biased solutions [26]. An early work [25] removes
this bias by the method of instrumental variables. Due to a po⁃
tential divergence of the instrumental variables approach [27],
later work [26], [27] employs the method of total least squares.
To apply total least squares, error covariance matrices must be
known . The proposed approach is inspired by [27], but does
not need knowledge about the error covariances.

In addition to the excellent angular tracking performance of
the proposed algorithm, the obtained geometric information of
the MPCs can be utilized to learn the MPCs from other sensors
on board of automated vehicles [5]. The concept of using exter⁃
nal information for improved channel estimation was recently re⁃
introduced, see [29] and [30] and the reference therein. Ma⁃
chine learning for configuring wireless links has also been pro⁃
posed in the context of WLAN and mobile communications
[31]- [33]. The actual machine learning implementation is not
within the scope of this contribution. This contribution focuses
on a framework for active learning of beam alignment. This pa⁃
per is an extended version of [34].

(1) Brief Review of Geometric Tracking or Wireless Position⁃
ing:

Ground ⁃based radio ⁃ frequency localization has become an
established technique. Based on known anchor positions, tech⁃
niques such as fingerprinting, hop counts, receive signal
strength, time⁃(difference)⁃of⁃arrival, frequency⁃difference⁃of⁃
arrival, and angle⁃of⁃arrival are at hand [35]. Knowing the posi⁃
tion of the communication partner is extremely valuable for the
task of beam alignment [36]. In [37], a mmWave base station
was equipped with a 360° camera; both positional information
sources—vision and the mmWave link—were fused to en⁃
hance the precision. The situation changes however once vehi⁃
cle ⁃ to ⁃ vehicle communication is considered. There, mainly
GNSS positions of communication partners are exchanged by
low⁃rate messages [38]. Future automated self⁃driving cars will
be equipped with a plurality of sensors and will thereby per⁃
form massive sensing [5]. The smart use of all of these sensors
will renders it possible to determine the position of communica⁃
tion partners solely by onboard sensors.

(2) Notation:
Matrices Z and vectors z are denoted by bold letters. The

all zeros vector (matrix) is expressed by 0 and the identity ma⁃
trix is expressed by I . The Euclidean norm is symbolized by
∙ . A quantity defined with a start index i and stop index kis indicated via the subscript ( ∙ )i:k . Estimated quantities aremarked with ( .̂ ) . The four⁃quadrant inverse tangent is denot⁃
ed by arctan( )∙,∙ . The dagger ( ∙ )† is used for pseudo invers⁃
es and ( ∙ )T is used for transposition.

2 Active Learning by Onboard Sensors
The idea behind active learning is to actively select the“op⁃

timal”training data. For some applications statistically opti⁃
mal choices are computable [39]. Selective sampling [40] is a
rudimentary form of active learning and especially suited for
problems where the cost of labelling is high. The survey paper
[41] provides a good introduction to active learning. According
[41]:“The key idea behind active learning is that a machine
learning algorithm can achieve greater accuracy with fewer la⁃
belled training instances if it is allowed to choose the data from
which is learns.”

On board of automated (self⁃driving) cars, there will be sen⁃
sors such as global navigation satellite systems (GNSSs), auto⁃
motive radars (for automatic cruise control and collision detec⁃
tions), lidar (for measuring distances to other objects), and
360° camera vision systems. All these sensors have in common
that they track objects via target states [42]. At the simplest,
this target state consists of the relative (x,y) position and the
relative velocities (ẋ, ẏ) .

Due to the high⁃ resolution of lidar, radar, and vision, self ⁃
driving cars produce several gigabytes of data per second and
hence hundreds of terabytes per day [43], [44]. Processing all
these data for the indented use case of driving poses already a
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challenge and more and more tasks are already shifted towards
fog and cloud computing units [45], [46]. To use these giga⁃
bytes of data for the tracking of MPCs, every tracked object of
the onboard sensors must be labelled as“MPC”or“no MPC”
(pedestrian, non⁃communicating car, static objects, etc.). This
leads to high labelling efforts and to a huge amount of training
data where most of labels will be“no MPC”.

The key idea is now to exploit the geometric position of the
MPC and thus to only label those targets that are in the vicinity
of the MPC. The process of associating MPCs to“targets”is il⁃
lustrated with black circles in Fig. 1. Instead of human (or any
other oracle) labelling there is an active choice of the system
which targets to consider for learning the beam alignment. Af⁃
ter a successful learning phase, all sensors on board should lat⁃
er do the channel tracking. By using machine learning, one
can eliminate or significantly reduce the beam measurements
needed for the currently proposed tracking algorithm. If for all
of these target states it is known whether they belong to the
LOS component or to a specular reflection, the onboard sen⁃
sors will track the MPCs.

In this sense this paper provides an algorithm which deter⁃
mines the geometric positions of the communication partners
in order to label them as interesting training samples.

3 Measurement, Regression, and Projection
Model
The regression model is based on the model proposed in

[27]. The main idea of [27] is to track non⁃accelerating objects
on linear trajectories in polar coordinates; target motion analy⁃
sis in polar coordinates yields a smaller bias than in rectangu⁃
lar coordinates. The regression model is hence formulated in
polar coordinates. This idea is illustrated in Fig. 2. The origi⁃
nal tracking problem of [27] uses a running reference (blue).
Thereby at each time the current state is estimated. This ap⁃

proach produces an increasing system of equations, anew, at
any time. In contrast to [27], the proposed algorithm will use a
fixed reference (red) and gather only one new equation per
time step. Thereby the estimate of the initial state is refined
and its accuracy is improved over time, as in [25]. Through this
reformulation, the initial state⁃vector is estimated recursively.
The state vector at current and future times is predicted by a
projection.
3.1 Quantized Angular Measurements by the UCA

Codebook
For target motion analysis a noisy bearing (angular) observa⁃

tion is assumed where the noise is usually modelled Gaussian
[27]. In this study, however, quantized angular observations
will occur. A 60 GHz uniform circular array (UCA) with
N = 64 elements equidistantly spaced on a radius of
rUCA =N/2∙λ/2 ≈ 8 cm is used. The half power beam width is
θ3dB ≈ 2π/N≈6∘ . The UCA is inherently symmetric in its az⁃
imuthal resolution. In contrast to uniform planar arrays, the
UCA beam pattern does not change with the pointing direction.
To save cost, analog precoding (beamforming) with 4 bit RF
phase⁃shifters is employed. The phase shifts are pre⁃computed
in a codebook spaced by θ3dB 2 which gives 2π [ ]( )2π N 2
= 2∙N = 128 codebook entries. Beampattern of the UCA are
shown in Fig. 3.
3.2 Regression Model

The angle spanning from initial azimuth ϕi to the current

UCA: uniform circular array

radar targets GNSS data camera targets geometric position of MPCs

▲Figure 1. Active learning example. The estimated state vectors of the
communication link (green crosses) label the data from other sensors as
a valid MPC. Therby active learning of possible beam direction from
other sensors is rendered possible.

▲ Figure 2. Geometric relationship of all variables used for the algo⁃
rithm. The MPC to track is marked as squqre. The employed array ge⁃
ometry (uniform circular array) is sketched as well.
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azimuth ϕk is denoted by bi:k . In Fig. 2, w.l.o.g. i is set to ze⁃
ro. The range (at time k ) is denoted by rk . The time intervals
are denoted by ti:k . The Doppler relevant angle at time k , that
is αk , is measured from the velocity vector v to the radial
speed component. The basis equation is the sine law evaluated
for each observation time k > i :

ri
sin( )αk

= vti:k
sin( )bi:k

. (1)
Now Equ. (1) is reformulated into a so called pseudo⁃linear for⁃
mulation [28]:

                 [ ]sin( )bi:k , -ti:k cos( )bi:k , ti:k sin( )bi:k
aT
B, i:k    

é

ë

ê

êê
ê

ù

û
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úú
ú

ri
v sin( )αi

v cos( )αi

xi

= 0, (2)

where all nonlinearities are regressors now. For each observa⁃
tion⁃time k , one equation in the form of Equ. (2) is obtained.
This is written compactly in matrix⁃vector notation:
AB, i:kx

i = 0. (3)
The solution to Equ. (3) is not unique. Next Doppler⁃shift ob⁃

servations νk are exploited. These are calculated by
νk = v

λ
cos( )αk = v

λ
cos( )αi - bi:k . (4)

Equ. (4) is re⁃written into the same form as Equ. (2):

             
é
ë

ù
û

0, 1
λ
sin( )bi:k , 1

λ
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aT
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é
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ri
v sin( )αi

v cos( )αi

xi

= vk. (5)

This leads again to a system of equations in form of
AD, i:kx

i = νi:k. (6)
One finally arrives at the augmented system of equations:
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0
νi:k

. (7)

This system of equations has a unique solution and is called
“Doppler⁃bearing tracking”in the literature [25]-[27]. In this
contribution, Equ. (7) is solved via the method of least squares
(LS). Note that Equ. (7) is equivalent to
é
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0
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- - -0
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. (8)

In Equ. (8), the previous observations are separated from the
current one. This structure allows for a recursive least squares
(RLS) implementation. The recursive estimate of xi at time k
will be denoted by x̂

i
i:k , in the sequel.

The angular separations bi:k in Equs. (1)-(8) are not known
and must be estimated. The variable bi:k has to be replaced by
b̂i:k , the estimated quantity, in the equations above. Such me⁃
asurement equations are called“errors⁃in⁃variables model”in
the statistics literature [47]. The estimation of bi:k is initially
done by training sequences. For each time k , the current azi⁃
muth angle ϕ̂k is estimated by aid of beam sweeping, that is, a
codebook scan. All possible beams are iterated and the code⁃
book entry (azimuth direction) with largest receive power is se⁃
lected. Next we obtain b̂i:k = ϕ̂k - ϕ̂i . Later on, onboard sensors
might provide the estimate of ϕ̂k and codebook scans can be
avoided or at least performed less frequently.

With the estimate of the initial state ⁃ vector x̂
i
i:k , we calc⁃

ulate the initial ( )x,y position and the velocity vector ( )ẋ, ẏ
based on the polar representation. The range r̂i is the first ele⁃
ment of the initial state⁃vector estimate, that is x̂

i
i:k( )1 . The az⁃

imuth angle ϕ̂k is estimated through designated pilots. The v⁃
elocity v̂ is calculated through the initial state⁃vector estimateand the angle of the velocity vector to the x ⁃axis φ is calcu⁃
lated through the initial state⁃vector estimate as well:

v̂ = (x̂i
i:k( )2 )2 +(x̂i

i:k( )3 )2 ,
φ̂ = α̂i + ϕ̂i = arctan{ }x̂

i
i:k( )2 , x̂i

i:k( )3 + ϕ̂i.
(9)

3.3 Projection Model
A suitable projection from the initial state vector to arbitrary

time points was recently derived from [48]. The assumption of
a linear trajectory with non⁃accelerating MPCs leads to a static
velocity vector. Only the range r̂i and the azimuth angle ϕ̂ineed to be projected to current (or future) time points k . The
range projection r̂k is calculated through [48]:

▲Figure 3. Beampattern of the proposed uniform circular array with
N = 64 elements and 4 bit quantization of all steering vectors. The de⁃
sired array pattern is marked in green; the array factor for this direc⁃
tion ( 0∘) is marked with a green dot; the neighbouring codebook pattern
are drawn in black. The uniform circular array (UCA) pattern is inher⁃
ently symmetric for all directions; illustrated by the red pattern pointing
in opposite direction.
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r̂k = r̂2i +(v̂ti:k)2 + 2r̂i v̂ti:k cos α̂i =
(x̂i

i:k( )1 )2 + t2i:k((x̂i
i:k( )2 )2 + ( )x̂

i
i:k( )3 )2 + 2ti:k x̂i

i:k( )1 x̂
i
i:k( )3 , (10)

and the azimuth projection ϕ̂k is calculated through [48]
ϕ̂k = ϕ̂i + arctan( )v̂ti:k sin α̂i, r̂i + v̂ti:k cos α̂i =
ϕ̂i + arctan( )ti:k x̂

i
i:k( )2 , x̂i

i:k( )1 + ti:k x̂i
i:k( )3 . (11)

4 Proposed Robust Recursive Tracker
The utilized regression model falls in the following time⁃vari⁃

ant state⁃space model:
xi
i:k = xi

i:( )k - 1 + uk, (12)



é
ë
ê
ù
û
ú

0
νk

yk

=


é

ë
êê

ù

û
úú

aT
B, i:k

aT
D, i:k
Ak

xi
i:k + nk, (13)

where uk is a process noise or driving disturbance with un⁃
known distribution. The first component of the noise vector nkstems from the quantization noise of the codebook based angle
estimation. The second component is the measurement noise of
the Doppler observation and is assumed to be i.i.d. zero mean
Gaussian, that is, nk( )2 ∼N( )0,1002 . The high standard devi⁃
ation in the Doppler noise term (100 Hz) already takes into ac⁃
count that current mmWave equipment suffers greatly from
phase noise, see for example the measurement results in [8]
and [23] or Fig. 4 of this contribution. The assumption of zero
mean Doppler noise is well justified as automated cars can use
GNSS⁃disciplined oscillators, so that the carrier frequency off⁃

set between cars becomes very small. To increase robustness
against quantization effects of the codebook and against the ge⁃
ometry dependent structure of Ak , an filter with a finite
time horizon [49], [50] is applied. The objective of an filter
is to keep the error relation below bounded:

sup
x̂
i

0,u,n
∑k = i

N x̂i
i:k - xi

i:k2
x̂i

0 - xi
02 +∑k = i

N uk2 +∑k = i
N nk2 < γ

2. (14)

The vector x̂
i
0 denotes the initial guess of the state vector

(in the simulations x̂
i
0 ≡ 0 , uk ≡0 , and γ = 2 ). The filter

has a higher error floor and a higher complexity than the plain
RLS solution. As a quantized codebook is used, subsequent
measurements potentially provide equal azimuth angle mea⁃surements. Due to the structure of aB, i:k and aD, i:k , the regre⁃ssion matrix is likely to be rank⁃deficient, initially. Therefore,
the algorithm starts with the filter and switches to the
RLS filter after three different azimuth angles are measured.
The recursive solution to Equ. (8) is given as
x̂
i
i:k = x̂i

i:( )k - 1 +Pi:kA
T
kHi:k( )yk -Ak x̂

i
i:( )k - 1 , (15)

where
Hi:k = æ

è
ç
I, for RLS

(I +AkPi:kA
T
k )-1, for

. (16)
The covariance matrix Pi:k fulfils the recursion (17). By aid

of the Woodbury matrix identity, the inverse of the covariance
matrix reveals a remarkably simple structure, see Equ. (19). Iff
P -1

i:k ( )γ is a positive⁃definite matrix, the possible worst case e⁃
nergy (14) is bounded by γ2 [50]. Updating P -1

i:k and perfor⁃
ming an inverse of a symmetric, positive⁃definite matrix of size
3×3 is more efficient than updating Pi:k directly.

Re, i:k = éëê
ù
û
ú

I 0
0 -γI + é

ë
ê
ù
û
ú

Ak

Ak

Pi:( )k - 1 [ ]AT
k AT

k , (18)

P -1
i:k =

æ

è
ç
ç
P -1

i:( )k - 1 +AT
k Ak, for RLS

P -1
i:( )k - 1 + ( )1 - γ-2 AT

k Ak, for
. (19)

5 Performance Bounds⁃Genie Estimators
Due to quantized angular observations, the already derived

Cramér⁃Rao bound [25] is not applicable. We will compare the
obtained estimation results to two other bounds; firstly, to the
“error ⁃ free regressors model.”Here, the azimuth angles ϕkare assumed to be perfectly known, hence unquantized, and

SNR: signal⁃to⁃noise ratio

SNR/dB

▲Figure 4. Blocked manoeuvre: a) sketch of the scenario. The green car
block a direct communications between the red TX and black RX car;
b) the Doppler shift estimate for this scenario obtained from a real
world experiment in [9] and [23].

(17)Pi:k =
æ

è

ç

ç
çç
Pi:( )k - 1 -Pi:( )k - 1 A

T
k (I2 × 2 +AkPi:( )k - 1 A

T
k )-1AkPi:( )k - 1 , for RLS

Pi:( )k - 1 -Pi:( )k - 1 [ ]AT
k AT

k R
-1
e, i:k
é
ë
ê
ù
û
ú

Ak

Ak

Pi:( )k - 1 , for
,

a) b)
Doppler/kHz

-2 -1 0 1 20.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Tim
e/s

14
12
10
8
6
4
2
0

A Framework for Active Learning of Beam Alignment in Vehicular Millimeter Wave Communications by Onboard Sensors

Erich Zöchmann

06 ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

Special Topic

10



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

Equ. (3) is utilized without estimates. Secondly, if the angles
ϕk are known, Equ. (3) is not only satisfied in the least ⁃
squares sense but rather determines a solution subspace. In
other words, any solution vector x̂

i
i:k needs to fulfil

x̂
i
i:k = ( )I -A†

B, i:kAB, i:k m, m ∈ℝ3. (20)
Now, Equ. (7) is solved by a nullspace projection:
x̂
i,NS
i:k = argminmνi:k -AD, i:k( )I -A†

B, i:kAB, i:k m. (21)
As zero mean Gaussian noise is assumed for the Doppler

measurements ν , the LS solution (21) is the maximum likeli⁃
hood estimator of the state vector.

6 Simulations
The simulations focus on line⁃of ⁃ sight scenarios. Note that

the proposed approach works for specular reflections as well
(see next section). Clustered reflections will lead to a higher
uncertainty in determining the azimuth angle. Similar to the
IEEE 802.11ad standard, it is assumed that the TX is transmit⁃
ting its reference signal omni⁃directionally. Initially, the RX is
scanning all entries from the codebook and determines the di⁃
rection towards the TX. We compare the performance if this
procedure is repeated every 20 ms or 50 ms. After the 10th it⁃
eration, the projection (11) is used to predict the future azi⁃
muth angle. Having the projected azimuth angles at hand, the
algorithm only probes the closest three codebook entries for 20
ms update rate or five codebook entries for 50 ms update rate.
This gives a speed up of a factor 128/3≈ 43 or 128/5≈ 26 as
compared to a full codebook scan.

The first scenario, entitled“half ⁃ overtaking”, starts when
the overtaking, red, TX car is at the same height as the slower,
black, RX car. The overtaking car has 20 m/s excess speed
and is observed for 3 s. In the second scenario, entitled“full⁃
overtaking”, the TX starts behind the RX and overtakes with
an excess speed of 10 m/s. The manoeuvre is now observed for6 s. The lateral distance was chosen such that the resulting
maximum angular velocity ωmax = v/rmin = (20 m/s) (8 m) =
(10 m/s) (4 m) = 2.5 rad /s ≈ 140∘/s is equal in both scenarios.
The presented Monte Carlo mean is calculated from 10 000
runs. To obtain different channel realizations, the lateral dis⁃tance is varied uniformly in Δrmin ∼U(-1 m,1 m) around themean lateral distances, and the angle between both cars is var⁃
ied uniformly in φ∼U( )-2∘,2∘ . These variations are drawn
within the sketch of the manoeuvre as black arrows in Fig. 5a.
The normalized mean squared error of the prior work [27], the
proposed sequential implementation from Section 4, and both
error bounds from Section 5 are plotted in Figs. 5c (20 ms up⁃
date rate) and 5e (50 ms update rate). Figs. 5b and 5d show
the respective scatter plots of the estimated ( )x,y position of
the proposed sequential estimator for the first Monte Carlo run.

Half overtaking (with update rate of 20 ms) turns out to be
not so burdensome than full ⁃overtaking. That is because right
from the beginning, the TX car is seen at different azimuth an⁃
gles and close to the initial solution of (0,0) and the algorithm
convergences fast. The regression model of [27] suffers from a
strong bias due to the error correlation of the current observa⁃
tion and the regression matrix. The sequential algorithm out⁃
performs the prior non⁃sequential modelling approach. The“er⁃
rors⁃in⁃variables”approach comes very close to the error⁃free
regression matrix. Furthermore, there is only a small loss to the
nullspace projection. Keep in mind that the“error⁃free regres⁃
sors”and the nullspace projection approach make use of exact
(yet unknown), unquantized azimuth angles! The full overtak⁃
ing manoeuvre is characterized by a difficult geometry. At the
beginning the TX car is always seen at the same codebook in⁃
dex and the algorithm struggles to converge. In this region the

algorithm is used to prevent divergence. After approximate⁃
ly 0.5 s, three different azimuth angles have been measured
and the algorithm hands over to RLS. Even with an estimate of
the initial state and the covariance matrix, the RLS algorithm
needs a considerable time to converge afterwards. The situa⁃
tion is aggravated by the fact that the toughest part (TX car
closest to RX car →ωmax ) comes before convergence sets in.
Nevertheless, an acceptable tracking result can be achieved
here as well.

For an update rate of 50 ms the peformance loss at“full ⁃
overtaking”is minor. In contrast, the previously simpler case
of“half⁃overtaking”has now a larger performance loss. Due to
the slower update rate, after only a few measurements, the over⁃
taking car is already at steeper angles where the Doppler shift
does not change so much and convergence is harder to achieve.

7 The LOS Blocked Scenario
Until now, all cases considered LOS. The proposed tracker,

however, is also applicable to scenarios with specular reflec⁃
tions. Fig. 4 shows a blockage scenario. The direct LOS be⁃
tween TX (the red car) and RX (the black car) is blocked by
the green car. If another car overtakes this platoon, it can act
as reflector and can be tracked by its Doppler shift. The feasi⁃
bility of this approach has been verified experimentally in [9]
and [23]. The Doppler shifts of overtaking vehicles produce
very distinct Doppler traces. Such an exemplary trace is illus⁃
trated on the right⁃hand side of Fig. 4. The only adaptation for
the algorithm is a factor 2 occuring in the Doppler shift equa⁃
tions.

8 Conclusions
Geometric tracking of specular multipath components in ve⁃

hicular millimeter wave channels is possible with low complex⁃
ity algorithms. The proposed algorithm achieves good tracking
even under very dynamic scenarios. This considerably relaxes
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the time required for beam training. In addition, the proposed
algorithm outputs a state vector that reflects the relative posi⁃
tion and velocity of the multipath components. With this knowl⁃
edge, it is possible to label the targets for onboard sensors as
multipath components. This enables active learning for on⁃
board sensors.
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