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'A Abstract

The fifth generation (5G) communication has been a hotspot of research in recent years, and both research institutions and indus-

trial enterprises put a lot of interests in 5G communications at some new frequency bands. In this paper, we investigate the radio

channels of 5G systems below 6 GHz according to the 5G communication requirements and scenarios. Channel measurements

were conducted on the campus of Beijing Jiaotong University, China at two key optional frequency bands below 6 GHz. By using

the measured data, we analyzed key channel parameters at 460 MHz and 3.5 GHz, such as power delay profile, path loss expo-

nent, shadow fading, and delay spread. The results are helpful for the 5G communication system design.
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1 Introduction

n the last decade, public networks have been evolv-
ing from voice-centric second-generation systems, e.
g., Global System for Mobile Communications (GSM)
with limited capabilities, to fourth - generation (4G)
broadband systems that offer higher data rates, e.g., long-term
evolution (LTE) [1]. In recent years, with the rapid develop-
ment of data services, the fifth generation (5G) communication
has attracted high attention both from research institutions and
industrial enterprises. According to the IMT-2020 [2], in some
key competencies, 5G needs to support 0.1-1 Gb/s rate, 106
devices/km® connection density, and below 1 ms end-to-end la-
tency [3].
ITU has suggested a bandwidth for 5G communication sys-
tems up to 1490- 1810 MHz. The bandwidth of the current
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plan, however, is only 687 MHZ, which is obviously insuffi-
cient. Facing the shortage of spectrum resources shortage, we
can use a higher frequency band, or consider other frequency
bands below 6 GHz to use the spectrum more efficiently. Since
the low frequency band supports a larger propagation distance,
it can effectively reduce the number of base stations and de-
crease the transmission power to save energy.

In the World Radio Communication Conference (WRC) in
2015, eight new frequency bands for International Mobile Tele-
communication (IMT) was added in the proposal All.1, which
are all below 6 GHz, including 470- 698 MHz, 1427-1518
MHz, 3300-3400 MHz, 3400-3600 MHz, 3600-3700 MHz,
4800-4990 MHz, etc. At the same time, China also introduced
candidate frequency bands to the international standard organi-
zations, and mostly of them are below 6 GHz, e.g., 3.3-3.6
GHz, 4.4-4.5 GHz and 4.8-4.99 GHz.

If we want to use below 6 GHz frequency bands in 5G com-
munication systems, there are mainly two methods. One is to
reuse the existing spectrums, and the other one is to use the
new spectrums suggested in WRC 2015. The existing spec-
trums that can be reused include 800 MHz, 900 MHz, 1.8 GHz
and 2.1 GHz. Among the new spectrums, the 3400-3600 MHz
band has been considered as the 5G test frequency band, and
it is also expected to be the first frequency band for 5G commu-
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bands (i.e., 460 MHz and 3.5 GHz). Further- module
more, based on analysis of the measurement da-
ta, we present results on key channel parame-
ters in terms of power delay profile, path loss

exponent, shadow fading, and delay spread.
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The results can be used in the 5G communica-
tion system design.

The remainder of the paper is organized as
follows. Section 2 describes the measurement
system and measurement environment. Section
3 presents the measurement results of channel
characterizations. Conclusions are drawn in

GPS: Global Positioning System

Section 4.

AFigure 1. Our measurement system: (a) System architecture; (b) transmitter and receiver;

(c) the clock module and power amplifier; and (d) measurement setup.

2 Measurement Campaign
We describe our measurement campaign in the light of cali-
bration, measurement system and measurement environment.

2.1 Calibration
According to [5], the received signal can be described in the
frequency domain as

Y(d.f) =X (/) Hp (S VH(d, S Y H ()5 (1)

where X(f) is the transmitted signal, Y(d, f) is the received sig-
nal, H(d, f) is the transfer function of the radio channel, and Hix
(f) and Hg«(f) describe the front end effects (e.g., cables, power
amplifiers) of the transmitter and receiver, respectively. In or-
der to eliminate the influence of Hix(f) and Hiy(f), reference
measurements are necessary. The received reference signals in
reference measurements can be expressed as

Y ()= X (L) H o (S ) H i (f)- 2)

Then the transfer function of the channel can be described as

Y(d
H(d,f)=Y((’J’:)) H,,(f), (3)
ref
where H,; (f) is the attenuators used in reference measure-
ments. Only the attenuator is used between Tx and Rx when
the back -to-back measurement is assumed in reference mea-
surement.

2.2 Measurement System
The measurement system is depicted in Fig. 1. Fig. la
shows the measurement system architecture, including the
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transmitter, receiver, clock modules, power amplifier and an-
tennas. Fig. 1b shows the transmitter and receiver, which are
the core parts of the measurement system. They are based on
National Instruments (NI) software radio equipments. The NI
PXIe-5673E is a wide-bandwidth RF vector signal generator
(VSG), which is used as the transmitter. On the other hand, the
NI PXIe-5663E is a RF vector signal analyzer (VSA) with wide
instantaneous bandwidth, which is used as the receiver. The
transmitter and receiver support 85 MHz to 6.6 GHz frequency
bands and more than 50 MHz instantaneous bandwidth, which
meets our measurement requirements. An amplifier (Fig. 1c) is
used to provide the 40 dBm maximum transmitted power. Two
pairs of omnidirectional antennas (460 MHz and 3.5 GHz) are
used in the measurements. Besides, two clock modules locked
with the GPS provide synchronization between the transmitter
and the receiver.

2.3 Measurement Environment

Main measurement parameters are shown in Table 1. The
carrier frequencies are 460 MHz and 3.5 GHz, and the band-
width is 30 MHz. Fig. 2 shows the measurement environment
and route. The measurements were conducted on the campus
of Beijing Jiaotong University, China. The transmitter antenna
is placed on the roof of the Siyuan Building with a height of
about 60 m, and the receiver antenna is placed at a trolley with
a height of 1.5 m. In Fig. 2a and Fig. 2b, the red line shows the
line-of-sight (LOS) scenario and the blue line shows the non-
LOS (NLOS) scenario. For the NLOS region, the LOS paths are
mainly blocked by the buildings. Fig. 2b shows the measure-
ment route seen from the transmitter location. The receiver’ s

February 2017 Vol.15 No. 1 ZTE COMMUNICATIONS | 09
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VTable 1. Main measurement parameters

Frequency 460 MHz and 3.5 GHz
Bandwidth 30 MHz
Maximum transmitted power 40 dBm
Scenario Campus, LOS and NLOS
Height of transmitter antenna 60 m
Height of receiver antenna 1.5m

Receiver speed

LOS: line-of-sight

Low speed (1.2 m/s)
NLOS: non-LOS

moving speed is about 1.2 m/s, the length of the whole route is
about 450 m, the nearest distance of the receiver and transmit-
ter is 90 m, and their farthest distance (Fig. 2c¢) is 206 m.

3 Results

3.1 Power Delay Profile

Random and complicated radio - propagation channels can
be characterized using the impulse-response approach [6], [7].
The power delay profile (PDP) describes the power profile at a
certain delay interval [8], and shows how much power the re-
ceiver received with a certain delay interval. It has been wide-
ly used to describe the distribution of multi-path components
(MPCs) in measured environments. The instantaneous PDP is
denoted as

P(t, 7') =Ih(, 7, 4)

where h(7) is the measured channel impulse re-
sponse at time ¢ with delay 7. In order to get
more accurate analysis results, elimination of
the noise in the received signal is necessary.
We capture part of the received signal to calcu-
late the average power of the noise, and then
set the noise threshold by adding 6 dB to the
noise power. Only the signals larger than the
noise threshold are considered to be valid, and
the samples below the threshold are set to O.
Fig. 3 shows the average PDPs (APDPs) that

ceived signals through the whole route at 460 MHz (Fig. 4a)
and 3.5 GHz (Fig. 4b). It is obviously that the SNR at 460 MHz
is larger than that at 3.5 GHz with nearly 10 dB. We excluded
the measured data whose SNR is too low in order to get more
accurate results for the analysis of channel parameters.

The two buildings in green circles in Fig. 2b are considered
to be the reflectors which lead to the two multi-path compo-
nents in Fig. 3a. The left building results in the multi - path
component between 80 s to 170 s, and the right building leads
to another multipath component (between 230 s to 300 s). At
the same time, the multi-path components are more blurred at
460 MHz. The reason is the difference of the free-space trans-
fer loss between two frequency bands. The lower frequency
band (460 MHz) has larger receive power and more scattering
components. In addition, there are some weak power areas in
the middle of graphics (between 170 s to 230 s), they are main-
ly caused by the buildings and longer propagation distance in
the measurement run.

3.2 Path Loss

According to [9], path loss (PL) is a measure of the average
RF attenuation to the transmitted signal when it arrives at the
receiver. It is defined by

P,
PL(dB)= lOlogP , %)

Y

where P,and P, are the transmitted and received power, respec-

A Figure 2. The measurement Environment: (a) Top view of the measurement route;
(b) the measurement route seen from the transmitter location; and (c) the farthest
distance between the receiver and transmitter.

were averaged by using a sliding window with
a length corresponding to the receiver traveled
distance of 20 wavelengths.

Fig. 3a shows the APDPs at 460 MHz, while =
Fig. 3b shows the APDPs at 3.5 GHz. We can £
see that there are clear LOS components and a -
few scattering components in most locations.
Because we have the same velocity of trolley
and route for the 460 MHz and 3.5 GHz mea-
surements, both of the two APDPs have similar
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shapes and change trends. Fig. 4 shows the sig-  AF igure 3. Power delay profile: (a) APDP at 460MHz and (b) APDP at 3.5GHz. Green rings

nal-to-noise ratio (SNR) calculated from the re-
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A Figure 4. SNR for the whole route at (a) 460 MHz and (b) 3.5 GHz. Two measurements at
460 MHz and 3.5 GHz have the same path, but the x-axis scaling are not identical due to the

slight difference of the movement speeds.

eled as a zero-mean Gaussian process with a
standard deviation of o [18]. Fig. 7 shows the
probability density function (PDF) of the mea-
sured shadow fading components, together
with the Gaussian distribution fit. We can
found that o =3.304 dB at 460 MHz and o =
4.208 dB at 3.5 GHz in the LOS scenario. It is
noted that the model parameters above are lim-
ited by our measurement configurations.

3.4 Delay Spread

Root - mean - square (RMS) delay spread is
the square root of the second central moment
of a power-delay profile and is widely used to
characterize the delay dispersion/frequency se-
lectivity of the channel. It is the standard devi-

tively. A general PL. model uses ¥ to denote the relationship
between the separation distance and the received power. So
the path loss adopted in this paper follows [10] and [11]:

PL(dB)=PL(d,) + 10y log(di)+X5, ©)

where ¥ is the path loss exponent and PL(d,) is the intercept
value of the path loss model at the reference distance d,[12].
X is a zero-mean Gaussian distributed random variable descri-
bing the random shadowing [13]. ¥ = 2 in free space. Howev-
er, ¥ is generally higher for a realistic channel.

In this paper, we use the first path in PDP to determine the
propagation distance between the transmitter and receiver.
Here we should note the error of distance. The bandwidth is 30
MHz, resulting in a delay resolution of 33.33 ns corresponding
to a distance 10 m. Because the true LOS path is located be-
tween two samples, there are less than 10-meter distance esti-
mation error. Then, we transform the measured path loss from
the time index to distance index.

Fig. 5 describes the scatter plot of path loss versus log-dis-
tance for 460 MHz, together with linear regression fit curve,
and Fig. 6 shows the corresponding results for 3.5 GHz.

Because the amount of measurement data in the NLOS sce-
nario is less and the maximum and minimum distance differ-
ence is too small to obtain accurate linear regression results,
we only consider the LOS scenario. Based on the measure-
ments, the Y and PL(d,) are shown in Table 2. It is found that
Y =4:23 and PL(d;)=—10:5 at 460 MHz, while ¥ =6:16 and PL
(do)=—43:5 at 3.5 GHz. According to [14]-[16], ¥ should be
between 2 to 5 in typical urban environments. A large value of
Y at 3.5 GHz may be caused by the high frequency band and
the difference between campus and urban.

3.3 Shadow Fading

According to [17], after removing the distance - dependence
from the received power, we obtain X, which is the shadow
fading component. Shadow fading in the dB scale can be mod-
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AFigure 5. Scatter plot of path loss versus log-distance for 460 MHz,
together with linear regression fit curve.
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A Figure 6. Scatter plot of path loss versus log-distance for 3.5 GHz,
together with linear regression fit curve.
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VTable 2. y and PL(d,)

460 MHz  in LOS 423
460 MHz PL(dy) in LOS -10.5
35 GHz y in LOS 6.16
3.5 GHz PI(dy) in LOS 435

LOS: line-of-sight PL: path loss

the estimated RMS delay spread for both LOS and NLOS sce-
narios. We present RMS delay spread for two scenarios on one
CDF curve, so that we can compare the differences between
two frequency bands for the entire path comprehensively. It is
found that there is a mean value of 84.5 ns at 460 MHz band
and 35.5 ns at 3.5 GHz band. The measurement at 3.5 GHz
has a lower delay spread than at 460 MHz, the reason is the
low frequency band has a lower propagation loss and better

PDF of shadow fading in LOS
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Shadow fading (dB)

LOS: line-of-sight PDF: probability density function

PDF of shadow fading in LOS

Shadow fading (dB)

propagation characteristics. Therefore, the low-
er frequency band has a higher SNR for the

same measurement route, at the same time,

© Actual
Fitting curve

can capture rich multi - path components. In
the NLOS scenario, the measured RMS delay
spread at some locations is larger than 200 ns,
which is far higher than the LOS scenario. On
the other hand, in the LOS scenario without ob-
vious multi - path components, the measured
RMS delay spread has its minimum value
(about 20-40 ns). Because of some obvious
multipath components (highlighted in Fig. 3),

5 10 15 20

AFigure 7. PDF plot of the measured shadow fading components, together with the Gaussian

distribution fit: (a) 460MHz-LOS; (b) 3.5GHz-LOS.

ation about the mean excess delay [19] and defined as

2
S APDPd,r ) (Y APDPW,T )7,
T . d)= b - . ’ (7)
r/m( ) ZAPDP((LTP) ZAPDP(d’TI’)
» P

where T, represents the delay and APDP(d, 7,) describes the
corresponding delay power of the pth path measured at the lo-
cation d. The RMS delay spread is a good measure of the mul-
tipath spread. It is also used to give an estimate of the maxi-
mum data rate for transmission.

Fig. 8 shows the cumulative distribution function (CDF) of

CDF of RMS delay on 460 MHz/3500 MHz

— 460 MHz

0.9r —— 3500 MHz

0.7 ’/
0.6 ‘
0.5F
0.4
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03r |
02F |/
0.1 |
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RMS delay (ns)

CDF: cumulative distribution function RMS: root-mean-square

A Figure 8. CDF plot of the estimated RMS delay spread on 460 MHz
and 3500 MHz.
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there is a larger measured RMS delay spread
compared with, which is consistent with many
previous measurements.

4 Conclusions

In this paper, measurements - based channel characteriza-
tions are presented for campus scenarios at 460 MHz and 3.5
GHz carrier frequencies, with a bandwidth of 30 MHz. Using
the measured data, we analyze key channel parameters, such
as power delay profile, path loss exponent, shadow fading, and
delay spread. A path loss exponent is found to be 4.23 for 460
MHz and 6.16 for 3.5 GHz in the LOS scenario. RMS delay
spread has a mean value of 84.5 ns for 460 MHz and 35.5 ns
for 3.5 GHz. The results in this paper are helpful for 5G chan-
nel modeling, system simulation, and communication system
design.
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