
D:\EMAG\2016-08-52/VOL12\RP2.VFT——7PPS/P

An Efficient Scheme ofAn Efficient Scheme of
Detecting RepackagedDetecting Repackaged
Android ApplicationsAndroid Applications
QIN Zhongyuan1, PAN Wanpeng2, XU Ying2,
FENG Kerong1, and YANG Zhongyun1

(1. Southeast University, Nanjing 211100, China;
2. ZTE Corporation, Xi’an 710144, China)

The increasing popularity of Android devices gives birth to a
large amount of feature⁃rich applications (or apps) in various
Android markets. Since adversaries can easily repackage mali⁃
cious code into benign apps and spread them, it is urgent to
detect the repackaged apps to maintain healthy Android mar⁃
kets. In this paper we propose an efficient detection scheme
based on twice context triggered piecewise hash (T⁃CTPH), in
which CTPH process is called twice so as to generate two fin⁃
gerprints for each app to detect the repackaged Android appli⁃
cations. We also optimize the similarity calculation algorithm
to improve the matching efficiency. Experimental results show
that there are about 5% repackaged apps in pre ⁃ collected
6438 samples of 4 different types. The proposed scheme im⁃
proves the detection accuracy of the repackaged apps and has
positive and practical significance for the ecological system of
the Android markets.

Android; repackage; similarity; edit distance

Abstract

Keywords

DOI: 10.3969/j. issn. 16735188. 2016. 03. 008
http://www.cnki.net/kcms/detail/34.1294.TN.20160630.1000.002.html, published online June 30, 2016

I
This work was supported by ZTE Industry⁃Academia⁃Research
Cooperation Funds

1 Introduction
n the past few years, Android has developed strikingly
and dominated the smartphone market with its market
share exceeding Apple. The IDC study shows Android
took up 82.8 percent of worldwide smartphone market

in the second quarter of 2015 [1]. The popularity is also pro⁃
pelled by the large collection of feature ⁃ rich applications in
various markets, including the official marketplaces (such as
Google Play) or third ⁃ party ones (for example, Amazon App⁃
store or Wandoujia), from which Android users can download a

wide variety of feature⁃rich apps about social networking, shop⁃
ping, playing, etc. These apps in return foster an emerging app⁃
centric business model and drive innovations across personal,
social, and enterprise fields.

Android application developers usually release their apps in
the Android market and get revenue by embedding advertise⁃
ments or charging directly. However, a large number of so ⁃
called repackaged apps have been developed for saving devel⁃
opment cost and making greater benefits. Their developers
download an original application from the Android markets,
disassemble it and modify the configuration file, or even inject
malicious code and insert ads, then repackage it and release it
to the Android markets again. Further manual analysis indi⁃
cates that these repackaged apps are mainly used to replace or
embed advertisements to steal or re⁃route ad revenues, get user
location, phone number and other private data, even to control
user’s phone remotely [2]. It has a serious negative impact on
the ecological security of the entire Android market. Recent
studies have shown that app repackaging is a real threat to
both official and third⁃party Android markets [3], and is regard⁃
ed as one of the most common mechanisms leveraged by An⁃
droid malware to spread in the wild [4].

Several schemes have been proposed to detect repackaged
apps in Android markets [2], [5]-[9]. They can be divided into
two categories: dynamic analysis and static analysis. The dy⁃
namic analysis usually uses system calls embedded in the ker⁃
nel space at the low layer of the Android architecture. Ying ⁃
Dar Lin et al. [8] presented SCSdroid that captures the system
call sequence of each thread when executing malicious repack⁃
aged applications and then extracts the common subsequences,
which can be regarded as possibly malicious behavior of mali⁃
cious repackaged applications. Since they may also exist in be⁃
nign applications, the Bayes Theorem is adopted to filter these
non ⁃ discriminating common subsequences and then fi nd the
common subsequences that indicate the truly malicious behav⁃
ior. The static code⁃analysis⁃based detection is more efficient
than the dynamic one. However, in practice, code obfuscations
can be easily applied to evade static analysis⁃based detections.
Huang et al. [2] proposed a framework capable of performing a
set of obfuscation algorithms in various forms on the Dalvik by⁃
tecode to evaluate the obfuscation resilience of repackaging de⁃
tection algorithms. DEXCD [5], developed by Ian Davis, ex⁃
tracts the opcodes from Java class in Dex file and tries to find a
steam match of opcodes between different apps to detect the
cloned apps. Crussell et al. [6] proposed DNADroid to detect
android apps copying by comparing program dependency
graphs between methods and can resist against several control
flow obfuscations and noisy code insertion attacks that do not
modify the data dependency. However, the side⁃effect free ma⁃
nipulation has the potential to evade the graph isomorphism al⁃
gorithm based detection. DroidMOSS [7], presented by Wu et
al., leverages specialized hashing technique, called fuzzy hash⁃
ing, to measure the similarity between original and repackaged

Research Paper

August 2016 Vol.14 No. 3ZTE COMMUNICATIONSZTE COMMUNICATIONS60

1

D:\EMAG\2016-08-52/VOL12\RP2.VFT——7PPS/P

applications. DroidMOSS calculates fuzzy hash of all appsand
compares the similarity of fingerprints of two apps. It can effi
ciently identify those code pieces that were not touched by the
repackager and works well when code manipulation was only
performed at a few points, e.g., hard coded URLs. However, in
DriodMOSS, the fuzzy hash is based on Spamsum [10], pro⁃
posed by Andrew, in which any random 32⁃bit binary data is
compressed to a 6⁃bit printable character, i.e., every 226 values
will be mapped to the same value. This has certain influence
on the accuracy of similarity comparison [11], thereby reduc⁃
ing the accuracy of detection. Besides, as DroidMOSS needs to
calculate similarity scores for all the apps, its highly time and
memory consuming nature makes it unrealistic in deployment.

In this paper, we proposed an improved context triggered
piecewise hash (CTPH) [12] based on DroidMOSS, which uses
two small primes to perform twice CTPH (T ⁃ CTPH) process
and generates two fingerprints for each app to detect the re⁃
packaged Android applications.

The main contributions of this paper are as follows:
1) We propose an improved Android application fingerprint

generating algorithm T ⁃ CTPH, in which two small primes
are used as the trigger values to increase the randomness
against possible attacks and improve the accuracy. It can be
further used to filter out unnecessary matching.

2) An improved algorithm is proposed to speed up the calcula⁃
tion of the fingerprints similarity. Besides, memory over⁃
head is also greatly reduced.

3) We have realized our system to detect repackaged apps and
found about 5% repackaged apps in pre⁃collected 6438 sam⁃
ples of 4 different types.
Portions of this work have previously appeared as an extend⁃

ed abstract [13]. We revise the paper a lot and add more tech⁃
nical details. Specifically, we discuss the choice of trigger val⁃
ue and methodology proof of T⁃CTPH in detail. We also redo
the whole experiments and present the performance compari⁃
son of different methods and manual analysis. Moreover, a con⁃
crete study of one repackaged app is presented.

The remainder of this paper is organized as follows. In sec⁃
tion 2, we introduce our approach, including feature extraction,
fingerprint generation and similarity matching. In section 3,
our approach is evaluated based on 6438 real applications
from several Android markets. Section 4 gives the conclusion.

2 Scheme Design
To accurately detect repackaged apps in Android markets,

we propose an improved scheme based on CTPH. With the
help of a filtering method and the optimized similarity calculat⁃
ing algorithm, the similarity calculation is speeded up to detect
the repackaged apps efficiently.
2.1 System Architecture

Android Package (APK) contains all resources that the appli⁃

cation needs to run. The .apk files are actually compressed
packages with ZIP format. The signature information stored in
META⁃INF directory ensures the integrity of APK and the sys⁃
tem security. Resource files like images are stored in RES di⁃
rectory. .apk files also include a manifest XML that specifies a
number of aspects about the application, including its name,
version information, permissions required to perform, refer⁃
enced library files and other important information. Android
applications are primarily developed in Java. The Java source
code is first compiled to Java bytecode and then converted into
the Dalvik executable (DEX) format. This paper mainly analyz⁃
es the DEX bytecode.

The overall architecture of our system is shown in Fig. 1. It
is divided into three parts: Feature extraction, fingerprint gen⁃
eration, and similarity matching. Since malicious codes and ad⁃
vertisements are always injected to the repackaged apps, the
types of repackaged application and the original one are al⁃
ways the same. Based on this observation, we first download
the apps by category from the Android market and store them
in their corresponding app databases. For each application in
app databases, we extract its author information and applica⁃
tion instructions. Next twice CTPH process is executed on the
extracted instructions for fingerprints generation. Finally, simi⁃
larity comparison algorithm is used to find the matching pairs
(suspicious repackaged pairs). As in DroidMOSS, we assume
that the signing keys from app developers are not leaked.
Therefore, APKs with the same signature must be generated by
the same author, and they can be ignored because the matched
pairs with high similarity and the same signature are always
the different versions of the same application.
2.2 Feature Extraction

For each app, feature extraction includes the steps of uncom⁃
pressing, extracting the author information, disassembling
DEX file, extracting the app instructions, and doing T⁃CTPH.
Finally, the fingerprint of the APK is generated.

After uncompressing the app, we use the keytool [14] to ex⁃
tract certificate information from META⁃INF directory by com⁃
mand keytool ⁃printcert ⁃V ⁃file "XXX.RSA". Then we leverage
Dalvik disassembler baksmali [15] to disassemble the classes.
dex bytecode file as java ⁃ jar baksmali ⁃ 1.2.4.jar ⁃ o classout/
classes.dex.

All the disassembled smali files and folders are stored in the
classout directory by the class hierarchical relationships. The
app instructions extraction is done according to the following

▲Figure 1. System architecture.

Sample apps

Feature
extraction

Similarity
match

Repackaged
apps

FingerPrint

An Efficient Scheme of Detecting Repackaged Android Applications
QIN Zhongyuan, PAN Wanpeng, XU Ying, FENG Kerong, and YANG Zhongyun

Research Paper

August 2016 Vol.14 No. 3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 61

2

D:\EMAG\2016-08-52/VOL12\RP2.VFT——7PPS/P

rules: 1) Depth traversal with the alphabetical order of generat⁃
ed smali files and folders; 2) Since some class names may be
modified before releasing, we ignore the confusing names of
class so as to reduce the error of instruction extraction; 3) Ex⁃
tracting methods of different classes.
2.3 Fingerprint Generation

For an actual .apk file, the extracted instruction sequences
in section 2.2 are extremely long. To generate the fingerprint of
apps, the common way is to use a hash operation to compress
the long sequence. Although hashing can determine whether
two apps are the same, it is not helpful to know the similarity
measurement of two apps. The reason is that one minor modifi⁃
cation will greatly change the hashing value. Furthermore, cal⁃
culating the similarity of two apps directly will be particularly
expensive. So DroidMOSS [7] adopts fuzzy hashing to solve the
above problems. Specifically, it first divides the long sequenc⁃
es into some short pieces with a fixed trigger value, calculates
the hash value of each short piece, and then maps each 32⁃bit
binary hash data to a 6⁃bit binary printable character based on
Base64 [16], and concatenates piece hash results as the final
fingerprint of one application at last. The fuzzy hashing can ef⁃
fectively localize the changes possibly made in repackaged ap⁃
ps and the similarity between the generated fingerprints repre⁃
sents how similar their corresponding apps are.

Typically, the fuzzy hashing algorithm consists of a weak
hash algorithm with a trigger value for the piece, a strong hash
algorithm for calculating the piece hash, a compression algo⁃
rithm for mapping each piece hash to a shorter value and a sim⁃
ilarity comparison algorithm used to calculate the similarity of
two fuzzy hash values. DroidMOSS first divides all the long in⁃
struction sequences with a fixed trigger value. It randomly se⁃
lects 200 samples from 6 Android markets to compare with 68,
187 official applications. However, it is highly time⁃consuming
to calculate 81,824,400 similarity scores for apps. Secondly,
DroidMOSS maps any 32⁃bit binary hash data to a 6⁃bit binary
printable character based on Base64, which means that every
226 value will be mapped the same value. If the file is large
enough, some different piece hashes will be mapped to the
same value. Finally, in terms of similarity calculation method,
DroidMOSS uses a two dimensional array to calculate the edit
distance between two fingerprints. However, it is memory⁃con⁃
suming if the fingerprints are very long, especially when facing
81,824,400 pairs.

Based on the above analysis, we remove the compression
mapping algorithm of fuzzy hash and execute CTPH process
twice with two small primes as trigger values so as to generate
fingerprint of long instruction sequences efficiently. Specifical⁃
ly, for an instruction sequence, we use two small primes to do
twice CTPH processes respectively. Besides, only the finger⁃
prints with the same triggered prime will be compared, which
improves the overall efficiency of detecting repackaged apps.
Fig. 2 shows the CTPH algorithm. The original sequence in

the figure is the input of the process and a trigger value (tv) is
selected for dividing pieces. All the piece hashes are then cal⁃
culated and concatenated as the final fingerprint. This process
is presented in Algorithm 1.

In our scheme, we present an improved approach to effec⁃
tively detect repackaged applications in Android market. The
concrete process is presented in Algorithm 2 and visually
summarized in Fig. 3.

For the input Original sequence extracted in section 2.2, we
first use a trigger value tv1 to process the first CTPH with Algo⁃
rithm 1 and Sequence1 is generated. Then tv1 is used again for
the second CTPH process with Sequence1, and the final result
Signature1 is generated (see left with a solid line). For the
right part in Fig. 3 (the dotted line), we also make the same pro⁃
cess with trigger value tv2, and generate the second result Sig⁃
nature2.

In Algorithm 2, for the function CTPH(), i.e., signature1=
CTPH(tv1, sequence1). signature1 is the result of Algorithm 1
with input sequence1 and trigger value tv1. The final finger⁃

▲Figure 2. Context triggered piecewise hash.

Algorithm 1. CTPH
Input：Data stream sequence
Output：Trigger value tv, fingerprint signature
Description：
rh - rolling hash, ph - piece hash, ws - size of sliding window
1：set window_size(ws)
2：tv = compute trigger value(sequence)
3：initialize roll_hash(rh)
4：initialize piece_hash(ph)
5：initialize signature(signature)
6：for each byte b in sequence do
7： update roll_hash(rh, b)
9： update piece_hash(ph, b)
10： if rh mod tv = tv⁃1 then
11： signature+=ph
12： initialize piece_hash(ph)
13： end if
14：end for
15：return (tv, signature)

PH1 PH2 PH3 PHN-1 PHN…

Piece 1 Piece 2 Piece 3 PieceN-1 PieceN

Finalfingerprint

Originalsequence

PH: Piece Hash

Rolling_hash(window_content)=
trigger_value

Research Paper

August 2016 Vol.14 No. 3ZTE COMMUNICATIONSZTE COMMUNICATIONS62

An Efficient Scheme of Detecting Repackaged Android Applications
QIN Zhongyuan, PAN Wanpeng, XU Ying, FENG Kerong, and YANG Zhongyun

3

D:\EMAG\2016-08-52/VOL12\RP2.VFT——7PPS/P

print of an app is:
sign ature =(tv1,sign ature1)||(tv2,sign ature2) . (1)

2.4 Similarity Matching
After the above steps, each app has its own fingerprint. Next

we calculate the similarity between the fingerprints generated
in section 2.3. There are several ways to obtain the similarity,
such as bitmap algorithm and computing the longest common
subsequence between strings. In this paper, we use edit dis⁃
tance to calculate the similarity between two fingerprints. The
edit distance is the minimum edit operation to turn one finger⁃
print into another, including insertion, deletion and substitu⁃
tion of a single character. In order to calculate the edit dis⁃
tance of the two strings, a conventional two⁃dimensional matrix
is used to represent the distance between two strings and fill
the matrix circularly. Finally we get matrix[len1,len2] which is
the edit distance between two strings with length len1 and len2
respectively.

It should be noted that if the two strings are relatively long,
len1× len2 size of memory needed for calculating will be quite

large, thus reducing the speed for similarity matching. In order
to speed up the calculation for long strings, we presented an
improved calculation algorithm of edit distance. Specifically,
we use three one ⁃ dimensional arrays array1, array2, array3
(with sizes of len1, len2, len3, respectively) to calculate the ed⁃
it distance. array1 denotes the first column of the conventional
two⁃dimensional array, array2 and array3 denote two adjacent
rows of that two⁃dimensional array. We fill array2 and array3
circularly in an iterative method, which exchanges array2 and
array3 continuously to denote two adjacent rows. In the end, if
len1 is odd, the edit distance is array2[len2⁃1], otherwise the
edit distance is array3[len2⁃1]. The process is shown in Algo⁃
rithm 3. In this approach, only len1+ len2×2 memory is need⁃
ed, which greatly saves memory and speeds up the process.

After the edit distance between two fingerprints is calculat⁃
ed, equ. (2) is used to measure the similarity between the two
fingerprints [4]:
Sim_Score =[1 - edit_dist

max(len1, len2)] *100 . (2)
If two apps are signed with different developer keys and the

similarity score between two apps exceeds a certain threshold,
we treat them as repackaged matching pairs. Note that the
choice of threshold greatly affects the false positive and false
negative rates, thus influencing the accuracy of our test results.
In our experiments, we apply the threshold 70 empirically, and
it shows a good balance between false positive and false nega⁃

Algorithm 2. T⁃CTPH for fingerprint generation
Input: App instruction sequence Original Sequence
Output: Trigger values tv1 and tv2, fingerprint signature1,

signature2
Description:
sequence1, sequence2 - results of CTPH, ws - window size
1：set window_size(ws)
2：(tv1, tv2) = trigger value(Original sequence)
3：initialize sequence(sequence1, sequence2)
4：initialize signature(signature1, signature2)
5：sequence1 =CTPH(tv1, Original sequence)
6：sequence2 =CTPH(tv2, Original sequence)
7：signature1 =CTPH(tv1, sequence1)
8：signature2 =CTPH(tv2, sequence2)
9：return (tv1, tv2, signature1, signature2)

▲Figure 3. T⁃CTPH for fingerprint generation.

CTPH: context triggered piecewise hash
Signature 1

Sequence 1

tv1

tv1

Signature 2

Sequence 2 tv2

tv2
Second CTPH

First CTPH

Original sequence

Algorithm 3. Calculates the edit distance between two apps
Input: Two fingerprints fp1and fp2
Output: Edit distance between fp1and fp2
1：len1←strlen(fp1), len2 ←strlen(fp2)
2：initialize array1(len1)
3：initialize array2(len2)
4：for i = 1→len1 do
5： for j = 1→len2 do
6： cost=fp1[i]=fp2[j] ? 0:1
7： if (i mod 2=0) then
8： array2[0]=array1[i]
9： array2[j]=min(array2[j⁃1], array3[j], array3[j⁃1])+cost
10： else
11： array3[0]=array1[i]
12： array3[j]=min(array3[j⁃1], array2[j], array2[j⁃1])+cost
13： end if
14： end for
15：end for
16: if (len1 mod 2=0) then
17: edit_dist= array3[len2⁃1]
18: else
19: edit_dist= array2[len2⁃1]

An Efficient Scheme of Detecting Repackaged Android Applications
QIN Zhongyuan, PAN Wanpeng, XU Ying, FENG Kerong, and YANG Zhongyun

Research Paper

August 2016 Vol.14 No. 3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 63

4

D:\EMAG\2016-08-52/VOL12\RP2.VFT——7PPS/P

tive rates.

3 Evaluation

3.1 Sample Collection and Classification
To perform a concrete study on the repackaged apps and

measure the effectiveness of our scheme, we developed an
APK crawler and collected 6438 apps from various Android
markets, including social networking, game, system tool, and
shopping. We store them in different databases. The exact
numbers of different types of the collected apps are shown in
Table 1.
3.2 Comparison of DroidMOSS and TCTPH

The use of compression mapping algorithm based on Base64
has a certain impact on the accuracy of the generated finger⁃
print and the false positive (negative) rate. In most case, larger
trigger value produces shorter fingerprint, and poor accuracy,
and vice versa. Therefore, the selection of trigger value has an
important effect on the results. For example, for a web chatting
tool QQ3.0 of size 6.37 MB, we get a trigger value 6385 with
the method in [11] while the trigger value is (223, 227) in our
approach. Next, we collect the same application from different
sources and make a similarity comparison of the fingerprints
generated by the different instruction sequences length. Fig. 4
shows the similarity of apps using different length of instruc⁃
tion sequences. The real score is sequence similarity calculat⁃
ed by edit distance with Algorithm 3. The x axis represents the
length of the sequence, and the y axis represents the similarity
score of two apps. As in DroidMOSS most of the experimental
parameters are not given, e.g., the string length. We select dif⁃
ferent string length and make a comparison between Droid⁃
MOSS and T⁃CTPH in Fig. 4.

As seen from Figs. 3 and 4, the similarities of the sequences
are closer to the real score in our approach, that is, our scheme
has improved the similarity accuracy between the fingerprints,
thus reducing the false positive (negative) rate. The results of
detecting repackaged apps in pre⁃collected data are shown in
Table 2. The total consumed time of DroidMOSS and T⁃CTPH
are shown in Table 3.

Table 2 shows that the proposed scheme (T⁃CTPH) improves
the accuracy of detecting repackaged apps, and its results are
closer to the results of manual analysis. In addition, the apps of

social networking have the highest repackaged rate, and the
lowest is of system tool. It is because the repackaged apps are
often used for stealing user’s internet traffic and phone bill by
injecting malicious code to existing apps or implanting Trojan
to remotely control user’s phone, which will inevitably require
internet service. Besides, game apps are likely to be repack⁃
aged. The reason is that developers can re ⁃ route or steal ads
revenues by replacing or embedding ads to games.
3.3 Optimized Edit Distance Method

To calculate the pair ⁃ wise similarity scores of the finger⁃
prints quickly, we optimize the edit distance method by using
three one⁃dimensional arrays to replace a two⁃dimensional ar⁃
ray, which not only saves a lot of memory resources, but also
enhance the speed of the similarity calculation process. We
test the optimized algorithm on a computer with Linux system
(Ubuntu 10. 04). The CPU is Intel (R) Pentium 4 running at

▼Table 1. Distribution of collected apps

Category
Social
Game

System tool
Shopping
Total

Number
2557
2396
838
647
6438

▲Figure 4. Similarity score of different methods.

▼Table 2. Results of different detecting repackaged apps methods

Category
Social
Game

System tool
Shopping

DroidMOSS
157
140
39
34

T⁃CTPH
156
140
38
34

Manual analysis
155
138
38
33

▼Table 3. Total consumed time of DroidMOSS and T⁃CTPH

Category
Social
Game

System tool
Shopping

Number
2557
2396
838
647

DroidMOSS (hour)
22.51
19.85
2.58
1.52

T⁃CTPH (hour)
7.12
6.12
0.84
0.61

100
90
80
70
60
50
40
30
20
10
0 1600140012001000800600400200

The length of instruction sequence (k)

Sim
ilar

ity
sco

re

* × ○Real score DroidMOSS T-CTPH

*
*

*
*

*

* *
*

× × ×
×

× × ×

×

○
○ ○

○

○

○
○

○

Research Paper

August 2016 Vol.14 No. 3ZTE COMMUNICATIONSZTE COMMUNICATIONS64

An Efficient Scheme of Detecting Repackaged Android Applications
QIN Zhongyuan, PAN Wanpeng, XU Ying, FENG Kerong, and YANG Zhongyun

0

5

D:\EMAG\2016-08-52/VOL12\RP2.VFT——7PPS/P

2.93 GHz and the size of RAM is 2 GB. Table 3 shows a com⁃
parison of time consumption for some sequences in different
length ranges.

Table 4 shows that the optimized algorithm improves the
speed of similarity calculation significantly, and when the se⁃
quence is longer, it is more obvious that the consumed time for
calculating similarity between sequences is reduced.
3.4 Case Analysis

To perform a concrete study of the repackaged apps and re⁃
veal how one app is repackaged, we show the analysis of re⁃
packaged apps detected by our scheme. For example, through
manual analysis, we find a repackaged app QQ that is stealing
the user's private information. The permission to read phone
state READ_PHONE_STATE is first inserted to AndroidMani⁃
fest.xml file as shown in Fig. 5. Then the repackaged QQ gets
the IMEI, and phone number, by calling getDeviceId and get⁃
Line1Number respectively (Figs. 6 and 7).

Usually, advertising Software Development Kit (SDK) needs
to add publisher identifier to AndroidManifest.xml, and then
modify the layout description and the program bytecodes to
show ads. The following is a detected example of repackaging a
normal app (com. racingstudio. racingmoto) by including Ad⁃
Mob [17] SDK in the app. We find that the signed keys are dif⁃
ferent, but they are the similarity matching pairs. Further, a
manual analysis shows that ads always pop up in the bottom on
the game interface of the repackaged app (right) as shown in
Fig. 8.

We also find that functions like setVisibility, findViewById,
loadAd are inserted in onCreate function to display ads in the
disassembled files, by which developers can steal the ads reve⁃
nues (Fig. 9).

4 Conclusions
In this paper, we propose an improved repackaged applica⁃

tion detection scheme based on T⁃CTPH. An improved finger⁃

▼Table 4. Consumed time before and after optimization

Length of sequence (k)
0.5
1
2
4
6
8
10
12

Before optimization (ms)
10.27
50.23
127.41
468.56
1028.37
1818.52
2992.54
18900.53

After optimization (ms)
4.04
16.21
68.24
272.91
604.49
1032.50
1443.57
2432.13

▲Figure 5. Permissions in AndroidManifest.xml file.

▲Figure 6. Get IMEI.

▲Figure 7. Get phone number.

▲Figure 8. Screenshots before and after repackaging.

An Efficient Scheme of Detecting Repackaged Android Applications
QIN Zhongyuan, PAN Wanpeng, XU Ying, FENG Kerong, and YANG Zhongyun

Research Paper

August 2016 Vol.14 No. 3 ZTE COMMUNICATIONSZTE COMMUNICATIONS 65

6

D:\EMAG\2016-08-52/VOL12\RP2.VFT——7PPS/P

print generating algorithm is presented by using two small
primes as the trigger values for T⁃CTPH so as to increase the
randomness against possible attacks and improve the accura⁃
cy. We then optimize the similarity calculation method and fil⁃
ter unnecessary matching processes to make the similarity
matching more efficient. Our experimental results show that
about 5% of the apps are repackaged in our pre⁃collected data.
The proposed scheme improves the detection accuracy of the
repackaged apps, and has positive and practical significance
for the ecological system of the Android market.

▲Figure 9. Inserted codes for displaying ads.

QIN Zhongyuan (zyqin@seu.edu.cn) received the MS degree in computer science
and the PhD degree in communication and information system from Xi’an Jiaotong
University, China in 1999 and 2003, respectively. He is currently an associate pro⁃
fessor in the School of Information Science and Engineering, Southeast University,
China. His research interests include wireless network security and Android securi⁃
ty. He has published more than 40 papers in refereed international journals and con⁃
ference proceedings.
PAN Wanpeng (pan.wanpeng@zte.com.cn) received his MS degree in network and
information security from Northwestern Polytechnical University, China in 2007. He
is the chief security director of terminal business division at ZTE Corporation. His
research interests include Android security and network security.
XU Ying (xu.ying6@zte.com.cn) received the BOM degree in Information Manage⁃
ment and the MS degree in computer application from Zhengzhou University, China
in 2005 and 2010. Now she is working with ZTE. Her research interests focus on
software testing.
FENG Kerong (fengkerong@163.com) received the BE degree in communication en⁃
gineering from China University of Petroleum in 2013. Now she is pursuing her MS
degree at Southeast University, China. Her research interests focus on security in
Android.
YANG Zhongyun (midcloud@foxmail.com) received the MS degree in information
security from Southeast University, China in 2014. He is currently a software engi⁃
neer at CoolPad Corporation. His research interests focus on security in Android.

BiographiesBiographiesReferences
[1] IDC. (2015). Smartphone OS Market Share, 2015 Q2 [Online]. Available: http://

www.idc.com/prodserv/smartphone⁃os⁃market⁃share.jsp
[2] H. Huang, S. Zhu, P. Liu, and D. Wu,“A framework for evaluating mobile app

repackaging detection algorithms,”in 6th International Conference on Trust and
Trustworthy Computing, TRUST 2013, London, United kingdom, 2013, pp. 169-
186. doi:10.1007/978⁃3⁃642⁃38908⁃5_13.

[3] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou,“Fast, scalable detection of
‘piggybacked’mobile applications,”in 3rd ACM Conference on Data and Appli⁃
cation Security and Privacy, San Antonio, TX, United states, 2013, pp. 185-195.
doi:10.1145/2435349.2435377.

[4] Y. Zhou and X. Jiang, "Dissecting Android malware: Characterization and evolu⁃
tion," in 33rd IEEE Symposium on Security and Privacy, San Francisco, CA,
United states, 2012, pp. 95- 109. doi:10.1109/SP.2012.16.

[5] I. Davis. (2012). Dex clone detector [Online]. Available: http://www.swag.uwater⁃
loo.ca/dexcd/index.html

[6] J. Crussell, C. Gibler, and H. Chen,“Attack of the clones: Detecting cloned ap⁃
plications on Android markets,”in 17th European Symposium on Research in
Computer Security, Pisa, Italy, 2012, pp. 37-54. doi:10.1007/978⁃3⁃642⁃33167⁃
1_3.

[7] W. Zhou, Y. Zhou, X. Jiang, and P. Ning,“Detecting repackaged smartphone ap⁃
plications in third ⁃ party android marketplaces,”in Proceedings of the second
ACM conference on Data and Application Security and Privacy, San Antonio,
USA, 2012, pp. 317-326. doi:10.1145/2133601.2133640.

[8] Y.⁃D. Lin, Y.⁃C. Lai, C.⁃H. Chen, and H.⁃C. Tsai,“Identifying android malicious
repackaged applications by thread ⁃ grained system call sequences,”Computers
and Security, vol. 39, pp. 340-350, 2013. doi: 10.1016/j.cose.2013.08.010.

[9] J.⁃H. Jung, J. Y. Kim, H.⁃C. Lee, and J. H. Yi,“Repackaging attack on android

banking applications and its countermeasures,”Wireless Personal Communica⁃
tions, vol. 73, pp. 1421-1437, 2013. doi: 10.1007/s11277⁃013⁃1258⁃x.

[10] T. Andrew. (2010). Spamsum README [Online]. Available: http://www.samba.
org/ftp/unpacked/junkcode/spamsum

[11] J. Kornblum,“Identifying almost identical files using context triggered piece⁃
wise hashing,”Digital Investigation, vol. 3, pp. 91-97, 2006. doi: 10.1016/j.di⁃
in.2006.06.015.

[12] L. Chen and G. Wang,“An efficient piecewise hashing method for computer fo⁃
rensics," in 1st International Workshop on Knowledge Discovery and Data Min⁃
ing, Adelaide, Australia, 2008, pp. 635⁃638. doi:10.1109/WKDD.2008.80.

[13] Z. Qin, Z. Yang, Y. Di, et al.,“Detecting repackaged android applications,”in
3rd International Conference on Computer Engineering and Network, CENet
2013, Shanghai, China, 2013, pp. 1099-1107. doi:10.1007/978⁃3⁃319⁃01766⁃
2_125.

[14] SourceForge. (2013). Keytool [Online]. Available: https://sourceforge.net/proj⁃
ects/keytool/

[15] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra,“Madam: a multi ⁃ level
anomaly detector for android malware,”in Computer Network Security, ed:
Springer, 2012, pp. 240-253.

[16] J. Walker. (2007, June 10). Base64—encode and decode base64 files [Online].
Available: http://www.fourmilab.ch/webtools/base64

[17] Google. (2015). Admob for Android Developers [Online]. Available: http://sup⁃
port.google.com/admob/topic/1307236?hl=zh⁃Hans&ref_topic=1307209

Manuscript received: 2015⁃07⁃24

Research Paper

August 2016 Vol.14 No. 3ZTE COMMUNICATIONSZTE COMMUNICATIONS66

An Efficient Scheme of Detecting Repackaged Android Applications
QIN Zhongyuan, PAN Wanpeng, XU Ying, FENG Kerong, and YANG Zhongyun

7

