您当前访问的的浏览器版本过低,为了给您带来更好的体验,建议您升级至Edge浏览器或者推荐使用Google浏览器
取消
自然语言处理新范式:基于预训练模型的方法
发布时间:2022-04-08  作者:车万翔,刘挺  阅读量:

自然语言处理新范式:基于预训练模型的方法

车万翔, 刘挺
(哈尔滨工业大学,中国 哈尔滨150001)

摘要:以BERT、GPT为代表的、基于超大规模文本数据的预训练语言模型能够充分利用大模型、大数据和大计算,使几乎所有自然语言处理任务性能都得到显著提升,在一些数据集上达到甚至超过人类水平,已成为自然语言处理的新范式。认为未来自然语言处理,乃至整个人工智能领域,将沿着“同质化”和“规模化”的道路继续前进,并将融入多模态数据、具身行为数据、社会交互数据等更多的“知识”源,从而为实现真正的通用人工智能铺平道路。  
关键词:人工智能;自然语言处理;预训练语言模型;同质化  


New Paradigm of Natural Language Processing: A Method Based on Pre-Trained Models

CHE Wanxiang, LIU Ting
(Harbin Institute of Technology, Harbin 150001, China)

Abstract: Pre-trained language models based on super-large-scale raw corpora, represented by BERT and GPT, can make full use of big models, big data, and big computing, which has significantly improved the performance of almost all-natural language processing tasks. The performances have reached or exceeded the human level on some datasets. Pre-trained language models have become a new paradigm for natural language processing. It is believed that in the future, natural language processing and even the entire field of artificial intelligence will continue to move forward along the path of “homogenization” and “scale”, and will integrate more sources of “knowledge”, such as multi-modal data, embodiment data, and social interaction data. Consequently, these methods will pave the way for achieving true general artificial intelligence.  
Keywords: artificial intelligence; natural language processing; pre-trained language model; homogenization

在线PDF浏览: PDF
本期相关文章