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1 AI 算力架构演进：从芯片堆砌迈向系统级协同

随着 AI 模型参数规模突破万亿量级，算力需求已从单纯的 GPU 堆叠，转向全维度的

系统架构重构。受限于单芯片物理功耗密度、互连带宽与内存容量瓶颈，其算力增长

边际效益递减。当前研究与工程实践表明，系统级协同架构（如高带宽域互联）成为

突破单芯片性能上限的主要技术路径。

这一转型的根本动因，在于单颗芯片的物理极限已成为制约算力发展的核心瓶颈。当

模型规模远超单芯片的算力与显存容量时，传统分布式训练方法面临通信开销剧增、

算力利用率骤降等严峻挑战。在此背景下，通过高速无损互联技术，将数十甚至上百

个 GPU 芯片从逻辑层面整合为统一计算单元，对外可视为一台功能极强的“超级计算

机”，已成为全球主流 AI 基础设施厂商与研究机构公认的下一代算力架构核心突破方

向。这一架构革新不仅实现算力密度的跃升，更是达成系统级高效协同、降低大模型

训练与推理综合成本的关键技术路径。

2 超节点系统架构设计

超节点是通过高速互联协议与专用交换芯片构建的高带宽域（High-Bandwidth

Domain），将数十至数百颗 GPU 芯片在逻辑上整合为统一编址、低延迟、高带宽的

协同计算系统。该架构保留 GPU 的物理独立性，通过统一虚拟内存地址空间与无损互

联，实现类单机的编程与调度体验。超节点并非 GPU 的简单物理堆砌，而是融合多芯

片、整机硬件、高速互联与配套软件的集成系统，依托算法仿真、工程设计、软硬联

合优化等综合手段，构建的极致协同计算系统。超节点对芯片的算传存基础能力，硬
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件设计的集成能力，高带宽高可靠可扩展的互联能力，以及面向底层算法要求的软硬

协同能力都提出了极高的要求，需实现端到端全链路的平衡与优化，方能构建真正意

义上的最优“单一”算力产品形态——超节点。

为实现这一系统级协同，构建超节点，需要遵循以下四大核心前提：

第一，芯片能力的均衡性。构建超节点芯片需要满足算力、显存与互联带宽的均衡，

并非所有的 GPU 芯片都具备构建超节点的潜力。比如，算力被裁剪的芯片，其计算能

力难以匹配高规格的互联带宽，易造成带宽资源浪费；反之，芯片算力充足，但互联

总带宽不足、互联链路数量过少，也无法支撑 GPU 互联规模的扩大，导致算力无法充

分发挥。

第二，互联架构的有效性。超节点互联架构需兼顾通信效率、扩展性与场景适配性三

大核心要求。原则上超节点内任意 GPU 间的互联带宽是机间互联的 8 倍左右，有助于

降低通信开销、提高 GPU 的 MFU（模型 FLOPs 利用率）。而传统总线（例如 PCIe）

或低容量交换芯片的方案，无法实现真正意义上的全互联（Full Mesh）。业界虽有厂

商在互联技术上进行创新尝试，如定制拓扑或优化交换路径，但在架构的通用性与灵

活性之间仍需权衡。面对不同并行策略带来的差异化通信需求，理想的超节点互联架

构需具备自适应能力，以更好支持多样化大模型训练的需求。

第三，内存访问的便捷性。超节点内所有 GPU 需支持统一内存编址，以支持各种原语

级的内存访问，确保超节点的内存访问与单 GPU、单服务器保持一致的灵活便捷性。

同时，由于 GPU 品类的特性差别，以及消息大小对并行访问效率的影响，超节点还需

同时支持消息语义和内存语义，在编程易用性与数据访问效率之间达到最佳平衡。
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第四，超节点架构扩展的原生性。单体的机柜级超节点需具备灵活扩展能力，可平滑

扩展为更大的集群超节点（如从 128 单体超节点可扩展到 8192 的集群超节点）。与

Scale-Out 的互联模式不同，集群超节点的互联依旧属于 Scale-Up 域，且满足任何

GPU 的带宽是机间互联的 8 倍。该设计确保面对未来更大参数量模型训练需求或技术

演进时，可以实现算力灵活选择，按需配置，最终达到性能和成本的最佳平衡。

下文将从芯片能力，系统及整机设计等维度，阐述超节点构建的基础要求，并深度分

析业界构建超节点的技术方向和技术路线。

2.1 芯片：从计算到互联的协同演进

2.1.1 算力芯片的演进

单纯堆砌低性能计算单元无法实现算力密度的线性增长。系统性能的增益取决于互联

带宽、显存容量与算力的协同匹配，而非单元数量的简单叠加。因此，算力密度并非

由芯片数量决定，而是指单位体积内可释放的有效算力。

在机柜功耗和物理尺寸受限的前提下，提升单芯片算力密度是实现超节点极致算力密

度的首选路径。英伟达历代架构的演进，正是该理念的典型工程化实践：每一代 NVLink

互联带宽的倍增，均与算力、显存容量及显存带宽实现同步提升，确保单位互联带宽

所支撑的有效算力持续处于饱和状态，避免资源浪费。在此基础上，英伟达通过

NVLink-C2C（Chip-to-Chip）互联技术，将 CPU 与 GPU 封装于同一基板

（Interposer），实现统一内存寻址与高带宽低时延通信，构建逻辑层面的“超级芯

片”，完成从“物理多芯片”到“逻辑单芯片”的整合，持续提升芯片级算力密度。
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1. 对 GPU 的核心需求：互联先行，算力、显存同步放大

 互联可扩展性：NVLink、UALink、SUE、ETH-X 等主流互联协议，均需支持

千卡级 HBD 高带宽域的扩展能力。

 算力与显存同步升级：互联带宽每实现一倍提升，FP4 算力、显存容量、显存带

宽完成近乎同比例放大，实现三者与互联带宽的精确匹配。

2. 对 CPU 的核心需求：单核性能和 IO 扩展能力

 单核性能：通过更高的主频、微架构设计优化（核心是提升 IPC），将无法并行

的控制、预处理、通信框架线程的处理延迟压到微秒级，保障系统调度效率。

 IO 扩展能力：原生支持更多的 PCIe 通道数及更加丰富的 IO接口类型；通过合

理的 I/O 设计，可在节点内省去 PCIe Switch，降低系统成本。

超节点的极致算力密度，首先要取决于“单芯片有效算力密度”能否随互联带宽线性

甚至超线性增长；其次依赖于 CPU 单核性能与 I/O 扩展能力的同步提升。唯有

GPU/CPU 在算力芯片层级完成“带宽-算力-显存”三角协同匹配，整机柜才能用更

少芯片、更低功耗、更简拓扑，释放出更高且可持续的有效算力。

2.1.2 高速互联技术的突破

超节点的实现核心在于构建高带宽、低延迟的 Scale-Up（纵向扩展）通信域。英伟

达率先通过 NVLink 互联协议与 NVSwitch 交换芯片的组合，确立了早期超节点的技

术范式。以英伟达Blackwell架构为例，其NVSwitch技术支持集成18或36个GB200

超级芯片（对应 36 或 72 颗 GPU），分别构建 NVL36 或 NVL72 超节点，并进一步
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借助 NVLink 光互联扩展至 576 卡的集群超节点。该架构下，单卡间 NVLink 双向带

宽达 1.8 TB/s，NVL72 超节点内 GPU 间互联总带宽高达 130 TB/s。这种基于专用

交换芯片实现的 GPU 直连通信域，打破了传统 PCIe 总线的性能瓶颈，为业界提供了

重要的技术参考。然而，随着技术的不断演进，超节点互联正逐步突破单一封闭生态，

迈向多元开放的发展路径。

2.1.2.1 物理层技术选型

在超节点（Scale-Up）场景中，GPU 间互联需要数百 GB/s 至 TB/s 带宽能力承载

TP（Tensor Parallelism）、EP（Expert Parallelism）并行计算流量，GPU 卡间互

联物理层主要有 PCIe 和以太网两种技术路线。

 PCIe：作为通用总线，PCIe 专注于短距、低延迟的设备互联。其设计受功耗和

延迟的严格约束，导致 SerDes 速率提升相对保守，PCIe 物理层单通道 SerDes

速率和以太网差距较大。当前主流的 PCIe 5.0 x16 配置，其双向带宽约为

128GB/s，难以满足超节点对 TB 级带宽的需求。

 以太网物理层：以太网 SerDes 技术迭代迅速，主流速率已达 112Gbps，224Gbps

产品已进入商用阶段。其支持多通道灵活绑定，能够轻松实现 TB/s 级端口带宽。

在超节点 Scale-Up 场景中，以太网物理层 SerDes 技术凭借更高的单通道速率（当

前主流达 112Gbps，224Gbps 已商用），相较 PCIe 5.0 x16（双向约 128GB/s）具

备显著的带宽扩展潜力，更契合 AI 训练对 TB 级互联带宽的严苛需求。
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2.1.2.2 Scale-Up 互联协议生态格局

当前，Scale-Up 互联协议生态正演变为“垂直整合封闭”与“开放架构”双轨并行

的复杂竞争格局，技术路线的分化与重组日益激烈。

在垂直整合路径上，以 NVIDIA 和 Google 为标杆，企业通过全栈自研的专用互联协

议（如 NVIDIA NVLink、Google ICI）、硬件接口及软件栈构建高壁垒。然而，这种

全栈闭环体系在提供稳定高效服务的同时，也伴随着生态封闭、技术锁定及高昂迁移

成本的风险。

在开放架构路径上，产业界致力于打破私有协议垄断，构建多元化生态，目前呈现“国

际双轨引领、物理层收敛于以太网”的整体特征：

 国际路线：UALink 定义了全栈开放协议，物理层采用标准以太网 PHY，但链路

层和传输层完全重新定义，旨在实现总线级的性能，其交换芯片预计 2027 年商

用。ESUN（Ethernet Scale-Up Network）聚焦数据链路层，在现有 L2/L3 以

太网基础上进行增强，实现无损、无收敛的交换拓扑，生态构建基于博通

Tomahawk Ultra 等商用交换芯片。

 国内路线：国内厂商正探索多种互联协议，包括中移 OISA、腾讯 ETH-X、高通

量以太网 ETH+以及中兴通讯 OLink 等。为打破生态壁垒，国内正积极推动标准

统一，比如工信部正牵头推动 CLink 协议，旨在形成统一的国内标准。

总体而言，Scale-Up 互联协议在物理层上已基本收敛至以太网。未来，国内亟需在

兼顾国际路线参考、继承与发展的基础上，加快统一标准的制定，打破生态割裂，形

成具备竞争力的开放互联标准落地典范。
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2.1.2.3 统一内存编址与访问

超节点支持统一内存地址编址，是解决“多 GPU 协同效率” 与 “数据一致性” 的

关键，更是其区别于普通分布式集群、实现高性能算力聚合的前提。这一设计打破硬

件孤岛，让所有 GPU 共享同一地址空间，跨 GPU 数据无需物理拷贝，通过地址即

可直接读写。无论是 GPGPU 采用 Load/Store 内存语义，还是 DSA（领域专用架

构）GPU 采用 DMA 消息语义，均可确保不同 GPU 对同一数据状态的精确感知，

实现类本地内存的高效协同，大幅降低软件复杂度。开发者可以根据需要，灵活选择

内存语义的便捷编程或消息语义的高效访问，无需手动处理数据同步、地址映射和冲

突控制，统一地址简化访问逻辑，标准化事务处理明确交互准则，减少适配成本，让

开发者聚焦算法优化。

2.1.2.4 在网计算

Scale-Up 交换芯片除了通过高带宽、低时延的互联能力提升模型训练效率外，其在

支持传统稠密模型和动态 MoE 模型的在网计算（In-Network Computing）方面展现

出关键优势和实际收益：

 在传统稠密模型训练中，交换芯片通过集成在网计算技术，将原本由计算节点承

担的 All-Reduce 操作卸载至交换芯片内部完成，将通信交互复杂度从传统的 O

（logN）降低至 O（C）（C 为网络层级），大幅减少节点间消息传递次数，降

低通信延迟；

 在动态 MoE 模型训练中，Dispatch Multicast（专家分发）和 Combine Reduce
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（结果聚合）操作带来巨大通信开销，严重制约系统扩展性与效率。通过引入在

网计算技术，将数据复制（Multicast）、加权归约（Reduce）等高负载操作从

GPU 端卸载至交换芯片：Dispatch 阶段源端 GPU 发送带宽占用与内存复制次数

显著下降，GPU 更专注前/反向计算，干线流量减少（常见为>30%），尾时延

得到显著改善，分发阶段时延可下降 20%-50%；Reduce 阶段端到端时延下降

（常见 40%-60%+），回传链路流量显著降低，尾时延与抖动降低，训练步长

更稳定。动态 MoE 模型将 Dispatch Multicast 与 Combine Reduce 卸载到在网

计算，带来显著的带宽节省、尾时延下降、GPU 利用率提升与规模扩展能力增强，

是支撑大规模 MoE 训练与推理的关键基础能力。

2.1.2.5 Scale-Up 可扩展性

Scale-Up 可扩展性需要从互联协议、互联拓扑、物理形态、和互联介质四个关键方

面考虑。

 互联协议：为支持未来大规模 GPU 集群的通信需求，协议设计需具备良好的扩展

性和前瞻性，建议 GPU ID 的关键标识 bit 位预留足够的空间，以满足未来十万

级 GPU 集群规模演进的寻址需求；

 拓扑层面：为避免通信瓶颈，需要线性扩展与无收敛扩展架构，支持一级交换或

者二级交换无收敛扩展；

 物理形态：单机柜高密度扩展与多机柜横向扩展在一定时期内共存，机柜作为基

本扩展单元，需模块化设计，支持“即插即用”式扩容；
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 互联介质：遵循“能铜尽铜，距远用光”原则。单柜内或相邻机柜间优先采用电

互联；多柜的远距离连接需要采用光互联。

中兴通讯依托在高速互联接口 SerDes、以太网、在网计算以及网络交换几大关键技术

方面长期积累，自主研发凌云大容量交换芯片，为 GPU 提供开放、超带宽的互联能力；

互联拓扑层面，从点对点互联升级为大规模全对等互联拓扑，适配数十到数百颗芯片

协同；带宽与时延方面，从百 GB/s、微秒级跃升至 TB 级带宽与百纳秒级时延，满

足海量数据传输；互联协议方面，凌云芯片除支持开放高速互联协议外，兼容 RDMA、

Clink、OISA、Ethlink、SUE、UEC 等主流协议；支持 Reduce、MoE 在网计算，优

化通信语义等，提升整体系统效率。

2.2 单体超节点与Matrix 超节点

超节点硬件形态正加速迭代演进。回顾其演进历程，在超节点探索期，行业普遍采用

“8 卡机型互联”的技术路径，试图通过光互连方式构建大规模的 Matrix 超节点。

例如，NVIDIA 使用 H100/H200 的 8 卡机型通过两层 NVLink 互联构建 256 卡超节

点，但由于光互连的成本及可靠性问题，实际上该产品未能实现大规模商业化落地；

国内部分厂商则借鉴了该设计，同样使用 8 卡机型及两层互联构建了百卡规模的超节

点形态。

随后，NVIDIA调整技术路线，转向在单机柜内构建更多卡的互联架构，确立了“去

光用铜”策略，以降低成本并提升整体可靠性，成功推出系列化的 NVL36/72 单体超

节点机型。单体超节点承袭刀片服务器的设计理念，将计算托盘、交换托盘、液冷分
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配与供电背板一体化集成于单机柜，形成一个独立的 HBD 高带宽域。该架构的核心优

势体现在高集成度上，可在单位空间实现更高算力密度，提高了数据中心基础设施的

利用效率。在硬件架构层面，早期主流采用Cable Tray（线缆托盘）方案，而随着SerDes

技术的持续演进和芯片迭代升级的需求驱动，正交架构方案逐步成为行业新的技术方

向。

虽然单体超节点是行业主流，但早期的 Matrix 互联设计思路并未被摒弃，反而演进

为构建超大规模集群的关键技术支撑。在持续提升单体超节点集成度的同时，行业依

然需要通过柜间互联技术构建更大规模的集群超节点，统一满足高带宽互联、全局地

址分配、内存语义及消息语义兼容等核心需求。

尽管技术路线仍然存在迭代变数，但行业已形成明确共识：既要通过硬件架构创新，

持续提升单体超节点的集成密度与运行稳定性，也要依托灵活的集群扩展模式，实现

整体成本优化。基于对整机柜超节点方案的深度工程实践，中兴通讯创新提出

Orthogonal Electrical eXchange （OEX）正交无背板互联交换架构。该架构在保持

原有整机柜超节点设计优势的基础上，实现了计算托盘和交换托盘的正交无背板互联，

不仅提高了算力密度，保证了高速信号完整性，还进一步增强了系统的可靠性和可维

护性；同时通过开放 OEX 机械与电气规范，支持第三方计算/交换托盘标准化接入，

向后续多厂家协作共同构建开放、融合、创新的国产化整机柜超节点生态，迈出了关

键性一步。
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2.2.1 Nebula 单体超节点

2.2.1.1 OEX 架构创新

OEX 是一种正交无背板互联交换架构，其核心在于实现计算托盘与交换托盘之间的垂

直交叉物理连接，消除传统线缆托盘（Cable Tray）带来的信号损耗与可靠性风险。

该架构通过简化互联路径、提升信号完整性，为构建高密度、高可靠性的单体超节点

提供物理基础。在超节点设计中引入 OEX 架构，通过正交连接器与单级交换拓扑，

实现计算节点与交换节点之间的垂直交叉互连，从而彻底摆脱了传统线缆的束缚。在

高速信号完整性、可靠性和可维护性方面相比传统的线缆（Cable Tray）方案更具优

势，也为后续架构扩展和演进预留了足够的空间。

图 2-1 OEX互联示意图

OEX 架构特性包括：

 信号完整性：通过计算和交换节点的正交无背板互联，显著降低了通信损耗，保

障了信号完整性。在典型 112G 高速信号场景下，整体 SerDes 链路长度缩短了

30%以上，可以消除 Cable Tray 线缆引入的 6.5dB 插损，降低了误码率，保证
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整体端到端链路插损余量大于 3dB，确保大规模集群通信的高速与稳定。

 集成密度： 采用无线缆互联设计，通过消除成千上万根高速线缆，极大地释放了

机柜内部宝贵空间，为在标准机柜内集成更多的算力芯片提供了物理基础，实现

了单位空间算力密度的显著提升。

 可靠性与可维护性： 无线缆设计从根本上减少了因线缆松动、老化或连接器故障

导致的宕机风险。极短的板间互联路径也显著降低了信号衰减，提升了系统长期

运行的稳定性，并简化了运维流程，系统故障修复时间 MTTR 从小时级缩短为分

钟级。

 组网成本：机柜内部交换板内集成参数面 leaf 交换，消除了传统参数面组网 leaf

层级交换机、光模块和光纤使用，降低了系统组网的成本和复杂度。

图 2-2 OEX与 Cable Tray 方案对比

2.2.1.2 工程化验证与标准化进展

中兴通讯率先倡导并实践的 OEX 正交无背板互联交换架构，通过创新的物理布局优
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化，实现了信号传输效率与散热性能的双重跃升。该架构凭借卓越的技术先进性与工

程价值，已于 2025 年成功入选 ODCC“年度重大技术突破”案例。

秉持“开放解耦”的生态理念，中兴通讯积极推动国产 AI 算力底座的标准化进程，并

全面开放 OEX 机械与电气接口规范，支持第三方计算及交换托盘的即插即用，有效降

低了系统集成门槛，促进了产业链的协同创新。

此外，中兴通讯已于 2025 年 6 月在 ODCC 网络工作组成功立项《基于正交架构的超

节点硬件系统》，旨在通过标准化建设加速国产 AI 基础设施生态的成熟与应用落地。

2.2.1.3 超节点液冷技术

超节点的高密度算力必然带来高能耗，因此供电与散热系统必须与算力架构协同设计。

随着半导体先进封装工艺的持续进步，CPU、GPU 及网络交换芯片的集成度显著提升，

单芯片功耗和热流密度持续攀升。过去几年，英伟达主流 GPU 单芯片功耗已从 700 W

跃升至接近 1400 W。根据当前主要厂商的产品路线图，未来 2 至 3 年内单芯片功耗

突破 2000 W 已成为高度可预期的趋势。

超节点作为未来智算中心基础设施的核心形态，通过更高密度的芯片集成和高效互联

显著提升了计算性能与网络效率。然而这一演进也导致单机柜功耗的快速增长。以

NVIDIA 为例：2022 年 H100 超节点机柜功耗约 50 kW；2025 年 GB300 NVL72 机

柜功耗已达120–150 kW；预计2027年Rubin Ultra NVL576机柜功耗将达到约600

kW，未来进一步向兆瓦级机柜演进。在此背景下，液冷散热技术已从可选方案转变为

大规模 AI 基础设施的必选方案。
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从技术成熟度和市场应用角度，当前液冷方案主要分为以下几类：

 单相冷板式液冷：这是目前应用最广泛、工程化最成熟的液冷技术，市场占有率

超过 70%–80%。其原理是通过导热冷板与芯片直接接触，利用单相冷却液对

流带走热量。该方案结构相对简单、可靠性高、维护成本较低，能够有效支撑当

前百千瓦级机柜的散热需求。

 硅基微通道冷板技术：硅基微通道冷板被视为承接未来极高热流密度芯片散热需

求的重要方向。其核心创新在于在硅基材料上直接蚀刻微米级流道，使冷却液在

极小尺度内紧贴热源表面流动，从而显著提升单位面积换热系数。相比传统铜/

铝冷板，硅微通道冷板具有更低的界面热阻、更高的热流密度承受能力，特别适

用于 HBM 堆叠、Chiplet 多芯片模块等热源高度集中的先进封装形态。目前该技

术仍处于加速验证与小规模商用阶段，但已被英伟达（如：Vera Rubin）等多家

厂商视为下一代高功率 GPU/ASIC 的关键散热路径。

 两相冷板液冷：在传统冷板基础上引入相变机制：冷却工质在冷板内部沸腾吸热，

汽化蒸汽在冷凝段回流，实现高效热量迁移。该方案在较低流量条件下即可实现

极高的散热效率，理论上更适合未来极端高功耗（>2000 W/芯片）场景。目前

工程化程度正在快速提升，但面临工质选择、相变稳定性及系统可靠性等挑战。

 浸没式液冷：工程化程度较高的全液冷方案，将服务器整体浸没于绝缘冷却液（单

相或两相）中，通过自然/强制对流直接带走热量。其优势在于散热能力强、结构

简化、对高密度器件兼容性好，能够支撑百千瓦乃至兆瓦级机柜部署。近年来，

随着氟化液等工质的成熟，单相/两相浸没式液冷在超大规模数据中心中的部署比
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例持续上升。

当前阶段，单相冷板液冷（或单相冷板结合局部风冷）仍为主流方案，能够可靠满足

百千瓦级机柜的散热需求。然而，随着芯片功耗和热流密度的持续提升，单相冷板正

逐步接近其物理极限。未来 2–5 年内，硅基微通道冷板、两相冷板液冷及浸没式液冷

等高性能方案将逐步成为主流，共同支撑兆瓦级 AI 工厂的热管理需求。

液冷技术的全面普及，不仅是散热能力的升级，更是智算基础设施向高能效、低碳化、

可持续方向演进的必然趋势，标志着数据中心从“算力导向”向“能效导向”的结构

性转型。数据中心运营商需提前规划电源、冷却基础设施及运维体系，以适应这一技

术代际跃迁。

2.2.1.4 极端功率密度的供电方案

当前，数据中心机柜内主流配电方案已由早期的 12V 演进至 48V/54V。该方案通过

提升电压等级显著降低了承载电流，在一定阶段内有效缓解了配电路径上的欧姆损耗，

优化了材料成本与整体转换效率。然而，随着超节点功率密度的爆发式增长，48V 体

系的物理局限性正日益凸显。

以额定功率 120 kW 的超节点机柜为例，若采用 54V 总线（Busbar）配电，其承载

电流将高达约 2222 A。如此极端的电流强度不仅会产生巨大发热，还要求大幅增加

铜质母排的截面积以控制压降。这不仅导致母线系统自重与成本激增，甚至在极端场

景下需为供电路径配置专用液冷回路，严重侵占了 IT 设备的可用算力空间。

另外从经济效率考虑，电网侧到芯片核心的完整供电链路也涉及复杂的能量转换级联
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（AC-DC、DC-DC 等）。

 级联损耗： 每一级转换通常伴随 2%–5% 的能量损失。累加效应导致市电到

处理器核心的端到端转换效率显著下降，典型总效率损失维持在 5%–12% 区

间。

 OPEX 敏感度：电力成本通常占据数据中心运营支出（OPEX）的 30%–50%。

在超节点时代，能源成本的权重被进一步放大。供电效率每提升 1%，对于大规

模智算集群而言都意味着巨大的经济回报与可持续性价值。为突破功率壁垒，行

业正加速转向 HVDC（High-Voltage Direct Current 高压直流） 配电架构。

其核心逻辑是将机柜级或排级配电电压从传统的 48V/54V 提升至更高量级，目

前行业主流演进方向包括 ±400V DC（等效 800V） 与 800V DC 直流系统。

HVDC（高压直流） 架构的核心优势：

 电流强度指数级下降： 在同等功率下，电流可降低 8–16 倍。这允许采用更精

细、更轻便的配电组件，铜材用量可减少 40%–50%，为计算与冷却组件释放

关键空间。

 配电损耗大幅缩减：有效抑制传输热损，预计可提升整体端到端效率 3%–5%。

 支撑兆瓦级部署： 轻松承载从当前 100–150 kW 向 250 kW 至 1 MW+ 级

机柜的演进需求。

 架构扁平化： 减少中间能量变换层级，从根本上缓解功率因数校正（PFC）与无

功功率管理压力。
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目前，全球头部科技巨头正通过开源社区与技术白皮书加速推进 HVDC 的商业化进

程：

 OCP Diablo 400 项目： 由 Microsoft、Meta 与 Google 联合推动。该标准

定义了 ±400V DC 解耦式电源机架（Sidecar），支持机柜功率从 100 kW 向

1 MW 的平滑扩展，并标准化了机械接口与安全电气要求，构建了跨厂商的兼容

生态。

 NVIDIA 800VDC 生态： 英伟达正协同 CoreWeave、Oracle 等合作伙伴，布

局 800V 直流电源架构，以支撑单机柜 1 MW 的超高密度计算环境。其发布的

《面向下一代 AI 基础设施的 800VDC 架构》明确了当前至 2030 年的三阶段

演进路径，为产业链提供了清晰的投资与技术路线指引。

尽管 HVDC（高压直流） 潜力巨大，但在大规模落地前仍需解决以下工程化命题：

 安全规范与绝缘防护： 需针对高压直流下的电弧抑制、绝缘击穿风险制定严苛的

工业级标准，保障运维安全。

 供应链成熟度： 高功率密度 DC-DC 转换器、高压连接器及直流断路器等关键

组件需进一步验证其长期可靠性并降低成本。

 生态互操作性： 跨厂商的物理接口、冗余协议及监控 telemetry 的统一仍需行

业协作。

 HVDC（高压直流） 是数据中心供电体系迈向更高能效、更高密度的必然路径。

智算中心运营商应前瞻性地布局高压电源基础设施与冷却体系，以应对下一代 AI
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算力集群的能源挑战。

2.2.1.5 方案先进性

 正交架构满足未来演进趋势： 中兴通讯 OEX 超节点架构符合当前数据中心向高

密度、高能效比和块化演进的技术方向，为下一代 AI 基础设施在算力密度、互联

带宽与能效比方面提供了可落地的工程实现方案。该架构采用正交无背板互联设

计，彻底摒弃传统 Cable Tray 线缆架构的物理限制，采用正交连接器与单级交换

拓扑，实现计算节点与交换节点的垂直交叉互连，显著提升系统性能和扩展性。

 大容量交换芯片+Link 协议，兼容多厂家 GPU：大容量交换芯片与多样化 Link

协议的支持，使 OEX 架构能够兼容多厂家 GPU，满足不同应用场景需求。

 组件化设计，灵活适配不同 GPU：关键模块采用组件化设计，通过更换 UBB 模

组可实现不同厂家 GPU 兼容。这种设计对各种协议交换芯片的快速适配开发，支

持不同 GPU 超节点的快速部署和升级，最小化改动即可满足多样化需求。

综上所述，中兴通讯 OEX 超节点架构通过正交设计、大容量交换芯片和组件化设计，

实现了高性能、高兼容性和高灵活性的统一。该架构面向未来数据中心建设，支持构

建可扩展、高能效的 AI 推理与训练平台，能够满足业务智能化的演进需求。
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2.2.2 Nebula Matrix 集群超节点

2.2.2.1 Matrix 集群超节点的演进路径

在单体超节点技术趋于成熟，并且实现 64 卡、128 卡等高密度集成后，为满足超大规

模模型训练的极致需求，业界开始探索基于单体超节点构建更大规模的 Matrix 集群超

节点。这一发展阶段主要形成了两条核心技术路线：

 “电交换+光互联”技术路线

该路线通过高性能电交换机实现跨机柜 GPU 间的互联。受铜缆传输距离限制，跨机柜

场景需采用光纤介质完成互联。传统电交换机采用包级交换机制，在业务适配性上具

备显著的灵活性，可满足多样化的互联需求；因涉及光电转换环节，相较于全光方案，

在功耗控制与时延表现上可能面临一定挑战/损耗。

综合来看，电交换技术成熟度高、业务普适性强，凭借这些核心优势，它已成为当前

业界构建集群超节点的主流技术选择。

 “光交换+光互联”技术路线

与传统电交换技术不同，光交换机采用光路交换机制，可支持任意两条光路间的直接

映射。由于无需进行光电转换环节，光交换在时延优化与功耗降低方面具备天然优势。

但受限于光路交换的技术特性，其难以实现传统电交换机那样的包级路由能力，在逻

辑拓扑设计上受到较强的约束。

以 Google 为例，其利用 OCS 光交换机构建了 3D-Torus 拓扑，但此类拓扑对上层业

务提出了特殊适配要求，需要针对业务调度、集合通信等核心环节进行定制化优化。
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尽管近年来光交换相关技术实现了快速迭代，且有 Google 等互联网巨头完成了商业

化落地，但整体生态仍不够完善，同时对系统整体构建的技术门槛要求更高，因此目

前业界多数企业仍处于观望阶段。

当前主流集群超节点部署方案多采用电交换+光互联架构，因其技术成熟、生态完善、

兼容性强。基于该技术方案，中兴通讯现有 Nebula X32 单体超节点可灵活扩展，构

建形成 Nebula Matrix X256/800 集群超节点；面向未来，依托更高密度的 Nebula

X128 单体超节点，更可进一步扩展至 Nebula Matrix X8192/16384 超大规模集群，

充分满足超大规模模型训练的算力需求。

与此同时，中兴通讯并未止步于此，而是积极探索光交换与电交换的互补协同，旨在

融合光传输的高效与电交换的灵活，以支持未来超大规模集群的可扩展性需求。

2.2.2.2 Scale-Up/ Scale-Out 融合设计

在追求构建大规模 Matrix 集群超节点的同时，必须思考一个核心问题：Matrix 超节

点的物理规模边界与收敛比设计，需在性能与成本间寻求平衡。

AI 智算业务场景下 GPU 间的高性能互联网络，根据承载业务的不同，通常分为

Scale-Up（纵向扩展）和 Scale-Out（横向扩展） 网络。

 Scale-Up 网络：承载 AI 智算中对网络性能要求极高的张量并行和专家并行等

业务通信流量，属于 HBD（高带宽域）。

 Scale-Out 网络： 承载数据并行和流水并行等对网络性能要求相对低一些的业

务通信流量。
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随着模型参数规模的增加，张量并行和专家并行规模随之扩大，对超节点内 HBD 域

规模的需求也越来越大，这必然超越单个机柜的物理极限。因此，如何构建大规模的

集群超节点网络，既需要满足超节点内部 GPU 间对于网络的高性能要求，又要支持

灵活的规模扩展，成为了一个需要平衡性能、成本等多方面因素的设计课题。

模型测算显示，扩大 HBD 域对于模型性能会有一定的收益，但 HBD 域到了一定规模

以后，收益就会逐渐趋缓。在未来 2-3 年内模型参数普遍达到 10 万亿量级时，超节

点内部的 HBD 域可以局限在机架内部，机柜内和机柜间互联带宽采用一定的收敛比，

达到应用与工程实现之间最佳的平衡。针对未来模型演进可能会存在更大的互联域需

求，机柜间 GPU 也可以带宽无收敛的互联设计以构建更大的 HBD 域。相对于传统 8

卡 GPU 服务器，在跨越多个单体超节点的集群超节点内部，Scale-Up 网络和

Scale-Out 网络的边界日益模糊。为了既可以满足集群超节点对于 HBD 域灵活的规

模需求，又可以满足集群超节点间的互联需求，构建一张 Scale-Up 和 Scale-Out 融

合的超节点互联网络，成为大势所趋。这种融合架构不仅能保障集群超节点部署和扩

容的平滑性，相比独立组网模式，更能显著降低 TCO（总拥有成本）。
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图 2-3 Scale-Up 和 Scale-Out 融合和独立组网对比

基于此，在机架间通过光互联+交换芯片+高性能网络协议构建一张更大规模、更高性

能的网络，实现 Scale-Up 和 Scale-Out 网络的融合，统一承载 GPU 间的所有 AI

计算通信业务，构建超级算力的集群超节点已成为业界迫切的诉求。正交架构解决了

“算力如何做得更密”的问题，而光互联+交换芯片+高性能网络协议则应对了“算力

如何连得更广”的挑战。这种从底层物理架构到上层系统拓扑的全方位思考，使其在

激烈的市场竞争中，展现出独特的技术韧性和发展潜力。

3 以超节点为核心：打造 AI 工厂

3.1 核心理念：从项目到工厂的范式转变

AI 工厂，是以超节点为核心，集成全栈软硬件协同能力，实现从数据输入到智能输出

（Token）的标准化、规模化、自动化生产系统。

传统以项目为中心的 AI 开发模式，往往受困于基础设施孤岛、资源利用率低效及部署

周期漫长等瓶颈。AI 工厂范式旨在彻底颠覆这一现状，其核心在于将 AI 能力建设从

传统的“手工作坊”升级为标准化的“现代化流水线”。

AI 工厂通过全栈软硬协同优化，将数据输入高效转化为 Token，正如传统工厂将原材

料精炼为高价值制成品。构建 AI 工厂，其战略意义远不止于缓解当下的算力瓶颈，更

在于数字时代对技术主权与敏捷性的重新定义。
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3.2 构建路径

AI 工厂是一个以“超节点”为核心的生产力平台，集灵活性、可扩展性与高可靠性于

一体。客户可以依据自身业务场景，像搭积木般自由定义“工厂”的规模、性能与成

本模型。这种从底层芯片到上层软件的全栈协同与深度定制能力，正是算力竞争下半

场的决胜焦点。

要实现以超节点为核心的 AI 工厂，关键在于超越传统的硬件堆叠思维，将分散的算力

资源系统性地转化为可高效输出的“智能生产力”。具体可通过以下三个层面展开：

首先，在物理层，重塑底层算力单元，构建高性能基础模组。利用先进的光互联与高性

能交换技术，突破传统机柜的物理边界，将成千上万个 GPU 互联为一个统一的高带宽、

低延迟网络域，形成如同超级芯片般的“集群超节点”。这彻底解决了大规模并行训

练中的通信瓶颈，为万亿参数模型的运行提供了极致性能的物理底座。

其次，在系统层，实现软硬全栈垂直优化，激活系统协同效能。AI 工厂不仅仅是硬件的

集合，更强调软件栈对硬件资源的深度调度与优化。通过定制化的集群操作系统，实

现对超节点内异构算力、分布式内存及复杂网络拓扑的统一编排与智能调度。这种软

硬一体的设计，能够最大化资源利用率，并通过重叠计算与通信来隐藏延迟，确保每

一份算力都转化为实际产出。

最后，在架构层，采用模块化灵活组装，实现业务敏捷适配。基于超节点的标准化与解

耦设计，企业可以根据业务规模和模型需求，灵活调整工厂的产能。同时，引入算力

仿真平台构建“数字孪生”，在虚拟环境中预先推演不同配置下的性能与成本，精准

定位最优方案。这种“仿真指导组装”的模式，使 AI 工厂能灵活应对多样化需求：一
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方面通过仿真规避试错风险，精准规划；另一方面通过弹性扩展快速响应业务变化。

最终，它得以演进为一个能持续自我优化、赋能业务的现代化 AI 生产中心。

3.2.1 大规模集群网络：突破集群扩展的规模限制

为了突破单点瓶颈、整合分散资源，同时匹配指数级增长的算力需求，大规模智算集

群的建设通过“两步走”的方式来突破物理边界，实现算力的极致扩展：

第一步，通过 Scale-Out 网络实现单数据中心内的集群构建。

以 Nebula 单体超节点为基本单元，利用高性能 Scale-Out 网络进行横向扩展，搭建

基础的智算资源池。针对万亿参数级超大模型的极致性能需求，可进一步利用光互联

技术将多台单体超节点进行逻辑整合，形成 Nebula Matrix 集群超节点，并在此基础

上叠加 Scale-Out 网络，实现算力在数据中心（DC）内部的高密度、高性能聚合，

打造单数据中心智算集群。

第二步，通过 Scale-Across 网络实现跨数据中心的广域算力互联。

随着算力需求的持续增长，单数据中心受空间、供电、散热等物理条件制约，算力架

构亟需突破建筑边界。在完成单数据中心集群构建的基础上，利用 Scale-Across 网

络配合长距光互联技术（如 OTN），将地理位置分散的多个智算数据中心实现全域互

联。同时引入独立的算力网关设备，凭借其大缓存特性及快速拥塞控制反馈机制，解

决长距传输的时延与拥塞挑战。这一步标志着智算集群从“单点算力极致”走向“广

域算力协同”，为 AI 工厂提供了近乎无限的算力扩展空间。

综上所述，AI 工厂以单体超节点和集群超节点为起点，通过 Scale-Out 网络横向扩
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展构建单 DC 集群，再通过 Scale-Across 网络跨越数据中心边界，实现多 DC 算力

的广域聚合，形成大规模跨域智算集群。这一端到端的全栈互联演进路径，可全方位

突破集群扩展的规模限制，助力打造具备真正无限扩展能力的 AI 工厂的算力底座。

3.2.2 软件栈：超节点的“操作系统”

3.2.2.1 集群管理

超节点的强大硬件能力，需要通过一套深度协同、全栈优化的软件系统才能被充分抽

象、调度与释放。这套软件栈扮演着超节点“操作系统”的角色，其核心作用在于将

离散的高性能芯片、异构内存与高速网络等物理资源，转化为高效、稳定、易用的一

体化算力服务。其主要价值体现在以下六个层面：

 统一虚拟化资源池与智能编排：软件层首先对超节点内所有硬件资源进行抽象与

池化，形成统一的虚拟化算力、内存与存储资源池。通过智能资源调度器，根据

AI 训练、推理等不同工作负载的需求，动态、弹性地分配和隔离资源，实现多任

务、多租户环境下的共享与安全隔离。这包括对异构内存（如 HBM、DDR）的

统一纳管与池化，使应用程序能够超越单卡物理显存限制，透明地使用聚合后的

分布式大内存空间。

 极致通信优化与拓扑感知：针对超节点内部高带宽域及跨节点互联的复杂网络拓

扑，软件栈提供深度优化的通信库（如集合通信库）和运行时系统。这些组件具

备拓扑感知能力，能够自动识别最优的数据传输路径，避免网络拥塞，最大化利

用 TB 级互联带宽。同时，通过实现计算与通信的高效重叠、梯度压缩、异步化
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等技术，将通信开销隐藏于计算过程之中，从而将系统整体效率推向理论峰值，

使大规模分布式训练的线性加速比接近理想值。

 异构计算统一调度与编译器优化：支持 CPU/GPU/DSA 等异构单元统一调度；

高级编译器自动切分计算图，进行算子融合、内核生成、流水线调度，提升单卡

效率与跨芯片协同。

 全栈可观测性与智能运维：构建芯片→节点→集群多级监控体系，实时可视化功

耗、温度、性能等指标；结合 AI 运维，实现故障预测、根因分析，定位时间从小

时级缩短至分钟级；支持检查点续训、服务无缝迁移，保障业务连续性。

 高可靠冗余机制：在超节点层面，超大规模的集群故障概率显著增高。芯片、机

柜数量的剧增，使得硬件故障（如芯片损坏、链路中断）成为常态。且大模型训

练中，故障爆炸半径会随部署规模扩大而变大，任意硬件故障都可能导致整个训

练任务不可用，冗余节点可避免因此类问题引发的业务中断。冗余节点搭配对应

的故障切换机制，能大幅缩短故障恢复时间，保障训练任务按计划推进，避免算

力和时间成本的浪费。软件调度系统可引入冗余算力节点避免单点故障导致的任

务中断、降低故障恢复的时间与算力成本、保障大规模并行计算的性能稳定性、

支撑集群的弹性扩展与灵活调度。

 “算力-电力”协同的绿色调度：引入“算电协同”策略，结合任务优先级、功

耗模型与实时电价，动态调整调度与频率，在保障 SLA 前提下平滑功率波动，降

低能耗与运营成本。
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3.2.2.2 集群调度

集群部署的大规模 LLM 推理服务，需要兼顾资源成本效率与用户体验，在吞吐量和实

时响应性之间取得权衡。帕累托最优作为多目标优化领域的核心理论，在评估 LLM 推

理系统性能时，其帕累托前沿曲线能清晰展现吞吐与时延的权衡关系，为集群算力调

度提供了核心理论依据。中兴通讯的 Turbo 集群算力调度服务，能够实时感知集群负

载和业务流量波动，动态调整资源配比，通过智能调度实现帕累托寻优。

在集群环境部署 LLM 推理服务时，主流架构可分为 PD（Prefill/Decode）聚合以及

PD 分离两大类。本质上是围绕推理的两个核心阶段（Prefill 和 Decode），在集群资

源分配和任务调度逻辑上的不同实现。

 PD 聚合架构：Prefill 和 Decode 共享相同的 GPU 资源和并行策略，适合追求高

吞吐的批量处理场景，如离线推理、批量内容生成。

 PD 分离架构：将推理过程中 Prefill 与 Decode 两个阶段解耦，为每个阶段独立

分配 GPU 资源，分别设置并行策略。通过规避 Prefill 和 Decode 两阶段间的相

互干扰，能够满足严苛 SLA 约束下的服务需求，更适合时延敏感的场景。

针对当前主流框架在国产算力卡上的适配挑战，中兴通讯联合主流 GPU 厂家通过框架

调优、算子优化、通讯加速、智能调度等技术手段，实现了国产高性能算力卡性能提

升。

 框架层面：采用 Chunk Prefill、计算与通信双流重叠、MTP（Multi-Token

Prediction）等优化方案，大幅提升推理效率。Chunk Prefill 通过分块预填充技

术，通过将长输入序列分割成多个较小的子块，逐块进行处理，降低了显存峰值
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使用量，提升并发度；MTP 策略在 Decode 阶段将单个 token 的生成，转变成

多 token 的生成，从而提升推理的性能；EPLB（Expert Load Balancing with

Redundancy）优化策略通过复制热点专家副本来创建冗余专家，实现专家负载

均衡优化，解决不同 EP 专家的负载不同导致快慢卡问题，从而提升推理性能。

 算子层面：通过 MLP 的 UP 和 Gate 矩阵合并，只进行一次矩阵乘，提升计算密

集程度，在推理的 Decode 阶段的性能有显著收益。

 通信层面：支持 DeepEP 功能，优化 MoE 的分发（Dispatch）与合并（Combine）

操作，支持 IBGDA（Intelligent Bandwidth-Guided Data Aggregation）功能，

提升机间通信效率、降低延迟、提升吞吐。

 服务层面： 通过推理服务多副本部署、丰富的调度机制以及自动扩缩容，实现业

务灵活调度和高可靠性。

3.2.2.3 算力仿真平台

在 AI 大模型训练与推理需求爆发式增长的背景下，算力资源的高效规划、硬件选型

的科学决策以及并行策略的优化配置，已成为企业降低成本、提升研发效率的核心诉

求。传统依赖实际硬件部署测试的方式，不仅存在周期长、成本高、资源浪费的问题，

还难以全面覆盖不同模型、硬件、超参组合下的性能表现，无法快速锁定最优技术方

案。

在此背景下，算力仿真平台应运而生。它如同为 AI 基础设施构建了一个“数字孪生”

体，通过数字化建模，在虚拟环境中精准复刻算力系统的运行逻辑，实现对硬件选型、
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并行策略和系统配置的性能预测与方案验证。这不仅是降低研发成本的工具，更是提

升决策科学性、加速 AI 创新的关键引擎。

算力仿真平台基于硬件参数（包括显存、通信带宽等），超参（如 GBS 等），模型结

构等（如 Attention 头数等），并结合算子和通信带宽实测数据，对不同规模、不同

硬件配置下的训练/推理场景下的端到端性能进行建模，并结合优化特性，对关键性能

指标进行遍历和评估。通过持续分析与迭代，选择端到端性能最优的并行策略和方案，

输出端到端性能数据。

图 3-1 算力仿真平台

以 Qwen3-235B，某国内 GPU 卡为例，分析不同超节点形态的训练性能。

（1）算子建模：分析 QKV_Linear、Flash-Attention、O_Linear、Gating_Linear、

MoE MMA 五 类 算 子 的 算 力 强 度 ， 发 现 只 有 MoE MMA （ Matrix

Multiply-Accumulate）算子强度随 EP 增加而变化，其他模型算子都不变。MoE MMA

算子强度随 EP 增加而变化，但随着 EP 增大增长变缓而逐步逼近硬件上限。
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图 3-2 MoE MMA 算子算力强度

（2）通信建模：分析不同超节点形态下计算和通信耗时影响。分析发现，在 2000 卡

的集群规模下，随着超节点规模增大，最优切分的性能逐渐增加，收益主要来源于 MoE

算子性能提升；该收益存在边际效应：当超节点规模可达 64 卡及以上时，性能基本趋

于一致。

图 3-3 Qwen3-235B 不同超节点形态最优切分下各部分耗时
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（3）TFLOPS 性能评估：在不同集群规模下，探究超节点形态对模型性能的影响。分

析发现，不同超节点形态最优切分不同，随着规模增大，最优 EP 也逐渐增大；64、

128、256 超节点性能基本一致，在 2K 卡规模下，256 卡超节点相比 32、16 卡超节

点高 4%，相比 8 卡服务器高 15%；

通过算力仿真平台进行业务模拟和性能推演，分析表明千亿参数规模的大模型

（Qwen3-235B）训练场景，在同样规模下，随着超节点形态增大，单卡训练性能逐

渐增加，收益主要来源于 MoE 算子性能提升；但收益存在边际效应。

同样分析发现千亿参数规模大模型（DeepSeek-671B）在推理场景，在同样规模下，

随着超节点形态的增加，HBD 域扩大，All-to-All 通信时间的减小，单卡推理性能逐

渐增加；但收益存在边际效应。

算力仿真平台通过建模与预测，显著降低硬件选型与并行策略设计的试错成本，已成

为 AI 系统设计流程中的关键辅助工具。中兴通讯已将其深度集成至研发闭环，支持从

架构设计到部署优化的全链路决策。

对于客户而言，选择具备强大仿真能力的合作伙伴，意味着能在复杂的算力迷宫中找

到通往高效、低成本 AI 创新的捷径。

3.3 AI 工厂的核心优势与商业价值

通过部署经过全栈验证的 AI 工厂，企业将在战略高度构建起多维度的竞争优势，并在

以下四个层面实现商业价值的深度释放：

 缩短业务上线周期：依托经过预验证的软硬件协同配置，减少现场集成与功能调
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试的时间。通过标准化的部署流程，提高资源利用效率，加快应用从开发到生产

环境的部署速度，从而缩短项目交付周期。

 支持架构平滑演进：基于模块化与解耦设计，实现计算、存储与网络资源的独立

弹性伸缩。该架构能够适应业务规模的增长，支持算力容量的线性扩展，避免因

业务升级而频繁重构基础设施，延长硬件资产的使用生命周期。

 优化总体拥有成本（TCO）：通过架构设计优化提升资源密度与利用率，配合自

动化的运维体系，降低对人工干预的依赖。在保障计算性能指标的前提下，有效

控制资本支出（CAPEX）与运营支出（OPEX），实现性能与成本的平衡。

 降低系统集成风险：采用经过大规模实践验证的架构设计及经过兼容性认证的组

件列表，减少异构集成带来的不确定性。规避因硬件选型差异或接口不匹配导致

的兼容性问题，保障系统运行的稳定性与业务的连续性。

4 中兴通讯：全栈协同的 AI 基础设施构建者

构建以超节点为核心的 AI 工厂，是一场涉及底层芯片、整机、集群与软件的复杂系统

工程。中兴通讯将通信领域的系统工程方法、大规模组网技术及高可靠性设计经验应

用于 AI 基础设施建设，重点解决智算中心在互联带宽、系统稳定性及工程交付方面的

技术挑战。

作为全栈协同的 AI 基础设施构建者，中兴通讯的核心能力不仅体现在技术的深度整合，

更体现在对开放生态的坚定承诺，具体包括：
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图 4-1 中兴通讯：全栈协同的 AI 基础设施构建者

 芯片与基础算法

中兴通讯具备 CPU、DPU 及全系列交换芯片的自主设计能力。依托自研交换芯

片与 SerDes 技术的深厚积累，我们将通信领域的高性能互联机制应用于智算场

景，解决传统集群中的通信瓶颈问题，提供支持 Scale-Up 与 Scale-Out 融合的

开放网络方案。同时，基于底层算法优化能力，通过对国产 GPU 架构的算子调

优及垂直领域模型适配，实现算法与硬件的匹配，提升系统有效算力。

 复杂架构设计能力

我们将通信设备在长期高可靠、高并发、低时延运行中积累的系统设计经验应用

于 AI 基础设施。基于在硬件结构、散热工程及 EDA 等领域的技术储备，设计了

正交无背板互联架构，实现无外部线缆的高密度超节点，提升信号完整性与散热

效率。依托覆盖芯片、整机、集群、软件及数据中心的跨领域研发体系，实现软

硬件的协同设计。此外，引入电信级运维标准，构建具备故障自愈与性能自优功

能的智能运维体系，保障大规模 AI 集群的连续运行。
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 全球工程交付能力

依托覆盖全球 160 个国家的服务网络与本地化团队，建立了针对超大规模、复杂

环境的工程交付体系。通过标准化的模块化设计与自动化运维平台，将 AI 集群

建设转化为可复制、流程化的交付作业，确保客户 AI 工厂按计划上线并保持高

效运营。

 标准引领与开源开放

中兴通讯致力于构建开放解耦的国产 AI 生态。通过开放 OEX 架构规范，支持第

三方算力组件的兼容接入。同时，积极参与国内互联标准制定，开源 Co-Sight

智能体通信协议，推动 AI 工厂软件生态的标准化与共建。

中兴通讯通过底层硬件至顶层软件的技术整合，形成涵盖芯片、整机、网络与软件的

全栈解决方案，支持智算基础设施的构建与部署。

展望未来，Token 经济学已成为衡量智算基础设施竞争力的核心理论框架。其内涵不

再局限于物理算力的简单堆叠，而是聚焦于智能产出的实际效能与综合成本。中兴通

讯 AI 工厂与超节点架构的设计逻辑，正是遵循 Token 经济学原理，通过架构重构与

全栈协同，推动价值导向从“每秒浮点运算次数（FLOPS）”向“每瓦 Token 数”的

关键转变，从而在激烈的产业竞争中确立成本与效率优势。

面向智能化浪潮，中兴通讯将继续秉持开放解耦的理念，提供涵盖硬件、软件及交付

的全栈完整方案。中兴通讯将携手全球产业伙伴，共同构建面向未来的开放智算生态，

推动 AI 技术的普及化与标准化，赋能千行百业。
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5 缩略语表
缩略语 英文全称 中文全称

AI Artificial Intelligence 人工智能

ASIC Application-Specific Integrated Circuit 专用集成电路

CAPEX Capital Expenditure 资本性支出

CXL Compute Express Link 计算快速链接

DSA Domain-Specific Architecture 领域专用架构

EPLB Expert Load Balancing with Redundancy 基于冗余的专家负载均衡

EP Expert Parallelism 专家并行

HBD High-Bandwidth Domain 高带宽域

HBM High Bandwidth Memory 高带宽内存

IBGDA Intelligent Bandwidth-Guided Data

Aggregation

智能带宽引导数据聚合

IPC Instructions Per Cycle 每周期指令数

LLM Large Language Model 大语言模型

MoE Mixture of Experts 混合专家模型

MTP Multi-Token Prediction 多 Token 预测

MMA Matrix Multiply-Accumulate 矩阵乘加内核

MFU Model FLOPs Utilization 模型算力利用率

NIC Network Interface Card 网络接口卡

NVMe NVM Express 非易失性内存主机控制器接口

规范

OCS Optical Circuit Switch 光交换机

OEX Orthogonal Electrical eXchange 正交无背板互联交换

OISA Omni-directional Intelligent

Sensing Express Architecture

全向智感互联

OPEX Operating Expense 运营支出

OTN Optical Transport Network 光传送网

PCIe Peripheral Component Interconnect

Express

高速串行计算机扩展总线标准

PD Prefill & Decode 预填充与解码

PHY Physical Layer 物理层
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RoCE RDMA over Converged Ethernet 以太网上的RDMA

Scale-Across Scale-Across Data Center 跨数据中心扩展

Scale-Out Scale-Out 横向扩展

Scale-Up Scale-Up 纵向扩展

SerDes Serializer/Deserializer 串行器/解串器

TCO Total Cost of Ownership 总体拥有成本

TP Tensor Parallelism 张量并行

TTFT Time To First Token 首字延迟

UALink Ultra Accelerator Link 超级加速器链路

UEC Ultra Ethernet Consortium 超级以太网联盟
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