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Over the past few years, deep reinforcement learning 
(RL) has made remarkable progress in a range of ap‐
plications, including Go games, vision-based control, 
and generative dialogue systems. Via error-and-trial 

mechanisms, deep RL enables data-driven optimization and 
sequential decision-making in uncertain environments. Com‐
pared to traditional programming or heuristic optimization 
methods, deep RL can elegantly balance exploration and ex‐
ploitation and handle environmental uncertainties. As a result, 
this learning paradigm has attracted increasing attention from 
both academia and industry and is paving a new path for large-
scale complex decision-making applications.

However, when scaling deep RL to more practical sce‐
narios, several challenges inevitably arise that require further 
consideration and urgent attention in the field. Firstly, the 
dominant model-free deep RL is sample-demanding, as the 
learning process requires massive interactions with the real 
environment. This makes it unrealistic to implement deep RL 
algorithms in some sampling-expensive applications, such as 
robotics. Secondly, the learned policy is sensitive to changes 
in the environment and can easily encounter catastrophic fail‐
ures when deployed in a new or unseen environment. In some 
time-sensitive applications, such as autonomous driving, the 
ability to quickly adapt to new scenes is crucial. Thirdly, in 
complicated scenarios, the real state of the Markov decision 
process may be unavailable to access, and multiple objectives 
may exist in scheduling. In this case, previous deep RL algo‐

rithms for a single agent with fully observable states cannot 
achieve the desired goal. These concerns weaken the scalabil‐
ity of deep RL, and scientific investigations are necessary to 
meet realistic requirements.

This special issue aims at overcoming previously mentioned 
challenges and contributes to applying deep RL to more realis‐
tic scenarios.

The call for papers of this special issue has inspired wide 
interest and attracted multiple submissions with high quality. 
After two-round peer reviews, we selected four papers that try 
to tackle our interested deep RL problems for publication in 
this special issue. The topics of these published articles in‐
clude offline reinforcement learning, meta reinforcement learn‐
ing, and multi-agent reinforcement learning. In terms of appli‐
cations, these papers range from electroencephalogram (EEG) 
brain-machine interface, the grid power management to auto‐
matic radar detection with the help of deep RL.

The first paper, titled “Double Deep Q-Network Decoder 
Based on EEG Brain-Computer Interface,” focuses on EEG 
signal processing. In detail, this work adopts a deep double-Q 
network for the decoding of EEG signals. In comparison to pre‐
vious pattern recognition or signal process methods, deep RL 
has more adaptability of signal decoding modules in brain-
machine interface to changing environments. The experimen‐
tal results show the effectiveness of more precise EEG sig‐
nals’ decoding with deep RL.

The second paper, titled “Multi-Agent Hierarchical Graph 
Attention Reinforcement Learning for Grid-Aware Energy 
Management,” considers the grid power management problem. 
Technically, uncertainty of environments is involved in 
decision-making, and multi-objectives guide the optimization 
process. As a result, multi-agent reinforcement learning is in‐
troduced to improve the search efficiency in the large state 
space, exploit the topology structure of tasks and enhance co‐
operation between agents at multi-levels. The proposed multi-
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agent hierarchical graph attention reinforcement learning can 
well manage the grid energies and significantly reduce voltage 
violation numbers.

The third paper, titled “A Practical Reinforcement Learn‐
ing Framework for Automatic Radar Detection,” studies radar 
detection in a data driven way. Noting that manual adjustment 
in radar detection is time and money expensive, the authors in 
this work propose automatically achieving radar detection with 
the combination of offline RL and meta RL. The proposed 
method can reduce real-world interaction complexity and en‐
able fast adaptation to new environments. Empirical results in‐
dicate the high efficiency of RL-based radar detection.

The fourth paper, titled “Boundary Data Augmentation for 
Offline Reinforcement Learning,” investigates the fundamen‐
tal issue in offline RL. Theoretically, offline RL can boost data 
efficiency. However, the existence of distribution shift results 
in unreliable value estimation, and this makes it difficult to 
construct offline RL algorithms in risk sensitive scenarios. To 
address these concerns, this work proposes the use of genera‐
tive adversarial nets to augment the dataset and calibrate the 
confidence in value estimation. The experimental results show 
the great potential of generative modeling for improving offline 
RL performance.

In summary, we hope this special issue will accelerate the 
scientific investigation of applicable RL in more general 
decision-making or optimization scenarios. The articles in this 
special issue are not only innovative but also provide precious 

experimental evidence and practical experience in the field. 
These contributed works bring more insights into algorithm de‐
sign, bottleneck circumventing, and real-world deployment of 
deep RL and will facilitate the development of deep RL. Last 
but not least, we sincerely express our gratitude to all authors, 
reviewers, and the editorial board, who have made efforts to 
the success of this special issue.
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Abstract: Brain-computer interfaces (BCI) use neural activity as a control signal to enable direct communication between the human brain 
and external devices. The electrical signals generated by the brain are captured through electroencephalogram (EEG) and translated into neu‐
ral intentions reflecting the user s behavior. Correct decoding of the neural intentions then facilitates the control of external devices. Rein‐
forcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals (rewards) from the environment, building 
a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments. However, using traditional 
reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization. Therefore, in this paper, we 
use deep reinforcement learning to construct decoders for the correct decoding of EEG signals, demonstrate its feasibility through experi‐
ments, and demonstrate its stronger generalization on motion imaging (MI) EEG data signals with high dynamic characteristics.
Keywords: brain-computer interface (BCI); electroencephalogram (EEG); deep reinforcement learning (Deep RL); motion imaging (MI) gen‐
eralizability
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1 Introduction

Brain-computer interface (BCI) offers the possibility of 
direct communication between the human brain and 
external devices that perform operational tasks[1]. Re‐
searchers capture the electrical signals generated by 

the brain through the electroencephalogram (EEG) and con‐
vert them into neural intentions, which will be correctly de‐
coded and used to control external devices, such as wheel‐
chairs, robotic arms, and automatic vehicles[2–4]. Among other 
things, the correct decoding of the neural intention is a crucial 
step toward this goal, and the correct interpretation of brain ac‐
tivity can provide the external device with the required com‐
mands so that it can perform expected tasks. Within the differ‐
ent EEG systems, the motor imagery (MI) BCI[5–6] is a very 
flexible EEG paradigm, which can be used to distinguish be‐
tween different intracerebral instructions and to control exter‐
nal devices to execute commands by “what is in mind”.

Many methods based on traditional machine learning have 
been used for MI decoding and feature extraction. Among 
them, filter bank common spatial patterns (FBCSP) [5, 7] based 
on the characteristics of common spatial patterns (CSP) have 
achieved good performance. And some researchers have inves‐

tigated an improved feature extraction method based on CSP 
to further improve the performance of BCI system[8–9]. In addi‐
tion, linear discriminant analysis (LDA), support vector ma‐
chines (SVM), etc., are used to find a projection or hyperplane 
to separate different categories by analyzing feature distribu‐
tion[10–11]. Due to the limited spatial resolution, low signal-to-
noise ratio (SNR), and high dynamic characteristics of MI, as 
well as the existence of a large amount of noise in EEG sig‐
nals, the extraction of robust features from EEG data is a cru‐
cial step for the successful implementation of BCI. In recent 
years, the success of deep learning methods has alleviated the 
need for manual feature extraction to a large extent. As a re‐
sult, many scholars have explored the application of deep 
learning in EEG signals. For example, the multi-layer percep‐
tron (MLP) was used to correctly classify EEG signals[12]. 
Since convolutional neural networks (CNNs) can perceive mul‐
tiple small domain features with the convolution process pro‐
ceeding layer by layer and can automatically extract rich fea‐
tures to obtain a depth representation, many studies have tried 
to use CNNs into BCI to build end-to-end EEG decoding mod‐
els and achieved good performance[13–14].

Supervised learning is a popular paradigm to implement 
BCI, but it requires an explicit supervised signal to learn. 
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Even so, frequent calibration (retraining) is necessary due to 
the plasticity of the brain. Therefore, some scholars have fo‐
cused on developing an adaptive BCI architecture that allows 
interaction with a dynamic environment[15–17], where BCI us‐
ers learn by trial-and-error to adjust their brain activity to the 
decoder by observing how the external device performs the 
task (using feedback information). Among them, reinforcement 
learning (RL) [18] is the general framework that makes the sys‐
tem adapt to the new environment. It is an interactive learning 
paradigm that can improve policies through constant interac‐
tion with the environment, aiming to learn the best mapping re‐
lationship from the environmental state to the action. Thus, an 
RL-based BCI framework is explored, which provides a gen‐
eral framework for constructing dynamic mappings from neu‐
ral intentions to actions adapted to changing environments, re‐
quiring only a scalar signal (reward) feedback from the envi‐
ronment to strengthen the decoder to complete the task, rather 
than a specific permanently available supervisory signal[19]. At 
the same time, an RL-based BCI architecture is a more reason‐
able learning solution to those patients unable to produce pre‐
cise limb movements. In this case, they only need to under‐
stand which action will yield the greatest return when reach‐
ing the goals in their environment.

Multiple studies have shown that RL can be used in the rat 
EEG signal[20–21] and neuronal activity to control the basic 
BCI system[19, 22]. DIGIOVANNA et al.[19] first proposed a Q(λ)-
learning algorithm with the temporal difference (TD) error in 
an RL-based BCI paradigm, which experimentally trained rats 
to control prostheses in a two-target selection task. Further‐
more, SANCHEZ et al.[23] applied Q(λ)-learning to predict one-
step actions, extending the RL-based BCI framework to pri‐
mates performing center-out tasks. In addition, the BCI para‐
digm using RL has been successfully applied to closed-loop 
experiments of intracortical signals in monkeys[24–25]. BAE et 
al. [26] combined the kernel temporal differences (KTD) (λ) al‐
gorithm with the Q-learning algorithm to obtain a reinforce‐
ment learning-based neural decoding algorithm (Q-KTD), and 
the feasibility of this method for BCI decoding was demon‐
strated in a center-out extension task of intracortical signals in 
monkeys. THAPA et al. [27] further investigated the applicabil‐
ity and feasibility of Q-KTD in an EEG-based BCI system, 
demonstrating that the Q-KTD algorithm can correctly learn 
the mapping between neural intentions in EEG signals and ex‐
ternal device control commands. However, there are still some 
challenges in EEG-based RL interface using Q-KTD: 1) The 
number of kernel units increases with the number of samples; 
2) the curse of dimensionality limits the decoding capability of 
the Q-KTD algorithm; 3) the Q-KTD decoding technique 
based on Q-Learning has a generalization problem and re‐
quires a long training time.

To overcome the above problems, this paper proposes to use 
double deep Q-network (DDQN), a deep reinforcement learn‐
ing algorithm, to decode EEG. DDQN[28], as a variant of deep 

Q-networks (DQN) [29], uses a neural network to approximate 
the value function and takes into account the generalization 
while dealing with high-dimensional inputs. In addition, the 
dual-value network architecture of DDQN can effectively sup‐
press the influence of overestimation of action values on the 
decision-making process and is robust to EEG signals that 
may have random interference.

In section 2, this paper introduces the DDQN algorithm and 
the basic paradigm based on reinforcement learning brain-
computer interface. In section 3, the EEG decoder based on 
DDQN is described and the network structure diagram is 
given. In section 4, the feasibility and advantages of DDQN 
for EEG signal decoding are verified by comparative experi‐
ments. In section 5, this paper is summarized, and the pros‐
pect of future research is discussed.
2 Preliminary

This paper mainly adopts DDQN to perform the end-to-end 
decoding operation of EEG, and the related concepts and ba‐
sic knowledge are introduced as follows.
2.1 Reinforcement Learning

RL is a learning framework for dealing with sequential deci‐
sion problems, which can usually be modeled as a Markov De‐
cision Process (MDP) that can be represented by a five-tuple 
(S, A, P, R, γ ), where:
1) S denotes the state space and st ∈ S represents the state of 
the agent at the moment t;
2) A denotes the action space and at ∈ A represents the action 
executed by the agent at time t;
3) P: S × A × S → [ 0, 1 ] denotes the state transition probabil‐
ity, and P ( st + 1| st, at ) denotes the probability that the agent 
executes the action at in state st to the next state st + 1;4) R: S × A → R denotes the reward function and R ( st,  at ) represents the immediate reward obtained by the agent by ex‐
ecuting the action at in the state st;5) γ ∈ [ 0, 1 ] is the discount factor used to balance immediate 
and delayed rewards.

The action selection of an agent in reinforcement learning 
obeys the policy π, which is expressed as the mapping rela‐
tionship π: S → A between the state and the executable ac‐
tion of the agent. RL algorithms can be classified into two cat‐
egories, policy-based and value-based methods. In the value-
based RL method, the policy will not be updated explicitly, 
but a value table or value function is maintained, and new 
policies are derived from this value table or value function. 
The state-action value function is Qπ: S × A → R. Qπ( st, at ) 
represents the expected cumulative reward obtained by the 
agent executing action at in state  st  and following the cur‐
rent policy π until the end of the episode, which can be ex‐
pressed as:

Qπ( st, at ) = Eπ{∑t
γt R ( st, π ( st ) ) | st = s,  at = a }. (1)
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The ultimate goal of the agent is to learn an optimal policy 
π*, and the value function obtained under the optimal policy 
satisfies the Bellman optimality equation: V *( st ) =
max
a ∈ A

 Q* ( s, a ), i.e., the optimal value of the state is equal to the 
expected cumulative reward obtained by taking the optimal ac‐
tion in that state, and the optimal policy can be obtained from 
π* ∈ argmax

a
 Q* ( s, a ).

Q-learning is an RL algorithm based on value iteration, 
which directly estimates the optimal state-action value func‐
tion Q*. It updates the Q-function by the following rule:

Q ( st, at ) ← Q ( st, at ) + α (R ( st, at ) +
 γ max

a
 Q ( st + 1, a) - Q ( st, at ) ) , (2)

where st + 1 represents the next state reached by the agent ex‐
ecuting action at in state  st , and α ϵ [ 0, 1 ] represents the 
learning rate. A common approach to deriving a policy based 
on the Q-function is the ε‐greedy policy, which selects an ac‐
tion greedily with the probability of 1 - ε based on the Q-
function and performs any action randomly with the probabil‐
ity of ε. This facilitates the exploration of the agent in the envi‐
ronment and avoids falling into a local optimum.
2.2 Double Deep Q‑Networks

When the state space is large or continuous, it is impractical 
to directly use the tabular Q-function for storing the values of all 
state-action pairs. A common solution is to approximate the Q-
function using a function approximator, e. g., Q ( st, at ) ≈
Q ( st, at, θ ), where Q ( st, at, θ ) represents the parametrized ap‐
proximation of the Q-function. Specifically, DQN is a method 
that approximates the state action value function by the Q-
learning algorithm through a neural network. In DQN, deep 
learning and reinforcement learning are combined through a con‐
volutional neural network to approximate the state action value 
function, and high-dimensional states can be input, which solves 
the dimensional disaster problem faced by traditional Q-learning.

In the traditional Q-learning algorithm and DQN algorithm, 
directly selecting the action with the maximum Q value may 
cause the Q-value overestimation problem, which leads to 
over-optimistic estimation. DDQN[28] separates action selec‐
tion and action value evaluation to avoid the overestimation 
problem. Like DQN, DDQN has two important ideas: the tar‐
get network and experience replay mechanism. At each time 
step t in DDQN, the agent executes action  at  in current state 
 st  based on the current policy, receives the reward R ( st , at ), and transforms to the next state  st + 1 . The transition 
( st , at , R ( st , at ),  st + 1 ) is added to the experience pool D. The 
neural network parameters are continuously updated by a gra‐
dient descent minimization loss function. The neural network 
parameters are continuously updated by minimizing the loss 

function through gradient descent, where the loss function is 
expressed as the mean square error between the target value 
and the evaluated value, which is defined as:

L (θ ) = E ( st , at , R ( st , at ),  st + 1 ) [ ( yDQN - Q ( st , at ; θ ) ) 2 ] , (3)
where the target value yDQN is defined as:

yDQN =  R ( st , at ) +  γ max
a′

 Q ( st + 1, a′ ; θ- ) . (4)
In Eqs. (3) and (4), θ denotes the online network param‐

eters, θ- denotes the target network parameters. Q ( st, at ; θ ) 
denotes the online network output, and Q ( st, at ; θ- ) denotes 
the target network output, which is used to calculate the target 
value, where the target network has the same structure as the 
online network, except that its parameter values are replicated 
from the online network without τ steps, and the parameter 
representations of the target network remain unchanged dur‐
ing τ time steps.

The idea of DDQN is to decouple the action of selecting the 
maximum value in the target value and evaluating the value of 
the action, thus avoiding the problem of overestimation. 
DDQN uses the target network in DQN as the network for 
evaluation, without having to introduce an additional network. 
Therefore, in DDQN, the action is selected using the current 
Q-network, and then its value is evaluated using the target net‐
work. Its target value yDDQN is:

yDDQN =  R ( st , at ) +  γQ ( st + 1, arg max
a

 Q ( st + 1, a ;  θ) ; θ-). (5)
The difference between DDQN and DQN is that the selec‐

tion of the optimal action in DDQN is based on the online net‐
work Q with parameter θ, whereas the selection of the optimal 
action in DQN is based on the target network with parameter 
θ-. VAN HASSELT et al.[28] have experimentally demonstrated 
that compared with DQN, DDQN can effectively reduce over‐
estimation and obtain more stable learning.
2.3 Reinforcement Learning Brain Computer Interfaces

In recent years, RL has become a significant research inter‐
est in artificial intelligence. Through trial and error, the RL 
agent must discover which actions yield the maximum ex‐
pected reward. Thus, the RL-based BCI attempts to allow BCI 
control algorithms to learn to complete tasks from interactions 
with the environment rather than explicit training signals. In 
fact, for many patients using BCI, the only signals available 
are their internal brain intention to complete the motor task 
and external feedback after completing the task, as opposed to 
specific supervised signals. The RL-based BCI attempts to 
learn a control policy by which, at any time t, the neural de‐
coder observes a neural state st ∈ S, and the neural decoder 
outputs an action at ∈ A based on the current policy, which 
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generates a control signal to the external device. After the ex‐
ternal device completes the action, the neural decoder receives 
a feedback signal Rt. In future tasks, the neural decoder uses 
this feedback to continuously adjust the policy, which learns 
the optimal function mapping of the neural state to the action di‐
rectly. The decoding structure is shown in Fig. 1.
3 DDQN-Based EEG Decoder

An EEG signal decoder based on the Q-KTD RL algorithm 
provides the possibility of continuous learning of BCI, but its 
generalization is not negligible for a continuously useful de‐
coder. Therefore, we try to use DDQN to decode the EEG sig‐
nal correctly in this paper.

For the decoding task of EEG signals, a BCI decoder is con‐
sidered a reinforcement learning agent, and the decoding of 
EEG signals is modeled as a common center-out task for BCI, 
associating the class of MI data with a specific direction, mod‐
eled as a single-step reinforcement learning problem, as 
shown in Fig. 2. A reinforcement learning environment lo‐
cated at the center of the origin (0, 0) with a radius of 1 is set 
up. In the center-out task, the reinforcement learning agent 
(the green square in Fig. 2) is located at the center of the ori‐
gin (0, 0) at the beginning of each trial. By decoding each 

trial’s MI data, the BCI decoder generates a specific action
(one of up, down, left, and right), and the agent (located at the 
origin position (0, 0)) moves a distance of length 1 in the corre‐
sponding direction to a corresponding location (one of the 
purple circles in Fig. 2), and then receives an immediate re‐
ward based on the location reached by the agent. This paper 
uses a double deep Q-networks algorithm to train the agent to 
obtain a BCI decoder to decode EEG signals correctly.

The state vector of DDQN is the EEG signal, and the agent 
takes action based on the current state. The optional action of 
the agent is the same as the label set of the EEG signal. Ac‐
cording to the label information of the EEG signal, the feed‐
back from the environment can be received, and the reward of 
the environment feedback contains two values of −1 and 1. If 
the current action performed by the agent is consistent with 
the label of the EEG signal, the environment feeds a positive 
reward value. Otherwise, the environment provides a negative 
value to the agent. The pseudocode of the algorithm is given 
by Algorithm 1. Moreover, we give the network architecture of 
the DDQN-based EEG signal decoder in Fig. 3.
Algorithm 1. DDQN-based EEG decoding
Input: the empty replay buffer D, initial network parameters θ, 
copy of θ θ-, EEG signal sequences X, the training batch 
size Nb, explore probabilistic decay frequency Nε, and target 
network replacement frequency N-.
Output: action at

For episode=1 to M do
Randomly initialize EEG signal sequences X
If episode mod Nε = 0
    ε = ε ×  RLepsilonDecayRate
End if
For t=0 to T do
       Set state st← X and select action at based on the ε-
greedy policy
       Execute action at and observe reward rt        Store (st, at, rt, st + 1) in D
        Sample a minibatch of Nb tuples ( s, a, r, s′) ~ Unif (D)
        Construct target values, one for each of the Nb tuples:
y DDQN

j = ì
í
î

ïï

ïïïï

                             rj ,                 if   sj + 1 is terminal
rj +  γQ ( )st + 1, arg max

a
 Q ( )st + 1, a ;  θ ; θ- ,  otherwise

        Do a gradient descent step with loss ‖yDDQN
j -

Q ( sj, aj ;  θ )‖2

        Replace target parameters θ- ← θ every N- steps
End

End

4 Experimental Analysis

4.1 Experimental Data
We conducted experiments on two publicly available data 

sets: Nature’s Scientific Data[30] and BCI Competition IV-2a 

BCI: brain-computer interface      EEG: electroencephalogram
▲Figure 1. Reinforcement learning (RL)-based BCI decoding structure

▲Figure 2. (a) Classical dataset and (b) BCI Competition IV-2a (BCI-
2a) dataset are set to a center-out task. The center is located at the ori‑
gin (0, 0), represented by a green square, and each class target is a 
purple circle
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(BCI-2a)[31].
1) Experiment on Nature’s Scientific Data: 21 electrodes 

were used to record EEG data from 13 healthy subjects, in‐
cluding 8 males and 5 females. This data set provided five dif‐
ferent BCI paradigm data sets to imagine the movement of dif‐
ferent body parts, such as the left hand, the right hand, or dif‐
ferent finger movements. Among these available EEG data 
sets, we considered the first classical motor imagination data‐
set (Classical, CLA). The CLA dataset consisted of three types 
of motor imagination data using EEG signals, corresponding to 
left-hand movement, right-hand movement, and maintaining 
neutrality respectively. That is, the participants did not imag‐
ine anything. Six subjects in the CLA data were considered, 
specific to A to F subjects, since the “CLASubjectF1509163
StLRHand” data file contained only two category labels and 
was therefore not considered. The sampling frequency of the 
EEG signal was 200 Hz, and each collected data file con‐
tained 15 min sessions. Each 15-minute session included 300 
trials. The total time of each trial was 3 s, which started with a 
one-second motion MI cue, and each trial lasted 1.5–2.5 s.

2) Experiment on BCI Competition IV-2a: This dataset is a 
publicly available dataset for BCI Competition IV, which is de‐
scribed in detail by TANGERMANN et al.[31] for the data char‐
acteristics of the competition. The BCI-2a dataset, which re‐
corded EEG data from nine subjects using 22 electrodes, pro‐
vided four different types of motor imagination data: left-hand 
movement, right-hand movement, exercise of both feet, and 
tongue movement imagination. The EEG signal was sampled 
at a frequency of 250 Hz, and the data for each subject con‐
sisted of two files, each consisting of six EEG recording blocks 
containing 48 trials, for a total of 576 trials.
4.2 Experimental Methods

The collection of the CLA data set is to extract the brain 
imagination data of 21 channels continuously for 0.85 s at a 
sampling frequency of 200 Hz, starting from the action stimu‐
lus for each subject[30]. For the BCI-2a dataset, some research‐
ers have tried to use a relatively large window (about 3 s to 4 s) 
for their studies[32–33], but a relatively small window is more re‐
alistic for online BMI[27]. Therefore, the proposed method uses 

a 0.85-second EEG window to decode subjects’ motor images. 
We first cropped the 0.85-second EEG signal at [0, 0.85] after 
the beginning of the trial for CLA and at [2, 2.85] after the be‐
ginning of the visual cue for BCI-2a. The CLA data consists of 
21 channels, where the number of samples in each channel is 
170 (the same as sampling frequency 200 Hz × 0.85 s), and 
the BCI-2a data set has a total of 22 channels, in which the 
number of samples per channel is 213 (about sampling fre‐
quency 250 Hz × 0.85 s).

For the CLA dataset, we evaluated the performance of the 
EEG signal within 0.85 s by dividing it into a training set and 
a test set, respectively, and as in Ref. [27], we executed 10 
Monte Carlo trials at 100 episodes, and in each trial, the se‐
quences of the trials were randomized. The performance was 
observed on the training set based on the success rate of the 
trials, which was calculated as the ratio of the number of suc‐
cessful trials at each step to reach the specified goal to the to‐
tal number of trials considered. For the BCI-2a dataset, the 
performance was evaluated directly based on the existing 
training and test sets of each subject. In DDQN, we adopted 
the ε-greedy method for the exploration strategy, where the ex‐
ploration probability of the intelligence was set to ε = 0.1 at 
the beginning of the trial and decays every 20 episodes, with 
each exploration probability decaying to half of the original 
one, so that the agent would be more inclined to be exploited 
as the trial progressed.
4.3 Feature Extraction

In order to illustrate the advantages of DDQN for EEG de‐
coding, this paper compares the DDQN algorithm with classi‐
cal supervised learning algorithms (the SVM, decision tree, 
and random forest) and the Q-KTD algorithm based on tradi‐
tional reinforcement learning. In order to make the experiment 
more convincing, we follow the feature extraction approach in‐
troduced in Ref. [27] to construct Features 1 and 2, which is 
constructed as follows :

Feature 1: In order to obtain the complete information held 
in the EEG data, Feature 1 was extracted by first cropping the 
EEG signal data for 0.85 s, and then concatenating each chan‐
nel of the cropped data as one motor imagery state vector for 

▲Figure 3. Network structure of electroencephalogram (EEG) signal decoder based on double deep Q-network (DDQN)
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each experiment. For example, for the BCI-2a dataset which 
has 22 channel numbers, each channel has 213 samples, so 
the size of the motion imagery state vector in each experiment 
is 4 686 (equal to 213 samples × 22 channels). Alternatively, 
for the CLA data, which has 21 channels, each channel con‐
tains 170 samples, so the size of the state vector in each experi‐
ment is 3 570 (equal to 170 samples × 21 channels).

Feature 2: It has been proved that EEG signals contain fre‐
quency information[34], therefore, this paper adopts the same 
way as Ref. [27] to extract the frequency information as Feature 
2. For the dataset BCI-2a and CLA 
dataset, firstly, the fast Fourier trans‐
form is performed on the EEG data 
with a cropped duration of 0.85 s, 
and then the selected complex fre‐
quency components correspond to 
the real and imaginary values, re‐
spectively. For the BCI-2a data, the 
real and imaginary values of the 
transformed 0 – 15 Hz were used 
for frequency classification, yield‐
ing a 550 dimensional feature state 
vector for each experiment. For the 
CLA dataset, using the frequency 
components between 0 – 5 Hz, a 
complex frequency feature with 5 
dimensions of real values and 4 di‐
mensions of imaginary values for 
each channel is obtained, and the 
components for each channel are 
concatenated to obtain a feature 
state vector with a dimension of 189 
(equal to 9 × 21 channels).
4.4 Experimental Results and 

Analysis
Firstly, the reinforcement learn‐

ing agent is trained on the CLA and 
BCI-2a training sets, respectively, 
and its learning curve is observed. 
Fig. 4 shows the learning curves of 
the first subject on each of the two 
datasets. The learning curves show 
that the DDQN algorithm can cor‐
rectly learn the correct mapping of 
EEG signals to actions directly in 
the MI center-out task with full 
learning by the agent as the experi‐
ment progresses.

Secondly, the generalization ef‐
fect of the DDQN algorithm on the 
test set was compared with that of 
the traditional supervised learning 

algorithms (the SVM, decision tree, and random forest) and 
the Q-KTD algorithm. The result was shown in Fig. 5. For the 
same EEG data set, under different feature extraction, the gen‐
eralization effect of DDQN algorithm on EEG decoding was 
significantly better than Q-KTD algorithm. Moreover, due to 
the small sample size and high dynamic characteristics of 
EEG signals, the classification performance of traditional su‐
pervised learning algorithms is poor, compared with DDQN-
based EEG decoding.

Thirdly, the running time of DDQN and Q-KTD algorithms 
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is compared when training the agent, and the learning time of 
the agent under the two datasets is shown in Tables 1 and 2. 
According to the results, it is clear that the agent using DDQN 
learns much faster compared with the Q-KTD algorithm using 
Feature 1, and the learning time is not much different from 
the Q-KTD algorithm using Feature 2. However, the general‐
ization of DDQN is much better than the Q-KTD algorithm.

Finally, in order to reflect the stability of decoding based on 
the deep reinforcement learning algorithm, we conducted 10 
repeated experiments under different random seeds, and de‐
scribed their mean and standard deviation. The experimental 
results are shown in Fig. 6.
5 Conclusions

This paper investigates the applicability and feasibility of 
the deep double Q reinforcement learning algorithm in the 
brain-computer interface. We use two different EEG signal da‐
tasets and evaluate the performance of DDQN on both the da‐
tasets. The experimental results show that DDQN performs 
well in the correct decoding of EEG signals and has better gen‐
eralization. This indicates that deep reinforcement learning 
can learn the correct decoding of EEG signals through feed‐
back signals and has better generalization than the Q-KTD re‐
inforcement learning algorithm. In the future, we will investi‐
gate further applications of deep reinforcement learning in 
EEG signals.
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Abstract: The increasing adoption of renewable energy has posed challenges for voltage regulation in power distribution networks. Grid-
aware energy management, which includes the control of smart inverters and energy management systems, is a trending way to mitigate this 
problem. However, existing multi-agent reinforcement learning methods for grid-aware energy management have not sufficiently considered 
the importance of agent cooperation and the unique characteristics of the grid, which leads to limited performance. In this study, we propose a 
new approach named multi-agent hierarchical graph attention reinforcement learning framework (MAHGA) to stabilize the voltage. Specifi‐
cally, under the paradigm of centralized training and decentralized execution, we model the power distribution network as a novel hierarchical 
graph containing the agent-level topology and the bus-level topology. Then a hierarchical graph attention model is devised to capture the com‐
plex correlation between agents. Moreover, we incorporate graph contrastive learning as an auxiliary task in the reinforcement learning pro‐
cess to improve representation learning from graphs. Experiments on several real-world scenarios reveal that our approach achieves the best 
performance and can reduce the number of voltage violations remarkably.
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1 Introduction

The increasing shortage of fossil fuels and growing 
awareness of the need for environmental protection 
have made the adoption of solar photovoltaic (PV) 
power generation an important trend in the develop‐

ment of renewable energy. In recent years, more and more PV 
systems have been integrated into power distribution net‐
works, owing to their low-carbon, clean, and economical ben‐
efits. However, the growing popularity of PV systems poses sig‐
nificant challenges to the stability of the power grid voltage. 
Thus, the need to make optimal use of the existing control‐
lable resources in the power grid to ensure safe and reliable 
operation, reduce energy waste, and improve the acceptance 
of renewable energy has gained widespread attention. Prior re‐
search has suggested that using an inverter to control PV 
power conversion can alleviate this issue[1–2]. In addition, vari‐

ous energy storage and energy demand responses are also rec‐
ommended as a means of voltage regulation[3–4]. Therefore, a 
comprehensive scheme is required to coordinate the control 
among these resources to ensure the stable operation of the en‐
tire power system with high PV penetration, which is referred 
to as grid-aware energy management[5].

Meanwhile, multi-agent reinforcement learning (MARL) 
has demonstrated impressive efficacy not only in games[6–8] 
but also in real-world applications[9–10]. Recently, MARL has 
also been employed to tackle issues in the power grid[11]. Un‐
der a data-driven and model-free setting, MARL does not 
need precise environment modeling and can be applied in 
situations with high PV penetration compared with tradi‐
tional methods[11]. Moreover, using MARL in the power grid 
also potentially reduces costs and is regarded to have plug-
and-play capability[12].

For grid-aware energy management, buildings established 
on a specific node in a power distribution network are consid‐
ered as agents, which need to control the charge/discharge 
rate or electric energy conversion rate of multiple components, 
such as PV and battery. As the electric energy consumed or 

This work is supported by National Key R&D Program of China under 
Grant No. 2022ZD0119802 and National Natural Science Foundation of 
China under Grant No. 61836011.
ZHOU Wengang and LI Houqiang are the corresponding authors.
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generated will pass through the distribution network and 
cause voltage fluctuations, the goal of grid-aware energy man‐
agement is to control these components inside buildings to 
keep the voltage within the safe range while satisfying build‐
ing users’ energy demands. And grid-aware energy manage‐
ment can be formulated as a cooperative task since all agents 
share one common objective which is to stabilize voltages at 
every node in the whole distribution network. Ref. [5] applied 
deep reinforcement learning to grid-aware energy management 
as they used independent proximal policy optimization and 
rule-based control to stabilize voltage.

However, it is a non-trivial task to directly apply reinforce‐
ment learning algorithms to grid-aware energy management, be‐
cause of the following challenges. 1) Cooperation among agents. 
The distribution network is a complex and nonlinear system, 
which results in a ripple effect to the voltage of all nodes within 
the distribution network if one agent takes action. Agents in pre‐
vious work have been limited in their ability to learn coopera‐
tion by only utilizing their own observations during both the 
training and execution phases. This has resulted in difficulty in 
stabilizing voltage across all nodes. 2) Large state space from 
the large-scale agent system. There are hundreds of households 
on the power distribution network in reality. Directly learning a 
centralized agent system in a training process requires handling 
large state space and high-dimensional environments, which 
will cause serious scalability and efficiency problems[13]. 3) To‐
pology of the distribution network. In the distribution network, 
each node is connected with some other nodes, forming a tree 
graph structure. The voltage of each node is affected by all 
other nodes, but the impact declines as the distance increases. 
Therefore, introducing the topology of the distribution network 
to algorithms can assist the agents in learning better correla‐
tions with each other. 4) The importance of different agents. 
Each building is regarded as an agent, but the building types 
are various and different types of buildings have different en‐
ergy demands. For instance, typically, restaurants have more 
energy demand at noon for people to have meals, which indi‐
cates restaurants must pay more attention than offices when 
making decisions at noon.

To address the above challenges, we propose a multi-agent 
hierarchical graph attention reinforcement learning framework 
(MAHGA) to better stabilize voltage in a power distribution 
network. Our major contributions are summarized as follows: 
1) We approach this task with the paradigm of centralized 
training and decentralized execution, enabling agents to learn 
better cooperation. 2) We model the whole distribution net‐
work as agent-level topology and bus-level topology. Based on 
these topologies, we construct an elaborate hierarchical graph 
attention architecture to extract correlations from agents and 
power grids. And it can facilitate the MARL-based methods 
deployed to the realistic power system. 3) Graph contrastive 
learning with two graph augmentations considered RL charac‐
teristics is designed as an auxiliary task in the reinforcement 

learning (RL) process to improve representation learning from 
graphs. 4) To the best of our knowledge, this is the first work 
to consider the topology characteristics to tackle voltage and 
energy tasks with large-scale agents. Experiments on several 
real-world datasets reveal that our approach achieves the best 
performance and can significantly mitigate voltage violations. 
The paper is organized as follows: In Section 2, we give the 
background of grid-aware energy management with the MARL 
formulations and introduce centralized training and decentral‐
ized execution. We describe the details of our method in Sec‐
tion 3. In Section 4, we demonstrate the results of the experi‐
ments, and in Section 5, we give a literature review of the re‐
lated work. We conclude our work in Section 6.
2 Problem Formulation

2.1 Grid-Aware Energy Management
In the power system field, power distribution networks are 

modeled as a tree graph structure, where the node and edge 
represent a bus and a branch, respectively[14]. More specifi‐
cally, a bus refers to a node in a power distribution network 
where power lines, buildings, and other electrical devices join 
together, and electrical power will be generated, distributed, 
or consumed here. The distribution network example is shown 
at the bottom of Fig. 1. For instance, the third bus in this fig‐
ure is connected with the second bus, the fourth bus, and the 
eleventh bus. Hundreds of various buildings are distributed on 
these buses, and each building contains multiple controllable 
components: 1) HVAC: heating, ventilation, and air condition‐
ing system, which consumes electricity primarily to control the 
temperature, humidity, and purity of the air inside a building 
affiliated with the storage to save cooling or thermal energy; 2) 
DHW: domestic hot water system, which can generate hot wa‐
ter by consuming electricity, affiliated with a tank to store hot 
water; 3) Battery: used for electricity storage or electricity sup‐
ply to other equipment; 4) PV: photovoltaics, which is a micro-

▲Figure 1.  An illustrative example of grid-aware energy management

DHW: domestic hot water
HVAC: heating, ventilation, and air conditioning

PV: photovoltaic
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generation device comprising solar cells.
The example of buildings and controllable components are 

shown at the top of Fig. 1. For instance, there are some build‐
ings located on the third bus, and each building has the above 
four components to control to stabilize voltage after satisfying 
users’ energy demands. Energy demand, including the use of 
HVAC and DHW, and other electric equipment/appliances 
(non-shiftable loads), as these components may constantly con‐
sume electricity from the power grid.

In terms of constructing the power models, grid-aware en‐
ergy management environment GridLearn[5], grid models and 
AC power flows, etc., are modeled using Pandapower. The 
Pandapower library models the loads of the buildings with real 
and apparent power specifications; the PV arrays (and corre‐
sponding inverters) are modeled as PQ-controlled generators, 
which are defined to hold the active power P and reactive 
power Q constant while the voltage is allowed to vary over the 
limited range. It also calculates real and reactive power at 
each bus, load, and generator along with voltages at each bus. 
These values can be adapted to the state space or reward func‐
tion. And they apply the preconfigured IEEE network model 
in it.

A large number of PV inside buildings will continuously in‐
ject power into the power grid and the power grid also needs to 
supply power frequently to meet the various users’ energy de‐
mands, which may lead to frequent undervoltage or overvolt‐
age problems in the power grid. Specifically, the voltage of 
each bus will be varied if it is injected with active power and 
reactive power. The exact numerical change of voltage is cal‐
culated with these two types of power through certain power 
flow formulas in the power flow model[5]. The formulas with 
physical quantities in the distribution network are compli‐
cated and non-linear in order to satisfy power system dynam‐
ics regulations[2].

The traditional control techniques for large-scale, com‐
plex, and non-linear systems are inadequate for real-time 
decision-making, particularly in systems with high penetra‐
tion of renewable energy sources[11]. As a result, the employ‐
ment of deep reinforcement learning algorithms has emerged 
as a potential and effective method in the literature to miti‐
gate these difficulties.
2.2 MARL Formulations

The cooperative control process of grid-aware energy man‐
agement can be modeled as a decentralized partially observ‐
able Markov decision process (DEC-POMDP) [15]. A DEC-
POMDP is an extension of an MDP in decentralized multi-
agent settings with partial observability. It can be defined by 
S, A, O, R, P, N, γ , where S is the state space, Ai is the ac‐

tion space for agent i, oi = O ( s ; i) is the local observation for 
agent i at global state s, P ( s'|s, A) denotes the transition prob‐
ability from S to S' given the joint action A = (a1,…,an ) for all 
N agents, R ( s, A) is the shared reward function and can also 

be called a global reward function, and γ ∈ [0,1) is the dis‐
count factor. In a DEC-POMDP, each agent takes observation 
from the environment and executes an action generated by its 
policy to the environment. In turn, the environment provides 
one global feedback reward to all agents. During the interac‐
tion with the environment, the agents constantly adjust their 
policies to achieve the best decisions according to the re‐
wards. Considering the grid-aware energy management prob‐
lem, we describe specific elements in the DEC-POMDP in de‐
tail as follows, similar to Ref. [5].

Agent: As shown in Fig. 1, each building is regarded as an 
agent and will make control decisions on four components to 
maintain the voltage of all buses within a safe range.

Observation: The agent’s observation incorporates 18 state 
spaces such as outdoor temperature, indoor temperature, volt‐
age magnitude at the located bus, electricity generated by pho‐
tovoltaic current, electricity consumed by base loads, current 
energy demand, time of day and the charging states of an 
HVAC storage device, a DHW storage device, and a battery.

Action: Each building controls four components, namely  
HVAC energy storage, DHW energy storage, battery storage, 
and inverters. The action made on each component is continu‐
ous and is all set in range [-1,1 ]. For the three energy storage 
components, the action denotes the increase (action>0) or de‐
crease (action<0) of the energy’s rate stored in the correspond‐
ing storage device. For the inverter, the action made on the in‐
verter is used to scale the active power and reactive power sup‐
plied by PV and the battery.

Reward function: The reward function is mainly based on 
the voltage deviation from 1 p.u. for each bus. The term p. u. 
referred to “per unit” is used to express the voltage level in 
terms of a percentage of the nominal voltage. To alleviate the 
overvoltage and undervoltage problem across all buses, the re‐
ward function is calculated through the voltages on all buses. 
Specifically, let B denote the set of all buses in the distribu‐
tion network, vi denote the voltage on i’s bus, and δi a weight‐
ing factor to approximately normalize the reward function. The 
global reward function is calculated as follows:

R = -∑
i ∈ B

(δ i( vi - 1) ) 2
. (1)

Note that this function limits the reward to 0 or negative 
and is devised to penalize the voltage rise deviation and the 
voltage drop deviation from 1 p.u. followed by Ref. [5]. Volt‐
age deviations are typically measured from 1 p.u. (or 100% 
of the nominal voltage). For instance, if a 4% voltage devia‐
tion is allowed, the voltage safe range is from 0.96 p.u. to 1.04 p.u.
2.3 Centralized Training Decentralized Execution

Centralized training and decentralized execution (CTDE) is 
one of the paradigms in MARL which assumes that global in‐
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formation is available during training and that each agent can 
only use local information during execution to achieve decen‐
tralized execution[6–7,16]. In this paper, grid-aware energy man‐
agement is formulated as a cooperative task because all agents 
share one common objective, which is to stabilize voltages at 
every bus in the whole distribution network. If each agent only 
observes local information on its located bus in the training 
phase, it is usually difficult to learn to control voltage within 
the safety range and guarantee service quality[2, 11]. One reason 
is that the environment is non-stationary if only considering 
the local observation where one agent’s action can actually af‐
fect the whole distribution network[17].

As a result, we approach grid-aware energy management with 
the paradigm of CTDE. In CTDE, agents’ information is shared 
in the training phase. In the execution phase and the time we 
evaluate the algorithm performance, agents are only allowed to 
make decisions based on their local observation. Specifically, in 
this paper, we improve and introduce our algorithms all based 
on the actor-critic class. After combining the structure of CTDE 
with actor-critic RL algorithms, the critic mainly assists the ac‐
tor in learning during training, and the input of the critic is 
global information; while the input of the actor is local informa‐
tion, and the actor needs to make decisions independently in 
the execution phase. The advantages of CTDE for grid-aware 
energy management are twofold. On one hand, the centralized 
training process can motivate multiple agents to learn coopera‐
tion by perceiving a more comprehensive landscape. On the 
other hand, the execution process is fully decentralized without 
requiring complete information in the training phase, which 
guarantees efficiency and flexibility in online management. By 
applying CTDE, the learned strategies can be deployed to the 
power grid and achieve cooperative control without any commu‐
nication device. Note that the paradigm of centralized training 
and centralized execution does not apply to this task due to 
commercial settings and users’ privacy provision[18].
3 Method

In order to address the aforementioned challenges, we ap‐
proach this grid-aware energy management task with the CTDE 
paradigm and propose a novel MAHGA approach. In the follow‐
ing, we first introduce the construction of the graph topology. 
After that, we discuss our hierarchical graph attention architec‐
ture for the critic to better extract agents’ correlations. Finally, 
graph contrastive learning is devised as an auxiliary task in the 
training process to improve representation learning from graphs. 
The overview of MAHGA is shown in Fig. 2, where the agent 
takes action depending on its own observation by using the 
policy. In the training phase, the critic predicts global value 
based on all agents’ observations and is updated by RL loss 
and graph contrastive loss. The policy is updated by correspond‐
ing RL loss with the predicted value from the critic. When in 
the execution phase, only the policy is used and it makes deci‐
sions by solely using agents’ local observation.

3.1 Graph Topology Modeling
To capture the correlation between agents, we consider the 

unique characteristics of distribution networks and construct 
two graph structures, agent-level graph topology G1(V 1,D1 ) 
and bus-level graph topology G2(V 2,D2 ), respectively. Note 
that G represents graph topology, V represents the set of all 
nodes in the graph, and D represents the adjacency matrix 
which indicates how nodes are connected. For instance, if 
node i is connected to node j, Dij equals 1; otherwise, Dij equals 0. As for the agent-level graph topology, every agent is 
modeled as a node. The node set V1 consists of all agents in 
the environment. We devise two types of operations to connect 
edges. The first is the operation of nodes on the same bus 
where all nodes on the same bus are connected with each 
other. Nodes on the same bus form a complete graph. The first 
operation for connecting edges is defined as follows:

D1′
ij = ì

í
î

1,  b (i ) = b ( j )
0,  otherwise  , (2)

where b ( i) denotes the bus, on which node i is located.
The second operation is to connect nodes from the adjacent 

buses. In detail, all nodes on bus i will be connected to the 
nodes on bus j, if bus i and bus j are connected in the distribu‐
tion network. Different from the first operation, this operation 
makes all nodes on two adjacent buses form a complete bipar‐
tite graph. The second operation for connecting edges is de‐
fined as follows:

D1′
ij = ì

í
î

1,  if b (i ) and b ( j ) are adjacent
0,  otherwise . (3)

Then the adjacency matrix obtained from these two opera‐
tions is taken as the union to form the final adjacency matrix 
for agent-level graph topology:

D1
ij = D1'

ij ∪ D1''
ij . (4)

To sum up, the first operation is to model the relationship of 
all the buildings on the same bus, and the second is to model 

▲ Figure 2. Overview of multi-agent hierarchical graph attention 
(MAHGA), where each agent has one policy and shares the same critic

RL: reinforcement learning

RL loss + contrastive loss

Agent 1
π π π

Agent m Agent n
Multi-agent environment

Hierarchical graph attention model (critic)
π

v

Sharing
Observation
Action
Policy
Critic

… …
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the relationship of different buildings on adjacent buses.
As for the bus-level graph topology, the agents from the 

same bus are treated as a cluster and thus every bus is mod‐
eled as a node. The node set V2 consists of all the buses in a 
power distribution network. If two buses are connected in the 
distribution network, the corresponding node is set to be con‐
nected in G2. The operations for connecting edges are defined 
as follows:

D2
ij = ì

í
î

1,  if i and j are adjacent
0,  otherwise . (5)

For better illustration, we visualize one example of graph to‐
pology in Fig. 3, where nodes enclosed in the red dotted circle 
are one of the buses and all the agents located on it.
3.2 Hierarchical Graph Attention Architecture

We now present the architecture that exploits the graph to‐
pology to handle various observations. The pipeline of the ar‐
chitecture is shown in Fig. 4. The architecture consists of four 
main components: 1) the agent-level attention module that ex‐
tracts agent-level representations from the agents’ observa‐
tions based on the agent-level graph topology G1(V 1,D1 ); 2) 
the aggregation layer that clusters the agent-level nodes to‐
gether and aggregates the representations to the embedding 

from the buses’ point of view; 3) the bus-level attention mod‐
ule that extracts bus-level representations with the bus-level 
graph topology G2(V 2,D2 ); 4) the readout layer and concatena‐
tion that scales down the size of representations and aggre‐
gates the representations from the above two attention layers 
to distill the final representations. The hierarchical character‐
istics of our architecture are mainly reflected in the different 
graph attention modules and readouts with corresponding pool‐
ing operations.
3.2.1 Agent-Level Attention Module

We first extract representations from agents’ observations 
through an agent-level attention module using the agent-level 
graph topology mentioned above. Similar to Ref. [19], in graph 
attention networks, the importance of node j’s feature to node 
i is calculated as:

ek
ij = cT(W k


o i ||W k


o j ), (6)

where cT and W k are learnable parameters, k is the k-th head 
among K multi-attention heads, ⋅T represents transposition and 
|| is the concatenation operation. Then, the coefficients com‐
puted by the attention mechanism is defined as:

αk
i,j = exp ( )LeakyReLU ( )ek

ij

∑
v ∈ N 1i

exp ( )LeakyReLU ( )ek
iv

 
, (7)

where N 1
i  represents the set of node i’s one-hop neighbor 

nodes in the graph topology G1 and the LeakyReLU nonlinear‐
ity is applied.

Note that the mask graph attention is adopted and only the 
neighbor node is allowed to participate in the node i’s atten‐
tion coefficient calculations. The final output of node i in the 
attention network is formulated as:


h1i = σ ( 1

K ∑
k = 1

K ∑
j ∈ N 1j

αk
ijW

k

oj )  

, (8)▲Figure 3. Visualized example of agent-level topology and bus-level to‑
pology in one case

▲Figure 4. An overview of hierarchical graph attention architecture
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where σ represents the softmax nonlinearity. By applying the 
above steps to every node in G1, we can get the agent-level 
representations h1 for all nodes.
3.2.2 Aggregation Module and Bus-Level Attention Module

The implementation of a graph attention network is intrinsi‐
cally flat, as it only propagates information across the edges of a 
graph. The purpose of this architecture is to define a strategy in 
a power distribution network that allows one to use two or more 
graph attention networks hierarchically to extract representa‐
tions from the graph structure. Formally, given the input embed‐
ding, which is the output of the upper network, we seek to de‐
fine a strategy to output a new coarsened graph embedding.

The new graph embedding contains fewer nodes and node 
connectivity and can then be used as input to another graph at‐
tention module.

As a result, the aggregation module is designed primarily to 
cluster the agent-level nodes into the classes of buses which 
means that the agent-level embedding h1 will be transformed 
to the bus-level embedding h1′ via this module. The aggrega‐
tion process is demonstrated in the upper part of Fig. 4. Spe‐
cifically, bus j’s embedding h1′

j  is the calculation of the em‐
bedding of all the agents situated on bus j.

h1'
j = ϕ ( V 1

v,b ( )v = j (h1
v ) ), (9)

where ϕ denotes the projection function in the aggregation 
module and b(v) indicates the bus where node v is located.

Then, the bus embedding h1′ is transformed into the bus rep‐
resentation h2 through the bus-level attention module with the 
graph topology G2 . The structure of the bus-level graph atten‐
tion module is similar to that of the agent-level attention mod‐
ule which utilizes Eqs. (6)–(8) to calculate the representation 
but the topology inserted is G2 .
3.2.3 Readout Layer and Concatenation

Inspired by JK-net architecture[20], which has proposed a 
readout layer that aggregates node features to make a fixed-
size representation, we apply a permutation-invariant read‐
out layer to an extracted and integrated representation of 
agents. The summarized output feature of the readout layer 
after the agent-level attention module is as follows:


f 1 = 1

||V 1 ∑
i = 1

||V 1

h1
i max ||V 1

i = 1 h1
i , (10)

where ‖ is the concatenation operation. The pooling opera‐
tion in the readout layer is mainly to distill essential informa‐
tion of the state into latent representation while dropping re‐
dundant information.

Similarly, we can obtain the integrated representation f 2 
after the bus-level graph attention module. As shown in Fig. 

4, we apply a readout layer after each attention module. Then 
the concatenation of each readout layer is applied to aggre‐
gate the features.

h3 = é
ë f1 f2 ù

û. (11)
The final representation h3 is then fed into the linear func‐

tion to predict the global state value.
3.3 Graph Contrastive Learning

According to the large-scale energy management environ‐
ment where hundreds of agents lead to a high dimension of 
model input, it can be difficult to learn representations 
through RL objectives as it only depends on reward from the 
environment. Graph contrastive learning, which has proven its 
effectiveness on graph prediction tasks[21], has not yet been ex‐
plored in reinforcement learning, mainly due to the different 
nature of the problem. Inspired by graph contrastive learning 
already used in graph prediction tasks and image contrastive 
learning used in a pixel-based environments[22], we devise a 
graph contrast learning objective as an auxiliary task in our re‐
inforcement learning task. The objective is devised mainly to 
stimulate the MAHGA to learn better representation from 
high-dimensional and various observation inputs.

To apply graph contrastive learning to MARL, we first intro‐
duce augmentations that should be made to the graph. The 
graph augmentation methods include: 1) Observation masking. 
We randomly select agents and mask certain ratios of agents’ 
observations. Observation masking drives models to recover 
masked agent observation using their unmasked information. 
The underlying assumption is that missing partial node attri‐
butes does not influence the model performance much. 2) 
Edge dropping. It is devised to remove the connectivity in G1 by randomly dropping a certain ratio of edges. It indicates that 
the semantic meaning of G1 has certain robustness to the edge 
connectivity pattern variances. We also follow an independent 
and identically distributed (i.i.d.) uniform distribution to drop 
each edge.

Specifically, given the graph data Zq composed of graph to‐
pology G1 and observations of all nodes from the training 
batch of the size N, Zq will undergo graph data augmentations 
mentioned above to obtain two correlated graphs Z i

q as a posi‐
tive pair. The other N–1 graphs in the batch are also aug‐
mented to generate N–1 augmented graphs. Then, we utilize 
the normalized temperature-scaled cross-entropy loss (NT-
Xent) for graph Zq as:

ln = -log exp ( )Z q
i Ws Z

q
j /τ

∑
k = 1,k ≠ q

N exp ( )Z q
i Ws Z

k
j /τ , (12)

where we employ a bilinear product to evaluate the similarity 
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of pairwise instances. In the formula, τ denotes the tempera‐
ture parameter, N denotes the size of the training batch and Ws are learnable parameters. Objective ln will be taken as an aux‐
iliary task to be jointly optimized with the RL objective. Here 
we select multi-agent proximal policy optimization (MAPPO)[8] 
as the base algorithm to describe the RL objective. Specifi‐
cally, following the settings in PPO’s clipped surrogate objec‐
tive[23], we let rt (θ ) be the probability ratio calculated by the 
agent’s policy and Ât be an estimator of the advantage func‐
tion at timestep t calculated by the global state value. ε is a 
hyperparameter that implicitly restricts Kullback-Leibler (KL) 
divergence[23]. The RL objective lr  is defined as:

lr = min ( rt(θ ) Ât , clip ( rt(θ ) , 1 - ε , 1 + ε) Ât) . (13)

4 Experiments
In this section, we first introduce the experiment setup. 

Then we demonstrate and analyze experiment results about 
overall performance and ablation study. All the experiments 
have been conducted based on the GridLearn open-source 
platform[5] with the IEEE 33-bus system[24].
4.1 Experiment Setup

4.1.1 Data Description
We conduct experiments on four real-world scenarios with 

different climate zones respectively. Each scenario includes 
192 buildings distributed on buses, and the corresponding 
data for the whole year in the specific climate zone[12] (climate 
zone 2A: hot-humid; climate zone 3A: warm-humid; climate 
zone 4A: mixed-humid; climate zone 5A: cold-humid).

For each scenario, we select four months from four different 
seasons for training, as different seasons have quite different 
temperatures, humidity, solar radiation, and users’ energy de‐
mands, which probably leads to different control strategies. 
The four training months are mixed and used to train algo‐
rithms until convergence. The rest eight months are used for 
testing. Each month containing 2 880 timesteps is regarded as 
an episode. The training phase lasts sixteen episodes and each 
experiment is conducted using 5 random seeds. After the train‐
ing phase, we evaluate the learned strategy on the test dataset.
4.1.2 Comparison Algorithms

The methods that we evaluated include rule-based control 
(RBC), independent advantage actor-critic (IA2C), indepen‐
dent proximal policy optimization (IPPO), multi-agent advan‐
tage actor-critic (MAA2C), and MAPPO. Specifically, RBC de‐
vised by the used environment[5, 12] makes decisions mainly 
based on the time of day. For example, at 6 a.m., the battery 
charges and the charge value is 0.138 3. Most of the devices 
will choose to discharge in the daytime and early evening, and 
charge at night. The IA2C and IPPO are actor-critic algo‐

rithms that directly apply single-agent reinforcement learning 
algorithms A2C[25] and PPO[23] to MARL. All agents are com‐
pletely independent. The critic network approximates the ex‐
pected return only depending on agent-specific observation. 
MAA2C and MAPPO[8], as an extension of A2C and PPO, are 
actor-critic algorithms but are in the CTDE paradigm. As ex‐
tensions of independent algorithms, their critic learns a joint 
state value function where this centralized critic conditions on 
all agents’ observations rather than the individual observa‐
tion. And their actor can only use local observation to generate 
actions same as IA2C and IPPO. In contrast to MAA2C, 
MAPPO’s main advantage is its combination of on-policy opti‐
mization with its surrogate objective function.
4.1.3 Evaluation Metrics

Following the evaluation settings in GridLearn[5], we use 
four metrics to evaluate the performance of algorithms. For 
better demonstration, we name these four metrics as follows.

1) The number of soft voltage violations (NSVV). It calcu‐
lates the number of all buses’ voltage that is not under control 
within the soft safe range. Note that the soft safe range of volt‐
age is between 0.96 p.u. and 1.04 p.u.

2) Soft reduction rate (SRR). It calculates the proportion of 
the algorithm to reduce the number of voltages compared with 
the rule-based control strategy with the soft safe range. Specifi‐
cally, for the learned algorithm C, SRR is defined as:

SRRC = NSVVRBC - NSVVCNSVVRBC , (13)
where NSVVRBC and NSVVC represent the number of soft volt‐
age violations using the rule-based control and the learned al‐
gorithm C.

3) The number of hard voltage violations (NHVV). It calcu‐
lates the number of all buses’ voltage that is not under control 
within the hard safe range. Note that the hard safe range of 
voltage is between 0.97 p.u. and 1.03 p.u.

4) Hard reduction rate (HRR). It calculates the proportion 
of the algorithm to reduce the number of voltages compared 
with the rule-based strategy with the hard safe range. Similar 
to SRR, for the learned algorithm C, HRR is defined as:

HRRC = NHVVRBC - NHVVCNHVVRBC
 , (14)

where NHVVRBC and NHVVC represent the number of hard 
voltage violations using rule-based control and the learned al‐
gorithm C.

Note that NSVV and NHVV evaluate how the algorithm can 
do to prevent the voltage of all buses from getting out of the 
safe range, and the lower number represents the better. SRR 
and HRR describe how much performance the algorithm can 
enhance compared with the rule-based control method and the 
higher represents the better. There are two safe voltage ranges: 
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the soft one and the hard one. The hard range is a more chal‐
lenging one to evaluate algorithms’ performance. Exceeding 
the safe range frequently will cause lots of problems such as 
equipment damage and regional power outages.
4.2 Overall Performance

Table 1 reports the median NSVV, SRR, NHVV, and HRR 
of all algorithms. HMAA2C and HMAPPO refer to MAA2C 
and MAPPO applied with MAHGA. As shown in the table, our 
MAHGA framework improves MAA2C and MAPPO and is su‐
perior to all other baseline algorithms on four different sce‐
narios concerning four metrics. Owing to the CTDE paradigm 
and the better learned representations correlative to the grid-
aware energy management task, HMAPPO and HMAA2C 
achieve the best performance among all other algorithms. 
These two algorithms reduce the number of voltage violations 
significantly and increase the reduction rate considering both 
the soft safe range and the hard safe range.

CTDE algorithms, like MAPPO and MAA2C, all perform 
better compared with independent learning algorithms like 
PPO and A2C. This proves that centralized critic integrating 
all agents’ observations to have a global perspective can as‐
sist agents to implicitly learn better cooperation. Furthermore, 
HMAPPO and HMAA2C consistently perform better than 
MAPPO and MAA2C, which validates that MAHGA can make 
further improvements and motivate the agent to learn a better 
policy in multiple ways. More analysis of MAHGA will be dis‐
cussed in an ablation study. As RBC is a well-crafted strategy, 
independent learning algorithms only show slightly better per‐
formance, especially in climate zone 4A.
4.3 Ablation Study

In this section, we conduct an ablation study on MAHGA to 
further verify the significance of each component. As MAPPO 
performs better in most scenarios than MAA2C, we choose 
MAPPO as a representative algorithm to conduct ablation ex‐
periments. And the experimental result that MAPPO outper‐

forms PPO according to Table 1 shows that cooperation is im‐
plicitly learned and plays an important role in decision making. 
The following variants of HMAPPO are evaluated on all sce‐
narios: 1) HMAPPOS removes the hierarchical graph atten‐
tion architecture but uses a single graph attention network 
with the corresponding readout layer so as to only extract the 
agent-level representations from the graph attention network; 
2) HMAPPOC removes the auxiliary task of graph contras‐
tive learning. As can be seen in Fig. 5, removing any compo‐
nent will cause performance degradation. If we do not con‐
sider extracting representations from the bus-level topology, 
the performance will be significantly degraded. If the bus 
level and agent level are neither considered, where the algo‐
rithm is the original MAPPO, the algorithm will suffer from a 
large state space where all agents’ observations are concat‐
enated and are unaware of the two topologies, which finally 
leads to low performance. Moreover, introducing attention 
mechanisms into graphs can implicitly let agents learn how 
to make decisions with the surrounding agents of different 
types. These demonstrate that the application of a hierarchi‐
cal graph attention framework in grid-aware energy manage‐
ment tasks is significantly effective. Besides, we can observe 
that removing auxiliary tasks of graph contrastive learning 
will also lead to performance degradation, which indicates 
that graph contrastive learning can assist the framework to 
learn representations better.
5 Related Work

1) Multi-agent reinforcement learning in power systems. Re‐
cently, efforts have been made to apply reinforcement learning 
to power systems for voltage regulation and energy manage‐
ment due to the progress of machine learning. Ref. [2, 26–
27] introduce reinforcement learning in the active voltage con‐
trol tasks. These works have considered managing a small 
number of agents and optimizing only reactive power compo‐
nents. In Refs. [2, 26], the load is inflexible and only the PV 

▼Table 1. Overall performance on four scenarios, where HMAA2C and HMAPPO refers to MAA2C and MAPPO applied with multi-agent hierarchi‑
cal graph attention (MAHGA) (↓ denotes the lower the better, and↑ denotes the higher the better)

RBC
A2C
PPO

MAA2C
MAPPO

HMAA2C

HMAPPO

Climate Zone 2A
NSVV↓
86 181
79 905
79 601
73 264
73 919
64 516

63 320

SRR↑
0.0%
7.3%
7.6%

15.0%
14.2%
25.1%

26.5%

NHVV↓
158 736
154 662
153 849
139 654
139 210
125 497

123 116

HRR↑
0.0%
2.6%
3.1%

12.0%
12.3%
20.9%

22.4%

Climate Zone 3A
NSVV↓
110 902
101 102
100 954
89 423
88 236
78 158

77 724

SRR↑
0.0%
8.8%
9.0%

19.4%
20.4%
29.5%

29.9%

NHVV↓
193 751
185 201
184 365
162 249
160 345
146 392

145 946

HRR↑
0.0%
4.4%
4.8%

16.3%
17.2%
24.4%

24.7%

Climate Zone 4A
NSVV↓
83 648
81 648
81 224
74 569
74 126
63 105

62 865

SRR↑
0.0%
2.4%
2.9%

10.9%
11.4%
24.6%

24.8%

NHVV↓
162 076
158 902
155 645
144 274
144 316
122 568

121 829

HRR↑
0.0%
2.0%
4.0%

11.0%
11.0%
24.4%

24.8%

Climate Zone 5A
NSVV↓
106 823
93 365
92 920
79 369
78 314
60 766

59 887

SRR↑
0.0%

12.6%
13.0%
25.7%
26.7%
43.1%

43.9%

NHVV↓
195 277
174 671
173 997
154 786
150 322
127 494

125 386

HRR↑
0.0%

10.6%
10.9%
20.7%
23.0%
34.7%

35.8%

A2C: advantage actor critic
HMAA2C: multi-agent advantage actor critic applied with MAHGA
HMAPPO: multi-agent proximal policy optimization applied with MAHGA
HRR: hard reduction rate

MAA2C: multi-agent advantage actor critic
MAPPO: multi-agent proximal policy optimization
NHVV: number of hard voltage violations
NSVV: number of soft voltage violations

PPO: proximal policy optimization
RBC: rule-based control
SRR: soft reduction rate
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inverter can be controlled. In Ref. [27], demand is regarded to 
be constant. CityLearn[12] is a platform that satisfies residential 
energy demands by controlling various shiftable components 
inside buildings. This environment has been widely used 
mainly to experiment with various reinforcement learning algo‐
rithms and their improvements, in comparison with reinforce‐
ment learning baselines and rule-based control. Besides, 
GridLearn[5], as an extension of CityLearn, considers both the 
grid-level and building-side objectives and introduces a more 
realistic environment where hundreds of agents are involved, 
and agents should control multiple components with corre‐
sponding resources to stabilize voltage in a power distribution 
network after satisfying the residential energy demand. 
IA2C[25] and IPPO[23] are used, which shows some effective‐
ness compared with the rule-based control method. In our pa‐
per, all experiments are conducted based on GridLearn. Apart 
from the power system field, in game-like environments, works 
have been proposed to better motivate the cooperation of 
agents, such as MAA2C and MAPPO[8], and they have shown 
good performance in some multi-agent game-like environ‐
ments. Another approach to achieving agents’ cooperation is 
to learn communication among multiple agents[28–30]. How‐
ever, such approaches always lead to high communication 
overhead because of the large amount of information transfer.

2) Graph neural networks (GNNs) have been applied suc‐
cessfully to solve prediction and classification tasks in many 
real-world applications, including recommender systems, 
chemistry and bioinformatics[21, 31–32]. However, GNN has not 

yet been fully explored 
in MARL, mostly due to 
the different nature of 
the problem. Former 
works in Refs. [33–35] 
attempt to apply GNN to 
extract better represen‐
tations from agents in 
game-like environments 
and Ref. [35] considers 
the unique nature of 
competitive games to ex‐
tract information hierar‐
chically. Their methods 
show encouraging per‐
formance with a few 
agents in games.

However, it is not yet 
clear whether MARL 
with GNN can still 
achieve competitive per‐
formance if applied to 
fully cooperative tasks 
with large-scale agents 
in real-world applica‐

tions such as power systems. In the smart grid field, there are 
few works related to GNN. In Refs. [36– 37], mask mecha‐
nisms and graph convolutional networks are applied to regu‐
late voltage in single-agent reinforcement learning tasks.
6 Conclusions and Future Work

In this paper, we propose MAHGA, a novel multi-agent re‐
inforcement learning framework for grid-aware energy manage‐
ment. Specifically, we first resolve the problem with the CTDE 
paradigm aiming to stimulate agents to learn cooperation strat‐
egy. Then, depending on modeling the distribution network to 
two different kinds of topology, we propose a hierarchical at‐
tention architecture to better extract agents’ correlations from 
high-dimensional environment and capture the characteristics 
of grid. In addition, graph contrastive learning is designed to 
learn a more effective representation in the reinforcement 
learning training phase. Extensive experiments on four large-
scale real-world scenarios have demonstrated the effective‐
ness of MAHGA where voltage violations can be significantly 
reduced compared with other baselines.

In our future work, we will explore the generalization over 
different climates and grid topologies, as well as the possibil‐
ity of adding more energy control components that buildings 
can control, like electric vehicles.
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1 Introduction

The advent of modern radar systems has brought forth a 
demand for higher efficiency, precision, and automa‐
tion[1]. However, the current radar detection parameters 
heavily depend on manual adjustment and empirical 

knowledge, which significantly hampers automation[2]. Tradi‐
tional manual adjustment methods are increasingly inadequate 
to meet these growing demands. This inadequacy necessitates 
the exploration of a new intelligent radar control learning frame‐
work and technology that can enhance the capability and auto‐
mation of radar detection.

One promising learning approach is reinforcement learning, 
which has gained popularity in decision-task learning. Rein‐
forcement learning is a major paradigm within the machine 
learning field, distinct from perceptual learning typified by im‐
age processing. Perceptual learning primarily involves super‐
vised learning, while reinforcement learning seeks to address se‐
quential decision-making problems through rewards. The rein‐

forcement learning algorithm, based on the Bellman equation, 
continually learns and improves through trial and error within an 
environment, thereby accumulating experience and developing 
superior strategies for given tasks[3]. In recent years, deep rein‐
forcement learning (DRL), with its powerful feature representa‐
tion and function-fitting capabilities, has shown remarkable pro‐
ficiency in various areas such as gaming and robotics. Notable 
accomplishments include AlphaGo’s consecutive victories over 
human world champions in Go[4], AlphaStar’s top master rank in 
StarCraft II[5], Suphx’s rise to the top ten sections of the profes‐
sional Japanese Mahjong platform “Tianfeng” developed by Mi‐
crosoft Research Asia[6], and the flexible and universal tokamak 
magnetic controller architecture developed by the DeepMind 
team for nuclear fusion projects[7]. Furthermore, deep reinforce‐
ment learning has been progressively implemented across vari‐
ous industries.

However, the application of reinforcement learning in radar 
control tasks is hindered by the shortage of samples. The effec‐
tiveness of deep reinforcement learning is currently heavily reli‐
ant on the availability of extensive learning data and substantial 
computing resources. For instance, the chess benchmark algo‐
rithm, MuZero, requires approximately 106 steps of data[8] to 
achieve initial results in training. This process takes roughly 11 
days at a sampling rate of 60 steps per second. Furthermore, 
DeepMind utilized 384 tensor processing units (TPUs) running 
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in parallel over a span of about 44 days to complete the rein‐
forcement learning training for AlphaStar, the StarCraft II algo‐
rithm[5]. The high training cost associated with deep reinforce‐
ment learning significantly restricts its range of applications.

This paper aims to address these challenges by proposing a 
practical radar operation reinforcement learning framework that 
integrates offline reinforcement learning and meta-reinforcement 
learning methods. The framework consists of the environment 
modeling of radar detection, the integrated learning structure 
and the learning objectives. Our experimental results of the 
MATLAB radar detection simulator indicate that the ability of 
our method in automatic radar detection has basically reached 
the level of humans, thus promoting the practical application of 
reinforcement learning in radar detection. This paper is struc‐
tured as follows. First, in Section 2, we introduce the related 
works. Then, in Section 3, we demonstrate our reinforcement 
learning framework for automatic radar detection. In Section 4, 
the experimental settings and results are introduced. Finally,  in 
Section 5, we draw a conclusion.
2 Related Works

In this section, we introduce the background and related 
works about our proposed framework, including reinforcement 
learning and its correlational research with radar control.
2.1 Reinforcement Learning

Reinforcement learning is one of the popular paradigms of ma‐
chine learning. The framework of reinforcement learning is 
shown in Fig. 1, which mainly includes two parts: agent and envi‐
ronment. The operation of reinforcement learning is a process of 
continuous interaction between agents and the environment, 
where the environment provides agents with the current state and 
numerical rewards, while agents output actions to the environ‐
ment according to existing information (usually the current state). 
The environment gives the state and rewards after the action is 
executed, and so forth until the environment terminates (done). 
In this process, agents often choose actions and learn strategies 
to maximize expected cumulative rewards.

The environment model of reinforcement learning is generally 
based on the Markov decision process (MDP). MDP is defined 
by a quaternion S, A, R, T , where S is the set of environmental 
states, A is the set of optional actions, the state transition func‐
tion T: S × A × S → [ 0, 1 ] gives the probability of transition 
from state s and action a to state s′, and the reward function R:

S × A × S → R provides the reward value for each step.
The agent algorithm of reinforcement learning aims to learn a 

policy π, and the policy determines the execution of action a 
(deterministic policy) or the execution probability (non-
deterministic policy) in each state s. The classical reinforcement 
learning algorithm considers that the MDP model of the environ‐
ment is given in advance, and the optimization goal of the policy 
π is to maximize the expected cumulative discount reward. The 
parameters of the parameterization policy πθ are θ, and the for‐
mula for calculating the optimal parameters θ* is:

θ* = arg max
θ

 Eπθ[∑t = 0
T γtrt ] , (1)

where T refers to the number of time steps that the environ‐
ment runs, and the discount factor γ ∈ [0,1] is used to bal‐
ance long-term rewards and short-term rewards. γ signifi‐
cantly stabilizes the reinforcement learning algorithm in an en‐
vironment with excessive T.

Reinforcement learning algorithms can be divided into two 
categories: value function-based and policy gradient-based. The 
reinforcement learning algorithm based on the value function 
makes decisions according to the state action value function 
Qπ( s,a). In the DRL algorithms based on the value function, 
Qπ( s,a) is constructed by a neural network, supplemented by 
some designs to enhance the stability of the algorithm[9]. Note 
that deep networks enable policies to adapt to tasks with a much 
wider range. This kind of algorithm performs better in the dis‐
crete action environment, but it is difficult to expand to the con‐
tinuous action environment. Common algorithms include the 
deep Q-network (DQN) [9], dueling double deep Q-network 
(D3QN)[10], deep recurrent Q-network (DRQN)[11], etc. Reinforce‐
ment learning algorithms based on policy gradients directly cal‐
culate the policy function πθ(a|s) modeling and optimization. 
Commonly used algorithms based on policy gradients are actor-
critic architectures, which perform better in continuous action 
environments, including deep deterministic policy gradient 
(DDPG) [12], proximal policy optimization (PPO) [13], soft actor-
critic (SAC) [14], twin-delayed deep deterministic policy gradient 
(TD3)[15], etc.

While reinforcement learning algorithms have demonstrated 
effective performance in simulated environments, two primary 
challenges exist in copying this performance to real-world sce‐
narios: 1) The inconsistency between the simulator and the ac‐
tual environment, which is often referred to as the Sim2Real 
gap, tends to result in catastrophic failure of deploying simulator-
trained policies in the real world; 2) the high cost of real-world 
sampling and the complexity of the real-world tasks result in a 
significant difference between the collected data and the actual 
situation. Especially in intelligent radar detection tasks, due to 
the large scale of the actual environment, it is difficult to collect 
sufficient training data that are needed. The actual environment 
can change greatly at any time with factors such as weather, ter‐▲Figure 1. Framework of reinforcement learning
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rain, and goals, which brings learning difficulties. Therefore, we 
introduce two research directions that help to solve this problem: 
offline reinforcement learning and meta-reinforcement learning.
2.1.1 Offline Reinforcement Learning

Offline reinforcement learning is a data-driven subset of the 
broader reinforcement learning field. Its primary objective is to 
optimize the same objective as reinforcement learning. However, 
in this context, intelligent agents cannot use behavioral strate‐
gies to interact with the environment or gather additional data. 
Instead, a learning algorithm provides a static transition dataset, 
denoted as D = ( s, a, r, a′), which is used to learn the most ef‐
fective strategies. This approach is more akin to the standard su‐
pervised learning problem, with D serving as the policy training 
set. Essentially, offline reinforcement learning requires the 
learning algorithm to fully understand the dynamic system that 
underlies the Markov decision process, using a fixed dataset to 
formulate a policy. When this policy is applied to interact with 
the Markov decision process, it aims to yield the maximum cu‐
mulative return.

Several existing model-free offline reinforcement learning 
methods regularize the learned policy to align closely with the 
behavior policy. This is achieved through techniques such as 
distributional matching[16], support matching[17], importance sam‐
pling[18–19], and learning the lower bounds of true Q-values[20]. 
On the other hand, model-based algorithms learn policies by le‐
veraging a dynamic model derived from the offline dataset. Ref. 
[21] directly restricts the learned policy to the behavior policy, 
similar to model-free algorithms. To penalize the policy for visit‐
ing states where the learned model may be incorrect, MOPO[22] 
and MoREL[23] adjust the learned dynamics, which ensures that 
the value estimates are conservative when the model uncertainty 
exceeds a certain threshold. To eliminate the need for uncer‐
tainty quantification, COMBO[24] combines model-based policy 
optimization[25] and conservative policy evaluation[20]. In this pa‐
per, we employ a distributional matching method, specifically 
the straightforward and effective behavior cloning (BC) method, 
as it simplifies the learning process of meta-reinforcement learn‐
ing methods.
2.1.2 Meta-Reinforcement Learning

Meta-reinforcement learning methods learn meta-policy on 
multiple meta-training tasks, aiming to quickly adapt to previ‐
ously unseen meta-testing tasks, and thus improving the effec‐
tiveness and generalizability of reinforcement learning methods. 
The process of meta-reinforcement learning mirrors that of meta-
learning, which consists of two stages: the meta-training stage 
and the meta-testing stage. During the meta-training stage, the 
algorithm learns from the meta-training task and prepares the 
model for the next stage. In the meta-testing phase, the trained 
model is adaptively applied to the meta-testing task to achieve 
testing results. Each task corresponds to a reinforcement learn‐
ing environment model, typically an MDP. The meta-training 

task is presented in the form of task distribution p (T ). At the be‐
ginning of meta-training, a certain number of meta training tasks 
{ T train } are sampled from the task distribution p (T ), that is, 
TTrain ~ p (T ). The set of meta-training tasks may be fixed by one 
sampling, or may be generated repeatedly by samplings in mul‐
tiple rounds of meta-training.

Existing works in this field can be broadly categorized into 
three types: the model-agnostic-meta-learning-based (MAML-
based), recurrent-based, and context-based. Some research fo‐
cuses on improving and extending the meta-learning framework 
MAML[26]. For instance, FINN et al. proposed a simplified algo‐
rithm FO-MAML that only uses first-order derivatives in their 
MAML work[26]; NICHOL et al. proposed a more versatile first-
order derivative algorithm Reptile[27]; The ES-MAML algorithm 
proposed by SONG et al. uses an evolutionary algorithm instead 
of derivation in outer optimization[28]; ANTONIO et al. con‐
ducted extensive experiments and concluded on the training 
problem of MAML[29].

Some other research reduces the uncertainty of inferring the 
state from observation by memorizing the history of tasks, thus 
improving the performance of strategies on unknown tasks. For 
example, the RL2 algorithm builds a policy model based on the 
recurrent neural network with memory and trains between mul‐
tiple tasks[30]; MISHRA et al. combined time series convolution 
and soft attention mechanisms to form a new depth architec‐
ture[31]; PARISOTTO uses the transformer model as a cross epi‐
sodic memory module[32].

Recent popular research extracts the task context to guide 
policy across various tasks. SÆMUNDSSON et al. used the 
Gaussian process and variational inference to model the hidden 
variables of tasks, combined with the model-based reinforce‐
ment learning algorithm to achieve a fast meta-training algo‐
rithm ML-GP[33]; ZINTGRAF et al. [34] and LAN et al. [35] com‐
bined the MAML algorithm with a task context encoder to im‐
prove performance; HUMPLIK et al. utilized long short-term 
memory (LSTM) to construct a task feature inference module 
and implemented algorithms similar to PEARL[36]; FAKOOR et 
al. used gated recurrent units as the history encoder to train 
their reinforcement learning algorithm meta-Q-learning (MQL) 
based on the multi-task objective[37]. The PD-VF algorithm pro‐
posed by RAILEANU et al. used the prediction environment cu‐
mulative reward to supervise the training task hidden variable 
module[38]; ZINTGRAF et al. used a variational autoencoder to 
train the task feature inference module and proposed the 
VariBAD algorithm[39]. Some studies improve the generalization 
ability of context-based methods through comparative learning. 
FU et al. constructed the algorithm named contrastive learning 
augmented context-based meta-RL (CCM) based on MoCo[40] 
and CURL[41]. WANG et al. proposed a method similar to CCM, 
TCL, where positive and negative samples are divided according 
to sampling trajectories rather than task types[42].

In this paper, we utilize the context-based VariBAD algorithm[39] 
to consider radar detection task characteristics and requirements.
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2.2 Radar Control with Reinforcement Learning
Reinforcement learning methods enable automatic learning of 

complex behaviors, and several studies have focused on intro‐
ducing deep reinforcement learning into radar control. AZIZ et 
al. provided a survey of literature proposing the application of re‐
inforcement learning to radar to overcome jamming[2]. WANG et 
al. suggested a cognitive frequency design method for a 
compressed-sensing-based frequency agile radar using reinforce‐
ment learning[43]. PATTANAYAK et al. introduced an inverse re‐
inforcement learning approach to meta-cognitive radars in an ad‐
versarial setting[44]. ZHAI et al. proposed a reinforcement 
learning-based approach for multi-input multi-output (MIMO) 
cognitive radar[45]. OTT et al. proposed an uncertainty-based 
meta-reinforcement learning approach with out-of-distribution 
environment detection[46]. In the context of multi-agent systems, 
SNOW et al. proposed a multi-objective inverse reinforcement 
learning approach for tracking targets with a cognitive radar net‐
work[47]. MENG et al. examined the issue of target assignment 
when a phased-array radar network detects hypersonic-glide ve‐
hicles in near space and proposed a method for target assign‐
ment based on deep reinforcement learning[48].

The aforementioned studies illustrate that deep reinforcement 
learning has extensive potential applications in various aspects 
of radar systems. However, these related works are conducted in 
simple simulated scenarios, and thus it remains challenging to 
implement reinforcement learning methods in real-world situa‐
tions. In this paper, we concentrate on the framework for exten‐
sive single radar parameter control, and we introduce realistic 
sample-limited settings and corresponding reinforcement learn‐
ing methods to tackle this problem.
3 Reinforcement Learning Framework for 

Automatic Radar Detection

3.1 Environment Modeling
Environment modeling is the foundation of reinforcement 

learning. Existing modules of traditional radar control are: a) 
analog signal → plot processing; b) plot → track processing; c) 
track → radar parameter control module. The intelligent radar 
control system mainly requires intelligent automatic control of 
the radar while observing the processed radar data (e. g., plots, 
tracks, etc.), and its framework is shown in Fig. 2. In order to en‐
hance the universality and generalization performance of our re‐
inforcement learning algorithm, our agent focuses on processing 
the input data composed of original analog signals, processed 
plots, and mixed tracks as states, and outputs controllable radar 

parameters.
The radar point and track processing algorithms typically op‐

erate in cycles. After each radar scan is completed and before 
the next one begins, our agent makes its decisions. In this con‐
text, the input state s = ( s1,s2,s3 ) includes:

a）A 3-dimensional raw echo analog signal, denoted as 
s1 ∈ [ H, W, V ]. Here, H, W, and V represent the distance, devia‐
tion angle, and amplitude of the signal, respectively. This analog 
signal is the radar’s echo signal in each direction. The data for 
each cycle is a position peak matrix.

b）Dots denoted as s2 = {( x1,y1,v1 ) , ( x2,y2,v2 ) ,…,( xn,yn,vn )}. 
These are a series of points identified as target points in the ana‐
log signal. Each point has features, such as position and signal-
to-noise ratio, extracted by algorithms. The number of points in 
the plot data for each cycle is uncertain. Each point has one row 
of features. Although there are much more clutter points in dots 
compared with tracks, it may cover more potential targets.

c）Tracks denoted as s3 = {( x′1,y′1,v′1,l′1 ) ,( x′2,y′2,v′2,l′2 ) ,…,(x′n′,y′n′,v′n′,l′n′)}. 
A track is a series of points in a historical track where the 
target point is recognized as a real target. Each point has fea‐
tures, such as position and velocity, extracted by algorithms. 
Similar to the format of dots, there are multiple dots in each 
cycle of dot data, each with a single line of features. How‐
ever, each target is additionally marked with a unique batch 
number. The trajectory is the main basis for decision-
making, but it often lacks some difficult-to-detect target in‐
formation and performs with a certain lag.

The system’s output is the radar’s parameter control informa‐
tion, which includes frequency point, speed, pitch angle, and tim‐
ing transmission. Note that these are generally discrete variables.
3.2 Learning Framework

As Fig. 3 illustrates, the framework’s primary process is di‐
vided into two stages:

The first stage involves data collection and offline pre-
training. Although offline reinforcement learning algorithms do 
not impose strict requirements on offline training data, existing 
research indicates that the diversity of offline training data sig‐
nificantly impacts the learning outcome[49]. Hence, we aim to 
conduct offline reinforcement learning pre-training for the deci‐
sion model, denoted as πθ (where θ represents model param‐
eters), based on as many diverse and abundant offline training 
data as possible. This stage initiates with model parameters θ0 and results in pre-training parameters θ′.

The second stage involves running the pre-trained decision 

▲Figure 3. Process of learning framework▲Figure 2. Environment interaction framework
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model πθ′ in an actual radar scenario and performing rein‐
forcement learning iterations online. To facilitate a smooth 
transition from offline data to online scenarios for the decision 
model, we incorporate a meta-reinforcement learning algo‐
rithm to enhance the model’s generalization. Given that radar 
detection requires precise environmental cognition, the intro‐
duced inference-based meta-reinforcement learning algorithm 
includes a task feature inference module and an auxiliary 
training target. This new meta-reinforcement learning network 
structure is also utilized in the offline pre-training phase, 
which indicates the combination of offline reinforcement learn‐
ing and meta-reinforcement learning.
3.3 Reinforcement Learning Method

Network design: Our design integrates a fundamental RL algo‐
rithm and a variational autoencoder (VAE)[50] to encode different 
task scenarios automatically. These encoded features are subse‐
quently inputted into the intelligent agent[39]. The VAE model 
consists of an encoder qϕ( st,at - 1,rt,ht - 1 ) → zt and two decod‐
ers pR

ψ( zt,si,ai,si + 1 ) → ri + 1, pT
ψ( zt,si,ai ) → si + 1. This model le‐

verages the reconstruction constraints of rewards and states, 
along with constrained dimension to compress the original in‐
puts ot = {st,at - 1,rt} into low-dimensional representation zt effi‐
ciently. The posterior distribution of a task can be interpreted as 
a representation of specific task characteristics, such as meteoro‐
logical features, ship-type tendencies and radar models. The de‐
coder takes a posterior distribution of tasks and some prior 
knowledge as input to predict the subsequent state. The context 
encoder qϕ is required to encode an indefinite length historical 
sequence. Therefore, a recurrent neural network (RNN) model is 
employed for approximation, and other models can be approxi‐
mated using a multi-layer perceptron (MLP). The VAE model 
outputs a low-dimensional representation of tasks zt to policy 
model πθ( st, zt ) → at. The complete network structure is shown 
in Fig. 4.

Offline reinforcement learning: Although a variety of offline 
reinforcement learning algorithms are available, we have opted 
for the behavioral cloning (BC) objective due to its ease of use 
and scalability. In practice, our policy model takes all historical 
trajectories as input. Let’s denote the previously collected data‐

set as D = {(oi,ai )}, where the equivalent new state is the his‐
torical trajectory oi = {si,ai - 1,ri}, si = ( s1

i ,s2
i ,s3

i ). Thus, the of‐
fline training objective is:

J1 = -E( )s,a Dist (πθ(oi ) ,ai ), (2)
where E( )s,a  is the expectation, Dist (∙) is the distance calcula‐
tion function, which can be set as a 0– 1 function for dis‐
crete variables. Behavioral cloning targets enable the policy 
model’s decision actions, πθ(oi ), to be closer to expert ac‐
tions, thereby allowing the parameters θ to learn a certain 
level of strategic knowledge.

Meta-reinforcement learning: We employ reconstruction and 
the information bottleneck objective to constrain feature informa‐
tion. The forms of reward and state reconstruction objective func‐
tions are:

J2 = -Eri
Dist ( pR

ψ(qϕ( si,ai - 1,ri,hi - 1 ) ,si,ai,si + 1 ) ,ri ),
J3 = -Esi

Dist ( pT
ψ(qϕ( si,ai - 1,ri,hi - 1 ) ,si,ai) ,si ) . (3)

Dist (∙) can be set as the L2 distance function for continuous 
variables such as the state and reward. The desired feature of 
the target, zi = qϕ( si,ai - 1,ri,hi - 1 ), retains the original input in‐
formation.

Moreover, the reconstruction objective involves the simultane‐
ous optimization of two models, which may result in gradient de‐
scent optimization not achieving the expected results. To expe‐
dite training, we additionally introduce the information bottle‐
neck method optimization objective[36], which is in the form of:

J4 = -Ei DKL(qϕ( si,ai - 1,ri,hi - 1 ) , r ( z) ), (4)
where r ( z) is the normal distribution.

During the offline pre-training stage, the overall optimization 
objective is J1 + J2 + J3 + J4 as the VAE is also trained. In the 
online training phase, the offline reinforcement learning objec‐
tive is replaced by the traditional reinforcement learning objec‐
tive JRL, and the overall optimization objective is JRL + J2 +
J3 + J4. Note that due to the existing initialization parameters, 
we need to reduce the learning rate by an order of magnitude 
during online tuning.
4 Experiment

Experimental tasks: Despite the universality of our con‐
structed method, we require explicit task scenarios and objec‐
tives for the experiment. Our primary experimental scenario 
involves enhancing the average signal-to-noise ratio (SNR) of 
radar detection targets by manipulating the radar’s frequency 
points. Given the radar’s relatively short rotation time (either ▲Figure 4. Network structure of the agent
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1 s or 10 s), we assume that the environment will remain 
largely unchanged even if the radar scans every alternate turn. 
As for the reward setting issue, we alternate between a circle 
set as a frequency point generated by the algorithm and the 
next circle as a fixed frequency point. This approach provides 
a relatively standardized reward for the reinforcement learning 
algorithm, rt(a) = SNR ( st,a) - SNR ( st,a fix ).

Evaluation setting: For offline data, actions are expert strat‐
egies, and we compare the overlap between algorithm output 
actions and offline data actions. For online learning, consider‐
ing the practical application, we involve relevant radar opera‐
tion experts to compare the algorithm’s parameter control re‐
wards with the expert’s parameter control rewards. We ask 
both the algorithm and experts to test each other on the same 
task, compare the cumulative rewards of the algorithm with 
the cumulative rewards of the experts, and take the average of 
three experiments. To benchmark real-world sample-limited 
applications, in the online training stage, the sample number 
is limited to 10 rounds, i.e. 10 000 steps.

Implementation: We employ proximal policy optimization 
(PPO) as the reinforcement learning algorithm during the on‐
line training phase. We use MATLAB as it supports the Radar 
Toolbox to construct a simulation environment. We achieve 
code communication between Python and MATLAB via the 
user datagram protocol (UDP). The environment and algo‐
rithms ran on a 2.5 GHz CPU and a single NVIDIA GeForce 
RTX 3080 graphics card. For offline training data, we have ex‐
perts control the selection of radar parameters in the task, but 
we also aim to cover as many action intervals as possible, 
thereby obtaining data with a total of 100 000 steps with a 
wide distribution of action.

Experimental results: After achieving convergence in the of‐
fline training phase, the action similarity between the decision 
model and offline data is 99%. In online tests, the average cu‐
mulative reward of the proposed method reaches 91% of the 
experts’ method, and the performance of a random policy is 
unstable and obviously weaker. Detailed online testing results 
with average cumulative reward are shown in Table 1. Addi‐
tionally, we observe that the decision model can control differ‐
ent parameters for different targets, and it tends to favor some 
commonly used radar parameters. The experimental results in‐
dicate that the decision model has learned the preliminary ra‐
dar control policy, but the potential of deep learning may not 
be fully exploited due to the limitation of the training sample 
size. According to our experience and expert judgment, our 
method can act as humans in basic radar automatic detection, 

and therefore has the potential to be applied in practical radar 
operation tasks. In future research, we will focus on further en‐
hancing the effectiveness of reinforcement learning and aim to 
apply it to actual radar.
5 Conclusions

In this paper, we have presented a novel practical approach to 
radar operation that leverages the power of reinforcement learn‐
ing. By integrating offline reinforcement learning and meta-
reinforcement learning methods, we have developed a practical 
radar operation reinforcement learning framework that can 
quickly adapt to unseen real-world tasks. Our experimental re‐
sults have demonstrated the ability to act as humans in basic ra‐
dar automatic detection with real-world settings, thereby validat‐
ing our approach. Our work not only addresses the current chal‐
lenges in radar operation but also paves the way for the practical 
application of reinforcement learning in radar operation. The 
proposed method has the potential to revolutionize radar detec‐
tion by enhancing its efficiency, precision, and automation. Fu‐
ture work will focus on further refining our framework and ex‐
ploring its application in real-world radar systems.
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Abstract: Offline reinforcement learning (ORL) aims to learn a rational agent purely from behavior data without any online interaction. One 
of the major challenges encountered in ORL is the problem of distribution shift, i. e., the mismatch between the knowledge of the learned 
policy and the reality of the underlying environment. Recent works usually handle this in a too pessimistic manner to avoid out-of-distribution 
(OOD) queries as much as possible, but this can influence the robustness of the agents at unseen states. In this paper, we propose a simple but 
effective method to address this issue. The key idea of our method is to enhance the robustness of the new policy learned offline by weakening 
its confidence in highly uncertain regions, and we propose to find those regions by simulating them with modified Generative Adversarial Nets 
(GAN) such that the generated data not only follow the same distribution with the old experience but are very difficult to deal with by them‐
selves, with regard to the behavior policy or some other reference policy. We then use this information to regularize the ORL algorithm to pe‐
nalize the overconfidence behavior in these regions. Extensive experiments on several publicly available offline RL benchmarks demonstrate 
the feasibility and effectiveness of the proposed method.
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1 Introduction

Reinforcement learning (RL) is one of the major 
branches of machine learning that has been success‐
fully applied in various fields in recent years, such as 
power grid control[1], recommendation systems[2], and 

robotics[3]. RL training usually involves a large number of try-
and-error interactions with underlying systems. However, such 

“interaction hungry” behavior could have a serious negative 
impact on many real-world applications, especially when the 
online data are either costly or dangerous to collect, e. g., in 
healthcare[4], autonomous driving[5], and so on. To address this 
problem, the idea of offline RL (ORL) is to learn a new policy 
only from data based on offline dataset without online interac‐
tion. Unfortunately, the direct employment of the common off-
policy strategy often fails to achieve the same level of perfor‐
mance as in the online setting[6–7].

The extrapolation error from out-of-distribution (OOD) ac‐

tions is generally thought of as the main reason responsible for 
the aforementioned performance degradation[6]. The OOD ac‐
tions here mean the actions taken by a model or system that is 
outside the range of the examples it was trained on. Since the 
dataset used for ORL training is generated by a behavior 
policy different from the new policy, possibly working in a dif‐
ferent environment as well, it is not always possible for the 
agent to generalize the knowledge learned from the data to un‐
seen real online situations. This is not uncommon in practice 
and usually manifests as the overestimated Q-value of OOD 
actions and such error compounds, leading to potentially dan‐
gerous consequences. The problem is usually referred to as 
distribution shift. To address this, many recent works, such as 
Conservative Q-Learning (CQL) [8] and Implicit Q-Learning 
(IQL) [9], take a conservative strategy by trying to prevent the 
agent from taking overestimated OOD actions, with the idea 
that if most of the states visited are familiar to us, the chance 
of error and the subsequent error compounding phenomenon 
could be greatly reduced. However, taking OOD actions on‐
line is almost inevitable, and avoiding the queries on them 
may significantly reduce the robustness of the agent. Actually, 
not all OOD data is non-generalizable[10].
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This observation motivates some works[11–12] to formulate 
the ORL problem as an uncertainty-penalizing policy optimi‐
zation problem, where some self-supervised methods are usu‐
ally adopted. These methods utilize the model prediction to 
provide the supervised signal for OOD data. However, such a 
prediction could be unreliable, highlighting the necessity of 
carefully balancing the tradeoff between the so-called radical‐
ism and conservatism when dealing with OOD data.

In this paper, we propose a novel method, named Boundary 
Conservative Q Learning (Boundary-CQL; BCQL), to improve 
the robustness of the learned policy while keeping conserva‐
tive when dealing with the OOD data. Our key idea is to 
weaken the agent’s confidence in highly uncertain regions 
while doing offline learning. To find those regions, we propose 
simulating them with a modified Generative Adversarial Net 
(GAN) such that the generated data follow the same distribu‐
tion as the old experience but are very difficult to be dealt 
with by themselves, with regard to some reference policies. In 
practice, the reference policy could be an empirical behavior 
policy or a pre-trained high-capacity policy, such as a CQL 
policy. As the found uncertain region generated data is visu‐
ally located at the boundary of the distribution of the original 
data, we call them boundary OOD data. Finally, we learn the 
new policy via the Bellman operator while simultaneously 
maximizing its entropy at the generated boundary OOD data, 
hence decreasing the confidence in the estimation of the opti‐
mal actions. In this way, we effectively maintain a balance be‐
tween the minimization of Bellman error and policy conserva‐
tism. Extensive experiments on several publicly available of‐
fline RL benchmarks demonstrate the feasibility and effective‐
ness of the proposed method.

It is worth noting that our method can also be thought of as 
a self-supervised offline RL method but is unsupervised in na‐
ture, as we only use the reference policy to identify the most 
difficult regions within the distribution defined by the training 
experience, without showing the algorithm the exact actions to 
be taken there. This is similar to those methods in machine 
learning that improve their generalization capability by nega‐
tive sample mining[13–15] but has never been used in the case 
of offline RL, to the best of our knowledge.

In what follows, a brief review of related work is given in 
Section 2, and a concise introduction to the background of of‐
fline RL is provided in Section 3. The description of the 
boundary OOD data and BCQL method is presented in detail 
in Section 4. Experimental results are presented in Section 5 
to evaluate the effectiveness and properties of the proposed 
method from multiple aspects. Finally, the paper concludes 
with a summary of the findings and contributions.
2 Related Work

In this section, we briefly review some works most relevant 
to our method in literature, which mainly involve offline RL 
methods and OOD simulation methods.

2.1 Offline Reinforcement Learning
Offline reinforcement learning is one of the hottest research 

directions in RL in recent years, where, as mentioned before, 
the major challenge is how to handle the distribution shift 
problem. This can be roughly divided into three categories: 
the policy constraint, uncertainty-based, and regularization of 
the value function. Regarding the policy constraint method, 
the BCQ algorithm[16] addresses the exploration error caused 
by the distribution shift through batch-constrained restriction. 
The bootstrapping error accumulation reduction (BEAR) algo‐
rithm[17] solves the problem of mismatch between the learning 
strategy, optimal strategy, and sampling strategy through a 
support set matching method and can achieve better results 
even when the sampling strategy is poor. The behavior regu‐
larized actor critic (BRAC) algorithm[18] tries to combine the 
advantages of both BCQ and BEAR algorithms for better 
learning efficiency. On the uncertainty-based approach, a 
typical representative method is the random ensemble mix‐
ture (REM) [19] method, which uses multiple parameterized Q 
functions to estimate Q values while enforcing Behrman con‐
sistency during learning.

CQL[8] is one of the most representative methods of the third 
category. It uses a regularization term to the traditional Q-
value network so as to learn a relatively conservative Q func‐
tion. However, since CQL sets a strict restriction on OOD ac‐
tion evaluation, it could be overly conservative. There are 
some works like IQL[9] and Mildly Conservative Q-learning 
(MCQ) [20] trying to fix this issue, where instead of directly 
learning actions out of data, known state action experience is 
used to learn how action values vary and future outcomes are 
averaged with random dynamics.
2.2 OOD Solution Based on Generative Model

OOD data in machine learning usually refer to the data that 
are significantly different from the training data on which a 
model is trained. These data are harmful to a machine learn‐
ing model as they could mislead the model to make incorrect 
predictions. Hence, they have drawn the attention of many re‐
searchers in recent years[21]. Generative networks are useful 
tools for high-dimensional sampling and have been widely 
used to generate OOD data. The most popular generative mod‐
els include adversarial generation networks[22] and the autoen‐
coder/variational autoencoder[23].

The work based on auto-encoder/variational auto-encoder 
(PIDHORSKYI et al.) [24] used the variational auto-encoder to 
calculate reconstruction errors to identify OOD. First, the 
parametric manifold structure implied by the normal distribu‐
tion is linearized to calculate OOD probability. Next, the 
method of probability decomposition is given, and then the lo‐
cal coordinates of the tangent space of the manifold are used 
to calculate the reconstruction error. Competitive Reconstruc‐
tion Autoencoder (CoRA)[25] trained two autoencoders on the 
in-distribution and abnormal data, respectively, and used the 
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reconstruction error of the two autoencoders as the suspicious 
identification signal.

On the other hand, based on an adversarial generation net‐
work, Anomaly Detection with Generative Adversarial Net‐
works (ADGAN) [26] generates OOD samples by checking 
whether the sampled data are satisfactory in a hidden space, 
while PNET[27] uses the generation network to generate and 
identify OOD samples based on their reconstruction errors.
2.3 Generative Model for Offline Reinforcement Learning

Generative models have been widely used in offline rein‐
forcement learning for different usages. In BCQ[16] and BEAR[17] 
algorithms, conditional variational autoencoders generate data 
that satisfies the constraint. Action-conditioned Q-learning 
(AQL) [28] replaces the conditional variational autoencoder in 
BEAR with a residual generative model to improve fitting per‐
formance. MCQ[20] uses a generative model such as conditional 
GAN to estimate the sampling policy. Diffusion Q-learning[29] 
uses a diffusion model to constrain target policy and add a loss 
of maximum action value to the original diffusion loss. Select‐
ing from Behavior Candidates (SfBC) [30] also uses a diffusion 
model combined with an in-sample planning technique to fur‐
ther avoid selecting out-of-sample actions and increase compu‐
tational efficiency. Unlike prior work, we use a generative 
model to generate data not only following the same distribution 
as the experience but also in uncertain regions for agents.
3 Preliminaries

A Markov decision process (MDP) can be specified by a 
tuple S, A, r, T, γ , where S regards the state space, A is 
the action space, r: S × A → R is the reward function, 
which is used to evaluate the action under state s, T: S ×
A → S is the transition, and γ represents the discount fac‐
tor. Reinforcement learning 
aims to find a policy to maxi‐
mize the expected cumulative 
rewards. Q function Qπ ( s, a ) =
Eπ [∑t = 0

∞  γtrt|s, a ] measures 
the discounted long-term re‐
ward given the state-action 
pair ( s, a ) and the policy π. Q-
learning is a classic method 
that trains the Q-value func‐
tion by minimizing the Bell‐
man error over Q [31]. In the set‐
ting of continuous action 
space, Q-learning methods use 
an exact or approximate maxi‐
mization scheme, such as the 
cross entropy method (CEM)
[32], to recover the greedy 
policy as follows:

Q ← arg min
Q

E [ B^ π

Q ( s, a ) - Q ( s, a ) ]2 ,
π ← arg max

π
EsEa ∼ π ( )⋅|s Q ( )s, a  , (1)

where B^ π

Q ( s, a ) represents the empirical Bellman target, de‐
fined as B^ π

Q ( s, a ) = r ( s, a ) + γEa′ ∼ π (⋅|s′)Q ( s′, a′).
In the setting of offline reinforcement learning, Eq. (1) 

would be performed on a dataset D, and the result is collected 
via a behavior policy πβ. Due to the aforementioned distribu‐
tion shift issue, OOD queries usually yield incorrectly esti‐
mated Bellman targets. CQL, as a representative OOD-
constraint offline RL algorithm, tries to underestimate the Q-
values for OOD state-action pairs to prevent the agent from 
the extrapolation error[6] as follows:

Q ← arg min
Q

α ⋅ (Es ∼ D, a ∼ π ( )a|s [Q ( s, a) ] -
E s, a ∼ D[Q ( s, a) ] ) + 1

2 Es, a, s' ∼ D
é

ë

ê
êê
ê(Q ( s, a) - B  π

Q
  

( s, a) ) 2ù

û

ú
úú
ú

 , (2)
where π is the new policy to be learned and α is the balance-
coefficient. CQL tries to prevent the Q-value of OOD actions 
from being overestimated, but avoiding OOD queries would 
degrade the robustness when the agent faces an unseen state.
4 Method

In this section, we first introduce the boundary OOD data 
in our work. Then we illustrate the primary approach that is 
utilized to generate the boundary OOD data. Finally, we give 
the detailed design of the proposed method BCQL. The frame‐
work of our proposed method is shown in Fig. 1, where the 

▲ Figure 1. Overall architecture of the proposed Boundary Conservative Q Learning (Boundary-CQL, 
BCQL) method, where the left column illustrates the pipeline to generate boundary OOD data based on an 
adversarial generative model, while the right column performs Offline RL with the generated data
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generator is optimized via the discriminator and the pre-
trained reference policy simultaneously, and then the gener‐
ated data is provided for the offline RL algorithm to enhance 
its robustness.
4.1 Motivation

As mentioned before, to enhance the robustness of the 
new policy, it is necessary to generate more OOD data. Con‐
sidering that not all the OOD data are generalizable in the 
offline setting, we generate certain OOD states that are not 
very far away from the training dataset and require that the 
pre-trained reference policy has high entropy in making de‐
cisions at these states. In other words, our generated data 
should have two features: 1) OOD, which means that the dis‐
tribution should be different from the training dataset, such 
that the reference agent would be confused about what to do 
at these states, and 2) boundary, which means that the gener‐
ated data should not be totally unrelated to the offline data‐
set. Hence we name this kind of OOD data as boundary 
OOD data.
4.2 Generating Boundary OOD Data

In this section, we describe how to generate boundary OOD 
data within the adversarial generative framework.

First, recall that the loss function of GAN is defined as fol‐
lows:

min
G

max
D

EP in ( )x [ log D ( x) ] + EPpri ( )z
[ log (1 - D (G ( z ) ) ) ] , (3)

where G denotes the generator, D the discriminator, P in  refers 
to the distribution of in-distribution (ID) data while Ppri( z ) re‐
fers to some prior distributions such as a Gaussian distribu‐
tion. The loss function minimizes the error rate of the discrimi‐
nator for the real data while maximizing the error rate of the 
discriminator for the generated data until a Nash equilibrium 
is achieved.

To generate the desired boundary OOD data described in 
the previous section, we adopt the following loss function:

min
G

max
D

é
ë
EP in ( )s [ log D ( s) ] + EPGB

( )s' [ log (1 - D ( s') ) ]ùû +
βGEPGB( )s' H [πpre( ⋅ |s') ], (4)

where s' refers to the generated OOD state and πpre refers to 
the pre-trained reference policy. The first term of Eq. (4) re‐
quires that the generated distribution PGB

(⋅) should still follow 
the distribution P in (⋅) of the offline dataset, but under the con‐
straint defined by the second term of Eq.(4), which forces the 
generated data to satisfy the requirement that the reference 
policy has high entropy H [ πpre (⋅| s′) ] over them, where the en‐
tropy of the reference policy πpre is defined as H [ πpre (⋅| s′) ] =
∑a

 πpre (a | s′)log πpre (a | s′). The tradeoff between the above 

two terms is controlled by another parameter βG, which should 
be set based on the specific applications.

In implementation, we use Conditional GAN[33] to generate 
s′ conditioned on the origin state s and use the pre-trained 
CQL as the reference policy πpre.
4.3 Boundary Conservative Q-Learning

To enhance the robustness of the new policy learned offline, 
we aim to weaken its confidence at the generated boundary 
OOD states mentioned before. A direct way to realize this is to 
add regularization LBCQL to maximize the entropy of the new 
policy when making decisions at these states:

LBCQL = H é
ë
êêêê

ù
û
úúúúπ ( )a |

|
|||| s

^ = -∑a
 π ( )a |

|
|||| s

^ log π ( )a |
|
|||| s

^
, (5)

where s
^  is the boundary OOD state generated and π is the 

new policy. Then the whole loss function of the policy network 
is as follows:
Lπ = -Es ∼ D, a ∼ π ( )a|s Q

  

( s, a) - λLBCQL, (6)
where λ is the balance-coefficient of the BCQL term, π is the 
new policy, and Q^  is the target Q network.

As Eq. (6) shows, we can keep the new policy conservative 
as commonly done in normal offline RL training, but it has to 
be uncertain as the reference policy does when facing the gen‐
erated boundary OOD data. Then the loss function of Q net‐
works can be formulated as follows:
LQ = αEs ∼ DéëEa ∼ π ( )a|s [Q ( s, a) ] - Ea ∼ πβ( )a|s [Q ( s, a) ]ùû +
1
2 Es, a, s' ∼ D

é

ë

ê
êê
ê(Q - B  π

Q
  ) 2ù

û

ú
úú
ú

 , (7)
where α is the weight of the CQL term and πβ denotes the em‐
pirical behavior policy.
Algorithm 1. Boundary-CQL
Input: Q networks Q, pre-trained reference policy πpre, prior 
distribution ppri ( z ), generator GB, offline dataset D, generative 
coefficient βG, and OOD punishment coefficient λ
1: Train GB via Eq. (4) using πpre and βG2: for each iteration do
3:  Sample a mini-batch B = ( s, a, r, s′) from D
4:  Sample z from ppri ( z ) and generate s^ = GB ( z )
5:  Update the new policy π with s^  and B via Eq. (6)
6:  Update the Q networks Q with B via Eq. (7)
7: end for
8: Output the new policy π

Algorithm 1 summarizes the main pipeline of the proposed 
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method. To be specific, we first train the generator GB via Eq. (4), 
and then we enter the offline RL loop, where we update the 
policy network π via Eq. (6) and the Q networks Q via Eq. (7) 
alternately. Finally, we output the policy network π for the 
testing stage.
5 Experiments

This section starts with an introduction to the datasets used 
in our research. Subsequently, the efficacy of our proposed 
framework is demonstrated through its assessment on Datasets 
for Deep Data-Driven Reinforcement Learning (D4RL) bench‐
marks. Further, an examination of the behavior of our genera‐
tor and its impact on the new policy is conducted. Finally, a 
sensitive analysis is performed to elucidate the contribution of 
each parameter.
5.1 Datasets

The experiments presented in this study are carried out 
on the OpenAIGYM subset of the D4RL[34] tasks. For perfor‐
mance evaluation, we utilize datasets that are a combination 
of multiple policies, namely medium, medium-replay, 
medium-expert, and expert. To ensure the robustness of our 
findings, we conduct all experiments at four distinct random 
seeds.
5.2 Comparative Study

To demonstrate the superiority of our proposed framework, 
we conduct a comparative analysis with several state-of-the-
art algorithms, including behavior cloning (BC), BEAR[17], Soft 
Actor-Critic (SAC) [35], twin-delayed deep deterministic policy 
gradient (TD3)+BC[36], and CQL[8]. In particular, we obtain the 
results for CQL and BEAR using our implementation, while 
the effects of BC and SAC are taken from Clean Offline Rein‐

forcement Learning (CORL)37] and MCQ[20], respectively. Addi‐
tionally, we obtain the results for TD3+BC from its original 
publication. Table 1 presents the results, with the highest 
mean value being denoted in bold.

As is evident from the results presented in Table 1, our pro‐
posed algorithm outperforms the other state-of-the-art ap‐
proaches in the medium, medium-expert, and medium-replay 
datasets, which exhibit diverse characteristics. In comparison 
with the basic version of CQL, our approach demonstrates su‐
perior performance in estimating OOD data. However, in an 
expert setting, although we employ a generative network to 
simulate OOD data, with the constraint on the OOD data, our 
approach performs better than the original CQL but worse 
than TD3+BC when employing behavior cloning in the half 
cheetah task. Overall, these findings highlight the excellent ef‐
ficiency of our proposed framework in both complex tasks and 
expert environments.

Fig. 2 displays the performance of BCQL and CQL during 
the training process. As illustrated by the curves, our pro‐
posed algorithm outperforms both BC and basic CQL in the 
medium, medium-replay, and medium-expert environments, 
owing to the utilization of augmented data. In contrast, BC em‐
ploys data obtained through behavior cloning. In the expert en‐
vironment, the regularization imposed on the generated low-
confidence data leads to a minimal impact on the performance 
of high-confidence data.
5.3 Behaviors of Generator

The present study employs a GAN-based generator to gen‐
erate data in various environments, and the real and gener‐
ated states are visualized, as shown in Fig. 3. The generated 
data is observed to be irregular yet maintained its validity in 
comparison to the original data. To assess the effectiveness 

▼Table 1. Performance of BCQL and prior methods on MuJoCo tasks from D4RL, on the normalized return metric (the highest means are bolded)
Task Name

Halfcheetah-medium-v2
Hopper-medium-v2

Walker2d-medium-v2
Halfcheetah-medium-replay-v2

Hopper-medium-replay-v2
Walker2d-medium-replay-v2

Halfcheetah-medium-expert-v2
Hopper-medium-expert-v2

Walker2d-medium-expert-v2
Halfcheetah-expert-v2

Hopper-expert-v2
Walker2d-expert-v2

Total average

BC

42.4±0.2
53.5±2.0

63.2±18.8
35.7±2.7
29.8±2.4

21.8±11.7
56.0±8.5
52.3±4.6

99.0±18.5
91.8±1.5

107.7±0.7
106.7±0.2

63.3

BEAR

37.1±2.3
30.8±0.9
56±8.5

36.2±5.6
31.1±7.2
13.6±2.1

44.2±13.8
67.3±32.5
43.8±6.0

100.2±1.8

108.3±3.5
106.1±6.0

56.2

SAC

55.2±27.8

0.8±0.0
-0.3±0.2
0.8±1.0
7.4±0.5
-0.4±0.3

28.4±19.4
0.7±0.0
1.9±3.9
-0.8±1.8
0.7±0.0
0.7±0.3

7.9

TD3+BC

48.3±0.3
59.3±4.2
83.7±2.1
44.6±0.5

60.9±18.8
81.8±5.5
90.7±4.3
98.0±9.4

110.1±0.5
96.7±1.1
107.8±7

110.2±0.3

82.7

CQL

47.1±0.2
64.9±4.1
80.4±3.5
45.2±0.6

87.7±14.4
79.3±4.9
96±0.8

93.9±14.3
109.7±0.5
96.3±1.3

109.5±14.3
108.5±0.5

83.8

BCQL

47.1±0.7
66.1±5.2

84.6±2.5

46.1±1.5

93.9±11.8

82.5±7.3

97.5±3.2

95.9±13.3
110.2±1.0

98.4±3.2
111.7±8.3

109.7±1.0
87.0

BC: behavior cloning 
BCQL: Boundary Conservative Q Learning 
BEAR: bootstrapping error accumulation reduction 
CQL: Conservative Q-Learning 

D4RL: Datasets for Deep Data-Driven Reinforcement Learning 
SAC: Soft Actor-Critic 
TD3: twin-delayed deep deterministic policy gradient
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of the generator, experiments 
are conducted in a halfcheetah 
environment. Fig. 4 demon‐
strates that the generated data 
closely approximates the origi‐
nal data, although the two are 
not identical. This finding satis‐
fies the boundary requirements 
of the experiment. Moreover, 
the distribution of action possi‐
bility depicted in the figure indi‐
cates that the generated data ad‐
heres to the low confidence cri‐
teria of a pre-trained RL net‐
work. Thus, the generator is ca‐
pable of producing data with the 
features described in Section 3.
5.4 Parameter Sensitivity 

Analysis
We conduct several experi‐

ments to evaluate the sensitiv‐
ity of the following two param‐
eters in our algorithm: the pa‐
rameter βG in Eq. (4) and the 
BCQL weight λ in Eq. (6).
5.4.1 Study of Parameter βGThe parameter βG plays a 
crucial role in training the gen‐
erator, as it affects its perfor‐
mance. We illustrate this by 
considering the task of walker2
d-medium. We set the iteration 
number K for the generator at a 
fixed value of 5 000 to avoid 
any confounding effects. As de‐
picted in Fig. 5 and Table 2, 
the generator’s performance is 
sensitive to changes in βG. Spe‐
cifically, increasing βG leads to 
a decrease in the trained 
policy’s confidence, while si‐
multaneously increasing the KL 
divergence. The KL divergence 
represents the distance be‐
tween the generated distribu‐
tion and the original distribu‐
tion. In order to strike a bal‐
ance between being close to the 
original data and having low 
confidence, we use the smallest 
possible value for βG that still 
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▲Figure 2. Policy performance during training in different environments
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▲Figure 3. Visualization of data generated in different environments
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▲Figure 4. Distribution of generated states and real states in different environments
KL: Kullback-Leibler

Generated-statesReal-states Generated-statesReal-states Generated-statesReal-states

Halfcheetah-medium-v2-state Halfcheetah-medium-expert-v2-state Halfcheetah-expert-v2-state

(a)

(b)

(c)

34



ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

SHEN Jiahao, JIANG Ke, TAN Xiaoyang 

Boundary Data Augmentation for Offline Reinforcement Learning   Special Topic

satisfies the low confidence requirement.
5.4.2 Study of Parameter λ

The parameter λ in Eq. (6) affects the behavior of the net‐
work when using generated data. Specifically, a higher value 
of λ results in a more conservative behavior, while a lower 
value leads to greater flexibility. To investigate the impact of 
λ on the performance of the network, we conduct experiments 
while keeping the other parameters constant, and the results 
are presented in Table 3, which indicates that a large value of 
λ can be detrimental to performance when the environment is 
diverse, and therefore, a milder value of λ may be more appro‐

priate. Based on the results, a value of λ = 1.0 should be suit‐
able in most situations.
6 Conclusions

The proposed method BCQL improves the robustness of of‐
fline reinforcement learning algorithms while maintaining con‐
sistency with the original data distribution, based on a novel 
OOD simulation technique using a GAN. Extensive experi‐
ments are performed on several publicly available offline RL 
benchmarks, showing that the proposed BCQL method 
achieves state-of-the-art performance while maintaining high 
robustness and conservation. Our work highlights the benefits 
of improving the robustness of offline reinforcement learning 
algorithms, which is an important research direction given the 
increasing interest in offline RL applications.
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1 Introduction

With the trend toward the system-on-chip (SoC) and 
system-in-package (SiP) solutions of radio and ra‐
dar transceivers, differential antennas are getting 
popular for their advantages such as low cross-

polarization, common-mode rejection, symmetrical radiation 
pattern, and seamless integration with differential circuits[1–4].

A quasi-Yagi antenna was originally proposed as a single-
ended antenna[5] although the driver is differential. Now, the 
quasi-Yagi antenna is an important type of antennas for end-
fire radiation. However, most reported quasi-Yagi antennas 
are single-ended antennas[5–8]. They need to use baluns or 
complicated feeding networks to convert differential drivers to 
single-ended inputs, which greatly increases design complex‐
ity and degrades antenna performance. In addition, the cou‐
pling between two conventional single-ended quasi-Yagi an‐
tennas was examined for the design of quasi-Yagi arrays. How‐
ever, the dominant electromagnetic mechanism and the key 
structural part for coupling are not clear.

To our best knowledge, the first differential quasi-Yagi an‐
tenna[9] was implemented in a thin cavity-down ceramic ball 
grid array package in low temperature co-fired ceramic 
(LTCC) technology. It achieved a 10 dB impedance band‐
width of 2.3 GHz from 60.6 GHz to 62.9 GHz and a peak gain 
of 6 dBi at 62 GHz. The bandwidth was too narrow for 60 GHz 

radios, which typically require the bandwidth of 7 GHz from 
57 GHz to 64 GHz. Furthermore, there has been no differen‐
tial quasi-Yagi array reported up to now.

In this paper, we present the design, analysis, and mea‐
surement of a differential quasi-Yagi antenna and array on 
high dielectric constant substrates. We design the differen‐
tial quasi-Yagi antenna and discuss the simulated and mea‐
sured results in Section 2. We describe the differential quasi-
Yagi linear arrays, study the coupling mechanism between 
the two differential quasi-Yagi antennas, evaluate the effects 
of decoupling structures, and discuss the simulated and mea‐
sured results in Section 3. Finally, we draw the conclusion in 
Section 4.
2 Differential Quasi-Yagi Antenna

Fig. 1 shows the structure and dimensions of the differential 
quasi-Yagi antenna proposed in this paper. Note that the an‐
tenna consists of three elements, namely a driver, a reflector, 
and a director. The driver is fed by a differential coplanar 
strip (CPS) line, which is gradually transformed into two 
single-ended tapered coupled microstrip lines (TCML). More 
commonly, there are more than one director to improve the an‐
tenna gain. The driver and director are horizontally printed on 
the top surface of a substrate of dielectric constant εr, loss tan‐
gent δ, length ls, width ws, and thickness h. The reflector is 
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usually printed on the bottom surface of the substrate, which 
has another function as the ground plane.

The design procedure of the differential quasi-Yagi antenna 
is as follows. It starts with choosing a substrate for the maxi‐
mum excitation of the surface wave of the TE0 mode by an 
electric dipole on the substrate at the central frequency of the 
operating band. ALEXOPOULOS et al. examined how the sub‐
strate affects the excitation of surface waves[10]. They found 
that the surface wave of the TE0 mode can be maximumly ex‐
cited if the critical value of the substrate electrical thickness 
is satisfied. Using the method described in the classical pa‐
per[10], LEONG and ITOH showed that the critical values for 
the electrical thickness are 0.03, 0.05, and 0.08 for the sub‐
strates with εr =10.2, 4, and 2.2, respectively[8]. Then, the ini‐
tial values are set for the length l0 and width w0 of the director, 
the distance d1 between the director and the driver, the length 
l1 and width w1 of the driver, and the distance d2 from the 
driver to the reflector. For simplicity, the same width of 0.02λ0 can be chosen for the driver and director. The length of the 
driver is about 0.45λg. The length of the director should be 
shorter than that of the driver and can be 0.3λg. The distances 
between the director and driver and between the driver and re‐
flector are about 0.3λg and 0.25λg, respectively. Next, the 
width w2 and spacing g0 of the CPS line can be estimated with 
the available empirical formula. Finally, the optimum values 
for the above design parameters can be obtained from High 
Frequency Structure Simulator (HFSS) simulations.

Fig. 2 shows the photo of the differential quasi-Yagi an‐
tenna designed and fabricated on a substrate of dielectric con‐
stant εr = 10.2 and thickness h=0.635 mm at X-band frequen‐
cies. The fabricated dimensions are ws =15 mm, wg=4.4 mm, 

w0=w1=0.6 mm, w2=1.5 mm, ls=17 mm, l0=3.2 mm, l1=8.7 mm, 
l2 =1.3 mm, l3 =3.9 mm, d0 = 3.3 mm, d1=3.2 mm, d2=6.1 mm, 
g0=0.3 mm, and g1=0.6 mm.

Fig. 3 shows the simulated electric field distributions on the 
top and bottom surfaces of the differential quasi-Yagi antenna. 
As expected, the surface wave of the TE0 mode is indeed 
strongly excited and propagated in the directions normal to the 
driver. On the one hand, since the polarization direction of the 
electric field on the driver is the same as that of the electric 
field on the director, there will be a strong coupling between 

CPS: differential coplanar strip      TCML: tapered coupled microstrip line
▲Figure 1. Structure and dimensions of the differential quasi-Yagi antenna

▲Figure 2. Photo of the differential quasi-Yagi antenna

▲Figure 3. Electric field distribution on the (a) top and (b) bottom surfaces
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them. Thereby, the surface wave of the TE0 mode is guided to 
radiate in the end-fire direction. On the other hand, due to the 
existence of the ground plane or the reflector, the surface wave 
of the TE0 mode cannot be propagated in the grounded sub‐
strate region and will be reflected, which further strengthens 
the radiation in the end-fire direction.

It should be pointed out that the surface wave of the TM0 mode is quite weakly excited, which can propagate along the 
axial directions of the driver in both the grounded and un‐
grounded substrate regions. It causes cross-polarized radia‐
tion and deteriorates antenna gain and front-to-back ratio. 
Therefore, in designing a quasi-Yagi antenna, the major con‐
cern is how to excite the surface waves of the TE0 mode to the 
greatest extent and the surface waves of the TM0 mode to the 
lowest extent.

Fig. 4 shows the simulated and measured |Sdd11| of the dif‐
ferential quasi-Yagi antenna as a function of frequency from 
7 GHz to 15 GHz. It is evident 
from the figure that although there 
are differences between the simu‐
lated and measured values, the an‐
tenna achieves acceptable match‐
ing from 7.5 GHz to 14.8 GHz or a 
fractional bandwidth of 66% for a 
voltage standing wave ratio ≤ 2 at 
11.15 GHz. Fig. 5 shows the simu‐
lated and measured radiation pat‐
terns at 8.2 GHz, 10.6 GHz, and 
12.3 GHz. As expected, the an‐
tenna radiates an end-fire beam. 
Fig. 6 shows the simulated and 
measured gain values. The mea‐
sured gain values fluctuate be‐
tween 3.7 dBi and 5.4 dBi from 
8 GHz to 12.3 GHz. The simu‐
lated radiation efficiency is 94% 
at 10 GHz. The simulated radia‐
tion efficiency at frequencies be‐
low 8 GHz and above 13.5 GHz drops quickly, which explains 
why the gain drops.

Table 1 lists the bandwidth, gain, efficiency, cross-
polarization (X-pol), and front-to-back ratio (FBR) for the 
single-ended and differential quasi-Yagi antennas at 10 GHz. 
It should be mentioned that these quasi-Yagi antennas have 
the same size and are fabricated with the same material. Note 
from the table that the differential quasi-Yagi antenna outper‐
forms the single-ended counterparts.
3 Differential Quasi-Yagi Array

The application of the differential quasi-Yagi antenna as an 
array element is explored in this section. We limit our effort to 
E-plane linear arrays because we target their potential use in 
portable and mobile devices[11–12].

▲ Figure 4. Simulated and measured |Sdd11| of the differential quasi-
Yagi antenna

▲Figure 5. Simulated and measured E- and H-plane radiation patterns of differential quasi-Yagi antennas 
at (a) 8.2 GHz, (b) 10.6 GHz, and (c) 12.3 GHz

▲ Figure 6. Simulated and measured gain values of the differential 
quasi-Yagi antenna
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3.1 Linear Arrays
Fig. 7 shows the top views of the two- and four-element E-

plane linear differential quasi-Yagi arrays. The differential 
quasi-Yagi element is the same as the differential quasi-Yagi 
antenna presented in the previous section. The distance be‐
tween the two adjacent elements is d.
3.2 Coupling Mechanism

The mutual coupling between elements needs to be consid‐
ered especially in the design of a phased array because strong 
mutual coupling may cause scan blindness. The mutual cou‐
pling is determined by the transmission coefficient |S21| or |Sdd21| of an array. DEAL et al.[7] determined the E-plane mutual cou‐
pling between two single-ended quasi-Yagi antennas imple‐
mented on the same substrate to be below –18 dB and, in most 
cases, below –20 dB for the center-to-center spacing equal to 
or greater than the half wavelength at 10 GHz[7]. They also made 
an effort to identify the source of mutual coupling and con‐
cluded from their measurements of the testing structures that, 
for a 15-mm-array spacing that corresponds to the half wave‐
length at the central frequency of 10 GHz, mutual coupling is 
almost solely due to coupling through the air[7].

To get a deeper insight into the coupling mechanism, we 
have conducted a simulated study of mutual coupling between 
two single-ended and two differential quasi-Yagi antennas, re‐
spectively. First, we keep the drivers, the substrate, and the 
truncated ground plane but remove all the other building 
blocks. Fig. 8(a) shows the simulated electric field distribution 

on the top surface of the substrate for the case with one driver 
fed by a lumped port and the other driver matched to a load at 

▼Table 1. Single-ended and differential quasi-Yagi antennas

Reference
Ref. [7]

This work

Bandwidth/%
48
73

Gain/dBi
4.6
4.4

Efficiency/%
93
94

X-pol/dB
−12
−21

FBR/dB
12
15

FBR: front-to-back ratio      X-pol: cross-polarization

▲Figure 7. Structures of the E-plane linear differential quasi-Yagi ar‑
rays of (a) two elements and (b) four elements

▲ Figure 8. Simulated electric field distributions: (a) only driver, (b) 
driver and director, (c) driver, director and differential coplanar strip 
(CPS), (d) driver, director, CPS and balun, and (e) driver, director, 
CPS and tapered coupled microstrip line (TCML)

d
(a)

(b)
d d d1 2 3 4

(b)

(a)

(c)

(d)

(e)
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10 GHz. It is evident from the figure that the surface wave of 
the TE0 mode has been strongly excited and trapped in the un‐
grounded substrate region. It is important to note that the 
grounded substrate region cuts off the surface wave of the TE0 mode and forces it to be reflected to the ungrounded substrate 
region. The reflected surface wave of the TE0 mode is an im‐
portant source of mutual coupling. Then, we add two directors 
in the model, and the simulated electric field distribution on 
the top surface of the substrate at 10 GHz is shown in Fig. 8
(b). It is seen that there is a strong desirable coupling between 
the excited driver and its director due to the surface wave of 
the TE0 mode for end-fire radiation. There seems no effect by 
the directors on the coupling between the two drivers. Next, we 
add CPS lines in the model and move the lumped port to the 
CPS input and the matched load to the other CPS input. Fig. 8
(c) shows the simulated electric field distribution on the top 
surface of the substrate at 10 GHz. Note that the CPS lines en‐
hance the coupling between the two drivers. Finally, we add in 
the model baluns to realize the single-ended quasi-Yagi array 
and TCML to realize a differential quasi-Yagi array, respec‐
tively. Figs. 8(d) and 8(e) show the simulated electric field dis‐
tributions on the top surfaces of the substrates at 10 GHz for 
the cases of the single-ended and differential quasi-Yagi ar‐
rays, respectively. Note that the coupling is stronger for the 
differential than for the single-ended quasi-Yagi array.

Fig. 9 shows the simulated |Sdd11| and |Sdd21| as a function of 
frequency for the cases in Figs. 8(a) and 8(b) with a spacing 
of 15 mm between the two elements. As expected, the cou‐
pling level over the acceptable matching band from 9 GHz to 
11.5 GHz is almost the same between the two cases with and 
without the directors. Fig. 10 shows the simulated |Sdd11| and 
|Sdd21| as a function of frequency for the case in Fig. 8(c) with a 
spacing of 15 mm between the two elements. Note that the 
CPS extends the matching band to 15 GHz and reduces the 
coupling level over a wider bandwidth.

Fig. 11 shows the simulated |S11| and |S21| as a function of 

frequency for the single-ended quasi-Yagi array of Fig. 8(d) 
with a spacing of 15 mm between the two elements. Fig. 12 
shows the simulated |Sdd11| and |Sdd21| as a function of fre‐

▲Figure 9. Simulated |Sdd11| and |Sdd21| as a function of frequency for the 
cases in Figs. 8(a) and 8(b)

▲ Figure 10. Simulated |Sdd11| and |Sdd21| as a function of frequency for 
the case in Fig. 8(c)

▲Figure 11. Simulated |S11| and |S21| as a function of frequency for the 
single-ended quasi-Yagi array with the spacing of 15 mm between the 
two elements

▲ Figure 12. Simulated |Sdd11| and |Sdd21| as a function of frequency for 
the single-ended quasi-Yagi array with a spacing of 15 mm between the 
two elements
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quency for the differential quasi-Yagi array in Fig. 8(e) with a 
spacing of 15 mm between the two elements. Note that the 
matching band is from 7.9 GHz to 12.2 GHz and from 8.0 GHz 
to 14.0 GHz, respectively, for the single-ended and differen‐
tial quasi-Yagi arrays. The maximum coupling level is almost 
the same for the two cases over the respective impedance 
bandwidths.
3.3 Decoupling Structures and Effects

It is seen from Fig. 12 that the simulated mutual coupling 
level for the center-to-center spacing of 15 mm, which is equal 
to the half wavelength at 10 GHz, is –18 dB. For a multiple- 
input and multiple-output (MIMO) array, the mutual coupling 
level of –25 dB is desirable. Hence, there is a need to further 
reduce the mutual coupling. A few decoupling structures such 
as the neutralization line[13], split-ring resonator[14], slit, and air 
holes have been attempted. The idea to add a meta-surface as 
a superstrate to reduce the mutual coupling has not been ad‐
opted to keep the low profile of the differential quasi-Yagi ar‐
ray[15]. The simulated decoupling effects of the above struc‐
tures are summarized as follows. For the case of the neutraliza‐
tion line, the coupling level is greatly reduced to −25 dB but 
the radiation patterns are distorted, and the gain is reduced by 
2 dB at 10 GHz. For the case of the split-ring resonator, it fails to 
reduce the coupling level but increase the gain by 0.2–0.7 dB 
over the impedance bandwidth. For the cases of slit and air 
holes, they are very effective to reduce the mutual coupling to 
−25 dB and meanwhile do not affect the impedance bandwidth 
and radiation patterns. Hence, the E-plane linear arrays with 
the slit and air holes are fabricated and measured.
3.4 Results and Discussion

Fig. 13 shows the photos of the two-element differential 
quasi-Yagi arrays without any decoupling structure, with the 
slit, and with the air holes. The two differential quasi-Yagi an‐
tenna elements are separated by 15 mm and fed with the Sub‐
miniature version A (SMA)-connected coaxial cables. The slit 
is a 2 mm wide cut in between the two elements and after the 
truncated ground plane. The air holes that have the same di‐
ameter of 0.5 mm are punched in between the two elements 
and after the truncated ground plane with an optimized pat‐
tern. It should be mentioned that the details of the SMAs and 
coaxial cables are unknown. The irregular solder joints and 
curved coaxial cables are hard to be modelled exactly. Hence, 

only measured results are discussed.
Fig. 14 shows the measured |Sdd11| and |Sdd21| as a function 

of frequency for the two-element differential quasi-Yagi arrays 
without any decoupling structure, with the slit, and with the 

▲ Figure 13. Photos of the two-element differential quasi-Yagi arrays: 
(a) solid, (b) slit, and (c) air holes

▲Figure 14. Measured |Sdd11| and |Sdd21| as a function of frequency for the 
differential quasi-Yagi antennas: (a) solid, (b) slit, and (c) air holes
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air holes, respectively. Measured results have confirmed that 
the simple decoupling structures are quite effective to reduce 
the mutual coupling level below −25 dB.

Fig. 15 shows the photo of the four-element differential 
quasi-Yagi array without any decoupling structure. The two ad‐
jacent differential quasi-Yagi antenna elements are separated 
by 0.5 free space wavelength at 10 GHz.

Fig. 16 shows the measured |Sdd11| and |Sdd21| as a function 
of frequency for the top two differential quasi-Yagi elements. 
The measured impedance bandwidth is from 7.6 GHz to 
14.3 GHz. The mutual coupling level is below − 20 dB over 
the impedance bandwidth.

Fig. 17 shows the simulated and calculated radiation pat‐
terns for the four-element differential quasi-Yagi array at 
10 GHz. Due to limitations of our testing facilities, we could 
not measure the array patterns. We measured the element pat‐
tern and obtained the calculated patterns by considering the 
array factor. It is seen that the calculated and simulated pat‐
terns agree quite well for the main lobes. There are differences 
between the calculated and simulated side lobes.

4 Conclusions
In this paper, a novel differential quasi-Yagi antenna is pre‐

sented and compared with a normal single-ended counterpart 
for the first time. It is found that the differential quasi-Yagi an‐
tenna outperforms the conventional single-ended one. The dif‐
ferential quasi-Yagi antenna is then used as an element for E-
plane linear arrays. A study of the coupling mechanism be‐
tween the two differential quasi-Yagi antennas is conducted. 
The driver is identified to be the decisive part for the mutual 
coupling. Four decoupling structures and their effects are 
evaluated. The arrays with simple but effective decoupling 
structures are fabricated and measured. The measured results 
demonstrate that the coupling levels of these arrays can be re‐
duced to less than –25 dB over the broad bandwidth and the 
simple slit or air-hole decoupling structure has a negligible ef‐
fect on the impedance matching and radiation patterns of the 
arrays. It is anticipated that the differential quasi-Yagi an‐
tenna, as a promising antenna candidate, should find wide ap‐
plications in wireless communication systems, power combin‐
ing, phased, active, imaging, and MIMO arrays.
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Abstract: Unsourced random access (URA) is a new perspective of massive access which aims at supporting numerous machine-type users. 
With the appearance of carrier frequency offset (CFO), joint activity detection and channel estimation, which is vital for multiple-input and 
multiple-output URA, is a challenging task. To handle the phase corruption of channel measurements under CFO, a novel compressed sensing 
algorithm is proposed, leveraging the parametric bilinear generalized approximate message passing framework with a Markov chain support 
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that the proposed transmission design for URA under CFO outperforms other potential methods.
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1 Introduction

Massive machine-type communication (mMTC) [1], 
also known as massive access[2], is one of the three 
typical application scenarios in the 5G mobile com‐
munication system. MMTC aims at establishing re‐

liable communications for a massive number of cheap devices 
with sporadic data stream patterns and short packet length, 
which is quite different from conventional human-type commu‐
nications (HTC). Hence, the design of efficient massive con‐
nectivity schemes requires investigating novel theories and 
paradigms.

To reduce signaling overhead and latency, existing mMTC 
schemes generally follow a grant-free random access (RA) pro‐
tocol[3] where users directly transmit data to the base station 
(BS) without any approval. One type of grant-free RA 
scheme[4–6] allocates unique pilots as identities to users; they 
are sent first as preambles for activity detection (AD) and 
channel estimation (CE). Data transmission happens in the 
next stage leveraging efficient RA techniques like sparse code 
multiple access (SCMA) [7] with individual user codebooks. A 
novel paradigm of unsourced random access (URA) was first 

addressed in Ref. [8]. Different from pilot-based RA schemes, 
URA users are forced to use the same codebook for data trans‐
mission. Since the transmitted codewords contain no user iden‐
tities, the BS only acquires a list of transmitted messages with‐
out linking them to specific active users. A finite block-length 
(FBL) achievability bound was derived in Ref. [8], and it is 
found that there exists an important gap between conventional 
RA schemes like ALOHA and the benchmark.

It is evident that an intuitive URA scheme is closely related 
to a compressed sensing (CS) recovery problem, involving AD 
to the set of codewords each linked to a potential message se‐
quence. However, directly applying CS techniques is impracti‐
cal because the codebook size grows exponentially to the mes‐
sage length. To approach the FBL bound with manageable 
complexity, the coded compressed sensing (CCS) framework[9] 
is investigated which couples an outer tree code and an inner 
CS code. More specifically, each datum is partitioned into sev‐
eral sub-blocks; they are coupled by appending parity check 
bits generated from linear block coding, thereby forming frag‐
ments to be sent over multiple slots using a common code‐
book. The BS detects codeword activity via a CS recovery 
method, and then reconstructs the original messages by a tree-
based forward error correction strategy.

Utilizing a large number of antennas at the BS, the massive This work was supported by the ZTE Industry⁃University⁃Institute Cooper⁃
ation Funds under Grant No. HC⁃CN⁃20201116001.
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multiple-input and multiple-output (MIMO) technology pro‐
vides high spatial resolution within the same time/frequency 
resource to increase spectral efficiency. Different from addi‐
tive white Gaussian noise (AWGN) channels, it requires chan‐
nel estimation for detection under MIMO fading channels, 
forming URA a joint AD and CE (JADCE) problem that is con‐
sidered as a multiple measurement vector (MMV) problem and 
solved by CS algorithms like approximate message passing 
(AMP) [4]. Leveraging channel structural sparsity in the virtual 
angular domain, Ref. [5] presented a performance gain by per‐
forming AD at the spatial domain and CE at the angular do‐
main. Promoting the CCS-based URA to the massive MIMO 
scenario, the work of Ref. [10] introduced a covariance-based 
paradigm and proposed a maximum likelihood decoder esti‐
mating large-scale fading coefficients (LSFCs) for AD. Ref. 
[11] further promoted the case of independent and identically 
distributed (i.i.d.) channels considered in Ref. [10] to the case 
of correlated channels. Leveraging the rich spatial information 
reserved in multiple antennas, Refs. [12 – 14] captured the 
strong similarity/correlation between slot-wise user channels 
and proposed uncoupled URA transmission schemes. In Refs. 
[13] and [14], the authors considered the angular domain 
MIMO channel and proposed an expectation-maximization-
aided generalized approximate message passing algorithm 
with a Markov random field support structure (EM-MRF-
GAMP) for JADCE. The similar statistics of slot-wise channels 
of each user couple the split message fragments, which elimi‐
nates the need for redundancies to improve the coding rate. 
Accordingly, message stitching takes on the form of a cluster‐
ing decoder, recognizing slot-distributed channels of each ac‐
tive user based on similarity. Eliminating the need for redun‐
dancies in CCS, the uncoupled URA schemes[12–14] achieve 
higher coding rates and spectral efficiency.

Unfortunately, all the above works consider an ideal sce‐
nario where users are perfectly synchronized with the BS. 
However, caused by the mismatch between the carrier frequen‐
cies of the local oscillators at users and the BS, carrier fre‐
quency offset (CFO) inevitably exists. CFO corrupts the phase 
of channel measurements and imposes significant contamina‐
tion on the JADCE results. Few works in the context of mas‐
sive access address the issue of CFO estimation. In Ref. [15], 
the authors adopted a Lasso-based method for CFO estima‐
tion, but only focused on the AD results. The authors of Ref. 
[16] introduced a CS method for JADCE under CFO in the 
framework of orthogonal frequency division multiple access 
(OFDMA). The key idea is to expand the measurement matrix 
with a finite number of discrete frequency offsets sampled in 
the possible region. The JADCE problem as a generalized 
MMV problem with structured sparsity is then solved by the 
proposed structured-GAMP algorithm. However, the CFO esti‐
mation in Ref. [16] is discrete, and the measurement matrix 
size will increase accordingly in URA applications, resulting 
in greater computational complexity. To our knowledge, no ex‐

isting work has discussed URA under CFO.
In this paper, confronted with the issue of CFO, we formu‐

late URA as a JADCE problem with a bilinear signal detection 
structure. We consider the MIMO channel in the angular do‐
main to promote the sparsity of the CS problem. A novel CS al‐
gorithm termed Markov-chain-aided parametric bilinear gener‐
alized approximate message passing (MC-PBiGAMP) is pro‐
posed for JADCE, which captures the clustered sparsity struc‐
ture of the angular domain channel. An uncoupled transmis‐
sion design for URA is then employed to reduce system com‐
plexity. With messages divided for slotted emitting, data list 
reconstruction is conducted in the form of a clustering decoder 
leveraging unique channel statistics. Simulation results show 
that the proposed method outperforms state-of-the-art ap‐
proaches in terms of JADCE and reaches reliable URA system 
performance.

The rest of the paper is organized as follows. The URA sys‐
tem model is given in the next section. In Section 3, the MC-
PBiGAMP algorithm is proposed for JADCE under CFO. 
Then, the uncoupled URA transmission design of low com‐
plexity is discussed in Section 4. Numerical results are pre‐
sented in Section 5, followed by concluding remarks drawn in 
Section 6. Throughout this paper, the j-th column and i-th row 
of matrix X are denoted by x j and x i,:, respectively, and the 
(i, j )-th entry of X is represented by xi,j ; (∙)T, (∙) *, and (∙)H 
stand for the conjugate, transpose, and conjugate transpose, re‐
spectively. Denote  x  the Euclid norm of vector x, and  ∙ 2 and  ∙ F represent the the l2-norm and the Frobenius norm, re‐
spectively. For an integer X > 0, the shorthand notation [X] 
stands for the set {1,2,⋯, X }. Finally, CN ( x ; x̂, μx ) signifies 
the complex Gaussian distribution of a random variable x with 
mean x̂ and variance μx.
2 System Model

In this paper, we consider an uplink transmission scenario 
where Ka active users communicate to a single BS equipped 
with a uniform linear array (ULA) of M half-wavelength 
spaced antennas. The channel h͂k ∈ CM between the k-th user 
and the BS is described on a geometric basis as[5]

h͂k = ρk ∑l = 1
L gk,l e (θk,l), (1)

where ρk is the LSFC which follows the standard Log-distance 
path loss model as log10 ρk = -128.1 - 37.6log10(Dk ) with dis‐
tance Dk measured in km, gk,l~CN (0, 1) is the complex path 
gain of the l-th path, θk,l ∈ [-π/2, π/2 ] is the angle of arrival 
(AOA), and e (θk, l ) is given by
e (θk, l) = 1

M
[1, e- jπsinθk,l,⋯, e- jπ ( M - 1)sinθk,l ] T

. (2)
The spatial domain channel can be transformed to the angu‐
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lar domain by
hk = U H

M h͂k , (3)
where U H

M is the M-dimensional discrete Fourier transform 
(DFT) matrix. The angular domain channel is sparse with few 
elements of dominant magnitude. This is attributed to the high 
spatial resolution of massive MIMO, leveraging large-scale an‐
tennas against finite propagation paths. Also, due to the spec‐
tral leakage of DFT, the angular domain channel reveals a 
clustered sparsity structure with nonzero elements spaced ad‐
jacent to dominant elements[17].

In the URA scenario, active users pick up codewords/col‐
umns from a common codebook/coding matrix to transmit the 
B-bit payload. We choose to generate the common codebook 
by the sparse regression code[18]. Each entry of the codebook 
A = [ a1,⋯, a2B ] ∈ CN × 2B is generated from an i. i.d. Gaussian 
distribution CN (1, 1/N ) such that E{ a 2

2} = 1. We assume 
that oscillators at users are synchronized to the same fre‐
quency through calibration[19–20], i. e., CFOs are the same for 
all users. Considering a block fading channel where channel 
coefficients remain unchanged in N symbol transmissions, the 
received signal at the BS under CFO is represented as
Y͂ = ∑k

diag (τ ( ω ) )a ik
h͂T

k + W͂ = diag (τ ( ω ) )ABH͂ + W͂ , (4)
where ω ≜ 2πΔfT with Δf the frequency offset between users 
and the BS in Hz and T the sampling period, τ ( ω ) =
[1, ejω,⋯, ej (N - 1) ω ]T is the corresponding phase rotation vector 
due to CFO, B ∈ { 0,1 }2B × Ka is a selection matrix, H͂ =
[ h͂1,⋯, h͂Ka ]T ∈ CKa × M, and W͂ is the AWGN matrix with ele‐
ments generated from i.i.d. CN (0, σ2

w ). The (ik, k)-th entry of 
B is nonzero only if the k-th user transmits the information se‐
quence mk with decimal (mk ) = ik, where decimal (mk ) is the 
the radix ten equivalent of mk. The received signal in the angu‐
lar domain can be calculated as
Y = diag (τ ( ω ) )ABH͂U *

M + W͂U *
M = diag (τ ( ω ) )ABH + W,

(5)
where H = [ h1,⋯, hKa ]T, and W ≜ W͂U *

M is the equivalent 
noise matrix.
3 Proposed Algorithm for JADCE under CFO

3.1 Problem Formulation and Probability Model
Data detection in URA is to determine which column of A is 

transmitted. For better illustration, we rewrite Eq. (5) as
Y = diag (U *

N|c) AX + W = Z + W, (6)
where UN is the N-dimensional DFT matrix, c = U T

Nτ ( ω ) is 

sparse due to the Vandermonde structure of τ ( ω ), X ≜ BH, 
and Z ≜ diag (U *

Nc) AX. Since Ka ≪ 2B, X is row sparse. Fur‐
thermore, the sparse rate of X is promoted due to the sparsity 
of angular domain channels. Our purpose is to recover sparse 
c and X from the noisy observation Y with known UN and A, 
recognized as a CS recovery problem. Note that the URA re‐
ceiver does not attempt to link the message to its source de‐
vice, therefore, we do no need to reconstruct B.

To solve the structured-matrix estimation problem, we start 
with reformulating the random variable dependency corre‐
sponding to Eq. (6), taking on the form

zn,m = ∑i = 1
N ∑j = 1

2B

ci z(i, j )
n,m xj,m , (7)

where z( )i, j
n,m ≜ un,ian,j is an element of a third-order tensor 

{ z ( )i,j
n = [ z( )i, j

n,1 ,⋯,z( )i, j
n,M ]T }∀i,j . For the sparse vector c , we assign 

a Bernoulli-Gaussian prior to each independent component 
ci , i.e.,

p (ci ) = λc δ (cn ) + (1 - λc )CN (0, σ2
c ) , (8)

where λc is the sparsity fraction of c and δ (∙) represents the 
Dirac-delta function. Similarly, a Bernoulli-Gaussian prior is 
used to model the conditional probability

p ( xj, m|sj, m ) = δ ( xj, m ) δ ( sj, m + 1) +
CN ( xj, m ; 0, σ2

x ) δ ( sj, m - 1) , (9)
where sj, m ∈ {-1, 1 } is the binary state of xj, m with sj, m = ±1 
signifying that xj, m is nonzero/zero. To capture the clustered 
sparsity of the angular domain channel support s j, : =
[ sj, 1,⋯, sj, M ], we employ the Markov chain (MC) model[21] as 
follows

p ( s j, :) = p ( sj,1 )∏m = 2
M p ( sj, m|| |sj, m - 1 ) , (10)

where the transition probability p ( sj, m|sj, m - 1 ) is given by

p ( sj, m| sj, m - 1 ) =
ì
í
î

ïïïï

ïïïï

( )1 - p01
1 - sj,m psj,m01 , sj, m - 1 = 0

( )1 - p10
sj,m p1 - sj,m01 , sj, m - 1 = 1 , (11)

and p ( sj,1 ) is initialized as a steady-state distribution with 
p ( sj,1 = 0) = p10 ( p01 + p10 ) and p ( sj,1 = 1) = p10 ( p01 + p10 ). 
The MC model depicts the average cluster size and the aver‐
age gap between two clusters by parameters p10 and p01, re‐
spectively. A smaller value of p10 indicates a larger cluster 
length and a smaller value of p01 leads to a larger average gap 
between two clusters. And in general, the sparsity of x is mea‐
sured as λx ≜ p10 ( p01 + p10 ).
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Following the Bayesian theory, we derive the posterior prob‐
ability density of c and X given Y as

p(c, X |
|Y ) ∝ ∏n, m p ( )yn, m| zn, m ∏i

p ( )ci ∏j
p ( )x j,:| s j,: p ( )s j,: . (12)

The variable dependencies are shown in a factor graph in 
Fig. 1. Performing the minimum mean square error (MMSE) or 
maximum a posteriori (MAP) estimation of Eq. (12) is imprac‐
tical since it comes down to marginalizing a joint distribution 
with high dimensions. Therefore, we use an approximate mes‐
sage passing approach that is detailed in Section 3.2.
3.2 Approximate Message Passing Algorithm for Signal 

Reconstruction
PBiGAMP[22] employs loopy belief propagation (BP) over 

the factor graph to make approximate inferences of the mar‐
ginal. According to the sum-product rule and the central limit 
theorem (CLT), messages passed between the edges of the fac‐
tor graph possess Gaussian approximations under the large 
system limit assumption (i.e., 2B → ∞). Message-passing com‐
ponent updates are given in Algorithm 1.
Algorithm 1. MC-PBiGAMP for JADCE under CFO
Input: Y, A, UN, Tmax, Tmc, τ
Initialize: ∀n,m: ŝn,m(0) = 0, ∀i, j, m: choose x̂ j, m(1),  μx

j, m(1), 
ĉi(1),  μc

i (1)
for t = 1,⋯,Tmax do
  ∀n,m,i: ẑ( )i,*

n,m ( t) = ∑j = 1
2B

z( )i, j
n,m x̂j,m ( t )

  ∀n,m, j: ẑ( )*, j
n,m ( t) = ∑i = 1

N ĉi( t) z( )i, j
n,m

  ∀n,m: ẑ( )*,*
n,m ( t) = ∑i = 1

N ĉi( t) ẑ( )i,*
n,m ( )t = ∑j = 1

2B

ẑ( )*, j
n,m ( t) x̂ j,m( )t

  μ̄p
n,m( t) = ∑i = 1

N μc
i ( t) || ẑ( )i,*

n,m |( )t
2 + ∑j = 1

2B

μx
j,m( t) | ẑ( )*, j

n,m |( t) |2

  μp
n,m( t) = μ̄p

n,m( t) + ∑i = 1
N μc

i ( )t ∑j = 1
2B

μx
j, m( )t | z( )i, j

n, m |2

  p̂n,m( t) = ẑ( )*,*
n,m ( t) - ŝn,m( t - 1) μ̄p

n,m( t)
  μz

n,m( t) = Var{zn,m|Y ; p̂n,m( t) , μp
n,m( t) , σw}

  ẑn,m( t) = E{zn,m|Y ; p̂n,m( t) , μp
n,m( t) , σw}

  μs
n, m( t) = (1 - μz

n, m( t) /μp
n, m( t) ) /μp

n, m( t)
  ŝn, m( t) = ( ẑn, m( t) - p̂n, m( t) ) /μp

n, m( t)
  ∀j,m: μr

j,m( t) = (∑n = 1
N μs

n,m( t) | ẑ( )*, j
n, m ( t) |2 )-1

-        
   μr

j,m( t) x̂ j,m( t)∑n = 1
N μs

n,m( )t ∑i = 1
N μc

i ( )t | z( )i, j
n,m |2

  ∀i: μq
i ( t) = (∑n = 1

N μs
n,m( t) | ẑ( )i,*

n,m |( t) |2 )-1 -
  μq

i ( t) ĉi( t)∑n = 1
N ∑m = 1

M μs
n,m( )t ∑j = 1

2B

μc
i ( )t | z( )i, j

n,m |2

  ∀j,m: μx
j,m( t + 1) = Var{xj,m|Y ; r̂ j,m( t) , μr

j,m( t) , ρj,m( t) , σx}
  x̂ j,m( t + 1) = E{xj, m|Y ; r̂ j, m( t) , μr

j, m( t) , ρj,m( t) , σx}
  ∀i: μc

i ( t + 1) = Var{ci|Y ; q̂i( t) , μq
i ( t) , λc, σc}

  ĉi( t + 1) = E{ci|Y ; q̂i( t) , μq
i ( t) , λc,σc}

if  Ẑ( )*,* ( )t - Ẑ( )*,* ( )t - 1 2
F

≤ τ Ẑ( )*,* ( )t
2
F
, stop

end for
Output: ĉ = ĉ ( t), X̂ = X̂ ( t)

The reader can refer to Ref. [22] for detailed derivations. 
Briefly, the calculation of messages from all variable nodes 
{ ci }∀i and { xj,m }∀j.m to factor node p ( yn,m|zn,m ) takes on the form 
of a complex Gaussian distribution CN ( zn,m ; p̂n,m, μp

n,m ). With 
p ( yn,m|zn,m ) = exp(- yn,m - zn,m

2 /σ2
w )/πσ2 under AWGN, the 

marginal posterior p ( zn,m|Y ) is inferred as
p ( zn,m|Y ; p̂n,m, μp

n,m, σw ) = CN ( zn,m ; ẑn,m, μz
n,m ) , (13)

with
ẑn,m = μp

n,m yn,m + σ2
w p̂n,m

μp
n,m + σ2

w  , (14)

μz
n,m = μp

n,m σ2
w

μp
n,m + σ2

w , (15)
where ŝn,m and μs

n,m are the scaled residual and the residual 
variance, respectively. Again, the message from factor node 
p ( yn,m|zn,m ) to variable node ci is approximately Gaussian 
(CN (ci ; q̂i, μq

i )). We reach the estimation of the posterior 
mean and variance of p (ci|Y ) as

ĉi = E{ci|Y ; q̂i, μq
i ,λc, σc} = λc

q̂i σ
2
c

μq
i + σ2

c  , (16)

μc
i = Var{ci|Y ; q̂i, μq

i , λc, σc} = λc
μq

i σ2
c

μq
i + σ2

c

+ λc( )1 - λc || ĉi

2.
(17)▲Figure 1. Factor graph for Bayesian inference
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As for messages passed within the MC model, the input, i.e., 
the message from variable node xj,m to factor node p ( xj,m|sj,m ) is 
a complex Gaussian distribution with mean r̂ j,m and variance 
μr

j,m. Then, we have the message from factor node p ( xj,m|sj,m ) to 
variable node sj,m computed as

υj,m = ρj,m δ ( sj, m - 1) + (1 - ρj,m ) δ ( sj, m + 1) , (18)
where

ρj, m =
æ

è

ç

ç

ç
çç
ç
ç

ç

ç

ç1 + CN ( )0 ; r̂ j,m, μr
j,m

∫ xj,m
CN ( )xj,m ; 0, σ2

x CN ( )xj,m ; r̂ j,m, μr
j,m

ö

ø

÷

÷

÷
÷÷
÷
÷

÷

÷

÷
-1

. (19)
The forward message passing over MC s j, : is conducted in a 

recursive way as follows[21]

φ j,1 = λx = p01
p01 + p10  , (20)

φ j,m = p01( )1 - ρj,m - 1 ( )1 - φ j,m - 1 + p11 ρj,m - 1 φ j,m - 1

( )1 - ρj,m - 1 ( )1 - φ j,m - 1 + ρj,m - 1 φ j,m - 1 . (21)
The backward message passing is performed in a simi‐

lar way[21]:
φ j,M = 1

2, (22)

φ j,m =
p10( )1 - ρj,m + 1 ( )1 - φ j,m + 1 + ( )1 - p10 ρj,m + 1 φ j,m + 1

( )p00 + p10 ( )1 - ρj,m + 1 ( )1 - φ j,m + 1 + ( )p11 + p01 ρj,m + 1 φ j,m + 1 . (23)

Subsequently, the message from variable node sj,m to factor 
node p ( xj,m|sj,m ) is represented as

υj,m = ρj,m δ ( sj,m - 1) + (1 - ρj,m ) δ ( sj,m + 1) , (24)
where

ρj,m = φ j,m φ j,m

( )1 - φ j,m ( )1 - φ j,m + φ j,m φ j,m . (25)
After that, the output of the MC support estimation module, 

i.e., the message from factor node p ( xj,m|sj,m ) to variable node 
xj,m is expressed as a Bernoulli-Gaussian distribution 
ρj,mCN ( xj,m ; 0, σ2

x ) + (1 - ρj,m )δ ( xj,m ). Finally, we calculate 
the posterior mean and variance of p ( xj,m|Y ) as[13]

x̂ j,m = E{xj,m|Y ; r̂ j,m, μr
j,m, ρj,m, σx} = ρj,m

r̂j,m σ2
x

μr
j,m + σ2

x , (26) 

μx
j,m = ρj,m

μr
j,m σ2

x

μr
j,m + σ2

x

+ ρj,m(1 - ρj,m ) | x̂ j,m |2. (27)
The above message components are updated iteratively un‐

til a certain stopping criterion is satisfied. The worst-case com‐
plexity order of the proposed algorithm per iteration is 
O (2B N 2 M ). With X̂ (the estimation of X ), the active code‐
words are determined as

X = { j: x̂ j

2 > ϕ,  j ∈ [2B ]}, (28)
where ϕ > 0 is the threshold.
4 Uncoupled URA Transmission Scheme 

for Complexity Reduction
Since the size of common codebook A grows exponentially 

in B, it is computationally infeasible for any CS algorithm to 
perform AD among the codebook accommodating even small-
sized messages (e.g., B = 100 bit). Many URA works take the 
divide-and-conquer strategy and utilize a concatenated coding 
scheme termed CCS. Specifically, each long message bit se‐
quence is split into several fragments of amenable length for 
slotted transmission. These fragments are coupled by append‐
ing parity check bits generated by pseudo-random linear com‐
binations of message bits from previous fragments. The de‐
coder first determines transmitted fragments of each slot and 
then combines slot-wise fragments into the entire message 
based on a tree decoding process. With the help of the high 
spatial resolution provided by massive MIMO, it is suggested 
in Refs. [13] and [14] that the massive MIMO channels in the 
angular domain already offer adequate information to combine 
fragments scattered among different transmission slots. The 
sparsity and magnitude of each entry of angular domain chan‐
nel vectors indicate angular propagation patterns unique to 
each active user. Assuming these channel statistics to be al‐
most unchanged within the URA uplink transmission period, 
the message stitching process can be conducted in the form of 
clustering recovered channels into groups of each active user.

Following the uncoupled URA scheme in Refs. [13] and 
[14], we divide each B-bit message into S fragments of length 
J = B/S, which are encoded for transmission in the coherent 
block of length N = NS S. The designed low-complexity URA 
receiver under CFO in this paper reconstructs the emitted 
message list by taking the following two steps: 1) after each 
transmission slot, performing JADCE to the received signal 
via the proposed MC-PBiGAMP algorithm with downsized 
common coding matrix A͂ ∈ CNS × 2J; 2) reconstructing the en‐
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tire message sequence by combining slot-wise codewords ac‐
cording to the similarity of their corresponding channels. In 
the rest of the section, we discuss the slot-balanced K-means 
algorithm designed for message stitching.
4.1 Slot-Balanced K-Means for Clustering-Based Mes‑

sage Stitching
We consider an ideal case where no users transmit identical 

data in the same transmission slot. Therefore, Ka codewords 
are exactly judged to be active in every slot. The purpose of 
the decoder is to classify active codewords into Ka groups 
based on the similarity of their corresponding channel vectors. 
During the clustering process, two obvious constraints must be 
satisfied: 1) Channels from the same slot cannot be assigned to 
the same group; 2) each group must be composed of S chan‐
nels at the end of the clustering.

Slot-balanced K-means algorithm[14] is tailored for the appli‐
cation scenario, performing assignment steps on a per-slot ba‐
sis and obtaining groups with identical numbers of compo‐
nents. To meet Constraint 2 in K-means, the assignment step 
is performed slot by slot, i. e., all Ka active channels recog‐
nized in the same slot are simultaneously allocated to Ka groups. Then, the assignment problem with Constraint 1 is 
equivalent to the minimum bipartite matching problem, which 
can be well solved by the Hungarian algorithm[23]. We define 
g s

k ∈ CM the k-th active channel vector at the s-th slot, 
ck′ ∈ CM the k′-th group center, and C = [ c1′,⋯, cKa ]. The in‐
put D ∈ CKa × Ka of the Hungarian algorithm is calculated as 
each element dk,k′ =  gk - ck′ 2. The output of the algorithm 
is a binary matrix Γ ∈ {0, 1}Ka × Ka with the (k, k′)-th element 
γk,k′ = 1 suggesting that the k-th channel belongs to the k′-th 
group. There is exactly one nonzero element within each row 
and each column of Γ. Then, with the assignment result, each 
group center is updated as the mean of its constituent channel 
vectors. The algorithm iteration stops when the maximum num‐
ber of iterations is reached or there are no further changes in 
center locations. The algorithm complexity is dominated by 
the Hungarian algorithm ( )O ( K 3a )  and yields the order of 
O (SK 3a ).
4.2 Codeword Collision Resolution

Codeword collision happens when more than one user 
chooses to send the same codeword at the same time. The cor‐
responding channel to the reused codeword is the sum of all 
competitive user channels. The key idea to resolve codeword 
collision is to identify contaminated channels: they usually 
have a longer sum distance from all group center points. With 
a carefully designed data split profile, the probability that 
more than two users choose to send the same codeword tends 
to be zero. Therefore, if Ks < Ka channels are determined ac‐
tive, we recognize Ka - Ks channels having the largest aggre‐
gated distance to all center points as contaminated channels, 

and the corresponding distance row vectors are duplicately 
added to the original distance matrix to complete a square ma‐
trix as algorithm input. However, after data partitioning, the 
center points of groups involving contaminated channels can‐
not be updated directly. Luckily, the original center points 
containing representative user channel statistics can be used 
to eliminate interfering channels. Specifically, a unique angu‐
lar domain channel support pattern is extracted from the corre‐
sponding center by selecting entries { cm, m ∈ M } that con‐
centrate most (e. g., 95%) of the energy, i. e., the elements in 
M are chosen as ∑M| cm |2 > 0.95 c 2

2. Then, only elements 
within the set { gk,m, m ∈ M } are taken for center location up‐
date. The complete algorithmic iteration steps are summarized 
in Algorithm 2.
Algorithm 2. Slot-balanced K-means for message stitching
Input: {g s

k: k ∈ [|X s | ] , s ∈ [ S ]}, Tc
Initialize: C (0, S ) = [ c1 (0, S ),⋯, cKa (0, S ) ]
for t = 1,⋯, Tc do
  Set C ( t, 0 ) = C ( t - 1, S )
  for s = 1,⋯, S do
  Compute D with elements dk,k′ =  g s

k - ck′

  if Ks < Ka then
         Add Ka - Ks rows with the largest sum of elements 
  end if
  Execute Hungarian algorithm with input D and output Γ
  if Ks < Ka then

         ∀k′: ck′( t, s) = 1
s
é
ë( s - 1) ck′( t, s - 1) + ∑k = 1

Ka γk,k′g
s
k
ù
û

   else

∀k′: ck′( t, s) = 1
s
é
ë( s - 1) ck′( t, s - 1) +

∑k = 1
Ka γk,k′diag ( v1,⋯, vM ) g s

k
ù
û, where vm ∈ {0. 1} is nonzero 

when m ∈ M( t, s - 1)
     end if
  end for
  if C ( t, S ) = C ( t - 1, S ), stop
end for
Output: Partitioning of the data set
5 Simulation Results

In simulations, we consider a URA system with Ka = 50 ac‐
tive users randomly and uniformly located in a cell with the ra‐
dius of 1 km. User channels are generated based on Eq. (1), 
where L=4. Each active user sends a 100 bit message which is 
divided into S = 10 fragments of length J = 10. Accordingly, 
the common codebook A͂ for data transmission is an i. i. d. 
Gaussian matrix of size 100 × 210. The CFO parameter ω is 
chosen uniformly from the range (-0.0133, 0.0133)[16].

We first examine the proposed MC-PBiGAMP for JADCE 
under CFO. As the stopping criteria for the iterative algorithm, 
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we set Tmax =  100, Tmc =  20, and the precision tolerance τ =
10-4. Since we focus on whether active codewords are properly 
determined, the misdetection rate is used as the AD perfor‐
mance metric, i.e.,

Pm = ||A ∖ X
||A  , (29)

where A is the set of indexes of active codewords. The algo‐
rithm in the aspect of CE is assessed by the normalized mean 
square error (NMSE) of the recovered active channels, i. e., 
NMSE =  X̄ - Xa

2
F

 X̄
2
F
, where X̄ is the original channel 

matrix arranged according to the indexes in Eq. (28), and Xa is 
the estimated active channel matrix. The NMSE performance 
of MC-PBiGAMP in each iteration is exhibited in Fig. 2. We 
observe that the proposed algorithm converges around 65–74 
iteration rounds under different signal-to-noise ratios (SNRs).

For comparison, we appeal to the method in Ref. [16]. To 
deal with the influence of CFO, the discrete CFO parameters 
[ ω1,⋯ ωR ] with R = 9 are uniformly sampled from the pos‐
sible range. JADCE is then performed using the MMV-GAMP 
algorithm[14] with the measurement matrix constructed by ex‐
panding the original one with these sampled frequency offsets. 
We also investigate the PBiGAMP algorithm[22] with no sup‐
port structure for JADCE. The JADCE performance of the 
aforementioned methods versus the SNR 
or the number of measurements Ns is de‐
picted in Fig. 3. The proposed MC-
PBiGAMP algorithm outperforms the 
original PBiGAMP algorithm as we take 
into account the correlation between ad‐
jacent angular domain channel elements 
by the MC support model. Although MC-
PBiGAMP with respect to the AD perfor‐
mance is about the same as MMV-
GAMP in Ref. [16], the advantage lies in 
that it only needs to handle a CFO esti‐
mation problem of scale 2J × Ns × M 
compared with the latter of scale D ×
2J × Ns × M. It is indicated in Fig. 3(c) 
that the misdetection rates of both algo‐
rithms decrease significantly when Ns >
Ka. This coincides with the scaling law 
of AMP that requires measurements to 
reliably identify a subset of Ka active 
codewords among a set of size 2J scales 
as Ns = O (Kalog 2J

Ka ), i. e., Ns is almost 
linearly with Ka.The error rate of URA transmission is 
defined as the average per user probabil‐
ity of error (PUPE)[8], i.e.,

PUPE = E
ì
í
î

ïï

ïï

||L ∖ { }m ( )k , k ∈ Ka
||L

ü
ý
þ

ïïïï

ïï , (30)
where m (k ) is the message of the k-th active user in the set 
Ka, and L is the recovered message list. Fig. 4 presents the er‐
ror rates of uncoupled compressed sensing (UCS) schemes le‐

NMSE: normalized mean square error     SNR: signal-to-noise ratio
▲Figure 2. NMSEs versus the iteration number under different SNRs 
with M=32, Ns=100, and Ka=50

▲Figure 3. Joint AD and CE (JADCE) performance of various algorithms with M=32, Ka=50 

MC-PBiGAMP: Markov-chain-aided parametric bilinear generalized approximate message passing MMV-GAMP: multiple measurement vector-generalized approximate message passing NMSE: normalized mean square error SNR: signal-to-noise ratio

(a) Misdetection rate versus SNR with Ns = 100 (b) NMSEs versus SNR with Ns=100

(c) Misdetection rate versus Ns with SNR=5 dB (d) NMSEs versus Ns with SNR=5 dB
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veraging different algorithms for JADCE under CFO. As re‐
vealed in Fig. 4, the proposed UCS scheme with PBiGAMP 
reaches the best system performance with spectral efficiency 
Ψ = BKa /SNs = 5 bit/s per channel use. Fig. 4 also indicates 
that PUPE improves significantly when the number of receiv‐
ing antennas is increased. It is due to the higher resolution of‐
fered by massive antennas, which not only makes the CS para‐
digm sparser but also provides more dimensional information 
for measuring channel similarity. We also draw in Fig. 4 the 
error rate of URA under no CFO using the method of Ref. [13] 
as the baseline. It is shown that the proposed approach under 
CFO pays 0.4 dB (for M = 32) to 1.2 dB (for M = 64) in terms 
of SNR to achieve the target PUPE = 0.05 compared with the 
benchmark.
6 Conclusions

This paper investigates MIMO URA countering the influ‐
ence of CFO. We formulate URA under CFO as a CS recovery 
problem with a bilinear graphic structure. The MC-PBiGAMP 
algorithm is first employed for JADCE with an MC support 
structure to model the clustered sparsity of the considered an‐
gular domain channel. Then, an uncoupled transmission proto‐
col is adopted to reduce the computational burden, where mes‐
sages are split into several fragments for slotted transmission 
and stitched together upon clustering user channels. We show 
by simulations that the proposed scheme is capable of con‐
ducting reliable URA transmission under CFO.
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data rates, ultra-reliability, and ubiquitous coverage. However, the high dynamics caused by the fast movement of low-earth-orbit (LEO) satel‐
lites bring huge challenges in designing and optimizing satellite communication systems. Especially, admission control, deciding which users 
with diversified service requirements are allowed to access the network with limited resources, is of paramount importance to improve network 
resource utilization and meet the service quality requirements of users. In this paper, we propose a dynamic channel reservation strategy 
based on the Actor-Critic algorithm (AC-DCRS) to perform intelligent admission control in satellite networks. By carefully designing the long-
term reward function and dynamically adjusting the reserved channel threshold, AC-DCRS reaches a long-run optimal access policy for both 
new calls and handover calls with different service priorities. Numerical results show that our proposed AC-DCRS outperforms traditional 
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1 Introduction

With the increasing number of users and service 
types in terrestrial wireless communication net‐
works, it is impractical to provide wireless commu‐
nication services anytime and anywhere alone[1]. 

The satellite communication network has the prominent advan‐
tages of long-distance communications, ubiquitous coverage, 
large capacity and high reliability, and can be a complement to 
terrestrial networks. It is not restricted by complex geographic 
conditions and harsh environments and can provide broadband 
multimedia services to user terminals (UT) in any area, even 
where terrestrial network resources are insufficient[2].

Due to the advantages of shorter propagation delay and 
lower operational expenditure, low-earth-orbit (LEO) satellite 
communication systems have been commonly used to provide 
user terminals with full coverage and real-time wireless com‐

munication services[3]. Usually, LEO communication systems 
can exploit multi-beam technology to irradiate lots of blocks of 
cellular networks in their coverage area, which are called 
beam cells. When a UT establishes a communication connec‐
tion with an LEO satellite, one challenge faced is the frequent 
handover from one beam cell to another, due to the fast move‐
ment of LEO satellites. If there are insufficient channel re‐
sources in the targeted beam cell, the connection would be in‐
terrupted. Frequent handover failure and new call blocking 
would severely degrade the network performance and/or qual‐
ity of service (QoS) of users. Moreover, with the rapid develop‐
ment of multimedia applications, diversified service require‐
ments pose a great challenge to the network[4–6]. On the other 
hand, the satellite channel resources are limited, which usu‐
ally cannot satisfy the requirements of all services. Consider‐
ing the diversified service requirements with multi-priority ser‐
vices, admission control is particularly critical, as it decides 
which services are allowed to be admitted.

A typical solution for admission control of multi-priority ser‐This work was supported by the ZTE Industry⁃University⁃Institute Cooper⁃
ation Funds.
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vices in satellite systems is to allocate channel resources of 
beam cells by a priority-based channel reservation strategy, 
which has been intensively investigated in satellite communi‐
cation systems[4–10]. The basic idea is to reserve a certain num‐
ber of channels for handover calls and new calls with different 
service priorities, to guarantee the priority of handover calls 
and delay-sensitive services to ensure the continuity of calls 
for moving UTs.

Existing channel reservation strategies are mainly classified 
into two categories, fixed channel reservation (FCR) and dy‐
namic channel reservation (DCR). A guaranteed handover 
FCR strategy was proposed in Ref. [7], which reserves a por‐
tion of channel resources dedicated to handover calls. Some 
improvements have been made later, such as the channel 
status-based reservation strategy (CSRS) [8] and time-based 
channel reservation algorithm (TCRA)[9], which set the number 
of reserved channels based on the information including the 
status of the cell and/or the remaining time. However, fixed re‐
served channels cannot adapt to the dynamic environment and 
multi-service requests, causing a high blocking rate for new 
calls. In Refs. [10–15], the authors proposed adaptive DCR 
strategies based on different prior information to dynamically 
change the number of channels reserved. The authors of Ref. 
[10] proposed to adjust the number of reserved channels, ac‐
cording to the current number of ongoing calls (voice or video 
traffic) and the localization of users. In Ref. [11], a grey model 
was used to decide whether the calls need to handover and 
then dynamically adjust the channel reservation number 
based on the counter. The authors of Ref. [12] leveraged the 
number of mobile stations in neighbor locations and the aver‐
age handover call arrival rate to reserve channels. Ref. [13] 
considered the varying characteristics of the wireless channel 
to allocate resources, aiming at maximizing spectral effi‐
ciency. The authors of Ref. [15] proposed an adaptive 
probability-based reservation strategy (APRS) based on mo‐
bile users’ location information and the handover probability, 
to improve the utilization of reserved channels in reservation 
time. Due to the imbalance between the new call blocking rate 
and handover call failure rate, the system performance is not 
satisfactory. Some researchers have used heuristic algorithms 
to adjust the thresholds, and the authors of Ref. [4] proposed a 
probability-based channel reservation strategy for improving 
the quality of service. The authors of Ref. [5] proposed a 
threshold-based DCR scheme to set optimal thresholds for 
different-priority services by the genetic algorithm.

However, all aforementioned schemes cannot respond 
quickly to dynamic changes and uneven distribution of service 
requirements, since they only consider finding the optimum in 
the current state, while a long-term optimization is needed to 
improve the system performance. With this regard, some re‐
searchers resort to exploiting machine learning algorithms for 
designing intelligent channel reservation schemes to achieve 
long-term performance improvement for complex satellite net‐

works. The authors of Ref. [15] proposed a dynamic channel 
allocation algorithm based on deep reinforcement learning 
(DRL), which uses convolutional neural networks to extract 
useful features to make accurate admission decisions. It can 
effectively reduce the blocking rate and improve system 
throughput. But this work focused on processing the connec‐
tion relationship of the UT in the beam and considered only a 
single service type. The authors of Ref. [6] proposed a multi-
service DCR strategy based on the deep Q network to improve 
the overall service quality of the system, by examining the im‐
pact of current channel reservation results on the future envi‐
ronment. They mainly considered how to reserve channels for 
new calls, while ignoring the impact of handover calls. Unfor‐
tunately, all the aforementioned works lack consideration of 
multi-priority services and frequent handovers in highly dy‐
namic LEO satellite networks. Therefore, it is imperative to de‐
velop an intelligent admission control scheme to maximize 
long-term system performance by performing appropriate 
channel resource allocation for LEO satellite networks.

In this paper, we propose an intelligent DCR strategy based 
on the Actor-Critic algorithm (AC-DCRS), which dynamically 
adjusts the reserved channel thresholds for multi-service 
calls. While traditional solutions only obtain the optimal solu‐
tion of the current state in a memoryless system, our proposed 
AC-DCRS based on reinforcement learning can consistently 
approach the long-term optimal solution by considering the 
Markov property of the channel reservation problem. Specifi‐
cally, the Actor-Critic algorithm is leveraged to deal with con‐
tinuous state space and high-dimensional action space. 
Through interactions with the network environment, AC-
DRCS can well balance the admission of handover calls and 
new calls of multiple priorities by setting corresponding 
thresholds under the current traffic state.

The rest of the paper is structured as follows. Section 2 pres‐
ents the system model and problem formulation. Section 3 
elaborates on the proposed AC-based DCR strategy. We evalu‐
ate the performance of the proposed strategy in Section 4 and 
finally conclude the paper in Section 5.
2 System Model and Problem Formulation

We consider a typical LEO communication network shown 
in Fig. 1. The coverage area of a single moving LEO satellite 
consists of multiple adjacent beam cells. A UT in the beam 
cell establishes a connection to the LEO satellite directly or 
through the base station in the beam cell. Handover call re‐
quests will arrive during the movement of the UT and satel‐
lites. At the same time, new call requests may also arrive re‐
quiring channel resources from the connected beam cell.
2.1 LEO Mobility Model

Without loss of generality, we consider a one-dimensional 
square continuous beam cell model, which can be readily ex‐
tended to high-dimensional models. Since the moving speed of 
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the UT is much slower than that of the LEO satellites, it can 
be regarded as relatively static. Hypothetically, a LEO satel‐
lite moving horizontally to the left at a speed vsat relative to UT 
is equivalent to UT moving to the right at the same speed rela‐
tive to beam cells. We further adopt a cyclic mechanism to 
simplify the periodicity of satellite movement and the simpli‐
fied satellite movement model is shown in Fig. 2. When the 
UT leaves the rightmost cell N as it moves, it will enter the 
leftmost cell 1. Handover call arrivals, new call arrivals, and 
call termination may constantly occur during the movement.
2.2 Channel Reservation Model for Multi-Priority Service

We assume that there are s types of services, and the num‐
ber of new calls of the i-th service follows a Poisson distribu‐
tion with an average arrival rate λi

n. Then the total arrival rate 
of the i-th service is given as the sum of the arrival rates of 
new calls and handover calls as follows:

λi = λi
n + λi

h , (1)
where λi

h is the arrival rate of the i-th service for handover 
calls. Obviously, the handover calls of the i-th service come 
from the previous beam cell and its arrival rate λi

h can be de‐
rived as follows[5]:

λi
h = λi

n

(1 - Pi
af )Ph1

1 - (1 - Pi
hf )Ph2  , (2)

where Ph1, Ph2, Paf and Phf are the handover success probabil‐
ity of the source cell, that of the target cell, the new call block‐
ing rate of the i-th service, and the handover call failure rate 

of the i-th service, respectively.
Besides, we denote the proportion of new calls of i-th ser‐

vice as pi , and then the arrival rate of the i-th service can be 
expressed as:

λi
n = λn ×  pi , (3)

where λn is the average arrival rate of total new calls and pi satisfies p1 + p2 + p3 + ⋅ ⋅ ⋅ +ps = 1. We further assume that 
the duration of all calls obeys an exponential distribution of a 
parameter u, so the average duration of the call is 1/u s.

We adopt a threshold-based channel reservation strategy to 
realize the admission control of satellite beam cells. We con‐
sider that the available bandwidth in a cell is equally allo‐
cated to all the channels, and each channel can be assigned to 
a call. Then, each admitted call will be assigned a channel 
with enough power to guarantee the quality of service. In this 
work, we focus on developing an intelligent admission control 
mechanism for LEO satellite communications. Thus, for sim‐
plifying the analysis, we just assume that there is enough 
power in a cell to guarantee the service quality of each admit‐
ted call. For a new call or a handover call, if the number of oc‐
cupied channels in the current beam cell is less than the corre‐
sponding threshold, the call will be admitted successfully and 
assigned a channel with power and bandwidth resources, and 
the number of occupied channels is updated. Otherwise, the 
call will be blocked. After each decision period, the threshold 
will be updated according to our adjustment algorithm. We set 
a threshold k′i for handover calls of the i-th service, while a 
threshold ki is set for new calls of the i-th service. As hando‐
ver calls are prior to new calls[16], we have ki ≤ k′i. We also 
consider that the s types of services have certain priorities, in 
the way that the type with larger index numbers will be re‐
served for more channels than those with smaller index num‐
bers. Therefore, the relationship between thresholds of all ser‐
vices satisfies 0 ≤ k1 ≤ k′1 ≤ ⋅ ⋅ ⋅ ≤ ks ≤ k′s ≤ C, where C is the 
total number of beam cell channels. To maximize utilization of 
the channels, k′s = C is assumed in our model. Fig. 3 illus‐
trates the proposed multi-priority service threshold-based 
channel reservation strategy.

The set of all thresholds is denoted by K =
{ k1, k′1, k2, k′2,⋯, ks, k′s }. Intuitively, dynamically adjusting the 
thresholds K to control call admission can effectively improve 
the overall system performance. On the one hand, if the low-
priority service threshold is set too low, low-priority service 
calls will be hard to get admission, even if there are no high-

▲ Figure 1. Basic mobility scenario of low-earth-orbit (LEO) satellite 
communication system

▲Figure 2. Simplified mobility model of low-earth-orbit (LEO) satellite 
communication system

▲Figure 3. Illustration of multi-priority service threshold-based chan‑
nel reservation strategy
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priority service calls. Some channel resources may be wasted, 
resulting in low system channel utilization. On the other hand, 
if the low-priority service threshold is set too high, excessive 
low-priority service calls may be admitted to occupy too many 
channels. This will decrease the admission success rate of 
high-priority services in the future. Therefore, in this paper, 
we focus on designing a channel reservation strategy to dy‐
namically adjust the thresholds of multi-priority calls, to real‐
ize intelligent admission control.
2.3 Problem Formulation

The overall access failure probability at time t, denoted by 
O ( t ), as a system performance metric, is defined as:

O ( t ) = α0 Paf ( t ) + α1 Phf ( t ) =
α0∑

i = 1

s

βi P
i
af ( t ) + α1∑

i = 1

s

βi P
i
hf ( t ), (4)

where α0 and α1 are the balance factors of new calls and han‐
dover calls respectively, which are used to measure the differ‐
ent impacts of new call blockage and handover call failure. 
And βi is the balance factor of the i-th priority service, which 
is used to judge the significance of multi-priority services. 
Meanwhile, we modify Pi

af ( t ) and Pi
hf ( t ) as long-term metrics 

of the i-th service as follows:
Pi

af ( t ) = N i
af /N i

a, (5)

Pi
hf ( t ) =  N i

hf /N i
h, (6)

where N i
af , N i

a , N i
hf and N i

h represent the number of new calls 
blocked for the i-th service, the total number of new calls for 
the i-th service, the number of handover calls failed for the i-
th service, and the total number of handover call for the i-th 
service, respectively.

To improve the overall system performance, we minimize 
O ( t ), i.e., minimize Pi

af ( t ) and Pi
hf ( t ) in the long term. As men‐

tioned above, the setting of K directly affects the failure rate of 
new calls and handover calls. When the state space of each 
beam cell is modeled as a continuous-time M/M/C/C Markov 
chain, the closed-form relationship of the new call blocking 
rate, handover call failure rate and K can also be proved[5]. 
Therefore, we formulate our optimization problem as follows:

  max          - O ( t ) ,                                                                                                                                                   
s. t.         0 < k1 < k′1 < ⋯ < ks < k′s ≤ C                            (7 .1),
                        ki, k′i ∈ Z ,     i = 1, 2,⋯, s                                                      (7 .2 ), (7)

where each threshold is limited to an integer for the conve‐
nience of adjustment in the dynamic channel reservation strat‐
egy. As the number of system channels C and that of services s 
can be large in real environments, using the brute force 
method to calculate the optimal thresholds in the current state 

will cause an exponential increase in time and space complex‐
ity. In addition, due to the rapid changes in the environment, 
optimal thresholds should be derived in real time. Thus, using 
static optimization to solve Problem (7) is infeasible and thus 
we resort to a learning-based solution.
3 Intelligent Admission Control Based on 

Dynamic Channel Reservation Strategy
In this section, we control service call admission by adjust‐

ing the reserved channel thresholds and model the problem of 
dynamically adjusting reserved channel thresholds as a Mar‐
kov decision process (MDP). First, we slot the time as decision 
periods with the slot length TΔ. In each time slot, multiple 
calls arrive according to the Poisson distribution. The system 
will adjust the reservation thresholds at the end of each deci‐
sion period. The maximum number of calls in a decision pe‐
riod is set to N, and even if the decision period is not over, the 
decision will be made immediately.
3.1 MDP Model

An MDP model consists of a five-tuple < S, A, P, R, π >, 
where S, A, P, R and π represent state space, action space, 
transition probability between states, reward function, and 
policy for selecting actions based on the state, respectively, 
which are defined as follows:

1) State(S): we assume that the channel resources of the 
beam cell remain unchanged. The state is defined as:

s ( t ) ∈ { c ; λ ; K }                  t = nTΔ,  n = 0,1,2,⋯, (8)
where c is the normalized number of channels that have been 
occupied in the considered beam cell and satisfies c ≤ C; λ =
{ λ1

n, λ1
h,⋯, λs

n, λs
h } is the set of the call arrival rates of new 

calls and handover calls that satisfies Eq. (2); K =
{ k1, k′1,⋯, ks, k′s } is the set of the normalized reserved channel 
thresholds of new calls and handover calls that satisfies 
Eq. (7.1).

2) Action(A): we define the action as current normalized re‐
served channel thresholds, which can be expressed as:

a ( t ) = K T = { k1, k′1,⋯, ks, k′s }T. (9)
In each decision period, action will be taken based on the 

current state, which will control the admission by setting re‐
served channel thresholds.

3) Transition Probability(P): generally, the state transition 
function of the Markov decision process is a certain function 
P: S × A × S → [0, 1], which represents the probability of the 
transition to the state s′ given state s after taking action a. 
Since state transition depends on not only the last action but 
also the traffic changes caused by the movement of satellites 
and UTs and call termination in the channel, it cannot be ex‐
plicitly expressed in our problem.

4) Reward(R): for a single service call within a decision pe‐
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riod, the reward function is defined as:

r =
ì

í

î

ïïïï

ïïïï

0                                                                                          access   successfully
-α0 βi     or     - α1 βi                          access   failed
-L                                                                                     (7.1) not meet . (10)

As is defined in Eq. (10), when a new call or a handover 
call is blocked, a negative value -α0 βi / -α1 βi will be given 
as a punishment. L is a very large constant as a penalty for dis‐
satisfying the constraint (7.1). Thus, the reward function of a 
decision period can be defined as:

rΔ = ∑
α, β, i

r/N i
α, β = -α0∑

i = 1

s βi N
i
af

N i
a

- α1∑
i = 1

s βi N
i
hf

N i
h  . (11)

Substituting Eqs. (4)–(6) can be further expressed as:
rΔ = -( )α0∑

i = 1

s

βi P
Δ
afi

+ α1∑
i = 1

s

βi P
Δ
hfi

= -OΔ ( t ) . (12)
Then our optimization problem of maximizing -O ( t ) can be 

approximately solved by maximizing the accumulated reward ∑T
rΔ in the long run.

5) Policy(π): we use a random policy π (a|s) → [0, 1] to 
represent the probability of selecting the action a given the 
current state s.

In our MDP model, we use the state-value function to evalu‐
ate the value of state s, which can be expressed as:

Vπ ( s) = Eπé

ë
ê
êê
ê ù

û
ú
úú
ú∑

k = 0

∞
γkrt + k ( st + k, at + k )|st  , (13)

where γ is the discount factor representing the discount contri‐
bution of the future states to the current state. Besides, the 
action-value function is used to evaluate the selected action a 
in the current state s, and can be expressed as:

Qπ ( s, a ) = Eπé

ë
ê
êê
ê ù

û
ú
úú
ú∑

k = 0

∞
γkrt + k ( st + k, at + k )|st , at  . (14)

Assuming that the MDP starts from the state st ∈ S, it expe‐
riences a trajectory as:

κ~ { st, at, st + 1, at + 1,⋯, st + T, at + T } . (15)
Since the policy is stochastic, the trajectory κ is uncertain. 

Denote the probability of trajectory κ as πξ (κ ), and the cumu‐
lative reward of trajectory κ is R (κ ) = ∑k = 0

T γkrt + k. As a re‐
sult, the objective function can be rewritten as:

max      - O ( t ) ≈ U (πξ ) = Eκ~πξ (κ ) [ R (κ ) ] = ∫
κ~πξ (κ )

R (κ )dκ.
(16)

3.2 Actor-Critic-Based Dynamic Channel Reservation 
Strategy

This MDP problem can be solved by using the reinforce‐
ment learning (RL) algorithm. Specifically, we use the Actor-
Critic framework[17] to model high-dimensional discrete action 
space, which is a combination of the Actor and the Critic. The 
Critic uses a neural network to approximate the state-value 
function and to judge the actions by temporal difference (TD) 
errors. The Actor uses another neural network to approximate 
the optimal policy and then selects the action while interact‐
ing with the environment.

1) Actor: The Actor will constantly improve the policy by 
TD errors. In our MDP problem, the policy πξ is modeled as a 
conditional probability distribution parameterized by ξ. Thus 
the process of modifying the policy is equivalent to the pro‐
cess of updating the parameter ξ. Through the back-
propagation algorithm, ξ is updated as follows:

ξnew = ξold + αactor∇ξU (πξ ) , (17)
where αactor is the learning rate of the Actor, and the gradient 
∇ξU (πξ ) is as follows:

∇ξU (πξ ) = ∇ξ log πξ (a|s) × Aπ ( s, a ), (18)
where Aπ ( s, a ) is the advantage function.

In this problem, we use Gaussian probability distribution to 
formulate the policy, which can be expressed as:

πξ (a|s) = 1
2π σ

exp (- (a - μ ( s) ) 2

2σ2 ) , (19)
where μ ( s) is the expectation and σ is the standard deviation 
of the selected action. Meanwhile, μ ( s) is the action with the 
highest probability at the state s and σ represents the extent of 
exploration over all actions. Exploration and exploitation can 
be well balanced by exploiting the Gaussian distribution. Thus 
the policy can be modified through the process of updat‐
ing μ ( s).

To update μ ( s), we extract a feature vector ϕ ( s) from the 
current state as the input of the Actor neural network, which is 
expressed as:

ϕ ( s) = (c ; λ ; K )T. (20)
The neural network will then output the normalized average 

of reserved channel thresholds, which is denoted by μ ( s) =
(u1, u′1,⋯, us, u′s )T. Thus the policy can be further derived as a 
2s-dimensional Gaussian probability distribution:

πξ (a|s) = 1
( 2π ) s ( ||Cov ) 1

2
e(- 1

2 (a - u ( s) )TCov-1 (a - u ( s) ) )

 , (21)
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where Cov is the covariance matrix with diagonal σ2. Based on 
the policy, an action vector will be generated and the system 
will transit to a new state after a decision period TΔ.

2) Critic: The Critic is used to approximate the state-value 
function Vπ ( s). Traditional RL uses Q-value tables to record 
state values, which will face the problem of dimensional explo‐
sion under the scenario of large state space. To cope with this 
problem, a neural network parameterized by θ is utilized to ap‐
proximate the state-value function Vθ ( s). In the critic process, 
Vθ ( s) will be updated by updating parameters θ.

To evaluate the gap between the actual value and the ap‐
proximated value of the state-value function in the state s, the 
definition of TD-error is given as follows:

δt = Vπ ( st + 1 ) - Vθ ( st ), (22)
where Vπ ( st + 1 ) = r t + 1 + γVθ ( st + 1 ) according to the bootstrap‐
ping method in the RL framework. To guide the updating of 
parameters and improve the performance, the objective of the 
critic process is designed to minimize the TD-error δt and can 
be re-expressed as:

min   1 2 ( δt )2 . (23)
θ is updated by the gradient descent method as follows:
θnew = θold - αcritic|δt|∇θoldVθold ( st ), (24)

where αcritic is the learning rate of the Critic.
3) Actor-Critic: The Actor updates the policy based on the 

state-value estimated by the Critic, while the Critic updates the 
state-value function according to the actions selected by the Ac‐
tor and the state transitions generated by interactions with the 
environment. Besides, the performance of the Actor can be im‐
proved by replacing δt with an advantage function. Then the pa‐
rameter update process in Actor can be rewritten as:

∇ξU (πξ ) = ∇ξ log πξ (at|st ) δt, (25)

ξnew = ξold + αactor∇ξold log πξold (at|st )δt. (26)
In summary, the proposed AC-DCRS is summarized as follows:

Algorithm 1. AC-DCRS

Input: N, M, T, TΔ, σ, αactor, αcritic, λ, γ.
Output: Optimal dynamic adjustment policy πξ.
Initialize: t = 0, n = 1, ξ = ξ0, θ = θ0, a = a0, s = s0, Φ ( s0 );
Repeat:

1. Action selection:
Input Φ ( st ) into the Actor network to get μ ( st ) and 
select action a, i.e., adjust the threshold once.

    2. According to the threshold adjusted by action, con‐
trol incoming calls, while (t ≤ nTΔ):

1) if a service call arrives, judge its service type and 
priority

2) determine whether the call access is successful 
by the corresponding threshold:
a) if c is less than the corresponding threshold, 
the call is admitted successfully and can be allo‐
cated a channel resource c ← c + 1;
b) else the call is blocked.

3) record the result of this call
4)  t ← t + 1.

3. State transition and reward feedback:
1) obtain the access result in this TΔ2) transition into the new state st + 1, get a reward rt + 1
3) update state feature vector Φ ( st + 1 )
4) calculate the state-value function Vθ ( st + 1 ), Vθ ( st ).

4. Update policy:
1) Critic network calculates and outputs TD-error δt =
rt + 1 + γVθ ( st + 1 ) - Vθ ( st )
2) update Critic network parameters θ ← θ -
αcritic|δt|∇θVθ ( st )
3) update Actor network parameters
 ξ ← ξ + αactor∇ξ log πξ (at|st )δt .5. n ← n + 1,  st ← st + 1.

Until: t ≥ T.
3.3 Complexity Analysis

In this subsection, we analyze the computing and space 
complexity of AC-DCRS and compare it with three baseline al‐
gorithms, i. e., FCR, handover priority fixed channel reserva‐
tion strategy (HPFCR), and DCR.

In FCR and HPFCR, the thresholds are fixed. In HPFCR, 
the handover calls are given higher priority, and the thresh‐
olds for new calls are set to the same value. After the initial 
setting, the thresholds of DCR will dynamically change accord‐
ing to the proportion of the number of calls of various services 
after the decision period TΔ has passed. Its normalized thresh‐
old can be expressed as:

KDCR = c′ + 1 - c′
n [ n1, n1 + n′1,…, n1 + … + n′s ] , (27)

where c′ represents the normalized number of shared chan‐
nels, which can be used by all calls, n represents the total 
number of calls arrived, and ni and n′i represent the number of 
new calls and handover calls of the i-th service respectively. 
As both FCR and HPFCR use a fixed threshold, the comput‐
ing complexity is O (1)and the space complexity is O ( s). On 
the other hand, DCR will dynamically change the threshold ac‐
cording to Eq. (27), and thus the computing complexity and 
space complexity are both equal to O ( s).

In our AC-DCRS, the neural networks are introduced to fit 
the policy function and the threshold is obtained according to 
the output feature vector. Specifically, we use a fully-
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connected neural network including two dense hidden layers. 
Suppose the number of neurons of the two layers is NL1 andNL2. The dimension of the input feature vector is 4s + 1 and the di‐
mension of the output feature vector is 2s. Therefore, the com‐
puting complexity is O ( s2 × NL1 × NL2 ). We need to store the 
weights and bias of the middle layer and the values of thresh‐
olds, which results in a space complexity of O (NL1 + NL2 + s). 
By using additional space and computing resources, our AC-
DCRS can intelligently adjust the threshold and achieve a bet‐
ter performance.
4 Performance Evaluation

4.1 Simulation Setting
We use a typical satellite system mobility model and basic 

assumptions, the parameters for the satellite communication 
network and the AC algorithm are shown in Tables 1 and 2 re‐
spectively.
4.2 Numerical Results

First, we examine the relationship between overall access 
failure probability O ( t ), which is approximately equal to the 
negative long-term accumulated reward, with the varying total 
call arrival rate λ. As shown in Fig. 4, since our optimization 
objective is to minimize O ( t ), the greater O ( t ), the worse over‐
all system performance. We can see that the proposed AC-

DCRS algorithm can learn better admission control strategies 
and achieve better overall system performance, compared with 
FCR, HPFCR, and DCR in most traffic scenarios. However, 
there is no obvious advantage in the scenarios of very low and 
high traffic loads. This is because AC-DCRS needs some trial-
and-error interactions with the environment. Reducing the 
thresholds of low-priority services causes some call failures in 
low-traffic scenarios, and multiple next-highest priority ser‐
vices get admission to quickly filling up the channel, which af‐
fects the overall access failure probability in high-traffic load 
scenarios.

Next, we explore the relationship between the channel utili‐
zation and the average call success rate with the varying total 
call arrival rate λ. From Figs. 5 and 6, we can find that the 
channel utilization increases with the traffic load, and the av‐
erage call success rate decreases with the traffic load. We can 

▼Table 1. Simulation parameters
Parameter

Number of services s
Number of beam cell channels

Average call duration parameter u
Call arrival rate ratio p1: p2: p3

Decision period TΔ
Maximum number of calls N

Balance factor α0, α1
Balance factor β1, β2, β3

FCR normalized fixed threshold setting
HPFCR normalized fixed threshold setting
DCR normalized initial threshold setting

Number of periods played
Total call arrival rate λ

Value

3
100

1/30 s
0.2:0.3:0.5

5 s
50

0.4, 0.6
0.2, 0.3, 0.5

[0.73, 0.75, 0.82, 0.85, 0.86, 1]
[0.73, 0.75, 0.73, 0.85, 0.73, 1]
[0.73, 0.75, 0.82, 0.85, 0.86, 1]

20 000TΔ
2–25 calls/s

DCR: dynamic channel reservation 
FCR: fixed channel reservation 
HPFCR: handover priority fixed channel reservation
▼Table 2. AC algorithm parameters

Parameter

Discount factor γ
Learning rate of policy αactor

Learning rate of value function αcritic
Action selection variance σ

Value

0.99
0.002
0.005
0.05

AC: Actor-Critic

▲Figure 4. O(t) with varying λ

AC-DCRS: DCR strategy based on Actor-Critic algorithm
DCR: dynamic channel reservation
FCR: fixed channel reservation
HPFCR: handover priority fixed channel reservation strategy

▲Figure 5. Channel utilization with varying λ

AC-DCRS: DCR strategy based on Actor-Critic algorithm
DCR: dynamic channel reservation
FCR: fixed channel reservation
HPFCR: handover priority fixed channel reservation strategy
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also find that AC-DCRS outperforms FCR, HPFCR, and DCR 
in these two aspects. This is because AC-DCRS can well bal‐
ance the call admission of all services from the level of the en‐
tire system. Ensuring the admission of high-priority service 
calls makes as many calls of multiple services as possible get 
admission.

We assume that the total call arrival rate changes dynami‐
cally at a certain time frequency. The initial total call arrival 
rate is 8 calls/s, and the range of change is [ λt - 2, λt + 2 ], 
where λt is the current total call arrival rate. As shown in Fig. 7, 
the AC-DCRS can achieve better system performance in differ‐
ent dynamic scenarios, compared with comparison algorithms. 
This is because our AC-DCRS can learn the optimal admis‐
sion control strategy under the current traffic and can adjust 
the threshold in real time.

Finally, we show the convergence of the value function in 
the AC-DCRS algorithm. We separately consider the conver‐
gence in the small state space (C = 20) and big state space (C=
100) cases. We observe the dynamic change of the state-value 
function at a certain state as the Critic evolves. As shown in 
Fig. 8, we can find that after certain training steps, the value 
function converges. The convergence speed varies with the 
sizes of state space, for the reason that it requires more itera‐
tions to traverse a larger state space to reach optimal strategy. 
In addition, the obtained strategy through training can be ap‐
plied to similar scenarios in different satellite beam cells. The 
training data of different satellite beam cells in similar sce‐
narios can be shared for migration training, which will acceler‐
ate the convergence to the optimal strategy.
5 Conclusions

In this paper, we have proposed a dynamic channel reserva‐
tion strategy AC-DCRS based on the Actor-Critic algorithm to 
realize intelligent admission control in a satellite network. AC-
DCRS can learn an optimal admission policy for both new 
calls and handover calls with different service priorities, 
which will improve the performance of both the user side and 
the network. Numerical results show that our proposed AC-
DCRS algorithm achieves better long-term overall system per‐
formance, average call success rate, and channel utilization 
under different traffic conditions and dynamic scenarios com‐
pared with traditional channel reservation strategies.
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Abstract: With the development of wireless communication, the 6G mobile communication technology has received wide attention. As one of 
the key technologies of 6G, terahertz （THz） communication technology has the characteristics of ultra-high bandwidth, high security and low 
environmental noise. In this paper, a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz 
and 204 GHz are designed and measured. Based on these key devices, a 220 GHz frequency-division multiplexing communication system is 
proposed, with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m. The measured constellation diagram of 
two receivers is clearly visible, the signal-to-noise ratio (SNR) is higher than 22 dB, and the bit error ratio (BER) is less than 10−8. Further‐
more, the high definition (HD) 4K video can also be transmitted in real time without stutter.
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1 Introduction

With the development of wireless communication 
technology, the global mobile data traffic is grow‐
ing exponentially, and the demand for high-speed 
and low-latency data transmission is gradually 

growing[1]. However, the currently used millimeter wave band 
cannot achieve these visions, so researchers turn their atten‐
tion to the terahertz (THz) band. THz waves range from 0.1 to 
100 THz, and the THz wireless communication has strong di‐
rectionality, excellent security, and wide bandwidth, which 
has a communication rate of more than 100 Gbit/s.

The NTT Laboratories in Japan first started research on THz 
wireless communication in 2004, the carrier frequency of which 
is 120 GHz under amplitude shift keying (ASK) modulation for 
a data rate of 10 Gbit/s[2]. In recent years, this team has devel‐
oped 300 GHz power amplifiers, low-noise amplifiers, and base-
wave mixers based on 80 nm InP-HEMT technology in Ref. [3], 
and the proposed THz wireless link has achieved a wireless 

data rate of up to 120 Gbit/s based on 16 quadrature amplitude 
modulation (QAM) modulation over a transmission distance of 
9.8 m. In Ref. [4], the communication system is developed by 
Karlsruhe Institute of Technology with a carrier frequency of 
237.5 GHz under 16QAM modulation. The proposed system 
achieved 100 Gbit/s over a distance of 20 m. With the sup‐
port of the DOTSEVEN project, the team of the Institute for 
High Frequency and Communication Technology has devel‐
oped a 240 GHz full integrated transceiver chip based on a 
130 nm SiGe Bi-COMS technology to achieve 10 Gbit/s over 
a transmission distance of 15 cm and a BER of less than 
10−9[5]. Recently, this team has also achieved Quadrature Phase 
Shift Keying (QPSK) modulated signal transmission at a trans‐
mission distance of 1 m and a transmission rate of 110 Gbit/s 
with a measured error vector magnitude (EVM) of 31.9% based 
on the 130 nm SiGe heterojunction bipolar transistor (HBT) 
technology in the 220–225 GHz band[6]. The 220 GHz commu‐
nication system[7] built by University of Electronic Science and 
Technology of China is based on the THz solid-state receiving 
front-end, which can realize 3.52 Gbit/s wireless communica‐
tion over a distance of 200 m using QPSK modulation. In Ref. 
[8], the Chinese Academy of Engineering Physics developed a 
140 GHz wireless link for offshore communication, which has 

This work is supported by the National Natural Science Foundation of 
China under Grant Nos. 62022022 and 62101107, the National Key R&D 
Program of China under Grant No. 2018YFB1801502, China Postdoctoral 
Science Foundation under Grant No. 2021TQ0057, and ZTE Industry-Uni⁃
versity-Institute Cooperation Funds.
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a transmit power of 33 dBm and finally achieved a transmis‐
sion distance of 27 km with 500 Mbit/s. According to these 
works, the solid-state THz communication technology has 
fully demonstrated its great application potential and research 
value in high-rate wireless communication. However, the ex‐
ploration of THz communication is still limited to point-to-
point communication. Therefore, the research on the THz 
frequency-division multiplexing wireless link is very impor‐
tant to THz communication.

In this paper, we propose a 220 GHz frequency-division 
multiplexing communication system, which adopts the classi‐
cal super outlier architecture, focusing on the design includ‐
ing a 220 GHz sub-harmonic mixer, duplexer and THz 
frequency-division multiplexing communication system, which 
finally realizes the transmission data rate of 10 Gbit/s for up/
down link over a distance of 15 m.
2 System Architecture

Full duplex communication systems often use a time division 
multiplexing (TDM) mode, a frequency-division multiplexing 
(FDM) mode and an isolation mode based on waveguide-guided 
orthogonal couplers[10]. During these modes, FDM is to divide 
the total bandwidth used for the transmission channel into two 
sub-carriers with different frequencies for receiving and trans‐
mitting. Although the two channels occupy different frequen‐
cies and large spectrum resources, the THz band has huge spec‐
trum resources. Therefore, the FDM mode is extremely suitable 
for realizing THz full duplex communication.

In this paper, a 220 GHz full-duplex wireless communica‐
tion system is built in a frequency-division multiplexing mode, 
and the system block diagram is shown in Fig. 1. The base‐

band signal is upconverted by a C-band frequency conversion 
module, which is filtered out of the upper sideband and fed 
into a THz mixer to upconvert to the THz band, and then fil‐
tered by a THz duplexer to remove the mirror frequency and 
get the radio frequency (RF) signal. The operating frequency 
of the uplink channel is 197.3– 199.9 GHz, and that of the 
downlink channel is 207–213 GHz. The RF link of the com‐
munication system is shown in Fig. 2. To effectively reduce 
the space occupied by the link, the RF link is connected to 
the duplexer with a curved waveguide.
3 Critical Components of System

3.1 220 GHz Sub-Harmonic Mixer Study
A mixer is a crucial device of a THz communication system 

that uses a nonlinear device of solid-state devices to generate 
an output signal containing multiple frequency components[9]. 
The mixer consists of an RF input structure, a local oscillator 
(LO) input structure, multiple filters, inverted parallel diode 

▲Figure 1. Communication system block diagram 

(a) Upstream transmit and downstream receive (b) Downstream transmit and upstream receive
BPF: bandpass filter
BW: bandwidth

IF: intermediate frequency
LPF: low pass filter

PDRO: phase-locked dielectric resonator oscillator
PLL: phase-locked loop

SHM: sub-harmonic mixer

▲Figure 2. Front-end link of the communication system

(a) RF link (b) Chassis diagram
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pairs, and a matching network. In this paper, we design a 
220 GHz sub-harmonic mixer using Schottky diodes, and the 
circuit substrate is based on a 50 μm quartz substrate.

The mixer and the internal circuit are shown in Fig. 3. The 
cavity is made of brass, which is gold-plated on the surface. 
During the test, the output power of the LO link is controlled 
within 3–8 mW, and the input RF signal power is uniformly 
adjusted to −10 dBm.

The measured result shows that when the LO and RF signal 
input 204 GHz and 195 – 220 GHz, respectively, the fre‐
quency conversion loss is less than 10 dB, which is 8.8 dB at 
minimum, as shown in Fig. 4(a). After changing the LO fre‐

quency to 216 GHz, the frequency conversion loss is less than 
10.3 dB, which is 8.9 dB at minimum, as shown in Fig. 4(b).
3.2 220 GHz Duplexer Study

In this paper, the designed duplexer adopts the reactance-
coupled bandpass filter structure, as shown in Fig. 5. The 
mode of each resonant cavity is TE101 and the resonant cavity 
length is approximated as a half wavelength. The parameters 
affecting the filter performance are mainly the length of each 
resonant cavity li and the width of each coupling window wi. Changing li has a significant effect on the center frequency, 
and the length of the resonant cavity near the center l2 has a 
higher effect on the center frequency than l1. Adjusting wi has 
a certain effect on the in-band characteristics and bandwidth.

Two different band filters with center frequencies of 203 GHz 
and 214 GHz are designed. It can be seen from Fig. 6 that the 
simulation results show the bandwidths are 6 GHz and the in-
band insertion loss (IL) is lower than 0.1 dB.

▲Figure 3. 220 GHz sub-harmonic mixer

(b) Internal circuit(a) Overall appearance

(a)

(b)
IF: intermediate frequency     RF: radio frequency

▲Figure 4. Frequency conversion loss test results of mixers with differ‑
ent LO frequencies: (a) 204 GHz and (b) 216 GHz

▲Figure 5. Filter structure diagram

▲Figure 6.  Filter simulation results

(a) 203 GHz filter 

(b) 213 GHz filter
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After filters are designed, every individual filter is directly 
connected through T-junctions[11] to form a multiplexer. The 
machining physical drawing and microscope photo of the inter‐
nal structure are shown in Fig. 7. The proposed duplexer is 
fabricated by computerized numerical control (CNC) milling 
technology. The cavity is made of brass with a gold-plated sur‐
face. The simulation and measured results show that the du‐
plexer passband is 197–203 GHz and 207–213 GHz, the 
isolation degree is 22.51 dB at 205 GHz, the average in-band 
return loss is less than 15 dB, and the average in-band inser‐
tion loss (IL) is less than 0.8 dB, which is 0.58 dB at mini‐
mum, as shown in Fig. 8. Compared with the simulation re‐
sults, the overall frequency shift is 3 GHz and the isolation de‐

gree is 8 dB worse. However, the single-channel bandwidth is 
not different from the simulation results. The reason may be 
that the length of the resonant cavity in the center of the two 
channels is larger than the simulated value, and the width of 
the coupling window is similar to the simulated value, which 
leads to the same bandwidth and downward frequency shift.
4 Measurement Results

For terahertz wireless communication, the link-budget of 
the system mainly includes transmit power, antenna gain, free 
space loss, and atmospheric attenuation[12]. The received 
power can be calculated as follows:

PR = PT + GT + GR + 20 lg ( c
4πRf

) - L0 - Lex , (1)
where PT is the transmitter output power in dBm, GT and GR 
are antennas gains, R is the transmission distance, L0 is atmo‐
spheric attenuation which is less than 0.01 dB, and Lex is an 
excess loss set to 3 dB.

The transmitting antenna and receiving antenna both use 
the WR-4 band lens antenna. The baseband power input to 
the 220 GHz sub-harmonic mixer is less than −10 dBm, and 
combined with the test results in Section 3, we can get the an‐
tenna transmit power PT less than − 20 dBm. Therefore, the 
maximum received power of the receiver is −35.78 dBm.

Receiver sensitivity Si,min, which is the minimum received 
power of the receiver and can be calculated as follows:

Si,min = -174 + 10lgB + NF + SNR , (2)
where B is signal bandwidth as 2.6 GHz, NF is the receiver 
noise factor that can be calculated from the system cascade 
noise factor calculation formula as 13 dB, and SNR is the 
minimum signal-to-noise ratio required for baseband demodu‐
lation which requires at least 19 dB using 16QAM modula‐
tion. Therefore, the receiver sensitivity can be calculated as 
−46.02 dBm. The difference between the received power and 
the receiver sensitivity is 10.24 dB, which means the system 
has a link-budget of 10.24 dB.

The block diagram of the single-channel experiment is 
shown in Fig. 9. The LO signals of the transmitter and receiver 
are both provided by the 110 GHz twelve-octave frequency 
multiplier. The influence of phase white noise at the far end of 
the local oscillator on the communication quality is great[13], 
and the deterioration of phase white noise at the far end of the 
local oscillator with the frequency multiplier is 20 log10(n), so 
the input of the local oscillator signal should reduce its far-
end white noise as much as possible. Compared with a phase-
locked loop (PLL), the phase-locked dielectric resonator oscil‐
lator (PDRO) has a better phase noise. Therefore, the input of 
this oscillator selects PDRO at 8.5 GHz and 9 GHz, and its 
phase noise at 1 MHz can reach −131 dBc/Hz.

The experimental scenario is shown in Fig. 10. In the trans‐

(a) (b)
▲ Figure 7. Physical diagram of duplexer: (a) appearance and (b) mi‑
croscope photo of internal structure

▲Figure 8. Duplexer simulation and test data
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mit link, the baseband signal is first upconverted by the C-band 
frequency conversion module, filtered out of the upper sideband 
and then fed into the THz mixer to be upconverted to the THz 
band, and then filtered out of the mirror frequency by the THz 
duplexer. In the receive link, the RF signal enters the THz 
mixer after the duplexer and is down-converted to the interme‐
diate frequency (IF) signal. It is then down-converted to the 
baseband signal by the C-band frequency conversion module 
and demodulated after amplification and filtering. The transmit 
and receive links are connected with a THz adjustable attenua‐
tor for simulating the propagation loss of THz signals in free 
space. The relationship between different baseband power and 
the SNR is demonstrated in Fig. 11(a), which shows that there 
is no significant change in the demodulation SNR with the base‐
band power above −15 dBm and when the baseband power is 
below −20 dBm, the SNR deteriorates further. Fig. 11(b) shows 
the relationship between the demodulation SNR and BER.

The constellation diagrams corresponding to different SNRs 

are demonstrated in Fig. 12, which shows that the communica‐
tion results are basically the same when the LO frequency is 
204 GHz and 216 GHz. Keeping the above test platform un‐
changed, the baseband modulation mode is changed to 

▲Figure 9. Single-channel experimental block diagram

▲Figure 10. Single-channel experimental scene diagram

▲Figure 11. Single-channel test data: (a) relationship between transmit 
power and SNR and (b) relationship between SNR and BER

(a)

(b)
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64QAM and the attenuator is adjusted to make the best perfor‐
mance. Then the performance at the LO frequency of 204 GHz 
and 216 GHz are tested respectively.

The THz attenuation is removed so that the transmitter 
and the receiver are directly connected back-to-back. The 
PDRO at the receiver side is replaced as the signal source is 
input to achieve the effect of transmitting and receiving LO 
frequency offset by changing the signal source input. The 
range of frequency offset measurement is 0–1 MHz with a 
step of 0.1 MHz. The variation of SNR with the amount of fre‐
quency offset is shown in Fig. 13. The baseband signal in the 
receiving section is a single sideband. The LO frequency bias 
corresponds to the overall offset of the baseband spectrum and 
there is no signal crossover. Therefore, as long as the fre‐
quency bias is less than the threshold, the SNR is basically 
unchanged. When the frequency offset exceeds the threshold 
value, the SNR deteriorates sharply and the BER is 1.

After measurement, the frequency bias threshold of this 
communication system is 2.5 MHz. The photograph of the com‐
munication experiment is shown in Fig. 14. The corresponding 
constellation diagram is shown in Fig. 15, where the demodu‐
lation SNR of the uplink channel is 22.91 dB when the LO fre‐
quency is 204 GHz and the demodulation SNR of the down‐
link channel is 23.19 dB when it is 216 GHz. The BER is less 
than 10−8. The final transmission distance of this communica‐
tion system is 15 m, which can reach 20 m by calculation be‐

cause of spare capacity in the link. The comparison of the pre‐
viously published THz wireless links with ours is shown in 
Table 1.
5 Conclusions

In this paper, the front-end key components including a 
220 GHz sub-harmonic mixer and a 220 GHz duplexer are de‐
signed for the application requirements of the THz frequency-
division multiplexing communication system. The sub-
harmonic mixer is designed based on the domestic Schottky di‐
ode, which has a fixed fundamental frequency of 204 GHz and 
216 GHz. The frequency conversion loss is less than 10.5 dB 
at 20 GHz. The 220 GHz duplexer is designed based on the 
principle of the cavity filter. The range of the duplexer pass‐
band is 197–203 GHz and 207–213 GHz, and the return 
loss in the common port is less than 15 dB, which can effec‐
tively divide the channel of the communication system and 
suppress the mirror frequency. Based on the above circuit de‐

(a) (b) (c)
▲Figure 12. Constellation diagrams with different signal-to-noise ratio 
SNR: (a) 17.79 dB, (b) 19.85 dB, and (c) 22.62 dB

▲Figure 13. Variation of SNR with different frequency bias
IF: intermediate frequency     SNR: signal-to-noise ratio

▲ Figure 14. (a) Uplink transmit and downlink receive; (b) downlink 
transmit and uplink receive

(a) (b)

(a) (b)
▲ Figure 15. Constellation diagram: (a) 204 GHz uplink; (b) 216 GHz 
downlink

▼ Table 1. Experimental prototype performance comparison of tera‑
hertz (THz) wireless communication systems
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sign, the 220 GHz frequency-division full duplexer communi‐
cation system is proposed, which realizes real-time high-speed 
communication with a transmission distance greater than 15 m, 
and uplink and downlink transmission rates of 10.4 Gbit/s, re‐
spectively. The measured BER is lower than 10−7. Furthermore, 
the HD 4K video can be transmitted in real time. This work re‐
alizes a high-rate and long-range THz communication system 
that has broad application prospects in wireless communica‐
tion. This paper builds a 220 GHz frequency-division multiplex‐
ing communication system, which adopts non-coherent demodu‐
lation to achieve a transmission distance of 15 m, an uplink and 
downlink transmission rate of 10.4 Gbit/s each, and a BER 
lower than 10−7.
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1 Introduction

As the scale of software systems expands, maintaining 
their stable operation has become an extraordinary 
challenge. System logs are the text generated in the 
process of software running, which records the status 

information of the program[1–2]. Traditional log anomaly detec‐
tion relies on manual analysis by operation engineers. The in‐
crease in software systems leads to a surge in a log volume, 
manual analysis of logs and the design of regular expressions 
can consume considerable time, and the traditional log analy‐
sis is no longer feasible. In recent years, researchers have pro‐
posed a variety of automated log anomaly detection meth‐
ods[3–8]. Early research on log exceptions focused on auto‐
matic exception rule generation and simple statistical meth‐
ods[9]. Then, researchers divided log analyses into three direc‐
tions: template extraction, model training, and anomaly detec‐
tion. In recent years, many intelligent log analysis methods 
have been proposed with the rapid development of machine 
learning, especially deep neural networks. For example, mod‐
els based on convolutional neural networks (CNN) and recur‐
rent neural networks (RNN) can effectively capture the se‐
quence characteristics and frequency characteristics of log 
text, and apply them to the detection of new logs[3–5]. How‐
ever, the application of the deep learning model in practical 
scenarios faces the following challenges:

1) The normal pattern of logs is difficult to model. Most ex‐
isting methods try to learn the normal pattern of log sequence 
and frequency. The team’s O&M engineers pointed out that 
the semantics of logs in real-world scenarios are of consider‐
able analytical importance. Since the production environment 
for generating and recording logs is not ideal, relying solely on 
sequence as well as frequency to encode logs can lead to a 
large number of false positives.

2) Complex log data contains massive noise. Due to the high 
concurrency of the software system and the uncertainty of net‐
work response, the log generated can be disordered and con‐
tain lots of noise.

To tackle the limitations of existing methods, in this paper, we 
propose an efficient and robust framework for log anomaly detec‐
tion based on generative pre-training-2 (GPT-2) [10]. Inspired by 
the excellent performance of GPT-2 in serialization text genera‐
tion and multiple types of downstream task processing, we lever‐
age this model to capture patterns of normal log sequences.

The main contributions of this paper can be summarized as 
follows:

1) To tackle the first challenge, we generate sentence vec‐
tors for each log template to represent their semantic informa‐
tion. Specifically, we first apply Siamese Bidirectional En‐
coder Representations from Transformers (SBERT) networks 
to generate sentence vectors for all log templates and then in‐
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put the vectors into GPT-2 as the representation of templates. 
In this way, the models can study both sequential and seman‐
tic features of input logs.

2) To address the second challenge, we design an alarm 
strategy layer for this framework. This step will analyze the sta‐
tistical characteristics through the existing log data to effec‐
tively reduce the impact of noise on model judgment and re‐
duce the false positive rate.

The remainder of this paper is organized as follows. Section 
2 introduces the background of log anomaly detection. Section 
3 describes our approach. In Section 4, we present our experi‐
mental design and results. Section 5 surveys related works 
and Section 6 concludes this paper.
2 Background

2.1 Logs Description
Logs, which are produced by the running program and con‐

tain information generated from the logging module, are a type 
of semi-structured text. They reflect the running flow and real-
time status of the program, and can be used to detect and lo‐
calize anomalies by operators. Logs consist of a structured 
part (constant) and an unstructured part (variable), as shown 
in Fig. 1. A structured part is fixed by the designer at the be‐
ginning according to certain designed rules, and can reflect 
the event of the log, such as the level of logs (e.g., warning and 
error), the logger name (e.g., root) and so on. This part would 
not change into the same module. The unstructured part con‐
tains specific information on logs and varies according to the 
input of the program and running status. An unstructured part 
would reflect the real-time status of the system, and it is essen‐
tial to use this part to analyze the system and detect anomalies 
in the system. To make full use of the important features in 
logs, the semi-structured texts need to be parsed into the struc‐
tured text with a parsing algorithm. The useless messages in 
the raw log would be filtered out, and the valuable information 
would be extracted out from the left information to train the 
model and detect the anomaly.

Generally speaking, the logs generated by normally operat‐
ing hardware and software systems have a good regularity. 
Therefore, some logs that do not match the pattern of previous 
characteristics are considered anomalous. In the actual data‐
set studied in this paper, log exceptions can be broadly classi‐
fied into two categories: 1) Business exceptions caused by net‐
work blocking, resource usage, etc. When such exceptions are 

generated, the program will actively retry the process, so some 
logs will be repeatedly generated several times in a short pe‐
riod of time. 2) Exceptions triggered by service deployment or 
termination failure. This type of exception usually generates 
only a few error logs, which can be evidenced by the fact that 
the sequence of logs is abnormal, and the semantics of the er‐
ror logs differ significantly from the normal logs.
2.2 Challenges and Analysis

1) Challenge 1 is modeling the normal patterns of logs. Tra‐
ditional anomaly detection algorithms always work on learning 
the normal patterns of logs and finding out logs different from 
normal patterns. Most studies mainly focus on building the 
normal pattern according to the sequence and frequency of 
logs, however, these two features are not comprehensive 
enough to evaluate the overall state of the system, hence the 
normal patterns built on these two features are not accu‐
rate[3–4]. Intuitively, each log has its semantic characteristics 
through the log message, and these would describe the log 
meaning, such as inserting in a dataset, deleting from a data‐
set, and failure reporting. Besides, logs are generated by trig‐
gering corresponding events, and an event always triggers a se‐
ries of logs. So, there is a sequential relation between logs, 
which would become different from the usual and could repre‐
sent the status of logs and systems. As above, if we could com‐
bine the semantic information and sequential message with 
other statistical information, it could perform better in detect‐
ing anomalies in logs.

2) Challenge 2 is massive noises in the log. Logs are pro‐
duced by a software system, which is highly concurrent and 
greatly influenced by the network. A working software system 
can run a large number of programs at the same time. These 
programs can produce a series of logs as well as useless mes‐
sages, such as test output, and these messages have no effect 
on evaluating the log status. Some programs need to interact 
with other programs in the network, and thus the status of the 
network would affect the log sequence and delays can disrupt 
the order of logs. The disordered log and useless information 
are collectively called noise. Dealing with noise properly is 
necessary to improve anomaly detection in logs, and the sim‐
plest way is to remove the noise, which, however, roughly 
brings lots of missing areas in logs and could bring new prob‐
lems to the model. Based on the above observation, intuitively, 
if we can filter out the false positive alarms instead of roughly 
removing these noises, log anomaly detection can achieve 
higher accuracy and lower the false alarm rate.
2.3 Preliminaries

1) The log parsing algorithm. To parse the semi-structured 
log into a structured text, the log parsing algorithm focuses on 
fetching the unstructured part from the structured part and ex‐
tracting the features of logs. Specifically, the log parsing algo‐
rithm would replace meaningless information (e.g., IP address, ▲ Figure 1. Log instances, where black words are the structured part 

and red words are the unstructured part
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machine ID, etc.) with markers and extract the template of the 
log to distinguish between logs. In this paper, we adopt 
Drain[11], a heuristic log parsing algorithm, to parse logs. Drain 
parses the template of logs by maintaining a tree, which keeps 
the leaves as log groups with different heuristic rules in inter‐
nal nodes. New logs would be distributed into log groups in 
leaves according to the corresponding tree path.

2) GPT-2. The GPT algorithm works based on the decoder 
of the transformer, and it pre-trains unsupervisedly on massive 
corpus data and then finetunes the model according to the spe‐
cific tasks. GPT-2 removes the finetune step and increases the 
size of the training dataset and model, which makes the model 
perform well in multi-tasking.
3 Approach

In this section, we will introduce our log anomaly detection 
framework. Inspired by GPT-2, we employ transformer decod‐
ers to encode the normal pattern of system logs. Our framework 
is divided into four main parts: log parsing, sentence vector gen‐
eration, model training and detection, and the alerting strategy 
layer. For Challenge 1, we embed each log template into a vec‐
tor representing the semantic information. We use vectors in‐
stead of tokens as input to GPT-2, so the model can capture 
both semantic and sequence information to encode normal pat‐
terns. For Challenge 2, we design an alarm strategy layer for the 
framework, which can filter out false positives by the statistical 
characteristics of log data. The structure of the framework of our 
work is shown in Fig. 2. The raw logs collected are first trans‐
formed into structured logs by the log parser. Then a sentence 
vector generation model will be used to generate sentence vec‐
tors for each extracted log template.
3.1 Log Parser

System logs obtained from the database are semi-structured 
text, which is difficult to be used for model training. Therefore, 
before processing logs, we need to use a parser to convert logs 
into structured text. In this paper, we use Drain as our log 
parser, which can divide logs into templates and dynamic vari‐
ables. Drain is an online log template miner, employing a parse 
tree with a fixed depth, and it can extract templates and vari‐
ables from a stream of log messages. Drain first sorts logs into 
different buckets by length and then matches similar portions of 
the log from front to back in each bucket. Eventually, logs be‐

longing to the same template will end up on the same leaf node. 
The structure of the depth-fixed tree is shown in Fig. 3. In the 
figure, sys is an abbreviation for system, and HEX and NUM 
are variables matched during the parsing process, representing 
hexadecimal and decimal numbers, respectively.
3.2 Sentence Vector Generation

To make GPT-2 better at encoding normal patterns, we gen‐
erate semantically relevant sentence vectors for each log tem‐
plate. We choose SBERT[12] as our embedding model, which 
has been widely used in text similarity calculation and sen‐
tence classification problems and has achieved excellent re‐
sults. SBERT modifies the pre-trained BERT model, and it 
implements Siamese or triplet net frameworks to generate se‐
mantically meaningful sentence embedding. Sentence vectors 
generated by templates with similar meanings have smaller co‐
sine distances or Euclidean distances. Table 1 shows the Eu‐
clidean distance of sentence vectors in five log templates.
3.3 Detection Model

1) Model framework. We choose GPT-2 as our log anomaly 
detection model in this work. GPT-2 is an unsupervised Natu‐
ral Language Processing (NLP) model stacked from the trans‐
former’s decoders. The structure of GPT-2 is shown in Fig. 4. 
Each decoder has a masked self-attention layer, a feed-
forward neural network, and two normal layers. The structure 
of each decoder is the same, but each module maintains sepa‐
rate parameters. Different from the ordinary self-attention 
layer, the masked self-attention layer does not allow a node to 

▲Figure 2. Approach overview EoF: end-of-file

▲Figure 3. Structure of the depth-fixed tree

Templates
httprequest except <*> permission denied
httprequest except <*> <*> permission denied
httprequest except <*> no such file or directory
httprequest except <*>

httprequest except EoF occurred in violation of protocol
httprequest except <*> connection reset by peer

Euclidean Distance
-

0.147 629 340 284 133 4
0.595 852 332 701 891 4
0.621 201 472 867 456 3
0.838 852 193 154 771 3
0.880 359 580 380 884 6

▼ Table 1. Euclidean distance of sentence vectors of similar semantic 
templates
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Error logs
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Length: 4 Length: 5 Length: 6
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<NUM>…
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Log group Log group

…
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template: sys <NUM> at <HEX> mask
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get information from subsequent nodes. This feature makes 
the model perform well in sequence prediction tasks.

2) Input representation. Like most NLP models, GPT-2 
looks up the embedding vector corresponding to the word from 
the embedding matrices, and the embedding matrices are also 
part of the model training results. GPT-2 maintains two em‐
bedding matrices: a token embedding matrix and a position 
embedding matrix. Each row of the token embedding matrix is 
a vector that represents a token, and these vectors are ran‐
domly initialized and continuously adjusted during training. 
Each row of the position embedding matrix represents the posi‐
tion information of the token. Tokens in the same position in 
different sentences have the same position embedding vector. 
Each template embedding inputted into GPT-2 is the sum of 
position embedding and token embedding. In our framework, 
we initialize the token embedding matrix with sentence vec‐
tors generated by SBERT, which unlike the original random 
initialization, can make the model catch the initial semantic 
information of log templates more accurately. Besides, this ap‐
proach gives operations more control over the model. We can 
adjust the dimension or generation method of sentence vectors 
according to the characteristics of logs and actual business re‐
quirements.

3) Model training. The core concept of GPT-2 is language 
modeling. Language modeling refers to distribution estimation 
from a group of unsupervised samples (x_1, x_2, x_3, …). 
Each sample consists of symbol sequences of variable length 
(s_1, s_2, s_3, …). Because there are explicit sequential rela‐
tionships between phrases in natural languages, language mod‐
eling typically decomposes the joint probability of symbols as 
a product of conditional probabilities.

p( )x =  ∏
i = 1

n

p ( )si|s1, s2,…,sn - 1 . (1)
Transforming the above equation into a logarithmic form, 

the goal of the language model is to maximize the probability 
of the following equation.

p ( x) =  ∑
i = 1

n log p ( )si|s1, s2,…,sn - 1 ;  θ  , (2)
where n is the length of the language sequence, and the condi‐
tional probability p is modeled by the neural network with pa‐
rameter θ. These parameters are trained by the stochastic gra‐
dient descent.

The input of the decoder at the first layer consists of the to‐
ken embedding vector and position embedding vector of log 
templates. The output of each decoder is processed from the 
previous layer’s output. The output probability obtained by 
the model can be expressed as follows:

h0 = XWe +  Wp,
hl =  Decoder ( )hl - 1   ∀l ∈ [ ]1,n  ,
p ( )x = softmax (hnW

T
e ), (3)

where hl represents the output of the l-th layer decoder, X is 
the matrix composed of the unique thermal encoding of the in‐
put log sequence, We is the token embedding matrix, and  WP 
is the position embedding matrix. To maximize the prediction 
probability, the model adjusts the decoder parameters of each 
layer during the learning process.
3.4 Alarm Strategy

Analyzing the actual data, we find that in the production en‐
vironment, the logs printed by the machine are not always se‐
quential. The main differences between these noises and se‐
vere systems are as follows: logs corresponding to noise ap‐
pear frequently and usually have a certain seasonality, while 
severe anomalies occur infrequently and are difficult to pre‐
dict. Based on the above observation, we use frequency and 
periodicity as criteria to determine whether model error report‐
ing is noisy or a true anomaly.

For the abnormal log templates detected by the model, we 
first calculate the time interval of their occurrence in the train‐
ing data and then use the auto-correlation coefficient to ana‐
lyze whether the time interval of template occurrence has a 
specific pattern. The auto-correlation coefficient is a common 
parameter for finding repetitive patterns (e.g., periodic signals 
masked by noise) and is often used in signal processing prob‐
lems. The sequence consisting of the auto-correlation coeffi‐
cients is known as the auto-correlation function. For the ob‐
tained template interval sequence, its autocorrelation function 
is calculated, and the peak of the function is the possible pe‐
riod of the corresponding template. If the value of the function 
at a certain time is higher than a threshold value set based on 
expert experience, we consider the template to be periodic 
and its basic impossibility to be an error log template.

Then, for non-periodic templates, we go through the statis‐

▲Figure 4. Structure of generative pre-training-2 (GPT-2)
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tics of their daily frequency of occurrence. Based on the obser‐
vation of the data and the communication with the operation 
and maintenance staff, we have learned that the probability of 
daily serious anomalies in a smoothly running system is ex‐
tremely low. An exception log with a high frequency is often 
caused by minor errors such as network blocking and data 
locking. The system can often recover from such errors 
quickly, so such alarms are not necessary. Therefore, for ex‐
ception log templates that occur more frequently than a cer‐
tain threshold, the alert policy layer will filter them out as less 
serious exception logs. The selection of this frequency thresh‐
old is strongly correlated with the type of machine logs and re‐
lies on the involvement of business experts.

In this layer, error logs detected by GPT-2 will be analyzed, 
and if their characteristics are more like noise, the exception 
will not be reported. This step can greatly reduce the model 
false positives caused by noise, improve the accuracy of the 
log anomaly detection framework, and reduce the disturbance 
to operation engineers.
4 Experiment and Evaluation

4.1 Experimental Setup
1) Research questions. In this section, we evaluate the per‐

formance of our framework with the following research ques‐
tions (RQs):

a) RQ1: How effective is our framework in log-based 
anomaly detection?

b) RQ2: How effective is the sentence vector generation and 
alerting strategy layer in improving the effectiveness of the 
model.

2) Datasets. We evaluate our approach on two large-scale 
systems called Ada and Bob. Ada is a framework for microser‐
vice deployment applications. Bob is a hardware network con‐
sisting of a large number of switch systems. The statistics of 
the datasets are shown in Table 2.

3) Baselines. We compare our framework with two base‐
lines, LogAnomaly[4] and NeuralLog[8]. LogAnomaly is a log 
anomaly detection method based on a long short-term memory 
(LSTM) network. LogAnomaly first uses a Frequent Term Tree
(FT-Tree) to analyze the semi-structured log text. Then, Tem‐
plate2Vec is implemented to generate vectors for each log tem‐
plate. Finally, the vectors representing log semantics and fre‐
quency are input into the LSTM to enable the model to learn 
the normal pattern of logs. NeuralLog is a novel log-based 
anomaly detection framework. Different from the traditional 
process, the algorithm does not require template parsing. Neu‐

ralLog generates semantic vectors for row logs. These repre‐
sentation vectors are then used to detect anomalies through a 
transformer-based classification model.

4) Evaluation metrics. We use Precision, Recall, and F1-
Score (F1S) as our evaluation metrics, which are defined as fol‐
lows. True Positive (TP) is the number of abnormal logs that 
are correctly detected by the model,  False Positive (FP) is the 
number of normal logs that are wrongly identified as anoma‐
lies, and False Negative (FN) is the number of abnormal logs 
that are not detected by the model.

Precision =  TP
TP + FP . (4)

Recall =  TP
TP + FN . (5)

F1S =  2*Precision*Recall
Precision + Recall   . (6)

4.2 Experimental Results
In this section, we will give response to the RQs mentioned 

above.
1) RQ1: How effective is our framework in log-based 

anomaly detection?
In this RQ, we evaluate whether our framework can work ef‐

fectively on logs generated in the production environment. We 
compare our framework with two baselines: LogAnomaly[4] and 
NeuralLog[8].

Table 3 shows the results of our method as well as two base‐
lines on Ada and Bob. Both LogAnomaly and NeuralLog show 
poor Precision and Recall performance on Ada. LogAnomaly 
has very limited learning capability due to the limitation of 
model size, which makes it difficult to obtain good results on 
log datasets with a large number of templates and complex pro‐
cesses. Also, in the production environment logs, log tem‐
plates that are not present in the training data often appear in 
the test set, making LogAnomly generate a large number of 
false positives often[18]. NeuralLog tends to consider every log 
unlikely to be anomalous on large unsupervised datasets due 
to the problem of data dilution. Our framework analyzes and 
learns the actual semantics of the logs, and designs an alert 
policy layer that incorporates the actual business characteris‐
tics of the machine. These measures make our model more ca‐
pable of capturing the normal patterns of real logs in a produc‐

▼Table 2. Statistics of evaluation datasets

Dataset
Ada
Bob

Training Data
6 626 865
7 021 577

Number of 
Templates

599
84

Test Dataset
Normal

7 911 944
1 067 850

Anomalous
2 648
904

▼Table 3. Evaluation results of our method vs the other two methods

Approach
LogAnomaly
NeuralLog

Our method

Ada
Precision

0.394
0.297
0.738

Recall
0.190
0.354
1.00

F1S
0.256
0.323
0.850

Bob
Precision

0.353
0.638
0.857

Recall
0.332
0.872
1.00

F1S
0.342
0.736
0.923
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tion environment.
The complexity of Bob is much less than that of Ada, 

mainly because of less templates and a relatively fixed log se‐
quence. However, due to problems such as network latency 
and data washout, the logs generated by the switch have a 
large number of errors and retry messages. In most cases, 
these error messages are not of concern because the program 
can be restored to normal after several retries and will not 
have a significant impact on the execution of the business. 
Also, these alarms of variable duration can disrupt the log se‐
quence, making it more difficult to learn the normal pattern of 
the logs purely from frequency or sequence. The sequence 
confusion greatly affects the learning ability of LogAnomaly 
on this dataset, and NeuralLog has a lower Precision due to 
the report of the unimportant exceptions. Our framework cap‐
tures the normal characteristics of logs from multiple perspec‐
tives and designs alerting policies based on the frequency and 
periodicity of logs, thus achieving good performance on the 
Bob dataset.

The experimental results show that our framework has good 
performance for complex log datasets in practice. The analysis of 
log semantics makes the model show good robustness on poor 
stability sequences, and the addition of the alert policy layer re‐
duces the model’s disturbance to engineers and screens out 
some of the exceptions that can be fixed automatically.

2) RQ2: How effective is the sentence vector generation and 
alerting strategy layer in improving the effectiveness of the 
model?

As mentioned in the previous sections, we add the sen‐
tence vector matrix as well as the alert alarm strategy layer to 
GPT-2. In this RQ, we will verify the effect of the main parts 
of the framework on its effectiveness, by removing one or two 
components, namely the sentence vector (SV) and the alarm 
strategy (AS).

OM w/o SV & AS: We remove the sentence vector genera‐
tion and alert policy layers from our framework. That is, we 
use only the GPT-2 model for sequence prediction to diagnose 
anomaly logs.

OM w/o AS: We remove the alarm strategy generation from 
our framework.

OM w/o SV: We remove the sentence vector layer from our 
framework.

OM: Anomaly detection work on logs using the completed 
framework proposed in this paper.

The experimental results in Table 4 show that the sentence 
vector generation part of the framework can improve the accu‐
racy of the model to some extent and greatly enhance Recall. 
Because GPT-2 achieves better results in capturing the seman‐
tic information of normal and abnormal templates after receiv‐
ing the sentence vectors of the templates as prior knowledge. 
This is demonstrated by the fact that log templates containing 
the same abnormal keywords, the vector representations of 
which have a closer distance, are easily detected together in 

the anomaly detection stage. At the same time, log templates 
that symbolize normal patterns are more difficult for the model 
to detect as false positives because they often contain positive-
meaning words. Since the alarm strategy layer is built based 
on expert experience and has accurate filtering rules, it can fil‐
ter out a large number of false abnormal logs and effectively 
improve the Recall of the model.

With the inclusion of both components, the effectiveness of 
our framework has been significantly improved. For complex 
logging environments, more accurate exception identification, 
very low FPs and a fairly high Recall can be achieved.
5 Related Work

As a kind of operational data, logs are widely used for sys‐
tem anomaly detection in practice. To take advantage of the 
logs, previous work mainly focuses on detecting abnormal logs 
with artificial rules, which is not appropriate in scenarios with 
a large number of logs[5]. And deep learning is widely used in 
automatic anomaly detection in logs. DeepLog[3] uses LSTM to 
learn the normal pattern of the system and predict the next log 
template by log sequence. LogAnomaly[5] uses a word embed‐
ding model to mine semantic information of log templates and 
learn the sequential patterns and quantitative relationships for 
logs with LSTM. LogRobust[13] represents the semantic infor‐
mation of the log by word vector and takes advantage of the bi‐
directional LSTM to learn the normal pattern of the log. 
OneLog[14] merges components (such as parsers and classifi‐
ers) into a deep neural network to detect log anomalies. Log‐
Merge[15] learns the semantic similarity of multi-syntax logs to 
realize the transfer of log exception patterns across log types, 
which greatly reduces the overhead of exception annotation. 
Transformers could also be used to represent the semantics of 
the log and model the log sequence, and anomalies would be 
detected with learned information[10, 15–17]. GPT-2[10] is pro‐
posed for unsupervised learning of text information based on 
transformers and performs well on text generation, text classifi‐
cation, semantic judgment, etc.
6 Conclusions and Future Work

In practical scenarios, large-scale systems produce logs that 
are different from the vast majority of laboratory open-source 
datasets. The log sequence is more complex, and normal pat‐
terns are harder to capture. In this work, we introduced a way 
▼Table 4. Experimental results

Approach
OM w/o SV & AS

OM w/o AS
OM w/o SV

OM

Ada
Precision

0.128
0.427
0.627
0.738

Recall
0.835
1.00

0.807
1.00

F1S
0.222
0.598
0.705
0.850

Bob
Precision

0.510
0.718
0.833
0.857

Recall
0.940

1
0.940
1.00

F1S
0.661
0.836
0.883
0.923

AS: alarm strategy
OM: our method

SV: sentence vector
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to input semantic analysis data into GPT-2 and designed an 
alarm strategy layer. Through these ways, we improved the 
complex log sequence learning ability of the model and re‐
duced the noise effect on the model prediction. Experimental 
results on two industrial datasets have shown that the false 
alarm rate of the model is significantly reduced, and our frame‐
work shows good performance in the actual operation scenario.

In the future, we will continue to improve the performance 
of the model on multiple datasets and reduce the dependence 
of the alarm strategy layer on expert experience.
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Abstract: The accuracy of acquired channel state information (CSI) for beamforming design is essential for achievable performance in 
multiple-input multiple-output (MIMO) systems. However, in a high-speed moving scene with time-division duplex (TDD) mode, the acquired 
CSI depending on the channel reciprocity is inevitably outdated, leading to outdated beamforming design and then performance degradation. 
In this paper, a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degra‐
dation further, based on the channel prediction technique. Specifically, the statistical characteristics of historical channel prediction errors 
are exploited and modeled. Moreover, to deal with random error terms, deterministic equivalents are adopted to further explore potential beam‐
forming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance. 
Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even 
when channels vary fast, compared with the traditional beamforming design.
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1 Introduction

The rapid growth of intelligent devices and applications 
generates large demands for high data rate transmis‐
sion. Massive multiple-input multiple-output (MIMO) 
technique, as a key technology in the fifth generation 

of wireless networks, provides huge potential capacity gain by 
employing multiple antennas and exploiting the extra degree 
of freedom without extending the extra bandwidth[1]. The 
achievable performance heavily relies on the exploitation of 
spatial multiplexing gain, as well as enough channel knowl‐
edge of the base station[2]. The former is tightly related to 
multi-user MIMO (MU-MIMO) communications and appropri‐
ate beamforming design to enhance the intended signal and 
suppress unintended interference. As to the latter, in a time-
division duplex (TDD) mode, the strategy used to obtain chan‐

nel state information (CSI) is reciprocity, where the transmitter 
uses uplink (UL) channel information to speculate the down‐
link (DL) channel state in the next transmission interval[3]. 
However, this strategy cannot face the channel aging problem, 
especially in a high-mobility environment where the channel 
characteristic is varying fast during the transmission period, 
which leads to a serious impact on the performance of beam‐
forming in the MIMO system.

Traditional beamforming algorithms, such as classic zero-
forcing (ZF) and weighted minimum mean-squared-error 
(WMMSE), actually work well only when accurate and instan‐
taneous CSI is obtained. Note that the WMMSE precoder[4–5] 
is designed according to the sum-rate maximization criterion 
so it performs better than ZF. In the time-varying TDD system, 
the channel estimation for multiple users is based on their 
sounding reference signals (SRS), which means we can only 
obtain the accurate CSI of the current SRS transmission time 
slot while cannot measure the channel state of the intermedi‐
ate DL time slots in the case of a high-speed moving scene. This work was supported by the ZTE Industry⁃University⁃Institute Cooper⁃

ation Funds under Grant No. 2021ZTE01⁃03.
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Thus, the acquired CSI is inevitably outdated, leading to out‐
dated beamforming design and then performance degradation. 
Considering the CSI used for DL transmission is not always 
perfect in practice, several studies of robust beamforming 
have been carried out[6–7]. Ref. [6] introduced an iterative al‐
gorithm to maximize the linear assignment weighted sum rate 
with statistical CSI under channel fading conditions. In Ref. 
[7], a robust coordinated beamforming method is proposed to 
maintain the weighted sum-rate performance with inaccurate 
CSI. The channel aging effect still weakens the robust benefit 
dramatically[8], so more accurate CSI is needed from the view‐
point of CSI, which can be achieved by channel prediction 
technology.

Channel prediction technology is an effective way to combat 
the detrimental effects of channel aging and keep the track of 
the time-varying channel[9], which predicts the future channels 
by exploiting the potential temporal correlation from those in 
the past[10]. There are various prediction methods from autore‐
gressive (AR) model-based methods to deep learning[11]. The 
AR model is commonly used, which treats the time-varying 
channel as a wide-sense stationary stochastic process[9, 12], and 
deep learning requires a mass of samples for training[13]. Be‐
sides, by utilizing the time and spatial properties of channels, 
the authors in Ref. [14] proposed an angle-domain channel 
tracking scheme for high-speed railway communications, and 
spatial-temporal sparse structures are further exhibited to pro‐
pose a novel estimation and prediction scheme for time-
varying massive MIMO channels[15]. Furthermore, to solve the 
problem of tracking the nonlinear channels, the kernel recur‐
sive least squares (KRLS) [16–17] algorithm is proposed, map‐
ping the channel sample space to the high-dimensional space, 
and it shows great adaptiveness.

Based on the predicted CSI, linear or nonlinear interpola‐
tion can be employed for predicting the DL channel between 
the current channel and the predicted one[18]. Ref. [19] evalu‐
ated the benefit of channel prediction in adaptive beamform‐
ing systems and showed the tolerable Doppler spread increase 
for a given outage performance by using prediction. However, 
there still exist errors in the channel prediction, which be‐
comes more obvious as the mobility increases[20]. The exis‐
tence of errors between the acquired CSI and the real-time 
CSI will result in the performance error cost since the de‐
signed beamforming does not match the real channel. How‐
ever, most of the existing works focus on the impact that the 
channel prediction error brings[21], while no robust beamform‐
ing for improving the performance under channel prediction 
errors is considered. Moreover, the channel prediction errors 
are often constructed as complex Gaussian random variables 
with independent and identically distributed (i.i.d.), zero mean 
and unit variance entries, which does not consider the statisti‐
cal characteristics.

Motivated by the above, we propose a robust beamforming 
design under channel prediction errors based on channel pre‐

diction for the time-varying MIMO system in this paper. The 
main contributions of this work are summarized as follows. 1) 
A framework of TDD system for beamforming based on chan‐
nel prediction is introduced, with a novel prediction error 
model that combines channel statistical information and a 
Gaussian random matrix, including the joint correlation prop‐
erties of realistic massive MIMO channels. 2) To maximize the 
sum-rate performance, we propose a robust beamforming de‐
sign based on channel prediction, utilizing the deterministic 
equivalents method to explore further potential beamforming 
gain brought by the static statistical information, breaking 
through the performance limitation brought by the channel 
prediction errors. 3) The beamforming gains compared with 
traditional benchmarks under different mobile scenes are vali‐
dated by simulation, and we investigate the performance dur‐
ing the half-frame period to reflect the loss caused by the time-
varying effect.

The rest of this paper is organized as follows. Section 2 pres‐
ents the proposed framework of the system including the sys‐
tem model and the formulation of the discussed problem. Sec‐
tion 3 introduces the proposed robust beamforming design. 
Section 4 provides the simulation results and performance dis‐
cussion. Finally, we conclude this paper in Section 5.
2 System Model and Problem Formulation

In this paper, we focus on the TDD system, and the CSI used 
for DL transmission is obtained depending on the channel reci‐
procity. As shown in Fig. 1, we consider a MU-MIMO system 
where one base station (BS) equipped with Nt transmit anten‐
nas serves K pieces of mobile user equipment (UE), and each 
is equipped with Nr receive antennas. Denote H S

i, k ∈ CNr × Nt as 
the CSI matrix spanning from the BS to the k-th piece of UE 

▲ Figure 1. Illustration of a time-division duplex (TDD) multi-user 
multiple-input multiple-output (MU-MIMO) system where v denotes the 
speed of mobile UE

UE: user equipment

UE k

v

UE 1
v

…

…

Downlinkbeamforming

Soundingreference signal

78



ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

ZHU Yuting, LI Zeng, ZHANG Hongtao 

Robust Beamforming Under Channel Prediction Errors for Time-Varying MIMO System   Research Papers

obtained through SRS in the i-th half-
frame and H Dt

i, k ∈ CNr × Nt as the CSI ma‐
trix for DL transmission in the t-th DL 
time slot of the i-th half-frame period. 
As illustrated in Fig. 2, the whole pro‐
cedure of channel acquisition can be 
divided into three steps, which are 
channel estimation, channel prediction 
and interpolation. Based on the chan‐
nel prediction algorithm and interpola‐
tion for the DL channel between the 
currently estimated channel and the 
predicted one, H Dt

i, k used for DL beam‐
forming depends on the predicted DL 
channel matrix Ĥ Dt

i, k, and the channel 
prediction error is considered further.
2.1 Channel Prediction

In the TDD system, firstly, by ex‐
ploiting the reciprocity between UL 
and DL, we can obtain the uplink 
channel information by channel esti‐
mation such as minimum mean square 
error (MMSE) and least square (LS), 
and use them to calculate parameters 
including beamforming for DL trans‐
mission. The channel estimation is to 
diminish the effect of noise and ex‐
tract the channel model from received 
data. In this paper, we assume the 
channel estimation is perfect and we 
can obtain the estimated CSI for UE 
H S

i,1, H S
i,2,⋯, H S

i,K through the process‐
ing of SRS.

Then, based on a certain number of past CSI samples, we 
can predict the future state of channels for UE 
Ĥ S

i + 1,1, Ĥ S
i + 1,2,⋯, Ĥ S

i + 1,K by exploiting the correlation charac‐
teristics of the channels. In this paper, to track nonlinear chan‐
nels and predict the time-varying channel, we adopt a sparse 
sliding-window KRLS algorithm, where the sample set is up‐
dated dynamically based on the correlation analysis among 
samples. And it is to be mentioned that the proposed beam‐
forming scheme in the following is not limited to a certain pre‐
diction method.

During the special time slot for SRS, with the currently esti‐
mated channel and predicted one Ĥ S

i + 1, k, the next step is to in‐
terpolate the DL channel between them and here we take the 
linear interpolation method. Define τ and Nslot as the number 
of DL time slots and that of the total slots in one half-frame, re‐
spectively. Assuming that besides the DL time slots there is 
one SRS slot and two UL slots, with the detail of the time slot 
structure shown in Fig. 3, the deployed linear interpolation is 
expressed as

Ĥ Dt
i + 1,k = H S

i,k + ( t + 2) ⋅ Ĥ S
i + 1,k - H S

i,k
Nslot

,   1 ≤ t ≤ τ . (1)

2.2 Channel Prediction Error Model
Considering that the predicted channels obtained by chan‐

nel prediction techniques still exist errors inevitably, com‐
pared with the real channels, we take channel prediction er‐
rors into consideration and introduce an error model. With H S

i,k denoting the perfect estimated CSI for the k-th piece of UE in 
the i-th SRS period, the former channel prediction errors col‐
lected can be described as

ΔH S
i,k = H S

i,k - Ĥ S
i,k , (2)

and a sliding-window size w is set for collection, as shown 
in Fig. 3. By exploiting the statistical characteristics of 
the historical channel prediction error sample set 
[ΔH S

i - w,k, ΔH S
i - w + 1,k,⋯, ΔH S

i - 1,k ], we use the jointly corre‐

▲Figure 2. System model for proposed beamforming scheme

SRS: sounding reference signal      UE: user equipment

▲Figure 3. Channel prediction error model and time slot structure
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i + 1,k

Error model Er, Ω, Et

One frame, T=10 ms
One half-frame, T=5 ms

One slot, T=0.5 msEstimation and prediction
… D1      D2              Dτ    S     U    U    D1    D2
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Ĥ S
i + 1,2

︙
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i,k

79



ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

ZHU Yuting, LI Zeng, ZHANG Hongtao 

Research Papers   Robust Beamforming Under Channel Prediction Errors for Time-Varying MIMO System

lated channel model to describe the potential correlations of 
each channel prediction error in the past slots and express the 
error model for the k-th piece of UE in the DL time slots of the 
i-th half-frame period,
H͂ i,k = Er (Ω⊙H i.i.d. )E t

H . (3)
The statistical information Er, E t and Ω are gathered from 

practical error samples for the UE, where Er and E t are deter‐
ministic unitary matrices that reveal the correlation of the 
transmit and receive antennas respectively, while each ele‐
ment of Ω is the square root of the element of the eigenmode 
channel coupling matrix. H i.i.d. is a random matrix with zero 
mean and unit variance entries, following i.i.d. For illustration 
purposes, we depict the error model with the time slot struc‐
ture in Fig. 3.

For simplicity, we use Hk as a substitute for H Dt
i,k  in the fol‐

lowing part to denote the CSI matrix for the k-th UE consider‐
ing the beamforming design for only one typical DL transmis‐
sion time slot. Based on the analysis mentioned above, the 
channel matrix for UE can be divided into two parts: the de‐
termined prediction channel matrix Ĥk and the random error 
matrix H͂k.
2.3 Problem Formulation

Denote the linear precoding matrix for the k-th piece of UE 
as Vk ∈ CNt × 1. The receive signal of the k-th piece of UE yk at 
this DL time slot is
yk = HkVk sk + ∑

m = 1, m ≠ k

K

HkVm sm + nk , (4)
where the transmit signal to the k-th piece of UE sk is indepen‐
dent random variables with zero mean and unit variance; nk represents the additive white Gaussian noise with the distribu‐
tion CN (0, σ2 INr

). Then, the achievable data rate for UE at a 
DL time slot can be expressed as

Rk = E
ì
í
î

ïï

ïïïï
log det ( I + HkVkVk

HHk
H(σ2 I +

∑
m = 1, m ≠ k

K

HkVmVm
HHk

H )-1 )üýþïïïïïïïï . (5)
To simplify the objective, we treat the aggregate 

interference-plus-noise as the Gaussian noise for UE and de‐
note its covariance matrix as
Qk = σ2 I + Eì

í
î

∑
m = 1, m ≠ k

K

HkVmVm
HHk

Hü
ý
þ . (6)

Then the achievable rate for UE at a DL time slot can be re‐

written as
Rk = E{log det ( I + HkVkV

H
k H

H
k Q

-1
k )} . (7)

Furthermore, the achievable weighted sum rate of the sys‐
tem can be expressed as

R = τ
Nslot ∑k = 1

K

αk Rk . (8)
Aiming at optimizing the beamforming matrix to maximize 

the expected weighted sum rate at a typical DL slot, we can ex‐
press the optimization problem as

max
{ }Vk

∑
k = 1

K

αk Rk ,
s.t.  ∑

k = 1

K tr ( )VkV
H
k ≤ P , (9)

where {αk} is the weighting coefficient to ensure fairness 
among the UE and P denotes the power budget of the BS. 
Based on the channel model where prediction errors are 
taken into consideration, we investigate the optimal robust 
beamforming design for the proposed problem in the next 
section.
3 Proposed Robust Beamforming Design

Due to the randomness introduced by the channel predic‐
tion error, it is difficult to obtain the close-form expressions of 
the objective. To deal with the randomness, a robust beam‐
forming design is proposed by considering deterministic 
equivalents. The NP-hard Problem (9) can be resolved by ex‐
ploiting the relationship between the rate and the mean-
square error (MSE) matrix, inspired by Ref. [5]. Denote the es‐
timated signal at the receiver as ŝk = U H

k yk, where Uk denotes 
the receive beamformer of the k-th piece of UE. Assuming that 
signal sk and noise nk are independent, the MSE matrix can be 
written as
MSEk = Es,n{( ŝk - sk )( ŝk - sk )H} =
(I - UH

k HkVk )(I - UH
k HkVk )H + ∑

m ≠ k

K

UH
k HkVmV

H
m H

H
k Uk + σ2UH

k Uk.(10)
Fixing all of the transmitting beamforming matrices and 

adopting the well-known MMSE receiver, we can rewrite the 
MSE matrix as
Ek = MSEk (U mmse

k ) =
I - Vk

HHk
H (Qk + HkVkVk

HHk
H )-1HkVk . (11)

Note that Rk = E{log det (E-1
k ) } can be expressed as a con‐

vex function of Ek. Using the first-order condition of the con‐
vex function, we can obtain
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E{ }log det (Ek )-1 ≥ E{ }log det (E (d )
k )-1 -

E{ }tr (E (d )
k )-1( )Ek - E (d )

k  ≥
E{ }log det (E (d )

k )-1 + tr ( )I - E{ }tr (E (d )
k )-1MSEk ， (12)

where E ( )d
k  represents Ek with a fixed set of beamforming ma‐

trix {V (d )
k } at the d-th iteration, k = 1,⋯, K. By ignoring the 

first two constant terms of the right side of Inequality (12), the 
last part can be expressed as a function of Vk. For brevity, de‐
fine functions ηpri

k [ f ] = E{Hk fHk
H}, ῆpri

k [ f ] = E{Hk
H fHk}, 

ηk [ f ] = E{H͂k fH͂k
H}, and ῆk [ f ] = E { H͂k

H fH͂k }. Denote the 
whole right side of Inequality (12) as g (Vk|{V (d )

k } ), which is 
described in detail as

g (Vk|{V (d )
k } ) = c(d )

k + tr ((A (d )
k )HVk ) + tr (A (d )

k V H
k ) -

tr (B (d )
k VkV

H
k ) - tr (C (d )

k ∑
m ≠ k

VmVm
H ) , (13)

where
c(d )

k = E{log det (E (d )
k )-1 } + tr ( I ) - E{tr ( (E (d )

k )-1 )} -
σ2E{tr ( (E (d )

k )-1(U (d )
k ) H

U (d )
k )} , (14)

A (d )
k = Ĥ H

k (Q (d )
k )-1

ĤkV
(d )
k + ῆk [ (Q (d )

k )-1 ]V (d )
k  , (15)

B (d )
k = Ĥ H

k (Q (d )
k )-1

Ĥk + ῆk
é
ë(Q (d )

k )-1ù
û

- E{Hk
H (Q (d )

k +
HkV

(d )
k (V (d )

k ) H
Hk

H )-1Hk} , (16)

C (d )
k = E{H H

k ((Q (d )
k )-1 - E{(Q (d )

k +

HkV
(d )
k (V (d )

k ) H
H H

k )-1})Hk} . (17)
Denote f ({V (d )

k } ) as the left side of Inequality (12) and 
g (Vk|{V (d )

k } ) can be regarded as the lower-bounding function 
which minorizes the objective function f ({V (d )

k } ), since it is a 
convex function of Vk that satisfies g (Vk|{V (d )

k } ) ≤ f ({Vk} ) 
and g (V (d )

k |{V (d )
k } ) = f ({V (d )

k } ). It can be iteratively optimized 
and converge to a stationary point, which has been proved in 
Ref. [22].

The update of Vk for all users can be decoupled across 
transmitters. Then, we update beamforming matrices as 
V ( )d + 1

k = arg max
Vk

g ( )Vk|{ }V ( )d
k , and the optimal solution to the 

equation is obtained by the Lagrange multipliers method with 
Lagrange multiplier μ. According to the first-order optimal 
conditions, the iterative equation of the beamformer can be ob‐
tained as
V (d + 1)

k = (D (d )
k + μI )-1 (αkA

(d )
k ) , (18)

where
D (d )

k = αkB
(d )
k + ∑

m ≠ k
αmC

(d )
m  , (19)

and μ can be obtained by using the bisection method.
For the last part of B (d )

k  and C (d )
m , which have not been trans‐

formed into the deterministic matrix, there are complicated 
calculations of the random variables, leading to difficulty in 
obtaining closed-form expressions. Drawing on the essence of 
Ref. [23], we will utilize deterministic equivalents to obtain 
the approximate closed-form expression of MIMO capacity, 
and the derivation process is presented as follow.

Note that Rk = E{log det ( I + HkVkVk
HHk

HQ-1
k ) } can be re‐

written as Eì
í
î
log det ( I + Q

- 1
2

k HkVkVk
HHk

HQ
- 1

2
k ) üý

þ
. Take 

Q
- 1

2
k HkVk as a whole part Hk and denote the term 

Q
- 1

2
k HkVkVk

HHk
HQ

- 1
2

k  as a Hermitian matrix ZNr,k. Let FZNr,k
(λ) 

denote the expected cumulative distribution of the eigenvalues 
λ1,⋯, λNr

 of ZNr, k, and the Shannon transform VZNr,k
 is de‐

scribed as VZNr,k
( x) = ∫0

∞ log (1 + 1
x λ)   dFZNr,k

(λ). Then Rk can 
be simplified as ∑Eλi

[ ]log (1 + λi )  and translated into 
Nr∫0

∞ log (1 + λ)   dFZNr,k
(λ), finally equivalent to NrVZNr,k(1). 

The Stieltjes transform for FZNr,k
(λ) is

SZNr,k
( y ) = ∫ 1

y - λ
dFZNr,k

(λ) = 1
Nr

E { tr [ ( yINr
- ZNr,k )-1 ] }.

(20)
Then the relation between the Stieltjes transform SZNr,k

( y ) 
and the Shannon transform VZNr

,k can be established as

VZNr,k
( x ) = ∫

x

∞( )1
y + SZNr,k( )-y dy. (21)

Thus, we can obtain the closed-form expression of the ergo‐
dic user rate Rk by establishing the closed-form expression of 
the Stieltjes transform and Shannon transform. The approxi‐
mate closed-form Stieltjes transform expressions can be calcu‐
lated by applying the free probability theory[24], denoted as 
Eqs. (22) and (23) with Notations (24)–(27).
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SZNr,k
( yINr

) = ( yΦ͂k -
(Q (d )

k )- 1
2 ĤkVk

(d )Φk
-1Vk

(d )H Ĥ H
k (Q (d )

k )- 1
2 )-1 , (22)

SHk
HHk

( yINt
) = ( yΦk -

(Vk
(d ) ) H

Ĥ H
k (Q (d )

k )- 1
2Φ͂k

-1(Q (d )
k )- 1

2 ĤkVk
(d ) )-1 , (23)

Φ͂k = INr
   - (Q (d )

k )- 1
2 ηk

é
ë

ù
û( )Vk

(d ) HSHk
HHk

( yINt
)Vk

(d ) (Q (d )
k )- 1

2,
(24)

Φk =  Idk
- (Vk

(d ) ) H
ῆk

é

ë

ê
êê
ê ù

û

ú
úú
ú( )Q (d )

k

- 1
2SZNr,k

( yINr
) ( )Q (d )

k

- 1
2 Vk

(d )
,
(25)

Γk = -ῆk

é

ë

ê
êê
ê ù

û

ú
úú
ú( )Q (d )

k

- 1
2SZNr,k

(-INr
) ( )Q (d )

k

- 1
2 +

Ĥk
H(Q (d )

k )- 1
2Φ͂k

-1(Q (d )
k )- 1

2 Ĥk , (26)

Γ͂k = -ηk
é
ë

ù
û

Vk
(d )SHk

HHk
(-INt

) ( )Vk
(d ) H +

ĤkVk
(d )Φ-1

k (Vk
(d ) ) H

Ĥk
H . (27)

Then the deterministic equivalent form of rate R̄k can be ex‐
pressed as:

R̄k = log det (ΙNr
+ Γ͂kQk

-1 ) + log det (Φk ) -
tr (ηk [VkSHk

HHk
(-INt

)Vk
H ]Q- 1

2
k SZNr,k

(-INr
)Q- 1

2
k ) , (28)

R̄k = log det (ΙNt
+ ΓkVkVk

H ) + log det (Φ͂k ) -
tr ( ῆk [Q- 1

2
k SZNr,k

(-ΙNr
)Q- 1

2
k ]VkSHk

HHk
(-INt

)Vk
H ) . (29)

Based on the aforementioned analysis, the approximate 
closed-form expressions of the second part of B (d )

k  can be de‐
rived as Eq. (30) by exploiting the relationship between it and 
the original expression Rk. The closed-form expressions of C (d )

k  
can be derived similarly as Eq. (31).
E{Hk

H (Q (d )
k + HkV

(d )
k (V (d )

k ) H
Hk

H )-1Hk} =
∂Rk

∂ ( )VkV
H
k

= ∂R̄k

∂ ( )VkV
H
k

= (ΙNt
+ ΓkVkVk

H )-1Γk , (30)

E{H H
k ((Q (d )

k )-1 - E{(Q (d )
k + HkV

(d )
k (V (d )

k ) H
H H

k )-1})Hk} =
∂Rm

∂ ( )VmV
H
m

= ∂R̄k

∂ ( )VmV
H
m

= ῆpri
k (Q-1

k ) - ῆpri
k ( (Qk + Γ͂k )-1 ) .

(31)
We then obtain
B (d )

k = Ĥ H
k (Q (d )

k )-1
Ĥk + ῆk [ (Q (d )

k )-1 ] -
(ΙNt

+ ΓkVkVk
H )-1Γk , (32)

C (d )
k = ῆpri

k (Q-1
k ) - ῆpri

k ( (Qk + Γ͂k )-1 ) . (33)
By substituting Eqs. (15), (19), (32) and (33) into Eq. (18), 

we can derive the close-form of Vk
(d + 1) and the sum-rate maxi‐

mization problem (9) is finally able to be solved by alternately 
optimizing Vk until the convergence or the maximum iteration 
times are reached.
4 Simulation Results

In this section, our simulation results show the system per‐
formance of the proposed beamforming design under channel 
prediction errors. We consider a MU-MIMO system with the 
number of UE K set to 4 and each piece of UE is equipped 
with Nr = 4 receive antennas. The transmit antenna number 
Nt = 32 and the transmit power budget P is set to 1. The 
weight αk for each piece of UE is set equally. In addition, 
dk = Nr , τ = 7, Nslot = 10, and w = 10. The cluster delay line 
(CDL) channel model is used in the simulation to generate a 
time-varying channel for each piece of UE, where the imple‐
mentations exactly follow the 3GPP 5G new radio standard 
protocol TR 38.901[25]. Specifically, we adopt an urban macro 
scenario and consider a CDL-A delay profile where the delay 
spread is set as 100 ns. The Doppler shift is computed by fd =
v fc c, which is a combination of user speed v, carrier fre‐
quency fc and the speed of light c, with fc = 2  GHz. Different 
UE velocities are set to indicate different time-varying chan‐
nels for performance comparisons. Several combinations of 
acquired CSI and beamforming methods are discussed here. 
The simplest case with no prediction and ZF algorithm is 
considered, where the CSI used for DL beamforming is the 
estimated CSI obtained in the previous SRS time slot. With 
the predicted CSI for DL time slots, ZF and WMMSE are con‐
sidered for comparisons. Moreover, the case with perfect CSI 
known in the transmitter and WMMSE beamforming is also 
discussed as an ideal case.

Fig. 4 illustrates the convergence behavior of the proposed 
beamforming design and WMMSE for the cases of SNR =
0   dB and SNR = 5   dB. Since the extra prediction errors are 
taken into consideration in the proposed design and then the 
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randomness of the objective is to be solved, it is supposed to 
be more complex to conduct. As shown in this figure, the pro‐
posed one converges a little slower than WMMSE but both be‐
have almost the same. And the proposed converges within 10 
iterations, which confirms the practicality of our beamforming 
design. Moreover, it is observed that both algorithms take 
more iterations to converge as the SNR increases.

From Figs. 5 and 6, we can observe the averaged sum-rate 
performance of the system under different SNRs for different 
beamforming cases. Firstly, it is easy to notice the perfor‐
mance gain achieved by the channel prediction, which grows 
as the SNR increases. With the predicted CSI, WMMSE can‐
not attain equivalent gain compared with our proposed 
method that takes the error into consideration, due to the im‐
perfection of CSI brought by the prediction errors which 

cause the performance limitation. The proposed beamforming 
design outperforms WMMSE more as the SNR goes higher. 
Comparing these two figures, we can find that the overall per‐
formance goes down as the UE velocity increases, with the 
performance gaps from the ideal perfect case to others be‐
coming larger, but our robust method can maintain certain 
gains under such a severe time-varying effect. The proposed 
design can even achieve more gain against WMMSE with a 
higher velocity.

Fig. 7 shows the sum-rate performance comparisons during 
the DL time slot within the half-frame period. The statistics of 
each DL time slot plotted in the figure are obtained by averag‐
ing 100 periods. As time goes by, the outdating of acquired 

▲Figure 4. Convergence behavior of the proposed beamforming design 
and WMMSE

SNR: signal-to-noise ratio      WMMSE: weighted minimum mean-squared-error

▲Figure 5. Averaged sum rate versus SNR under different beamform‑
ing methods with v=60 km/h

CSI: channel state information SNR: signal-to-noise ratio WMMSE: weighted minimum mean-squared-error ZF: zero-forcing

▲Figure 6. Averaged sum rate versus SNR under different beamform‑
ing methods with v=120 km/h

CSI: channel state information SNR: signal-to-noise ratio WMMSE: weighted minimum mean-squared-error ZF: zero-forcing

▲Figure 7. Sum rate versus DL time slots under different beamforming 
methods with v=60 km/h

CSI: channel state information DL: downlink SNR: signal-to-noise ratio 
WMMSE: weighted minimum mean-squared-error ZF: zero-forcing
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CSI is more serious, so the averaged sum rates decrease dur‐
ing the DL transmission period. However, the channel predic‐
tion can combat this fading, with more obvious gain in the last 
few time slots as shown in this figure. By considering the chan‐
nel prediction errors and utilizing the statistical characteris‐
tics, the proposed beamforming can even achieve better perfor‐
mance which is close to the ideal case.

Fig. 8 presents the fall of the performance during the DL 
time slots within the half-frame period under different UE ve‐
locities. Considering the advantage of joint channel prediction 
and proposed robust beamforming design, we take the 
WMMSE method with no prediction as the benchmark. The av‐
eraged sum rates decrease more rapidly with the increasing of 
velocity. This is because the velocity is a sign of channel varia‐
tion. Though the achievable gain of channel prediction gets 
smaller as the velocity increase, which can be observed by 
comparing Figs. 5 and 6, the joint robust design can imple‐
ment more substantial performance gain as the time-varying 
effects become severer.
5 Conclusions

In this paper, we investigate the beamforming design un‐
der channel prediction errors in a time-varying MIMO sys‐
tem. By collecting the prediction errors and exploiting the 
statistical characteristics of the error samples, we propose a 
robust beamforming design to further combat the detriment 
caused by channel aging based on the channel prediction sys‐
tem. Due to the uncertainty brought by the error part, we ex‐
ploit deterministic equivalents to obtain the closed-form ex‐
pression to derive the robust beamforming matrix. Our simu‐
lation results show the effectiveness of the proposed beam‐
forming design and reveal that the achievable gain even 
grows as UE velocities increase. The proposed design can 

maintain the outperformance during the DL transmission 
time while the channels vary fast.
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1 Introduction

5G is emerging as a promising technology on a global 
scale. However, with the demand for virtual reality (VR), 
Metaverse, and other high throughput applications, the 
transmission speed needs to be improved. As one of the 

most important technologies in wireless communication, chan‐
nel coding is of great significance to the improvement of sys‐
tem reliability[1].

Low-density parity-check (LDPC) codes have been applied 
in many communication systems due to their top performance, 
which is close to the Shannon limit and suitable for parallel 
structures. LDPC codes were first proposed by GALLAGER in 
1963[2], and in 1996, MACKAY and NEAL proposed the posi‐
tional degree propagation iterative decoding algorithm for 
LDPC codes[3], which significantly improved performance.

Code construction is a critical part of LDPC code design 
because it directly affects error correction performance. The 
random construction method cannot guarantee the absence 
of short cycles. Based on this, the progressive edge growth 
(PEG) algorithm was proposed[4], which tries to avoid short 
cycles. Some improved PEG algorithms were proposed in 

Refs. [5 – 6], which failed to guarantee the good perfor‐
mance of the code. The approximate cycle extrinsic (ACE) 
message degree algorithm was suggested in Ref. [7], which 
could eliminate the cycles selectively in the LDPC codes. 
The codes constructed by the ACE algorithm have lower er‐
ror floors but perform worse in the waterfall region than the 
PEG algorithm.

Typically, the LDPC code can be obtained by lifting the pro‐
tograph, which is a structure that governs the macroscopic sta‐
tistics of the code. The protograph is an important optimiza‐
tion object in LDPC design because it determines the error-
correcting performance of LDPC codes. Some wireless commu‐
nication LDPC codes are designed with this approach, like the 
5G NR LDPC code.

The belief propagation (BP) algorithm is the classic decod‐
ing algorithm for LDPC codes. The BP algorithm is computa‐
tionally intensive and not conducive to hardware implementa‐
tion, so researchers have proposed the min-sum decoding algo‐
rithm, which still uses the idea of iterative decoding with 
probabilistic computation but reduces the hardware resource 
greatly. It occupies an important position in the implementa‐
tion of LDPC decoders, and most of the decoders adopt this 
method as a guiding idea.

The code construction algorithm and the decoding algo‐
rithm tend to affect the performance of the code, while the This work is supported in part by ZTE Industry-University-Institute Coop⁃

eration funds under Grant No. 2020ZTE01-03.
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hardware implementation of the decoder has more impact on 
the throughput. Many researchers have proposed different de‐
coder architectures in the hardware implementation aspect.

In Ref. [8], researchers used a fully parallel decoding 
scheme to partition the global interconnection and weaken the 
routing pressure by grouping the variable nodes. The architec‐
ture achieves a throughput of 92.8 Gbit/s. A partial parallel 
decoder architecture with multi-frame pipeline decoding is 
proposed in Ref. [9] to increase the parallelism. It can achieve 
higher throughput while having high decoding flexibility. In 
Ref. [10], researchers proposed an iterative unfolding architec‐
ture, which fully expanded the hardware architecture used for 
one iteration so that one iteration could be performed per 
cycle. This approach lacks flexibility while significantly in‐
creasing throughput. The multi-core decoder was implemented 
in Ref. [11], which could satisfy high throughput while being 
relatively flexible.

In this paper, we design a new kind of RL-LDPC code aim‐
ing at next-generation mobile communication and give the 
construction results of the core matrix. A code construction 
algorithm is proposed to optimize the performance of the 
code by eliminating cycles of lengths 6 and 4. In addition, a 
hardware architecture is proposed to match the above codes 
using a multi-core row-layered decoding approach to achieve 
a throughput of 100 Gbit/s. The multi-core decoder mainly 
includes an input buffer, a controller, decoder cores and 
their memory blocks, an output buffer, and an output selec‐
tion module.

The remainder of this paper is organized as follows. Sec‐
tion 2 introduces the code construction method we proposed. 
Then we describe the hardware architecture in Section 3. In 
Section 4, the performance and hardware resource consump‐
tion of the code are presented. Finally, the conclusions are 
drawn in Section 5.
2 Codes Construction

2.1 RL-LDPC Codes Construction
LDPC code is determined by an m × n parity check matrix 

H, where one element in the H matrix is much less than zero, 
m represents the number of rows, and n represents the number 
of columns. Each column corresponds to a variable node (VN), 
and each row corresponds to a check node (CN). The informa‐
tion block length is k = m - n. The elements in the parity 
check matrix H indicate whether there is information ex‐
change between the VNs and the CNs. The tanner diagram 
can be used to represent the information transmission network 
that connects the CNs and VNs. As shown in Fig. 1, the 
circles represent the CNs and the squares represent the VNs. 
The structure of starting from one node and making a circle 
along the connection to return to the node is called a “cycle”. 
Short cycles can have a bad effect on performance.

The protograph structure of RL-LDPC is shown in Fig. 2. 

HHRC is the core matrix framed in green in Fig. 2, which corre‐
sponds to the highest code rate of the LDPC code, and H IRC is 
the extension matrix framed in blue in Fig. 2. The sizes are 
marked in the figure. The size of the extension matrix can be 
adjusted according to different code rates. HHRC and H IRC are 
constructed and optimized separately[12]. Matrix B is a square 
matrix with a double diagonal structure and its size is P × P. 
Matrix I is an identity matrix, which corresponds to the vari‐
able node part of RL-LDPC with a degree of 1.
HHRC consists of a number of elements shown as follows:

HHRC =
é

ë

ê

ê

ê
êê
ê
ê

ê ù

û

ú

ú

ú
úú
ú
ú

ú
h1,1 h1,2 ⋯ h1, K + P

h2,1 h2,2 ⋯ h2, K + P⋮ ⋮ ⋮ ⋮
hP,1 hP,2 ⋯ hP, K + P  . (1)

The parity check matrix is obtained by expanding the base 
matrix above by a lifting size Z. Therefore, each element of 
HHRC is replaced by a square matrix of Z × Z. Elements “−1” 
are replaced by the all-zero matrix, while hi,j>0 elements are 
replaced by a circulant matrix, obtained by right shifting the 
identity matrix by hi,j positions. The range of cyclic lifting 
number hi,j is 0 to Z–1.

The method of code construction based on protograph is 
used in this paper. A protograph with a low iterative decoding 
threshold needs to be constructed first, and then the lifting 
numbers are generated to obtain our LDPC code. Following 

▲Figure 1. Tanner graph

▲ Figure 2. Structure of raptor-like low-density parity-check (RL-
LDPC) code
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the below principles when constructing a protograph can en‐
sure the basic performance of the code.

Keeping the variable node degree ≥ 3 can ensure linear 
minimum distance growth with the blocklength in the process 
of constructing HHRC. The linear minimum distance growth 
property ensures that the performance of the code does not de‐
grade as the block length increases. Adding some variable 
nodes with the degree −2 or even degree −1 in the code is ben‐
eficial to the iterative decoding threshold. A small number of 
such nodes will not destroy the linear minimum distance 
growth property, but they need to be added prudently. Adding 
punctured variable nodes in the HHRC can improve the thresh‐
old of the code[13]. During the protograph construction, almost 
every check node in H IRC should be connected to the punc‐
tured variable node.
2.2 Protograph Construction Constraint

We present the constraints that need to be followed when 
constructing a protograph. “1” in Fig. 3 represents a non-zero 
submatrix, and “0” represents a zero submatrix. The specific 
constraints can be described as follows. Each protograph row 
is obtained by shifting the above row cyclically. The first row 
is shifted by one column to generate the second row, the sec‐
ond row is shifted by one column to generate the third row, 
and so on. The number of shifts can be flexibly adjusted as 
needed. Fig. 3 shows the protograph structure with a size of 4×
16. The positions of “1” elements in rows are obtained by 
shifting the above row by one column. Such a construction 
structure can simplify the design of the reading and writing 
networks in traditional architecture, which reduces the con‐
sumption of hardware resources.

In practical applications, this constraint will not be as regu‐
lar as shown in the figure above. In our decoder design, the 
constraint is added only in the first K columns of the proto‐
graph. The left columns are directly solidified into a double di‐
agonal matrix to adapt to the invertibility of the matrix and en‐
coding requirements. The corresponding reading and writing 
networks are consistent with the traditional structure.

Our construction method can directly construct the proto‐
graph of the required size randomly: determining the proto‐
graph of the first row first, and then shifting to obtain the pro‐
tograph of other rows. The check part of the protograph is 
fixed as a double diagonal structure and does not participate 
in shifting.

The specific steps are as follows:

1) Generate the first row of the protograph randomly;
2) Generate additional rows of the protograph by shifting 

the first row;
3) Randomly reduce or increase the number of “1” ele‐

ments in the protograph to improve the threshold.
2.3 Codes Construction Method

In addition to searching for protograph and optimizing the it‐
erative decoding threshold, a code construction algorithm is 
designed, which outperforms the conventional PEG algorithm. 
The codes constructed by using PEG algorithms contain a 
small number of 6 cycles, so we suggest a new algorithm for 
code construction to guarantee the absence of 6 cycles in the 
construction.

Starting from the code we randomly construct, our algo‐
rithm searches for all 6 cycles and 4 cycles in the code and 
modifies the submatrix’s lifting number, which connects the 
maximum number of cycles, so that the number of cycles 
passing through this submatrix is reduced. This process is re‐
peated until the number of cycles cannot be reduced through 
all submatrices.

Set the parity check matrix of the constructed LDPC code 
as H. P is the corresponding protograph, hi,j is each element of 
H, pi,j is each element of P, and n is the iteration number. Set 
g4 i,j,n, g6 i,j.n as the number of 4 cycles and 6 cycles associated 
with hi,j. The element with the largest number of associated 4 
cycles is g4max_i,max_j. The element with the largest number of 
associated 6 cycles is g6max_i,max_j. Set the lifting size as Z.

The specific algorithm is shown below:
Algorithm 1: Cycle elimination construction algorithm
Input: the protograph P, the size of protograph M,N
Output: the parity check matrix H
for (i = 0 to M) do
  for (j = 0 to N) do
  if pi,j≠0 then
    hi,j= random(0, Z). // Initializations
    else
    hi,j=−1.
    end if
  end for
 end for
 n = 0.
while (n< Maximum number of iterations)
for (i = 0 to M) do
 for (j =0 to N) do
  if pi,j≠0 then
    g4 i,j,n = cycle4_calculate ( H,i,j ).
    g6 i,j,n = cycle6_calculate ( H,i,j ). // Cycle
    calculation
    else
 g4 i,j,n=0.
     g6 i,j,n=0.

 

1 1 1 00 1 1 1 0 1 1 1 11 0 1 1 1 1

1 1 1 00 1 1 1 0 1 1 1 11 0 1 1 11

1 1 1 00 1 1 1 0 1 1 1 11 0 1 11 1

1 1 1 00 1 1 1 0 1 1 11 0 11 1 1

▲Figure 3. Construction constraint structure
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   end if
   end for
  end for
  g4max_i,max_j = MAX (g4 i,j,n).  hmax_i,max_j = random(0,Z ).
  g6max_i,max_j = MAX (g6 i,j,n).  hmax_i,max_j = random(0,Z ).// Elemental position calcula‐
tion.
  n =  n +  1.
  if MAX(g4 i,j,n) == MAX(g4 i,j,n - 1 ) and
  MAX(g6 i,j,n) == MAX(g6 i,j,n - 1 ) then
   Record current H. // Exit judgment
 break.
  end if
end while

3 Hardware Design
We design a multi-core decoder architecture to achieve a 

throughput of 100 Gbit/s. The architecture is shown in Fig. 4.
The multi-core decoder includes an input buffer, controller, 

decoder core, output buffer, and output selection module. The 
function of the output selection module is to select the de‐
coded data from multiple decoder cores according to the con‐
troller configuration. The input buffer module converts the 
data fragments into a complete codeword. The input buffer 
module operates at a different higher frequency clock domain 
to accommodate the data stream with the internal blocks. The 
controller receives external configuration information, distrib‐
utes the complete codeword to the free decoder core, and con‐
trols the output of the data frame at the end of the decoding.

The decoder core, shown in Fig. 5, is the core computing 
module in the multi-core decoder architecture. It includes the 
log likelihood ratios of a posterior probability (APP_LLR) in‐
formation storage module, check-node to variable-node (C2V) 
message storage module, and other main computing units.

The decoder core[14] receives data and configuration infor‐
mation from the controller. According to the configuration in‐
formation, iterative decoding is carried out layer by layer. 
The initial log likelihood ratios (LLR) information or the up‐
dated LLR information of the current layer is read from the 
LLR storage module during the decoding of each layer. The 
LLR storage module contains two memory components: shift 
registers and static random-access memory (SRAM). The ini‐
tial LLR information of each codeword to be decoded or the 
LLR information that is continuously updated during an itera‐
tion is stored in these two pieces of memory. The shift regis‐
ters receive the initial information and shift according to the 
current layer index to accommodate the matrix’s shift con‐
straints during decoding.

The LLR information to be updated by up to dcmax sets is se‐
lected and fed into barrel shifters by the reading network 
(Rd_pblk). Note that Rd_pblk is implemented by multiplexers 
in Ref. [15]. But based on our proposed special protograph 
structure, the Rd_pblk selects the same sets of LLR informa‐
tion from the shift registers without using multiplexers.

The selected information is aligned to the check node 
through the barrel shifters. In the same clock cycle, the com‐
pressed stored check-node to variable-node (C2V) messages 
are read from the C2V_Ram and distributed to the variable 
node processing array (VNU_pblk) through the decompressor. 
The LLR and C2V messages are input to the VNU_pblk to cal‐

culate the new variable-node to 
check-node (V2C) messages. The new 
V2C messages are input to the check 
node processing array (CNU_pblk) to 
calculate C2V messages. At last, the 
C2V messages are stored in the 
C2V_Ram.

New V2C messages and new C2V 
messages are added in the LLR_pblk 
to obtain new LLR information, which 
is then realigned to the VNs via bar‐
rel shifters. The aligned new LLR in‐
formation is written back to the regis‐
ters and RAM by writing network 
(Wr_pblk) according to the current 
layer index. Based on the special pro‐
tograph structure, Wr_pblk only up‐
dates LLR information at fixed loca‐
tions. The decoding of one layer is 
completed after the LLR information 
is written back. When the decoding of 
all layers is complete, the current it‐▲Figure 4. Multi-core decoder architecture
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eration is finished. The early termination function in the de‐
coding process is implemented by LLR_pblk, which can cal‐
culate the parity check result of the current layer. When all 
the parity checks are satisfied, the decoding will stop suc‐
cessfully and enter the waiting state for the decision informa‐
tion output.
4 Implementation Results

4.1 Results of Improved Error Floor
We build a compute unified device architecture (CUDA) -

based code performance testing platform, including a noise 
generator, a decoder, and a decoding result statistics module. 
Noise is added directly to the all-zero codeword to improve 
throughput during testing. And we test the code performance 
on a single GeForce GTX 1080 Ti GPU.

We evaluate the performance of the proposed LDPC codes 
in the additive white Gaussian noise (AWGN) channel using 
quadrature phase shift keying (QPSK) modulation. The belief 
propagation (BP) flooding decoding schedule is used and the 
maximum number of iterations is set to 50.

Compared with the 5G NR LDPC code and the PEG code, 
the code performance constructed by our algorithm has a cer‐
tain optimization effect, as shown in Fig. 6. As we reduce the 
number of 6 cycles, the error floor is optimized.

4.2 Optimized LDPC Code Performance
After applying the code constraints, the code is constructed 

using the construction algorithm described above, and perfor‐
mance curves with an information blocklength of k=8 448 bits 
are shown in Fig. 7. Although the code we constructed still 
has a gap of less than 0.05 dB compared with the 5G NR 

▲Figure 5. Decoder core architecture

▲ Figure 6. Performance comparison after optimizing the number of 
6-cycle
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LDPC in the waterfall region, it has an improvement in the er‐
ror floor region. The size of the parity check matrix we used 
during the test is 5×29, and the lifting size is 352.

The performance of the matrix with a shorter information 
blocklength of k=2 112 bits is shown in Fig. 7. The lifting size 
is 88. The code we constructed also has the advantage in the 
error floor region.
4.3 Hardware Implementation Results

For LDPC codes with a lifting size of 352, we design the 
corresponding decoder prototype to evaluate and compare the 
hardware resources accurately before and after adding the pro‐
tograph construction constraints. The decoder consists of buf‐
fers, a controller, several decoder cores, etc. We use a quanti‐

zation length of 6 bits for the LLR information and 4 bits for 
the internal messages.

The implementation results, as well as the corresponding 
comparisons, are reported in this section. The formula for cal‐
culating throughput is as follows:

Throughput = R × Ncores × n
N iter × M

× fclk , (2)
where R is the code rate, Ncores is the number of decoder cores, 
n is the length of the codeword, M is the number of basic ma‐
trix rows used for decoding, and N iter is the average number of 
iterations. To achieve the desired throughput with the code, 
the information blocklength of which is 8 448 bits, 3 cores are 
required.

In order to evaluate the effectiveness of our optimization 
methods, the synthesis results of decoders with and without ap‐
plying the optimizations proposed in Sections 2 and 3 are 
listed. We use the architecture from Ref. [15] as the baseline. 
Table 1 summarizes the hardware resources of the decoder 
core on the Xilinx Virtex UltraScale XCVU440 field program‐
mable gate array (FPGA). The decoder core occupies about 
34.0% of the lookup tables and 1.2% of the flip-flops avail‐
able on the device. Compared with the architecture used in 
Ref. [15], the proposed decoder reduces the resources of the 
lookup table by about 15%.

5 Conclusions
This paper proposes an RL-LDPC code aiming at next-

generation mobile communication, with a corresponding 
hardware architecture with a throughout up to 100 Gbit/s. In 
this code, the designed structure of the protograph is differ‐
ent from the conventional 5G NR LDPC basic matrix, and an 
improved code construction algorithm is investigated for bet‐
ter performance. The decoder implemented in our work can 
achieve a throughput higher than 100 Gbit/s, and compared 
with the traditional architecture, the resources of the lookup 
table are reduced by about 15% on Xilinx Virtex UltraScale 
XCVU440 FPGA.
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1 Introduction

Millimeter-wave (mmWave) communication has 
emerged as a key technology for fifth-generation 
(5G) wireless networks to cope with the dilemma 
between scarce sub-6 GHz spectrum resources 

and people’s rapidly growing demand for higher data trans‐
mission[1–4]. MmWave’s short wavelength makes it conve‐
nient to arrange large-scale antenna arrays at the transceiver 
end to compensate for the high propagation loss, and thus 
massive multiple-input and multiple-output (MIMO) be‐
comes attractive in mmWave systems. However, conven‐
tional fully digital beamforming (FDBF) requires a separate 
radio frequency (RF) chain for each antenna and will result 
in huge hardware costs and power consumption in massive 
MIMO systems[5]. Therefore, hybrid beamforming (HBF) that 
requires very few RF chains has become a research hotspot 
recently[6–8].

HBF has different hybrid architectures depending on differ‐
ent connection strategies between antennas and RF chains. 
The fully-connected (FC) architecture and the partially-
connected (PC) architecture are two conventional hybrid archi‐
tectures. Most previous works considered the FC architecture. 
In Ref. [9], the authors applied the orthogonal matching pur‐
suit algorithm to design the column vectors of the analog pre‐
coding matrix based on codebooks. The authors in Ref. [10] 
proposed an HBF algorithm based on the coordinate update it‐
eration method in the narrowband point-to-point MIMO sys‐
tem. The authors in Ref. [11] proposed an alternating minimi‐
zation algorithm based on manifold optimization (MO) by mini‐
mizing the Frobenius norm between the HBF matrix and the 
FDBF matrix. The authors in Ref. [12] took the mean square 
error minimization as the optimization goal and the designed 
HBF algorithms based on MO and generalized eigenvalue de‐
composition (EVD).

On the other hand, the PC architecture, where each antenna 
is only connected to only one RF chain instead of all RF 
chains, can reduce the power consumption and hardware costs 
compared with the FC architecture at the cost of certain sys‐
tem performance loss. A low-complexity HBF optimization al‐

This work was supported by ZTE Industry-University-Institute Coopera⁃
tion Funds, the Natural Science Foundation of Shanghai under Grant No. 
23ZR1407300, and the National Natural Science Foundation of China un⁃
der Grant No. 61771147.
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gorithm based on the positive semi-definite relaxation for the 
PC architecture has been proposed in Ref. [11]. The HBF opti‐
mization algorithms based on element iteration and MO for the 
PC architecture in the broadband system have also been pro‐
posed in Ref. [13].

To achieve a good compromise between hardware costs and 
system performance, other fixed hybrid architectures have 
also attracted research attention recently. The authors in Ref. 
[14] proposed a partially-fully connected architecture that 
combines the FC and PC architectures and designed algo‐
rithms based on continuous interference cancellation and ma‐
trix factorization. The authors in Ref. [15] designed an alterna‐
tive minimization algorithm for this architecture. An over‐
lapped (OL) subarray architecture and a heuristic unified low-
rank sparse recovery algorithm were proposed in Ref. [16]. 
The authors in Ref. [17] proposed a generalized subarray-
connected architecture, and developed a successive interfer‐
ence cancellation-based HBF algorithm along with an exhaus‐
tive search algorithm to maximize the system energy efficiency.

Since the hardware costs and power consumption of 
switches in mmWave massive MIMO systems are relatively 
small[18–19], the dynamic hybrid architecture becomes a 
promising approach to achieving a better balance between 
hardware costs and system performance. The authors in Ref. 
[20] proposed a greedy algorithm with low complexity to par‐
tition the antennas over RF chains. A low complexity algo‐
rithm to design the optimal partition using statistical chan‐
nel state information was proposed in Ref. [21]. The authors 
in Ref. [22] considered the scenario of ultra-wideband 
mmWave and terahertz frequency band and decomposed the 
precoding problem into multiple subproblems under the FC 
architecture.

In this paper, we investigate the HBF algorithms with differ‐
ent hybrid architectures for broadband mmWave massive 
MIMO systems, aiming at maximizing the spectral efficiency. 
Based on the equivalence between the spectral efficiency 
maximization (SEM) problem and the weighted minimum 
mean square error minimization (WMMSE) problem, we de‐
sign the beamforming optimization algorithm to directly tackle 
the original SEM optimization problem instead of the conven‐
tional indirect design approach of approximating the FDBF 
matrix with the HBF matrix. We adopt the alternating minimi‐
zation method to decompose the joint transmitting and receive‐
ing HBF optimization problem into two sub-problems. It shows 
that both the digital precoding and combining optimization 
sub-problems have closed-form optimal solutions. To further 
optimize the analog precoder and combiner, we apply the MO 
method to deal with the constant modulus constraint. In con‐
trast to Ref. [11], where the MO method was applied to solve 
the matrix approximation problem with the objective of mini‐
mizing the Frobenius norm between the FDBF matrix and the 
HBF matrix of the FC architecture, in our work, the MO 
method is applied to solve the HBF problem with the WMMSE 

objective and for arbitrary hybrid architectures by introducing 
the Hadamard product of the analog precoder and a connec‐
tion matrix. Apart from the conventional FC and PC architec‐
tures, we consider the OL architecture and the PC architec‐
ture with dynamic subarrays (PC-dynamic architecture). In 
particular, we simulate three specific types of fixed OL archi‐
tectures with a uniform planar array (UPA) and find that our 
proposed HBF optimization algorithm could achieve a compro‐
mise between hardware costs and system performance com‐
pared with conventional fixed architectures. Besides, for the 
PC-dynamic architecture, we derive a lower bound of the origi‐
nal WMMSE objective, based on which, and with some ap‐
proximations we formulate an eigenvalue maximization prob‐
lem. Then, we propose a greedy partition algorithm to optimize 
the dynamic partition of subarrays. Simulation results show 
that the PC-dynamic architecture with the proposed dynamic 
partition algorithm can achieve significant performance im‐
provement over the fixed PC architecture.

We denote matrices and vectors by boldface capitals and 
lower-case letters respectively. ( ⋅ ) T and ( ⋅ ) H denote the 
transpose and the complex conjugate transpose of a matrix or 
vector, respectively. tr ( ⋅ ) and  ⋅ F represent the trace and 
the Frobenius norm of a matrix, respectively. E [ ⋅ ] is the sta‐
tistical expectation, ⊙ is the Hadamard product of two matri‐
ces, IN denotes the N × N identity matrix, and CN (0, K ) rep‐
resents the circularly symmetric complex Gaussian distribu‐
tion with zero mean and covariance matrix K.
2 System Model and Problem Formulation

2.1 System Model
In this paper, we consider the downlink of a broadband 

mmWave MIMO-orthogonal frequency division multiplexing 
(OFDM) system with HBF, as shown in Fig. 1. The transmitter 
first precodes Ns data streams, denoted by the vector 
sk ∈ CNs × 1, and at the k-th subcarrier uses a digital pre‐
coder FBB, k ∈ CN tRF ×  Ns, for k = 0,…, N - 1 with N denoting the 
number of subcarriers. Then, N tRF output streams are trans‐
formed into the time domain by the N-point inverse fast Fou‐
rier transform. After adding cyclic prefixes (CPs), the signals 
are further precoded by an analog precoder FRF ∈ CNt × N tRF 
composed of a number of phase shifters. It is worth noting that 
in the HBF design for broadband systems, the digital beam‐
formers can be optimized for different subcarriers, in contrast, 
the analog one is invariant for the whole frequency band and 
thus FRF is not related to the subcarrier index. It is also worth 
noting that FRF can represent different hybrid architectures. In 
particular, we define a connection matrix 
Up ∈ CN t × N tRF,[Up ]

ij
∈ {0,1} to represent the connection strat‐

egy with any specific hybrid architecture, where [Up ]
i,j = 1 in‐

dicates that the j-th RF chain is connected to the i-th antenna. 
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The analog beamformer with any arbitrary fixed hybrid archi‐
tecture can be represented by:
FRF = F FCRF⊙Up, (1)

WRF = W FCRF⊙Uc, (2)
where F FCRF and W FCRF represent the analog precoder and com‐
biner with the FC architecture, respectively.

We consider four hybrid architectures for analog beam‐
forming as depicted in Fig. 2. In the FC architecture shown in 
Fig. 2(a), each RF chain is connected to all antenna elements 
so that a total of Nt N

tRF phase shifters are required. In the PC 
architecture shown in Fig. 2(b), each RF chain is connected 
to an antenna subarray while each antenna is connected to 
only one RF chain, so that a total number of Nt phase shifters 
are required. In the OL architecture shown in Fig. 2(c), the 
antenna subarrays connected to each RF chain can overlap, 

where the overlapped antennas are connected to multiple RF 
chains at the same time. The number of phase shifters re‐
quired lies between [Nt, Nt N

tRF ]. In the PC-dynamic architec‐
ture based on a switch network in Fig. 2(d), the partition of 
the antenna subarrays can be dynamically adjusted by turn‐
ing on or off the switches according to the system state, and a 
total number of Nt phase shifters and Nt N

tRF switches are re‐
quired.

The transmitted signal at the k-th subcarrier via Nt anten‐
nas is represented by xk = FRFFBB, k sk, where FBB, k and FRF 
satisfy the power constraint  FRFFBB, k

2
F

≤ 1. After passing 
through the channel matrix at the k-th subcarrier Hk ∈ CNr ×  N t, 
the signals reach the receiver which is equipped with Nr anten‐
nas. The received signals are first processed by an analog com‐
biner WRF ∈ CNr ×  N tRF, which is also shared by all subcarriers. 
Then, after removing CPs and performing the fast Fourier 
transform, a digital combiner WBB, k ∈ CN tRF ×  Ns is deployed at 

▲Figure 1. Downlink single-user mmWave multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with 
hybrid beamforming (HBF)

CP: cyclic prefix     IFFT: inverse fast Fourier transform     RF: radio frequency

▲Figure 2. Diagram of four hybrid architectures
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each subcarrier. Finally, the processed signal at the k-th sub‐
carrier can be expressed as:
yk = W HBB,kW HRFHkFRFFBB,k sk + W HBB,kW HRFnk,   
for  k = 0,…, N - 1, (3)

where nk~CN (0, σk
2 INr

) denotes the additive white Gaussian 
noise at the k-th subcarrier.
2.2 Channel Model

We consider the clustered delay line (CDL) model devel‐
oped by 3GPP, which takes the mmWave propagation charac‐
teristics into account, and can better characterize spatial corre‐
lations for 3D channels. Besides the normalized delay and the 
power, the azimuth angle of departure (AOD), the azimuth 
angle of arrival (AOA), the zenith angle of departure (ZOD), 
and the zenith angle of arrival (ZOA) are also defined in the 
CDL model. Three types of the CDL model, i.e., CDL-A, CDL-
B and CDL-C, are constructed to represent different channel 
profiles for the non-line of sight (NLOS) scenarios, while two 
types, i.e., CDL-D and CDL-E, are constructed for the line-of-
sight scenarios[23]. The NLOS channel coefficient of the n-th 
cluster with M rays between the transmit and receive antennas 
(u and s respectively) at time instant t and delay τ is given by:

H NLOS
u,s,n ( )t = Pn

M ∑
m = 1

M é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úF rx,u,θ( )θn,m,ZOA,ϕn,m,AOA

F rx,u,ϕ( )θn,m,ZOA,ϕn,m,AOA

T

×

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úexp ( )jΦθθ
n,m K -1

n,m exp ( )jΦθϕ
n,m

K -1
n,m exp ( )jΦϕθ

n,m exp ( )jΦϕϕ
n,m

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úF tx,u,θ( )θn,m,ZOD,ϕn,m,AOD

F tx,u,ϕ( )θn,m,ZOD,ϕn,m,AOD
×

exp ( )j2πλ-10 ( )rTrx,n,m ḋrx,s exp ( )j2πλ-10 ( )rTtx,n,m ⋅ ḋ tx,s exp ( )j2πvn,m t ,
where the definitions of parameters are given in Table 1.
2.3 Problem Formulation

We jointly optimize the hybrid architecture and the hybrid 
beamformers to maximize the spectral efficiency over N sub‐
carriers subject to the constant modulus constraint of the ana‐
log beamformers and the power constraint of the transmitter. 
The problem can be formulated as follows:

maximize
FBB,k,F FCRF ,W FCRF ,WBB,k,Up,Uc

1
N∑k = 1

N Rk

subject to  Fk

2
F ≤ 1,∀k ;

 |
|
|||||

|
|||| [ ]F FCRF ij

= 1, |
|
|||||

|
|||| [ ]W FCRF ij

= 1,∀i,j ;
 [ ]Up

ij
,[ ]Uc ij

∈ 0,1,∀i,j ;
 Up 1 = Np1, ( )Up 2 = Np2, (4)

where Rk = log |||||| INs
+ σ2

k(Wk
HWk )-1

Wk
HHkFkF

H
k H

H
k Wk

|
|
|||| is the 

achievable spectral efficiency at each subcarrier, and Fk =
(F FCRF⊙Up )FBB,k,Wk = (W FCRF⊙Uc )WBB,k. Np1 and Np2 are the 
predetermined numbers of phase shifters used at the transmit‐
ter and the receiver, respectively.

It has been proved in Ref. [13] that the SEM problem can 
be transformed into an equivalent WMMSE problem, which is 
more tractable. The modified mean square error (MSE) is de‐
fined as:
E ≜ E é

ë( β-1y - s) ( β-1y - s) Hù
û , (5)

where β is a scaling factor to be jointly optimized with the hy‐
brid beamformers. The WMMSE problem in the broadband 
scenario can be formulated as:

minimize
FU,k,F FCRF ,W FCRF ,WBB,k,Up,Uc,βk,Tk

1
N∑k = 1

N   ( )TkEk - log ||Tk

subject to ( )Fk

2
F ≤ 1,∀k ;

 |
|
|||||

|
|||| [ ]F FCRF ij

= 1, |
|
|||||

|
|||| [ ]W FCRF ij

= 1,∀i,j ;
 [ ]Up

ij
,[ ]Uc ij

∈ { 0,1 } ,∀i,j ;
( )Up 1 = Np1, ( )Uc 2 = Np2, (6)

where Tk and Ek =  INs
- β-1

k F H
k H

H
k Wk - β-1

k W
H
k HkFk +

β-2
k σ2

kW
H
k Wk + β-2

k W
H
k HkFkF

H
k H

H
k Wk  are respectively the 

weight matrix and the MSE matrix for the k-th subcarrier, and 
FU,k = β-1

k FBB,k. Since the joint optimization of the hybrid beam‐
forming and architecture is hard to solve, we decompose the prob‐
lem into two subproblems: the HBF optimization problem with a 
fixed architecture and the architecture optimization problem.
3 HBF Optimization with Fixed Architecture

In this section, we apply the alternating minimization 
method and the MO method to optimize the hybrid beamform‐
ers with a fixed hybrid architecture. The WMMSE problem is 
formulated as:

▼ Table 1. Definitions of some parameters in the clustered delay line 
(CDL) channel model

Parameter
Pn

Frx,u, F tx,s
Φn,m
Kn,m
λ0

rrx,n,m,rtx,n,m
vn,m

Definition
Power of the n-th cluster

Radiation patterns of the receiving and the transmitting antennas
Random initial phases of different polarization combinations

Cross polarization power ratio for the m-th ray in the n-th cluster
Carrier wavelength

Spherical unit vectors of the receiving and the transmitting antennas
Velocity vector
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minimize
FU,k,FRF,WRF,WBB,k,βk,Tk

1
N∑k = 1

N   ( )TkEk - log ||Tk

subject to ( )FU,kFRF
2
F ≤ β-2

k ,∀k ;

 |
|
|||||

|
|||| [ ]FRF ij

=
ì

í

î

ïïïï

ïïïï

1,i,j ∈ { }i,j||[ ]Up
ij
|= 1

0, else
;

 |
|
|||||

|
|||| [ ]WRF ij

=
ì
í
î

ïï

ïïïï

1,i,j ∈ { }i,j||[ ]Uc ij
|= 1 ,∀i,j

0, else
.

(7)
Since the joint optimization problem of the five variables in 

Eq. (7) is hard to solve, we adopt the alternating minimization 
method to decouple the optimization of the transmitter and re‐
ceiver and solve the two subproblems separately.
3.1 Transmitter Design

In this subsection, we fix the hybrid combiner Wk and opti‐
mize the hybrid precoder. Firstly, the closed form solution of 
Tk can be obtained as follows by differentiating the objective 
function with respect to Tk

Tk = E-1
k . (8)

Secondly, the optimal digital precoder FBB,k and the scaling 
factor βk at each subcarrier can be derived with fixed FRF. Considering the power constraint, it can be proved that the op‐
timal βk can only be achieved with the maximum transmit 
power, and the optimal βk is given by:

βk = 1/  FRFFU,kF HU,kF HRF
2
F

. (9)
According to the Karush-Kuhn-Tucker (KKT) conditions, 

FU,k has a closed-form solution as follows:
FU,k = (F HRFGkG

H
k FRF + ξkF

HRFFRF )-1
F HRFGk, (10)

where ξk = (σ2
k tr (TkW

H
k Wk ) )-1 and Gk = H H

k Wk. Thirdly, by substituting Tk,βk and FBB,k back into the origi‐
nal objective function, the optimization problem of FRF can be 
obtained as follows:

minimize
FRF

f ( )FRF

subject to |
|
|||||

|
|||| [ ]FRF ij

=
ì

í

î

ïïïï

ïïïï

1,i,j ∈ { }i,j||[ ]Up
ij
|= 1

0, else
,

(11)
where f (FRF ) = 1

N ∑
k = 1

N tr ( )( )T -1
k + ξkG

H
k FRF (F HRFFRF )-1F HRFGk

-1 .
Next, we use the MO method to design FRF. The basic idea 

is to define a Riemannian manifold considering the constant 

modulus constraint, and iteratively update FRF along the direc‐
tion of the Riemann gradient in a way similar to the conven‐
tional Euclidean gradient descent algorithm[12]. The key is to 
derive the Euclidean conjugate gradient of f (FRF ) with the FC 
architecture, which is given by:

∇F FCRF
f (FRF ) = 1

N ∑
k = 1

N

ξk(FRF(F HRFFRF )-1
F HRF - INt )

GkΩ
-2
k GH

k FRF(F HRFFRF )-1, (12)
where Ωk ≜ T -1

k + ξkG
H
k FRF(F HRFFRF )-1

F HRFGk. Since f (FRF ) 
is only related to the antennas that are connected to each RF 
chain with any specified hybrid architecture and calculating 
the gradient involves the derivative with respect to each entry 
of FRF [13], with FRF = F FCRF⊙Up, it can be shown that:

∇f (FRF ) = ∇F FCRF
f (FRF )⊙Up. (13)

Then, we can obtain the Riemannian gradient by projecting 
the Euclidean gradient ∇f (FRF ) onto the tangent space, and 
update FRF with a proper step size determined by the well-
known Armijo backtracking algorithm. Finally, the retraction 
operation is applied to make the result satisfy the constant 
modulus constraint[11] as follows:

μd ↦  Retrx ( μd ) = vec é

ë

ê
êê
ê
ê
ê ( )x + μd

i

|( )x + μd
i
|
ù

û

ú
úú
ú
ú
ú .

(14)
It is worth noting that with Eqs. (12) and (13), the above al‐

gorithm based on the MO method can be adopted in the HBF 
design with arbitrary hybrid architectures as there is no spe‐
cific requirement to the connection matrix Up. Finally, the pre‐
coder design with arbitrary fixed hybrid architectures is sum‐
marized in Algorithm 1.
Algorithm 1: Hybrid precoder design based on the MO method
  Input: ξk,Gk,Tk,Up  1: Initialize FRF,0 with random phases, i = 0
  2: repeat
   3:  Select the step size μ
   4:  Update vec (FRF,i + 1 ) according to Eq. (14)
   5:  Update the Riemannian gradient g i = ∇f (FRF,i + 1 ) 
according to Eqs. (12) and (13)
   6:  Calculate g+

i ,d+
i  from x i to x i + 1   7:  Select Polak-Ribiere parameter ηi + 1   8:  Calculate the conjugate direction d i + 1 = -g i + 1 +

ηi + 1d+
i   9:   Update i ← i + 1

  10: until a stopping condition is satisfied
  Output: FRF
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3.2 Receiver Design
With the fixed hybrid precoder, we can get the optimiza‐

tion problem for the hybrid combiner. By differentiating Eq. 
(7) with respect to WBB,k, the closed-form solution of WBB,k is 
given by:
WBB,k = (W HRFG͂kG͂

H
k WRF + ξ͂kW

HRFWRF )-1
W HRFG͂k, (15)

where G͂k = β-1
k HkFk, ξ͂k = σ2

k β-2
k . By substituting Eq. (15) 

back into Eq. (7), we can get the optimization problem of WRF as follows:

minimize
WRF

g ( )WRF =
1
N ∑

k = 1

N tr ( )Tk( )INs
+ ξ͂-1

k  G͂ H
k WRF( )W HRFWRF

-1
W HRFG͂k

-1

subject to |
|
|||||

|
|||| [ ]WRF ij

=
ì
í
î

ïï

ïïïï

1, i, j ∈ { }i, j||[ ]Uc ij
|= 1

0, else
.

(16)
This problem is difficult to tackle due to the non-convex 

constraint. However, since it has a similar form to the design 
problem of the analog precoder in Eq. (11), we can also adopt 
the MO method to optimize the analog combiner in the same 
way as we optimize the analog precoder. Firstly, the key step 
is to derive the Euclidean gradient of g (WRF ) with the FC ar‐
chitecture, which is given by:

g (WRF ) = 1
N ∑

k = 1

N

ξ͂k(WRF (W HRFWRF )-1W HRF -
    INr ) G͂kTkJ

-2
k G͂H

k WRF(W HRFWRF )-1, (17)
where Jk = Tk( INs + ξ͂kG͂

H
k WRF(W HRFWRF )W HRFG͂k ). Secondly, 

we can use the formula ∇g (WRF ) = ∇W FCRF
g (WRF )⊙Uc to ob‐

tain the Euclidean gradient of g (WRF ) with any specified ar‐
chitecture. Finally, with the derived gradient, we can optimize 
WRF by applying a procedure similar to that in Algorithm 1.
3.3 Alternating Optimization

We develop a joint hybrid precoding and combining opti‐
mization algorithm based on the WMMSE criterion by itera‐
tively and alternatively using Algorithm 1. During each it‐
eration, with the fixed hybrid combiner Wk and the weight 
matrix Tk, we first optimize FRF,FBB,k according to Algorithm 
1. Then, with the fixed hybrid precoder, we optimize 
WRF,WBB,k. Finally, we update Tk according to Eq. (8). These 
steps are repeated until the stopping condition is satisfied. 
The stopping condition could be set as a maximum number 
of iterations or it depends on whether the relative difference 
between the objective function values of two consecutive it‐
erations is smaller than a specific value. The HBF algo‐
rithm with a fixed hybrid architecture is summarized in Al‐

gorithm 2, which is referred to as the hybrid beamforming 
algorithm using manifold optimization under the WMMSE 
criterion (HBF-WMO algorithm).
Algorithm 2: The HBF-WMO algorithm
  Input: σk,Hk,∀k ∈ {1,⋯,N},Up,Uc
   1: Initialize WRF,0,FRF,0,Tk,0,WBB,k,0,i = 0
   2: repeat:
       3:  Compute FRF,i according to Algorithm 1
       4:  Compute βk,i,FU,k,i according to Eqs. (9) and (10)
       5:  Compute WRF,i according to Algorithm 1
       6:  Compute WBB,k,i according to Eq. (15)
       7:  Compute Tk,i = E-1

k,i       8:  i ← i + 1
   9: until a stopping condition is satisfied
   10: FBB,k = βkFU,k  Output: FRF, FBB, k, WRF, WBB, k

4 Subarray Partition Optimization with the 
PC-Dynamic Architecture
In this section, we propose an algorithm to dynamically allo‐

cate antennas to each RF chain through a switch network in 
accordance with the channel state variation, and under the 
constraint that each antenna element is allocated only once. 
Since the size of the receive antenna array is relatively small 
compared with that of the transmitter, we only consider the ar‐
chitecture optimization of the transmitter here. Based on the 
derived objective function in Eq. (11), the WMMSE problem 
for the optimization of the subarray partition with the PC-
dynamic architecture is given by

minimize
F FCRF ,Up

f ( )F FCRF⊙Up

subject to  |
|
|||||

|
|||| [ ]F FCRF ij

= 1 ;
 [ ]Up

ij
∈ { 0,1 } ;

( )Upi∙ 1 = 1,∀i,j, (18)
where Upi∙ dedicates the i-th row of Up. The original problem is 
difficult to solve directly, so we transform it into a more trac‐
table one. First, let Sr denote the antenna subset connected to 
the r-th RF chain. We partition Nt antennas into N tRF subsets as:

⋃N tRF
r = 1  Sr = Sant, | Sr | > 0,Si ∩ Sj = ∅,∀i,j ∈ {1,⋯,N tRF},i ≠ j,

(19)
where | Sr | dedicates the number of elements in Sr and Sant =
{1,⋯,N t}. The optimization problem can be formulated as:
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minimize
{ }Sr

N tRF
r = 1

1
N ∑N

k = 1  tr ( )( )T -1
k + ξkG

H
k FRF( )F HRFFRF

-1
F HRFGk

-1

subject to |
|
|||||

|
|||| [ ]FRF ij

= ì
í
î

1,i ∈ Sj

0, else ;
⋃N tRF

r = 1  Sr = Sant, || Sr > 0, Si ∩ Sj = ∅, i ≠ j. (20)
It can be shown that the analog precoder with the conven‐

tional fixed PC architecture satisfies F HRFFRF = Nt

N tRF
IN tRF

, since 
the number of antennas connected to each RF chain is as‐
sumed to be the same. The equality does not hold in general 
with the PC-dynamic architecture since the number of anten‐
nas connected to each RF chain is not the same. However, as 
all the RF chains are treated equally and the number of RF 
chains is assumed to be much less than the number of anten‐
nas, it is very likely that the number of antennas connected to 
different RF chains tends to be close to each other, i. e., 
F HRFFRF ≈ Nt

N tRF
IN tRF

. According to the simulation results, the 
number of antennas in each subarray varies little with the opti‐
mized partition. Thus, by using this approximation, the objec‐
tive function in Eq. (20) can be written as:

J (FRF ) = 1
N ∑N

k = 1  tr (( ξk

N t
GH

k FRFF HRFGk )-1 ) . (21) 
Inspired by Ref. [12], where the authors derived a lower 

bound of the original MMSE problem and proposed the EVD 
algorithm with the FC architecture, we derive the lower bound 
of J (FRF ) as:

 ∑k = 1
N t ( )M -1

k = ∑k = 1
N  ∑s = 1

Ns   λ-1
s ( )Mk ≥

∑k = 1
N   N 2s ( )∑s = 1

Ns  λs( )Mk

-1 ≥ N 2 N 2s ( )∑k = 1
N  tr ( )Mk

-1,（22）
where Mk ≜ T -1

k + ξk

N t
GH

k FRFF HRFGk, and λs (⋅) dedicates the ei‐
genvalues of a matrix. The equality holds only if the values of 
tr (Mk ) at all subcarriers are the same. By taking the lower 
bound as the objective function and omitting the constants, 
the problem becomes:

maximize
{ }Sr

N tRF
r = 1

tr ( )1
N ∑N

k = 1 ξkG
H
k FRFF HRFGk

subject to |
|
|||||

|
|||| [ ]FRF ij

= ì
í
î

1,i ∈ Sj

0, else ;
⋃N tRF

r = 1  Sr = Sant, || Sr > 0,Si ∩ Sj = ∅,i ≠ j. (23)

We can write Gk as a combination of N tRF block matrixes:
GH

k = é
ë
êêêêGH

k,S1  GH
k,S2  ⋯ GH

k,S
N tRF

 ù
û
úúúú , (24)

where GH
k,Sr

= GH
k (:,Sr ) , so the objective function in Eq. (23) 

can be written as:
tr ( )1

N∑k = 1
N  ξkG

H
k FRFF HRFGk =

1
N∑k = 1

N   ξk( )GH
k FRF

2
F

=
1
N∑k = 1

N   ξk( )é
ë
êêêê ù

û
úúúúGH

k,S1 fRF,S1…GH
k,S

N tRF
fRF,S

N tRF

2

F

=
 ∑r = 1

N tRF   ( )f HRF,Sr
RSr

fRF,Sr
, (25)

where RSr
= 1

N ∑
k = 1

N

ξkG
H
k,Sr
Gk,Sr

,fRF,Sr
∈ CN t ×  1,[| fRF,Sr

| ]
i

= ì
í
î

1,i ∈ Sj

0,i ∉ Sj

. 
Without consideration of the constant modulus constraint, the 
maximum value of Eq. (25) is given by ∑r = 1

N tRF  λ1(RSr ), where 
λ1( ⋅ ) is the maximum eigenvalue of a matrix. Therefore, we 
can solve Eq. (23) by maximizing the sum of the maximum ei‐
genvalues of RSr

 corresponding to each subarray. The optimiza‐
tion problem of the subarray partition can be formulated as:

maximize
{ }Sr

N tRF
r = 1

                       ∑N tRF
r = 1  λ1( )RSr

subject to ⋃N tRF
r = 1  Sr = Sant, || Sr > 0,Si ∩ Sj = ∅,i ≠ j. (26)

The optimal solution of Eq. (26) is a complex combinatorial 
optimization problem and calculating the eigenvalues leads to 
relatively high computational cost. Therefore, two operations 
are adopted here to further simplify the optimization problem. 
Firstly, according to Ref. [20], the maximum eigenvalue can 
be approximated with the l1 norm of a matrix as follows:

λ̂1(RSr ) ≜ 1
|| Sr
∑i,j ∈ Sr

|
|

|
| [ ]R i,j , (27)

where R = 1
N ∑

k = 1

N

ξkG
H
k,Sr
Gk,Sr

 is the average channel covari‐
ance matrix of all subcarriers. Then, the problem in Eq. (26) 
becomes1:

maximize
{ }Sr

N tRF
r = 1

                   1
|| Sr
∑i,j ∈ Sr

|
|

|
| [ ]R i,j

subject to ⋃N tRF
r = 1  Sr = Sant, || Sr > 0,Si ∩ Sj = ∅,i ≠ j. (28)

Secondly, a greedy algorithm is proposed here to solve the 

1 It is worth noting that compared with the original optimization objective function in Eq. (20), the omission of the constant modulus constraint and the use of several approximations above 
will bring in some performance loss, which is of interest for further investigation in future work.
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problem. Since R is a Hermitian matrix, we only need to con‐
sider the upper triangular part when calculating the objective 
function in Eq. (28). The main idea of the greedy algorithm is 
that the objective function does not decrease after adding 
|
| [R ] ij

|
| , i < j into or removing it out of the subset Sr. The algo‐

rithm consists of two steps. The first one is to define an initial 
full antenna set S0 = {1,…, Nt} and sort all the elements 
|
| [R ] ij

|
| , i < j in descending order. To ensure that the con‐

straint | Sr | > 0 is satisfied, two antennas i and j corresponding 
to [R ] ij are partitioned into Sr in order. The second step is to 
consider different cases of partitioning antenna i, j into differ‐
ent subsets and choose the one that maximizes the objective 
function. In this process, if two antennas i and j belong to two 
different subsets, only four cases related to two subsets are 
considered. Otherwise, N tRF cases are considered if both anten‐
nas belong to S0. For simplicity of description, we define a 
function fRSr

 as follows:
fRSr

(Sr,nsel,r ) =
ì

í

î

ïïïï

ï
ïï
ï

0,  || Sr = 0 or { }nsel = N tRF, and r = 0
1
|| Sr
( )∑i,j ∈ Sr

|
|
||||

|
|
|||| [ ]Rup

i,j + 1
2∑i ∈ Sr

|| [ ]R i,i , otherwise, (29)
where nsel denotes the number of subsets that already have ele‐
ments, and Rup is the upper triangular part of R. The partition 
optimization algorithm is summarized in Algorithm 3. With 
{Sr}

N tRF
r = 1, we can easily get Up, and then use the HBF-WMO al‐

gorithm proposed in Section 3 to optimize FRF with the PC-
dynamic architecture.
Algorithm 3: Dynamic subarrays partition optimization
  Input: R, N tRF, S0, nsel = 0
   1: Sort Rup in descending order:
     || [R ] i,j

|
| ≥ |

| [R ] ik,jk

|
| ≥ ⋯ ≥ |

| [R ] iK,jK

|
| , 1 ≤ ik < jk ≤

Nt, K = Nt (Nt - 1) /2
   2: For k = 1:K repeat:
   3:  If ik, jk ∈ S0:   4:    If nsel < N tRF:  

Snsel ← { }ik,jk ,S0 \{ }ik,jk ,nsel ← nsel + 1
   5:     Else: rmax = argmax

r
( fRSr

(Sr ∪ {ik, jk},nsel, r ) )
         Srmax ← {ik, jk}, S0 \{ik, jk}
   6:  Else if ik ∈ Sm, jk ∈ Sl ,∀m,l ∈ {0,1,…,nsel}, m ≠ l:
      ucrt = fRSr

(Sm,nsel,m) + fRSr
(Sl,nsel, l)

      unewj = fRSr
(Sm ∪ { jk},nsel,m) + fRSr

(Sl \{ jk},nsel,l)
       unewi = fRSr

(Sm \{ik},nsel,m) + fRSr
(Sl ∪ {ik},nsel,l)

 unewij = fRSr( )( )Sm \{ }ik ∪ { }jk ,nsel,m +
fRSr( )( )Sl \{ }jk ∪ { }ik ,nsel,l

          u = [ucrt,unewj,unewi,unewij ]
      max (u) = unewj and m ≠ 0,  Sm ← { jk},Sl \{ jk}
      max (u) = unewi and l ≠ 0,  Sm \{ik},Sl ← {ik}
      max (u) = unewij and m,l ≠ 0, 

(Sm \{ik}) ← { jk}, (Sl \{ jk}) ← {ik}
  Output: {Sr}

N tRF
r = 1

5 Simulation Results
In this section, we first provide some simulation results 

to show the spectral efficiency performance of the proposed 
HBF-WMO algorithm in Section 3 with fixed hybrid archi‐
tectures, in comparison with the optimal fully-digital one. 
Then, we compare the spectral efficiency performance of 
fixed and dynamic partitions of antenna subarrays with the 
PC architecture.

Considering an mmWave MIMO-OFDM system as that in 
Fig. 1, we assume that the transmitter takes a half-wavelength 
spaced UPA with Nt = 512 antennas for the transmission of 
Ns = 2 data streams. Five fixed hybrid architectures at the 
transmitter are evaluated, including the FC and PC architec‐
tures, and three types of the OL architecture. Considering the 
issue of practical implementation of the HBF architecture, we 
propose three specified OL architectures when four RF chains 
are employed with a 16 × 32 UPA at the transmitter, which 
are shown in Fig. 3. The numbers indicate the antenna in‐
dexes, and the units in the same color mean that the corre‐
sponding antenna elements are connected to the same RF 
chain. The antennas within framed squares are overlapped 
and connected to multiple RF chains. The receiver takes a 
UPA with Nr = 8 antennas and N rRF = 2 RF chains with a 
fixed PC architecture. The number of subcarriers is set to 
N = 64, the bandwidth is 100 MHz and the center fre‐
quency is 28 GHz. The signal-to-noise ratio (SNR) is de‐
fined as 1

σ2 . We take CDL-A as the channel model to evalu‐
ate the system performance in a more practical NLOS sce‐
nario. In the simulation, the stopping condition is set as the 
relative difference between the objective function values of 
two consecutive iterations becomes smaller than δ = 10-3.
5.1 Performance with Different Fixed Hybrid Architectures

Fig. 4 shows the performance of spectral efficiency as a 
function of SNR for the proposed HBF-WMO algorithm with 
different fixed architectures in CDL-A when four RF chains 
are equipped at the transmitter. The performance curves of the 
FC, PC, and OL architectures are labeled as “FC”, “PC”, and 

“OL”, respectively. For comparison, two FDBF algorithms, 
namely the FDBF with singular value decomposition (SVD) on 
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each subcarrier and the FDBF with zero-forcing (ZF), are ad‐
opted, and their performance curves are labeled as “FD-SVD” 
and “FD-ZF”, respectively.

It can be seen from this figure that the proposed HBF-WMO 
algorithm with the FC architecture performs well with far fewer 
RF chains than antenna elements, and its performance gain 
over the PC architecture is about 4 dB in CDL-A. The reason is 
that there are much fewer entries that can be optimized in the 
HBF matrix of the PC architecture than the FC architecture, 
since the PC architecture employs far fewer phase shifters. Re‐
sults also show that the OL architecture achieves the compro‐
mise between the system performance and hardware costs, 
when compared with the FC and PC architectures. In particu‐
lar, it achieves higher spectral efficiency than the PC architec‐
ture at the cost of higher power consumption and implementa‐
tion complexity introduced by more phase shifters. For ex‐
ample, with 192 more phased shifters employed, the first type 
of OL architecture has a performance gain of about 1 dB over 
the PC architecture. According to Ref. [24], based on the state-
of-the-art technique, the power consumed by each phase shifter 
is about 10 mW. With the size of overlapped antennas among 
different subarrays growing, the performance improvement of 
the OL architecture over the PC architecture gets bigger. For ex‐
ample, with the third type of OL architecture, the performance 
gain is about 3 dB over the PC one.

To verify the generality of the proposed HBF-WMO algo‐
rithm, we provide in Figs. 5 and 6 the spectral efficiency per‐
formance with different numbers of transmit antennas and RF 
chains under fixed hybrid architectures. The label “OL 1/2” 

▲ Figure 3. Diagram of three types of the overlapped subarray-
connected architecture at the transmitter with Nt=512, N t

RF = 4 

▲Figure 4. Spectral efficiency vs SNR for the hybrid beamforming (HBF-
WMO) algorithm with different fixed hybrid architectures for a massive 
multiple-input multiple-output-orthogonal frequency division multiplexing 
(MIMO-OFDM) system with N=64, Nt=512, Nr=8, N t

RF = 4, N r
RF = 2, Ns=2

FC: fully-connectedFD: fully-digitalOL: overlappedPC: partially-connected

SNR: signal to noise ratioSVD: singular value decompositionZF: zero forcing
▲ Figure 5. Spectral efficiency vs number of transmit antennas for the 
HBF-WMO algorithm with different fixed hybrid architectures for a 
massive multiple-input multiple-output-orthogonal frequency division mul‑
tiplexing (MIMO-OFDM) system with SNR=0 dB, N=64, Nr=8, N t

RF =
N r

RF = 2, Ns=2

FC: fully-connectedFD: fully-digitalOL: overlappedPC: partially-connected

SNR: signal to noise ratioSVD: singular value decompositionZF: zero forcing
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refers to the case where the number of overlapped antennas 
equals half the number of transmit antennas in the OL archi‐
tecture. As shown in Fig. 5, the performance of the HBF-
WMO algorithm improves with more transmit antennas. Fig. 6 
also shows that the gap between the performance of the HBF-
WMO algorithm and the optimal FDBF algorithm narrows with 

more RF chains equipped at the transmitter.
5.2 Performance with Different Partitions of Antenna 

Subarrays
Next, we compare the performance of fixed and dynamic 

partitions of antenna subarrays with the PC architecture. Four 
types of partitions under the fixed PC architecture are consid‐
ered at the transmitter, as shown in Fig. 7. For the HBF sys‐
tem with the PC-dynamic architecture, the antenna subarrays 
are first dynamically partitioned based on the algorithm pro‐
posed in Section 4 and then the HBF matrices are optimized 
based on the HBF-WMO algorithm in Section 3. Fig. 8 shows 
the average spectral efficiency performance as a function of 
SNR with fixed and dynamic antenna subarrays. It can be 
seen that of the four fixed partition types, the third one 
achieves the best performance. This is mainly due to the bal‐
anced horizontal and vertical angle resolution of the subarray 
in the third type and the original distribution of angles in CDL-
A. It is also shown that the dynamic partition outperforms the 
third fixed partition type with about 1 dB at the cost of more 
power consumption and the associated complex circuit 
brought by Nt = 512 more switches employed in the switch 
network. According to Ref. [24], the power consumed by each 
switch is about 5 mW.
6 Conclusions

With relatively small hardware costs and performance loss 
compared with FDBF, HBF for mmWave communication sys‐
tems has attracted much attention. Meanwhile, the design of 
hybrid architecture has also become a research hotspot consid‐
ering the practical implementation complexity. We have inves‐

▲ Figure 6.  Spectral efficiency vs number of transmit RF chains for the 
HBF-WMO algorithm with different fixed hybrid architectures for a mas‑
sive multiple-input multiple-output-orthogonal frequency division multi‑
plexing (MIMO-OFDM)  system with SNR=0 dB, N=64, Nt=512, Nr=8, 
N t

RF = 2, Ns=2

FC: fully-connectedFD: fully digitalOL: overlapped
PC: partially-connectedSVD: singular value decompositionZF: zero forcing

▲Figure 7.  Diagram of four fixed subarray types with the partially-connected architecture at the transmitter with Nt=512, N t
RF = 4 
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tigated HBF with different hybrid architectures in this paper. 
After transforming the original SEM problem to a more trac‐
table equivalent WMMSE problem, we propose the HBF-
WMO algorithm with different fixed architectures. Simulation 
results have shown that the OL architecture achieves a com‐
promise between the hardware costs and system performance 
compared with the conventional fixed architectures. We have 
also proposed a low-complexity subarray partition optimiza‐
tion algorithm based on the maximum eigenvalue approxima‐
tion with the PC-dynamic architecture and combined it with 
the HBF-WMO algorithm. Simulation results show that the 
PC-Dynamic architecture achieves some performance gain 
over the fixed PC architecture.

In this paper, certain problems in the practical implementa‐
tion of the proposed architecture and HBF-WMO algorithm 
under massive MIMO-OFDM systems have not been investi‐
gated. On one hand, the dynamic architecture and the OL ar‐
chitecture would lead to more power consumption and inser‐
tion power loss with more required phase shifters, splitters, 
combiners and switches than the conventional PC architec‐
ture, and thus the energy efficiency could be considered for 
HBF optimization. On the other hand, some studies have made 
efforts to alleviate the effect of beam squint while developing 
hybrid precoding schemes for massive MIMO-OFDM systems, 
such as carrying out a phase compensation operation at each 
subcarrier[25] or projecting all frequencies to the central fre‐
quency[26]. In future work, we will make efforts to study the en‐
ergy efficiency performance of different HBF architectures 
and extend our investigation to the scenario when the system 
is subject to the beam squint effect.
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Abstract: The transformer is the key circuit component of the common-mode noise current when an isolated converter is working. The high-
frequency characteristics of the transformer have an important influence on the common-mode noise of the converter. Traditionally, the mea‐
surement method is used for transformer modeling, and a single lumped device is used to establish the transformer model, which cannot be 
predicted in the transformer design stage. Based on the transformer common-mode noise transmission mechanism, this paper derives the 
transformer common-mode equivalent capacitance under ideal conditions. According to the principle of experimental measurement of the net‐
work analyzer, the electromagnetic field finite element simulation software three-dimensional (3D) modeling and simulation method is used to 
obtain the two-port parameters of the transformer, extract the high-frequency parameters of the transformer, and establish its electromagnetic 
compatibility equivalent circuit model. Finally, an experimental prototype is used to verify the correctness of the model by comparing the ex‐
perimental measurement results with the simulation prediction results.
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1 Introduction

Isolated power converters are widely used in applications 
that require isolation between the input side and the out‐
put side. However, due to the high voltage and current 
rate of change when switching devices in the power con‐

verter are turned on or off, serious electromagnetic interfer‐
ence (EMI) noise is generated[1]. For converters including iso‐
lation transformers, the critical path of common-mode noise in‐
cludes the distributed capacitance between the primary and 
secondary windings of the transformer in addition to the direct-
to-ground coupling capacitance of the voltage trip point[2–4]. 
The transmission mechanism of common mode noise and the 
establishment of an electromagnetic compatibility model are 
of great significance for the analysis and suppression of com‐
mon mode noise of isolated power converters.

Magnetic components in power converters often occupy a 
large volume. As power converters develop toward high 
power density, traditional wound transformers are gradually 
replaced by planar transformers due to their disadvantages of 
large size and weight. Planar transformers generally use 
multi-layer printed circuit board (PCB) traces as windings. 
The primary and secondary windings are tightly coupled, 

with low leakage inductance. At the same time, the core 
height is greatly reduced, so that planar transformers have a 
smaller size, which is widely used in isolated converters with 
high power density[5–7]. However, the copper thickness of the 
printed circuit board is limited by the process. In order to im‐
prove the current capacity, it is necessary to increase the 
width of the planar transformer windings and adopt the 
method of multi-layer parallel wiring, which will greatly in‐
crease the facing area between the primary and secondary 
windings of the planar transformer, increase the distributed 
capacitance between the windings, and deteriorate the high-
frequency characteristics of the planar transformer[8]. For the 
integrally installed planar transformer, its printed circuit 
board windings and the main circuit share the same PCB, 
and its discrete devices cannot be obtained to evaluate its 
electromagnetic compatibility characteristics. Therefore, the 
relevant parameters of the electromagnetic compatibility 
equivalent circuit model of the planar transformer can be ex‐
tracted through electromagnetic field simulation software. 
Compared with the traditional wound transformer, the struc‐
tural parameters of the planar transformer are stable and con‐
sistent, and it is easy to model in the electromagnetic field fi‐
nite element simulation software.
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In Ref. [9], considering the winding potential gradient 
distribution of planar transformers, a two-capacitance 
model based on common-mode current equivalence is de‐
rived based on the winding structure theory. However, the 
results obtained from the theoretical calculation consider 
the common-mode equivalent capacitance to be constant, ig‐
noring the case that the common-mode equivalent capaci‐
tance is no longer a pure capacitance at high frequencies. 
Refs. [10 – 11] propose a method for evaluating the 
common-mode EMI characteristics of transformers using 
vector network analyzer experimental measurements. In 
this method, the transformer is treated as a common-mode 
noise filter, and the insertion loss parameter S21 [12–13] used 
to evaluate the EMI filter performance is referenced into 
the transformer. The experiment proves that it is feasible 
and effective to use the insertion loss measurement prin‐
ciple to evaluate the common mode noise rejection capabil‐
ity of the transformer. However, Refs. [10–11] only use S21 as the evaluation basis without further analyzing the spe‐
cific meaning of the complete S-parameters obtained by the 
vector network analyzer to measure the transformer.

Section 2 analyzes the common mode noise transmission 
mechanism of the planar transformer, and deduces the ex‐
pression of the induced charge Q between the primary and 
secondary windings according to the potential distribution of 
the windings when the planar transformer is working. From 
the expression, two capacitors are sufficient to represent the 
common-mode noise of the transformer. Section 3 establishes 
the electromagnetic compatibility equivalent circuit model of 
planar transformers according to the common mode noise 
transmission mechanism and the energy transmission charac‐
teristics of the transformer and introduces a method to estab‐
lish the electromagnetic compatibility model of the full-
bridge transformer through the experimental measurement of 
the network analyzer. Section 4 is based on the principle of 
experimental measurement and modeling of the network ana‐
lyzer, and the two-port parameters of the planar transformer 
are extracted through the electromagnetic field finite element 
simulation software without physical objects, and are equiva‐
lent to a circuit model. Finally, the accuracy of the simula‐
tion modeling is verified by a full-bridge circuit prototype ex‐
periment in Section 5. Section 6 concludes this paper.
2 Transmission Mechanism of Common 

Mode Noise in Planar Transformers

2.1 Structural Capacitance Calculation
The common-mode noise transmission of the planar trans‐

former is mainly through the distributed capacitance be‐
tween the primary winding and the secondary winding. It is 
worth noting that the distributed capacitance of the trans‐
former is not equal to the equivalent capacitance of the com‐
mon mode noise, because the voltage on the planar trans‐

former winding is not a constant value. However, the deriva‐
tion of the common-mode noise equivalent capacitance is 
based on the distributed capacitance of the planar trans‐
former. The simulation results of a one-turn-to-one-turn cir‐
cular plane copper wire are shown in Fig. 1. Fig. 1(a) shows a 
simulation model of a one-turn-to-one-turn circular planar 
copper conductor. In Fig. 1(c), the planar transformer wind‐
ing uses PCB wiring, and the distance d between the turns of 
the primary and secondary windings is the distance between 
the layers of the PCB. For a planar transformer with a single-
layer single-turn structure, considering the current flow fac‐
tor, the wiring width w of the winding is generally much 
larger than d, and the distributed capacitance between the 
primary winding and the secondary winding can be approxi‐
mately regarded as a parallel plate capacitor, ignoring the 
edge effect. Then the structural capacitance C0 between 
turns in Fig. 1(c) can be expressed as:

C0 = εr ε0 S
d , (1)

where εr is the dielectric constant of the filling material be‐
tween the PCB layers, ε0 is the dielectric constant in 
vacuum, S is the facing area between turns, and d is the dis‐
tance between turns.

Since the method of approximating parallel plate capaci‐
tors is used in the calculation of the capacitance of the pla‐
nar transformer structure, in order to test the rationality and 
accuracy of the approximation, the electromagnetic field fi‐
nite element simulation software is used to verify the winding 
structural capacitance.

Taking a turn-to-turn ring-shaped flat copper wire as an 
example, we list the model parameters as follows: the copper 
thickness is 1 mm, the inner diameter is 12.3 mm, the outer 

▲ Figure 1. Simulation results of one-turn-to-one-turn toroidal planar 
copper conductors

(a) Simulation model of one-turn-to-one-turn circular planar copper conductor

(b) Electric field intensity distribution between turns

(c) Electric field energy distribution between turns
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diameter is 20.6 mm, the distance between turns is 0.4 mm, 
and the relative permittivity of the filler material is 4.4.

The simulation result of the finite element simulation soft‐
ware is 21.769 pF, and the calculation result of Eq. (1) is 
20.89 pF, with an error of 4.04%. The main source of error is 
the edge effect of the parallel plate capacitor. In Fig. 1(b), 
the electric field strength between conductors is basically 
uniform, and the electric field distribution at the edge of the 
conductor is obviously uneven. However, Fig. 1(c) shows that 
most of the electric field energy is stored between conduc‐
tors, so it is reasonable to use an approach that approximates 
a parallel plate capacitor.
2.2 Calculation of Equivalent Capacitance for Common 

Mode Noise of Planar Transformers
For a planar transformer, due to the close magnetic coupling 

of each layer of windings, the magnetic flux or induced electro‐
motive force linked by each turn of the winding is basically the 
same, and the alternating current (AC) resistance of each turn 
of the winding is much smaller than the excitation inductance. 
If the leakage inductance is ignored, it can be approximated 
that the potential of the winding is linearly distributed along the 
number of turns and the length of the winding.

Assuming that the potential on the transformer winding in 
Fig. 1(a) is linearly distributed along the turn length, and the 
distributed capacitance is evenly distributed along the wind‐
ing, the integral of the primary winding and the secondary 
winding along the turn length l can be expressed as:

∫0
l

vp ( x )dx = vph + vpl
2 ⋅ l, (2)

∫0
l

vs ( x )dx = vsh + vsl2 ⋅ l. (3)
The charge Q stored between the turns of the primary and 

secondary windings in Fig. 1(a) can be expressed as:
Q = ∫0

l C0
l ⋅ [ vp ( x ) - vs ( x ) ]dx = C0

l
é
ë
êêêê∫0

l

vp ( x )dx - ∫0

l

vs ( x )dxù
û
úúúú .

(4)
Substituting Eqs. (2) and (3) into Eq. (4), we can get:
Q = C0( vph + vpl

2 - vsh + vsl2 ) . (5)
Considering that when the windings between different 

turns of the planar transformer are connected, the outlet 
ports of the windings on the same side need to be staggered 
by a certain angle. At this time, the voltage difference be‐
tween the relative position of the primary winding and the 
secondary winding will change with the staggered angle. 

However, it can be obtained from Eq. (5) that the induced 
charge Q between turns is determined by the structural ca‐
pacitance C0 between the primary and secondary windings 
and the midpoint potential of the primary and secondary 
windings. As long as the assumption of uniform distribution 
of potential on the windings is established, the charge Q is 
not affected by the voltage difference distribution of the pri‐
mary and secondary windings. As long as the assumption of 
uniform distribution of potential on the windings holds, the 
charge Q is not affected by the voltage difference distribution 
of the primary and secondary windings. As shown in Fig. 2, 
the angles between the primary winding outlet port and the 
secondary winding outlet port are 180°, 135° and −135°. The 
potential difference between the primary winding and the 
secondary winding changes. However, ignoring the influence 
of port voids, after the integration operation of Eq. (4), the fi‐
nal induced charge Q between turns and the turns of three 
different outlet port angles is the same.

The primary and secondary windings of a planar trans‐
former are multi-turn, so it is only necessary to follow the cal‐
culation method of Eq. (5). The inductive charge between 
each turn of the primary and secondary windings is added up 
to the charge Qall stored between the primary and secondary 
windings of the entire planar transformer. Qall characterizes 
the transfer capability of transformer common mode noise.

Taking the single-layer single-turn planar transformer in 
Fig. 3 as an example to calculate Qall, we find that the turn ra‐
tio of the primary and secondary windings is 3:1, the primary 
winding has 3 turns, which are P1, P2, and P3, respectively, 
and the secondary winding has 1 turn, which is S1. The trans‐
former adopts a 2-layer parallel winding on the primary side, 
an 8-layer parallel winding on the secondary side, and a stag‐
gered winding on the primary and secondary sides. The spe‐
cific stacked structure is shown in Fig. 3. At the same time, 
the laminated structure parameters of the planar transformer 
are given in Table 1. Under the symmetrical structure, the fac‐
ing areas between P1, P2, P3 and S1 are basically the same, 
and S is uniformly taken as the facing area between the turns 
of the primary and secondary windings.

The charge QP1 S1 stored between the first turn P1 of the 
primary winding and the secondary winding S1 can be ex‐
pressed as:

(a) Outlet port: 180° (b) Outlet port: 135° (c) Outlet port: −135°
▲Figure 2. Schematic diagrams of different angles of the outlet ports of 
the primary and secondary windings

180° 135° 

−135° 
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Qp1 s1 = Cp1 s1 ( vp1m - vs1m ), (6)
where Cp1 s1 is the total structural capacitance between P1 and 
S1, vp1m is the midpoint voltage of P1, and vs1m is the midpoint 
voltage of S1.In the same way, the charge QP2 S1 stored between the sec‐
ond turn P2 of the primary winding and the secondary wind‐
ing S1 is:

Qp2 s1 = Cp2 s1 ( vp2m - vs1m ), (7)
where Cp2 s1 is the total structural capacitance between P2 and 
S1, and vp2m is the midpoint voltage of P2.

The charge QP3 S1 stored between the third turn P3 of the 
primary winding and the secondary winding S1 is:

Qp3 s1 = Cp3 s1 ( vp3m - vs1m ), (8)
where Cp3 s1 is the total structural capacitance between P3 and 
S1, and vp3m is the midpoint voltage of P3.

Then the charge Qall stored between the primary and sec‐
ondary windings of the entire planar transformer can be ex‐
pressed as:

Qall = Qp 1 s 1
+ Qp 2 s 2

+ Qp 3 s 3
, (9)

From the perspective of the entire planar transformer, the 
planar transformer in Fig. 4 has four endpoints: A, B, C, and 
D, where A and C are ends with the same name. According to 
the relationship between the voltage ratio of the primary and 
secondary sides of the transformer and the turn ratio, it can 
be known that the voltage drop Δvp per turn of the primary 

winding of the transformer is the same as the voltage drop 
Δvs per turn of the secondary winding. If the voltage drop per 
turn is Δv, then we have:

Δv = vp

Np
= vs

NS
, (10)

where vp is the port voltage of the entire primary winding of 
the planar transformer, vs is the port voltage of the entire sec‐
ondary winding of the planar transformer, Np is the number of 
turns of the primary winding of the planar transformer, and 
Ns is the number of turns of the secondary winding of the pla‐
nar transformer. According to the stacked structure of the 
planar transformer, Np takes 3 and Ns takes 1.

Considering the voltage distribution of the planar trans‐
former winding in Fig. 4, it is only necessary to select the 
voltage of a certain point on the primary winding of the trans‐
former as the voltage reference point, and the potential of 
any other point can be expressed by the voltage reference 
point and the voltage drop Δv per turn; the same is true for 
the secondary winding.

The point inside the transformer winding is used as the 
voltage reference point. When modeling, the model of the 
transformer needs to be split, which complicates the model‐
ing. Therefore, in order to simplify the modeling, the four ter‐
minals A, B, C, and D of the transformer are used as alterna‐
tive voltage reference points. By selecting point B of the pri‐
mary winding and point D of the secondary winding as the po‐
tential reference points, the midpoint potentials vp 1m

, vp 2m
, vp 3m

 

and vS 1m
 of each turn winding in the planar transformer can 

be expressed as:
vp 1m

= vB + 2.5Δv, (11)

vp 2m
= vB + 1.5Δv, (12)

vp 3m
= vB + 0.5Δv, (13)

(a) Laminated structure (b) Layer spacing
▲ Figure 3. Schematic diagram of the laminated structure of a planar 
transformer
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P2
P3
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d1
d2
d3
d2
d3
d2
d3
d2
d3
d2
d3
d2
d1

▼Table 1. Planar transformer laminated structure parameters
d1/mil

4.5
d2/mil

4.3
d3/mil

5
S/mm2

214.5

▲Figure 4. Flat transformer winding voltage distribution
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vs 1m
= vD + 0.5Δv . (14)

Substituting Eqs. (6)–(8) and Eqs. (11)–(14) into Eq. (9), 
the total induced charge Qall can be expressed as:

Qall = (Cp1 s1 + Cp2 s1 + Cp3 s1 ) vBD +
(2Cp1 s1 + Cp2 s1 )Δv, (15)

where Cp1 s1, Cp2 s1, and Cp3 s1 are quantitative after the planar 
transformer structure and material are determined, and the 
induced charge Qall can be calculated with only two voltage 
variables vBD and Δv. Qall reflects the induced charge be‐
tween the primary and secondary windings, and replaces the 
voltage variable Δv with the voltage variables vAD and vBD be‐
tween the primary and secondary windings, as shown in 
Eq. (16).

Δv = vA - vB3 = vAD - vBD3 . (16)
Substituting Eq. (16) into Eq. (15) and eliminating Δv, we 

can get:
Qall = ( 1

3 Cp1 s1 + 2
3 Cp2 s1 + Cp3 s1 ) vBD + ( 2

3 Cp1 s1 + 1
3 Cp2 s1 ) vAD.

(17)
Eq. (17) shows that the induced charge Qall is divided into 

two parts, and the induced charge Qall can be reduced to the 
transformer port BD and port AD. Then the expressions of ca‐
pacitance CBD and CAD are:

CBD = 1
3 Cp1 s1 + 2

3 Cp2 s1 + Cp3 s1, (18)

CAD = 2
3 Cp1 s1 + 1

3 Cp2 s1 . (19)
The capacitance CBD between B and D and the capacitance 

CAD between A and D are the equivalent common-mode ca‐
pacitance of the planar transformer. The sum of the induced 
charges at both ends of the capacitance CBD and CAD is Qall. The corresponding two-capacitor models of the transformer 
are shown in Fig. 5.
3 Electromagnetic Compatibility Equiva‑

lent Circuit Model of Planar Transformer
The electromagnetic compatibility equivalent circuit 

model of the full-bridge transformer is shown in Fig. 6. This 
model can not only realize the energy transmission character‐
istics of the transformer but also reflect its electromagnetic 
compatibility characteristics.

Np represents the number of turns of the primary winding, 
Ns the number of turns of the secondary winding, ZLk the 
leakage inductance impedance, ZLm the magnetizing induc‐
tance impedance, and ZC1 and ZC2 the common mode equiva‐
lent capacitance impedance. When the frequency is low, ZLk and ZLm can be represented by pure inductance, and ZC1 and 
ZC2 can be represented by pure capacitance. However, as the 
frequency increases, the electromagnetic environment inside 
the transformer becomes more and more complex, and the 
electromagnetic compatibility characteristics inside the 
transformer can no longer be represented by the pure induc‐
tance or pure capacitance model of these four impedance pa‐
rameters. At the same time, in order to take into account the 
basic circuit functions of transmitting energy, the lumped 
concept is adopted, and the positions of ZLk, ZLm, ZC1, and 
ZC2 are kept unchanged. According to the specific imped‐
ance curve of the four parameters, a high-order model com‐
posed of inductance, resistance and capacitance is used to 
represent the electromagnetic compatibility equivalent cir‐
cuit model of the planar transformer. At the operating fre‐
quency of the switch tube of the isolated converter, the 
model can realize the energy transfer from the primary side 
to the secondary side, and at the frequency of conducted elec‐
tromagnetic interference, the model can reflect the electro‐
magnetic compatibility characteristics of the transformer.

To extract ZC1 and ZC2, it is necessary to simulate the ac‐
tual working conditions of the planar transformer in the full-
bridge circuit, and to form the same potential distribution on 

▲Figure 5. Two-capacitor model

▲ Figure 6. Electromagnetic compatibility equivalent circuit model of 
planar transformer
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the primary and secondary windings of the transformer as the 
actual working condition. Fig. 7 shows the schematic dia‐
gram of the simulation wiring diagram of the actual working 
condition of the full-bridge transformer. The network ana‐
lyzer Port1 applies voltage excitation. The excitation output 
terminal of Port1 is connected to the primary winding point A 
of the full-bridge transformer, and the other excitation output 
reference terminal is connected to the primary winding point 
B of the full-bridge transformer. The network analyzer Port2 
receives the common mode noise current generated by the 
planar transformer, the signal-receiving terminal of Port2 is 
connected to the secondary winding point D, and the other 
signal-receiving reference terminal is connected to the pri‐
mary winding point B.

The measurement result of the network analyzer is the 
scattering matrix, that is, the S-parameter matrix, which de‐
scribes the relationship between the reflected wave of the 
port voltage and the incident wave. According to the relation‐
ship between the port voltage and the current, the S-
parameter matrix can be converted into a Z-parameter ma‐
trix, as shown in Eq. (20).

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

Z11 = Z0
( )1 + S11 ( )1 - S22 + S12 S21
( )1 - S11 ( )1 - S22 - S12 S21

Z12 = Z0
2S12

( )1 - S11 ( )1 - S22 - S12 S21

Z21 = Z0
2S21

( )1 - S11 ( )1 - S22 - S12 S21

Z22 = Z0
( )1 - S11 ( )1 + S22 + S12 S21
( )1 - S11 ( )1 - S22 - S12 S21  , (20)

where S21 and S12 are the transmission coefficients in the 
scattering matrix, S11 and S22 are the reflection coefficients in 

the scattering matrix, and Z0 is the characteristic impedance.
According to the test principle, the magnetic field of the 

magnetic core of the planar transformer is excited during the 
test, the potential distribution of the primary and secondary 
windings of the transformer is formed, and the leakage mag‐
netic field between the primary and secondary windings is 
formed. Therefore, the network analyzer measures a two-port 
network containing transformer leakage inductance Lk, exci‐
tation inductor Lm, and equivalent common-mode capacitors 
C1 and C2. We simplify the wiring schematic of Fig. 7 and 
obtain an equivalent circuit diagram for measurement as 
shown in Fig. 8.

According to the circuit theory, the two-port Z-parameter 
can be expressed as:

ì
í
î

ïï

ïïïï

U
·

1 = Z11 I
·

1 + Z12 I
·

2

U
·

2 = Z21 I
·

1 + Z22 I
·

2 . (21)
The test result of the network analyzer is a two-port matrix, 

which makes Fig. 8 further equivalent to the two-port net‐
work of Fig. 9, and the Z-parameter expression of the two 
ports is shown in Eq. (21). For the reciprocal two-port net‐
work with three variables Z11, Z12(=Z21), and Z22, three equa‐
tions can be listed, and three unknowns can be solved theo‐
retically.

AC: alternating current
▲Figure 7. Schematic diagram of the simulation wiring diagram of the 
actual working condition of the full-bridge transformer

AC: alternating current
▲ Figure 8. Equivalent circuit diagram of simulated wiring of full-
bridge transformer in actual working conditions

▲Figure 9. Two-port equivalent circuit diagram
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İ2

U̇2

110



ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

LI Wei, JI Jingkang, LIU Yuanlong, SUN Jiawei, LIN Subin 

Simulation and Modeling of Common Mode EMI Noise in Planar Transformers   Research Papers

Therefore, for the above two-port equivalent circuit, first, 
the transformer secondary port CD in Fig. 6 is short-
circuited, and the leakage inductance impedance ZLk is mea‐
sured using a network analyzer or impedance analyzer. In 
Fig. 9, given ZLk, opening the port Port2, we can get Eqs. 
(22) and (23):

Z11 = U
·

1
I
·

1

|
|
||||

I
·

2 = 0 = ZLk + ZLm // (ZC1 + ZC2 ) ,
(22)

Z12 = Z21 = U
·

2
I
·

1

|
|
||||

I
·

2 = 0 = [ ]ZLm // ( )ZC1 + ZC2 ZC2
ZC1 + ZC2  . (23)

By opening Port1, Z22 can be represented as:

Z22 = U
·

2
I
·

2

|
|
||||

I
·

1 = 0 = ZC2 // (ZC1 + ZLm ) .
(24)

Combining Eqs. (22)– (24), we can get the expressions of 
ZLm, ZC1 and ZC2 with ZLk, and Z11, Z12 and Z22 as variables:

ZLm = Z11 Z22 - Z21 2 - ZLk Z22
Z22 - Z21  , (25)

ZC1 = Z11 Z22 - Z21 2 - ZLk Z22
Z21  , (26)

ZC2 = Z11 Z22 - Z21 2 - ZLk Z22
Z11 - ZLk - Z21  . (27)

ZLm, ZC1 and ZC2 can be solved according to Eqs. (25)–
(27). After obtaining the impedance curves of the parameters 
ZLm, ZC1, ZC2 and ZLk required for modeling, the circuit pa‐
rameters of the electromagnetic compatibility equivalent cir‐
cuit model of the planar transformer are determined by the 
method of circuit model fitting.
4 Planar Transformer Simulation

4.1 Extraction of Material Parameters of Planar Trans‑
former Core

To obtain the impedance curves of magnetic core materials 
such as inductors and transformers with the help of simula‐
tion tools, it is first necessary to extract the complex perme‐
ability of the magnetic core material. The complex permeabil‐
ity of the magnetic core material has an important influence 
on the electromagnetic compatibility characteristics of mag‐
netic components, and is of great significance for the product 
design selection of magnetic components and the research on 
electromagnetic compatibility characteristics. Although the 

data sheets provided by some magnetic core material manu‐
facturers will include the complex permeability of the mag‐
netic core material, the complex permeability frequency 
range provided in the data sheet is usually in the range of 
several kHz to several MHz, which cannot completely cover 
the frequency band range of conducted electromagnetic inter‐
ference research (150 kHz–30 MHz). Therefore, it is neces‐
sary to extract the complex permeability of the magnetic core 
material through experimental measurement.

Because the distribution parameters of magnetic compo‐
nents are very rich, there are distributed capacitances be‐
tween the magnetic core and the windings, and between the 
windings. To reduce the effect of distributed capacitance on 
complex permeability measurements, the complex permeabil‐
ity of a magnetic core is measured using a single-turn center‐
ing method, as shown in Fig. 10. The single-turn winding 
uses copper wires with a short length and a major diameter to 
reduce the influence of the winding loss and lead inductance 
of the single-turn winding on the measurement of the com‐
plex magnetic permeability of the magnetic core.

The impedance characteristic of the single-turn coil is 
measured with an impedance analyzer. The equivalent model 
of the measurement is:

Z = Rs + jωLs, (28)
where Rs and Ls are the equivalent series resistance and 
equivalent series inductance of the magnetic component un‐
der test, respectively. It can be approximated that the Rs in 
the test result is only generated by the core loss, and Ls is 
only generated by the magnetic permeability of the magnetic 
core.

Thus according to the definition of complex permeability:
μ = μ′ - j μ″, (29)

▲ Figure 10. Experimental diagram of the single-turn through-center 
measurement method
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where μ′ is the real permeability and μ″ is the imaginary per‐
meability. The equivalent series model of the core imped‐
ance can be expressed as:

Z = jω
μN 2 Ae

le  , (30)
where N is the number of turns of the winding, le is the 
equivalent magnetic circuit length, Ae is the cross-sectional 
area of the magnetic core, and ω is the measured angular 
frequency.

Substituting Eq. (29) into Eq. (30), we can get:
Z = jω

( μ′ - jμ″)N 2 Ae
le  . (31)

Comparing Eqs. (28) and (31), we can get the real and 
imaginary parts of the complex permeability of the magnetic 
core as follows:

μ′ = Ls le
N 2 Ae

, (32)

μ″ = Rs le
ωN 2 Ae

. (33)
The core loss tangent is:
tan (θ ) = μ″

μ′ . (34)
In order to verify that the complex permeability obtained 

by the experimental measurement can truly represent the 
core parameters of the actual sample in the finite element 
simulation software, an impedance analyzer is used to extract 
the complex permeability of the magnetic ring in Fig. 11 ac‐
cording to the method in Fig. 10. The impedance analyzer 

model is WK 6500B, the core material of the magnetic ring is 
DMR96, the measured outer diameter is 25 mm, the inner di‐
ameter is 15 mm, and the height is 7 mm.

The real and imaginary parts of the complex magnetic per‐
meability of the magnetic ring obtained by the impedance 
analyzer are shown in Fig. 12.
4.2 Planar Transformer Simulation Modeling

The measurement of the two-port parameters of the planar 
transformer by the network analyzer is introduced previously. 
According to the measurement results, the impedance curves 
of the leakage inductance, magnetizing inductance and 
equivalent common mode capacitance of the transformer are 
obtained, and the electromagnetic compatibility equivalent 
circuit model of the transformer is established. However, the 
method based on the actual sample measurement of the trans‐
former cannot realize the prediction of conducted EMI noise 
in the design stage of planar transformer, and the method of 
deriving the equivalent capacitance of common-mode noise 
based on the theory of transformer winding stacked structure 
can only reflect the transmission characteristics of trans‐
former common-mode noise at low frequency. The electro‐
magnetic field finite element simulation software HFSS of 
Ansys can simulate the function of the network analyzer, ob‐
tain the two-port Z-parameters of the transformer, and realize 
the extraction of the wide-band parameters of the planar 
transformer without physical objects. At the same time, due 
to the use of a planar transformer, the accuracy and consis‐
tency of the winding structure parameters are higher than 
those of the traditional manual winding transformer, which is 
conducive to improving the consistency between the simula‐
tion model and the real thing.

Take the planar transformer of the full-bridge circuit as 
an example. The magnetizing inductance is designed to be 
110 μH, the turn ratio of the primary winding and the sec‐
ondary winding is 3: 1, the number of turns on the primary 
side is 3, and the number of turns on the secondary side is 
1. The core material is DMR96, the relative permittivity of ▲Figure 11. Actual core samples

▲Figure 12. Real and imaginary parts of core complex permeability ex‑
tracted by the impedance analyzer
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plate FR4 is set to 4.4, and the physical diagram and simu‐
lation model of the planar transformer are shown in Fig. 13. 
The physical diagram of Fig. 13(a) shows that the planar 
transformer of the full-bridge circuit is integrally installed. 
We import the PCB of the full-bridge circuit into the simula‐
tion software and separate the PCB layout of the winding 
part of the planar transformer to establish the simulation 
model of the planar transformer.

The actual planar transformer magnetic core is composed 
of two magnetic cores. Generally, in order to control the in‐
ductance of the magnetizing inductance during the produc‐
tion process, an air gap will be opened on the central column 
of the magnetic core. This air gap is very small and difficult 
to measure accurately, but the size of the air gap can be de‐
termined by comparing the magnetizing inductance. In the 
simulation, the transformer’s secondary winding is left open 
and the primary winding is excited, and the input impedance 
curve can be obtained, which includes the magnetizing in‐
ductance, the leakage inductance and the inter-turn capaci‐

tance of the transformer. Since the planar transformer adopts 
the interleaved winding method, the leakage inductance is 
far smaller than the magnetizing inductance. The input im‐
pedance curve at a low frequency can be approximately re‐
garded as the impedance curve of the magnetizing induc‐
tance. After determining the size of the air gap, we short-
circuit the secondary winding to obtain the leakage induc‐
tance ZLk impedance curve of the transformer. After that, we 
add excitation according to the measurement method in Fig. 
7 to obtain the Z-parameter impedance curve of the trans‐
former at two ports, and derive ZLm, ZC1, and ZC2 in the model 
according to Eqs. (25) – (27). The simulation results are 
shown in Fig. 14.
5 Experimental Verification

We use the full-bridge circuit module in the wireless base 
station power supply as the experimental prototype. The 
rated input voltage of the full-bridge circuit module is 48 V, 
the rated output voltage is 12 V, the rated output current is 
35.8 A, and the operating frequency of the circuit is 170 
kHz. The experimental prototype is shown in Fig. 15. The 
planar transformer used in the experimental prototype is the 
transformer mentioned above. The conduction test of the full 
bridge circuit is shown in Fig. 15.

According to the generation and conduction mechanism of 
common mode noise which is mainly caused by the instanta‐
neous potential change when the switching device is turned 
on or off, and the distributed capacitance that exists between 
the power supply and ground is affected by the rising and 
falling edges of the switching device voltage, resulting in 
noise currents flowing through the line impedance stabiliza‐
tion network (LISN), ground, and P and N lines with the 
same amplitude and direction. The common-mode noise cir‐

▲Figure 15. Full bridge circuit conduction test

(a) Full bridge circuit plane transformer (b) Simulation model of planar transformer
▲Figure 13. Full-bridge circuit planar transformer simulation model

▲Figure 14. Planar transformer simulation results
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cuit of the full-bridge circuit is shown in Fig. 16. There are 5 
main potential jump points, of which the four potential jump 
points are the 4 terminals of the transformer. Part of the 
common-mode noise current at the two potential trip points 
on the primary side of the transformer conducts the common-
mode noise current to ground through the switching device’s 
coupling capacitor to the ground, and the other part of the 
common-mode noise current is transmitted from the primary 
side to the secondary side through the interturn capacitance 
of the transformer through the potential change of the trans‐
former primary side and the secondary side winding, and 
then flows into the earth, LISN, and back to the primary side. 
For the two potential jump points on the secondary side of 
the transformer, since the secondary side is connected to the 
ground, the common-mode noise current flowing through the 
coupling capacitor between the switching device and ground 
flows directly back on the secondary side without flowing 
through the LISN.

According to the substitution theorem, the switches Q1, Q3, 
Q6, and Q7 and the output inductor Lo are equivalent to cur‐
rent sources, and the switches Q2, Q4, Q5, and Q8 are equiva‐
lent to voltage sources. The input capacitor Cin and the out‐
put capacitor Co can be regarded as a short circuit due to 
their small impedance, and the common mode impedance 
Zcm of the LISN can be regarded as 25 Ω. The equivalent cir‐
cuit diagram after the application of the substitution theorem 
is shown in Fig. 17.

When the current sources work together, all voltage 
sources are short-circuited, and an equivalent circuit dia‐
gram can be obtained. The primary current source is short-
circuited, the voltage at the transformer port is 0, and the sec‐
ondary side current source is connected in parallel across 
the secondary winding of the transformer, which is also short-
circuited. All current sources are short-circuited when the 
current source is active, and no common mode noise current 
is formed in Zcm. The equivalent circuit diagram consider‐
ing only the current source is shown in Fig. 18.

When the voltage sources work together, open all current 
sources to obtain the equivalent circuit diagram. The equiva‐

lent circuit diagram considering only the voltage sources is 
shown in Fig. 19. Q2, Q4 and Q8 will generate common mode 
noise current on Zcm. Using the superposition theorem for the 
voltage sources Q2, Q4, and Q8, the common-mode noise volt‐
age V· cm generated on Zcm can be found:
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We use an oscilloscope to measure the voltage waveforms 

V
·

Q2, V
·

Q4, and V
·

Q8 across the switching tubes Q2, Q4, and Q8,  
perform Fourier decomposition on them, substitute the re‐
sults into Eq. (35) to obtain the predicted noise spectrum, 
and compare it with the measured results, which is shown in 

LISN: line impedance stabilization network
▲Figure 16. Full-bridge circuit noise path 

LISN

1 μF 1 μF 50 Ω
50 Ω

0.1 μF
0.1 μF

50 μF
50 μF Cin

Q2

Q1 Q3

Q4 Q6

Q5 Q7

Q8
Co

Lo

R

▲Figure 17. Equivalent circuit diagram after applying the substitution 
theorem
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Fig. 20. The noise prediction results are in good agreement 
with the measured results, which shows the accuracy of the 
extraction and modeling of the common mode noise equiva‐
lent circuit of the planar transformer.
6 Conclusions

In this paper, the mechanism of common-mode noise con‐
duction of planar transformers is analyzed and a method for 
extracting planar transformer models through simulation is 
introduced. The following conclusions are obtained:

1) The common-mode noise transmission capability of pla‐
nar transformers is reflected in the induced charge Q be‐
tween the primary and secondary windings of planar trans‐
formers. At the same time, according to the theoretical deri‐
vation of the potential distribution on the planar transformer 
winding, the induced charge Q can be represented by two ca‐
pacitors.

2) When using a network analyzer to measure a planar 
transformer, the measurement result is a two-port network in‐
cluding leakage inductance, magnetizing inductance, and 
inter-turn capacitance.

3) With the help of the simulation software, the Z-
parameters of the planar transformer can be obtained, and 
the EMI model of the planar transformer can be established 
through the Z-parameters. Finally, the accuracy of the simu‐
lation and modeling is verified through a full-bridge circuit 
prototype experiment.
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1 Introduction

With the deployment and advancement of the 5G 
“new infrastructure” strategy, a series of techno‐

logical innovations for the new generation of rail‐
way mobile communication are actively being car‐

ried out in China. Taking 5G as an opportunity, 5G for Rail‐
way (5G-R) has been widely regarded as a solution to meeting 
the diverse requirements of railway wireless communica‐
tions[1–2]. Railway 5G is composed of 5G-R and the public 5G 
network dedicated to the railway. Among them, 5G-R refers to 
a private 5G network that provides services for the railway sys‐
tem, which is completely independent and highly reliable. 
However, the current 5G-R bandwidth is limited and cannot 
carry a large number of high-bandwidth services in railways[3]. 
It is necessary to use the dedicated frequency of the public 5G 
network to carry out some services uncorrelated to driving 
safety because the 5G-R frequency has not been approved. At 
present, the development of the Railway 5G is in the prelimi‐
nary stage, without enough technical standards for the con‐
struction of a railway wireless network. For various scenarios 
with higher frequencies, it is necessary to conduct a large num‐
ber of field measurements and tests to collect test data. The 

current technical standards can be summarized and improved 
more accurately based on these data. Compared with the previ‐
ous, the current railway system has changed a lot. Therefore, 
we need to determine the field strength prediction model un‐
der typical railway scenarios and provide corresponding tech‐
nical standards for the construction of the Railway 5G through 
the evaluation of wireless network coverage. At the same time, 
high-speed railway is also one of the important application sce‐
narios of the 6G mobile communication technology in the fu‐
ture. A 6G network can provide more comprehensive perfor‐
mance indicators, such as ultra-low delay jitter, ultra-high se‐
curity, stereo coverage, and ultra-high positioning accuracy. 
With the help of 6G, more high-speed railway business and ap‐
plication requirements can be realized, and the development 
of railway digitalization can be promoted[4]. Therefore, we not 
only need to build a 5G-R network in an all-round way, but 
also make theoretical and technical preparations for 6G.

The channel parameters of 5G including path loss exponent 
and shadow fading were measured in the scene of campus in 
Ref. [5]. A new path loss prediction model for the viaduct area 
was deduced through statistical analysis of the measurement 
results in Ref. [6]. To model the path loss of viaducts and 
plains, Ref. [7] proposed a modified free space model with 
good results. The authors in Ref. [8] divided viaducts into four 
areas: suburban, open, mountainous and urban. They calcu‐
lated respective path loss exponent and standard deviations of 
shadow fading. Ref. [9] measured and analyzed the path loss 
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for the 915 MHz railway yard environment. For the scenarios 
of high-speed railway noise barriers and forests, the channel 
characteristics including delay spread and Doppler spread 
were analyzed based on ray tracing in Ref. [10]. On the basis 
of Ref. [10], the authors utilized multiple antennas for model‐
ing and supplemented the discussion of received power in Ref. 
[11]. Curved and straight tunnels were measured at 900 MHz 
and 2 100 MHz, and the path loss modeling under train-to-
train (T2T) communication was fitted[12]; Based on ray tracing 
simulation technology, the channel parameters such as path 
loss, delay spread, and Doppler spread under the 5G system 
in the urban rail viaduct scenario were analyzed[13].

The main contributions made in this paper are summarized 
as follows.

Considering the influence of the main lobe and side lobe of 
the directional antenna pattern of a base station, two methods 
of dividing the propagation area are proposed: one is based on 
the side lobe and main lobe coverage area division, and the 
other is based on the center of the main lobe of the antenna 
pattern. And the above two methods were compared with the 
Fresnel band gap division method.

Based on the field strength data measured in the actual mar‐
shalling yard scene, the above-mentioned conjecture of the di‐
vision of the propagation area is verified, and a large-scale fad‐
ing empirical model is established. The radio wave propagation 
area is divided into Area A and Area B for segmental modeling.

It is concluded that the path loss model of Area A is similar 
to the two-path model, and that of Area B is consistent with 
the traditional empirical model of large-scale fading.

Combined with the Hata model, the relationship between 
the correction factor and the antenna height of the base station 
in the marshalling station scenario is fitted. Then we propose a 
correction factor for Area B and establish an empirical model 
about this area.
2 Data Preprocessing

2.1 Antenna Gain Check
The effects of the main lobe and side lobes of the antenna 

pattern should be taken into account to build an accurate path 
loss model. By verifying the antenna gain of the original data 
samples, the application scope of the model can be expanded 
effectively. Firstly, we verify the original measurement data to 
obtain the received power of the reference signal at the test 
point. The path loss of the test point is given by

PL (d ) = Pt - Pr (d ) + G (d, θ1 ) - L loss, (1)
where Pt defines the reference signal transmitting power, 
Pr (d ) is the test point reference signal received power, L loss denotes the feeder and its connection loss in the test system, 
and G (d, θ1 ) expresses the vertical gain sum of the transmit‐
ting and receiving antennas of the base station.

The horizontal beam of the transmitting antenna we adopted 

is wide, and the receiving antenna is a horizontal omnidirec‐
tional antenna. The antennas are linear coverage in the sce‐
nario of a marshalling yard. It can be approximately consid‐
ered that the gain of the transmitting and receiving antennas is 
invariable on the horizontal plane. Therefore, only the vertical 
antenna pattern is considered and the horizontal is irrespec‐
tive in this paper.

Result PL (d ) obtained after antenna gain verification is the 
sum of path loss and shadow fading. Relative to the transmitting 
antenna, the receiving antenna moves slowly and the shadow fad‐
ing has less effect on the overall results. Therefore, a large-scale 
path loss model is built based on the results obtained through an‐
tenna gain verification in the following work of this paper.
2.2 Radio Wave Propagation Area Division

The base station antennas generally used in the construc‐
tion of rail transit wireless communication systems are high-
gain directional antennas. Directional antennas are character‐
ized by a small coverage angle, strong directivity, and a large 
signal gap between the main lobe and the side lobe. Fig. 1 is a 
2D schematic diagram of a directional antenna system, where 
θ1 denotes the downtilt angle of the base station antenna, tak‐
ing into account both mechanical downtilt and electrical down‐
tilt, and θ2 denotes the 3 dB lobe width of the base station an‐
tenna in the vertical direction.

In Fig. 1，Point O represents the location of the base station 
tower, Point A represents the position of the vertical side lobe 
edge of antenna, and Point B represents the center position of 
the vertical main lobe of antenna. In other words, the direction 
of the base station antenna pointing to Point B is the main ra‐
diation direction of the antenna, which indicates the direction 
with the largest gain in the antenna pattern. Generally, the 
gain of the directional antenna pattern is large and uniform in 
the main lobe, while the gain in the side lobes is small and 
fluctuates greatly. The main lobe and side lobes will have a 
great impact on the received power. The antenna pattern of the 
transceiver antenna should be considered as a whole to ensure 
accurate results.

▲Figure 1. 2D schematic diagram of directional antenna system
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The antenna pattern in the near-field area of the base sta‐
tion has low receiving intensity and large fluctuation, which is 
different from the variation trend of the received power and 
distance of the reference signal outside the near-field area. 
From the antenna pattern of the base station antenna, it can be 
seen that the side lobe gain of the base station antenna fluctu‐
ates by 10–20 dB. The received power of the reference signal 
will be affected by both the gain of the transmit antenna and 
that of the receive antenna. It is indicated that the path loss 
model in this part of the region no longer follows the logarith‐
mic fading model[14].

The path loss model divides the antenna coverage area into 
two parts based on the side lobe and main lobe coverage ar‐
eas, which are referred to here as Area A and Area B. Segmen‐
tation is performed with Fresnel zone gaps in Ref. [15]. There 
are three ways to divide the propagation area:

1) The antenna coverage area is divided based on the side 
lobe and main lobe coverage areas, which is the distance of 
the line segment OA in Fig. 1. The distance of OA is given by:

d1 = Δh

tan ( )θ1 + θ22 . (2)
2) The propagation area can be divided based on the center 

position of the main lobe of the antenna pattern, which is the 
distance of the line segment OB in Fig. 1. The distance to OB 
is given by:

d1 = Δh
tan (θ1 ) . (3)

3) The propagation area can also be divided according to 
the Fresnel zone gap, and the distance is given by:

d1 = 4ht hr

λ . (4)

3 Path Loss Statistical Modeling for Area A
The marshalling yard scenario tested is somewhat similar to 

the cutting scenario in rail transportation. The railway yard is lo‐
cated in the middle, with slopes and mountains covered with 
trees on one side and several workshops on the other side. Ac‐
cording to the analysis, the received signal may be affected by 
direct waves, reflected waves, and scattered waves. The test area 
includes three base stations and nine cells. In the measurement, 
the transmitter uses a 5G AAU base station with an antenna gain 
of 24.5 dBi, the receiver uses a PCTEL horizontal omnidirec‐
tional antenna, and SPARK software is used for data storage and 
visual analysis. We select one of the cells for specific analysis.

An example of a single measurement result of the path loss 
after the antenna gain verification process of 150 cells in the 
marshalling station scenario is shown in Fig. 2. It can be seen 

from the figure that the path loss in the near-field area of the 
base station fluctuates greatly, which is different from the 
variation trend with a distance of the far-field area. When the 
conditions of 150 cells is substituted, it is calculated that 
OA = 154.64 m, OB = 214.66 m, and the Fresnel zone gap = 
1212.17 m. From the actual test results in Fig. 2, it can be 
concluded that the boundary points in Definition (2) can better 
represent the boundary points of Area A and Area B, and the 
conclusions of other cells are similar. To sum up, Point B is di‐
vided as the breakpoint of the propagation area, and the mod‐
els built in subsequent segmentation are based on this.

Due to the presence of a large number of metal products in 
the marshalling yard scenario, the influence of the reflection 
path in the near-field area is difficult to ignore. By contrasting 
the accuracy of the two-path model and the logarithmic fading 
model in Area A, we make statistics based on the path loss 
prediction error e (i ) of the sample points in each cell. The cal‐
culation formula of e (i ) is given by:

e (i ) = PLmeasure (i ) - PLpredict (i ), (5)
where i denotes the cell sample point number, PLmeasure (i ) is 
the i-th measured data sample, and PLpredict (i ) defines the i-th 
predicted data sample.

Under the same conditions, probability statistics are per‐
formed based on e (i ) of the path loss results predicted by the 
logarithmic fading model and the two-path model in the test 
cell of Area A. The corresponding cumulative distribution 
function (CDF) results are shown in Fig. 3. The average pre‐
diction error of the two-path model is 2.80 dB, and the stan‐
dard deviation is 7.24 dB. The average prediction error of the 
logarithmic fading model is 4.75 dB, and the standard devia‐
tion is 8.26 dB. At the same time, it can be seen from Fig. 3 
that in Area A, compared with the logarithmic fading model, 
the average prediction error of the two-path model is smaller 
and the change is more stable, which is more consistent with 
the actual measured data. Therefore, according to the calcula‐
tion results, it can be concluded that in the marshalling station 

▲Figure 2. Path loss of 150 cells of the marshalling station
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scenario, the change of path loss in Area A obeys the two-path 
model. The received power of the two-path model is as:

Pr = Pt ( λ
4π )2

|

|

|
||
|
|
| Gl

dd
+ ξ

Gr e- jkλ (dr - dd )

dr

|

|

|
||
|
|
|
2

, (6)
where dd is the length of the direct path of the transmitter and re‐
ceiver, dr is the total length of the reflection path of the transmit‐
ter and receiver, kλ is the wave number, and ζ is the reflection 
coefficient of the ground. In general, ζ=−1，Gl = GaGb, and Gl  
is the total gain of the transmitting and receiving antennas on the 
direct path from the transmitter to the receiver; Gr = GcGd, and 

Gr  is the total gain of the transmitting and receiving antennas 
on the reflective path from the transmitter to the receiver.

The fitting results of the two-path model are shown in Fig. 4.
4 Path Loss Statistical Modeling for Area B

In this section, an empirical model of large-scale fading of 
radio waves is established based on a large number of test 

samples obtained in the marshalling station Area B. Among 
them, the carrier frequency of the base station is fixed at 
2.6 GHz, and the height of the receiver antenna is fixed at 
1 m. We build a statistical model of Area B utilizing the 
path loss PL, the distance d of the transceiver antenna, and 
the height of the base station antenna ht in the test data.

The path loss formula of the Hata model is as follows:
PLHata = 69.55 + 26.16lg fc - 13.82lg ht - α (hr ) +
(44.9 - 6.55lg ht ) lg d, (7)

α (hr ) =
ì

í

î

ï
ïï
ï
ï
ï

ï

ïï
ï
ï

ï

(1.1lg fc - 0.7)hr - (1.56lg fc - 0.8),      medium and small cities
8.29 lg2 (1.54hr ) - 1.1,           large city,   fc ≤ 200 MHz
3.2 lg2 (11.75hr ) - 4.97,         large city,   fc ≥ 400 MHz
0,                                           hr = 1.5 m ,

(8)
where fc is the frequency (the unit is MHz), ht and hr define 
the effective heights of the transmitter antenna and the re‐
ceiver antenna (the unit is m), and α (hr ) varies with the city 
size (medium and small cities; large cities) and frequency (≤
300 MHz or >300 MHz).

In different scenarios, the Hata model changes the path loss 
model by adding a correction factor, and the expression after 
adding the correction factor is shown in Eq. (9).

PLHata = Δ1 + 74.52 + 26.16lg fc - 13.82lg ht -
3.2 ( lg (11.75hr ) ) 2 + (Δ2 + 44.9 - 6.55lg ht ) lg d. (9)
One part of the correction factors Δ1 and Δ2 in the Hata 

model is linear with the logarithm of the height of the transmit‐
ting antenna, and the rest are the constants in Table 1. The 
correction factors are given by:

ì
í
î

Δ1 = p1 log10 (ht ) + q1
Δ2 = p2 log10 (ht ) + q2, (10)

where p1, p2, q1 and q2 are the undetermined coefficients.
The correction factors Δ1 and Δ2 are fitted to the height of 

the base station antenna based on the calculation results. Tak‐
ing the results of multiple tests as statistical data, we perform 
a least-square (LS) fitting model based on the path loss test 
data of nine cells. The fitting results are shown in Table 2.
▼Table 1. Correction factors of Hata model in different scenarios

Scenario
Urban area

Suburbs
Rural

Viaduct
Cutting
Station

Correction Factor Δ1
−20.47

5.74lght - 30.42
6.43lght - 30.44

−21.42
−18.78

34.29lght - 70.75

Correction Factor Δ2
−1.82
−6.72
−6.71
−9.62

51.34lght - 78.99
−8.86

▲Figure 3. Prediction error statistics of marshalling yard Area A
CDF: cumulative distribution function

▲Figure 4. Fitting two-path model for path loss in marshalling station 
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According to the results of the nine cells in the marshalling 
yard scenario, we fit the optimal regression model under each 
cell through linear regression, including the corresponding con‐
stant term and path loss exponent n, and then calculate the cor‐
responding correction factor for each cell. By conducting joint 
analysis of the height information of base stations in the corre‐
sponding cell, it is determined whether there is a significant 
linear relationship between the correction factors (Δ1 and Δ2) and the height of the base station antenna. The fitting results 
are shown in Figs. 5 and 6. The correction factors are given by:

Δ1 = -141.73, (11)
Δ2 = 17.64lght - 17.22. (12)

5 Validation and Evaluation
The empirical model proposed in this paper is compared 

with several traditional empirical models that are improved 
Hata models as well. The traditional empirical models includ‐
ing the Stanford University temporary model (SUI) and the 
Hata-Okumura extended model are selected as the reference 
model for comparison and verification. The validation data 

consist of three cells, and the validation data have the same 
measurement system as the statistical modeling data. The vali‐
dation data are not used in statistical modeling, so they can be 
used to verify the accuracy and generalizability of the model.

The SUI model, Hata-Okumura extended model and statisti‐
cal model are represented by Model 1, Model 2 and Model 3, 
respectively. Fig. 7 shows a comparison of the accuracy of dif‐
ferent models on the validation data at different prediction er‐
ror sensitivities. When the maximum prediction error sensitiv‐
ity is required to be 10 dB, the maximum prediction accuracy 
of the SUI model is 61.66%, that of the Hata-Okumura model 
is 59.55%, and that of the statistical model is 59.55% with an 
accuracy of 71.06%. In this scenario, compared with the exist‐
ing SUI and Hata-Okumura models, the accuracy of the self-
built statistical model is improved by about 11.06%. However, 
the prediction accuracies of the SUI model, the Hata-
Okumura extended model and the self-built model in the mar‐
shalling yard scenario are not much different, indicating that 
the SUI model and the Hata-Okumura extended model have 

▼Table 2. Fitting measurement results

Cell Number
62
63
64

143
150
151
156
184
185

Path Loss PL0

4.565 0
7.949 0
3.651 2

−3.014 8
−7.115 8
−4.066 2
−4.460 3

−13.105 2
0.043 9

Path-Loss Ex‐
ponent n
4.513 81
4.347 35
4.358 74
4.542 59
4.472 55
4.482 93
4.442 59
4.438 65
4.447 31

Correction Fac‐
tor Δ1

−134.29
−131.07
−136.12
−141.86
−145.97
−142.92
−143.31
−151.96
−138.89

Correction Fac‐
tor Δ2
10.16
9.25
8.37

10.64
9.95

10.05
9.64
9.44
9.53

▲Figure 5. Results of correction factor Δ1and LS regression fitting curve
LS: least-square
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▲Figure 6. Results of correction factor Δ2and LS regression fitting curve

▲Figure 7. Accuracy comparison of different models based on valida‑
tion data

CDF: cumulative distribution function      SUI: Stanford University temporary model
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certain applicable values in the marshalling yard scenario.
6 Challenges

In the statistical model, the path loss will increase with the 
growing of the distance between transceiver antennas as a 
whole. There is no need to consider detailed environmental in‐
formation when the large-scale fading empirical model is ap‐
plied to the scenario. In specific environments, such as rail‐
way marshalling yards, the transmission of radio waves may 
encounter fading and other conditions, resulting in changes in 
the final received power to reach the user, making it difficult 
to determine the specific value of the calculated path loss. 
This is also a deficiency of large-scale fading empirical mod‐
els. In the future, it is hoped to re-validate predictions with 
the help of deterministic modeling, machine learning and 
other methods to achieve higher prediction accuracy.
7 Conclusions

In this paper, the calculation method of the propagation de‐
marcation point for marshalling yard scenarios is proposed 
and verified to improve the accuracy of the subsequent empiri‐
cal model. Based on numerous measured data, a large-scale 
path loss statistical empirical model for marshalling yard sce‐
narios is established, and the propagation boundary point is re‐
garded as the model segmentation point. The path loss in Area 
A conforms to the two-path model, and that in Area B is close 
to the logarithmic model. According to the measurement data 
in different cells, the correction factor in the marshalling yard 
scenario is fitted with the Hata model as the benchmark. Fi‐
nally, the shortcomings and improvements that need to be 
made to the statistical model are discussed.
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