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Federated learning has revolutionized the way we ap‐
proach machine learning by enabling multiple edge de‐
vices to collaboratively learn a shared machine learn‐
ing model without the need for centralized data collec‐

tion. Such a new machine learning paradigm has gained sig‐
nificant attention in recent years due to its ability to address 
privacy and security concerns associated with centralized 
learning, as well as its potential to reduce communication 
overhead and improve scalability. Deploying cross-device fed‐
erated learning at the network edge over wireless networks has 
further extended its potential due to the close proximity to the 
gigantic number of mobile data and computing power provided 
by the surging number of Internet of Things (IoT) devices, and 
is expected to breed new intelligent applications that demand 
delay-sensitive and mission-critical services, such as smart in‐
dustry, auto-driving, and metaverse. Despite its great promise, 
the successful deployment of federated learning over wireless 
networks has also presented its own unique set of challenges, 
including network heterogeneity, communication delays, and 
unreliable connections.

In this special issue, a series of articles are presented to ad‐
dress the aforementioned challenges and propose innovative 
solutions to enabling federated learning over wireless net‐
works. These articles cover a wide range of topics, including 
wireless communication protocols, optimization algorithms, se‐
curity and privacy concerns, network architecture designs, 
and the application of federated learning in IoT and 5G net‐
works. The call-for-papers of this special issue have brought 
excellent submissions in both quality and quantity. After two-
round reviews, five excellent papers have been selected for 

publication in this special issue which is organized as follows.
The first paper titled “Adaptive Retransmission Design for 

Wireless Federated Edge Learning” proposes a novel retrans‐
mission scheme for wireless federated edge learning (FEEL). 
The conventional retransmission schemes for wireless sys‐
tems, which aim to maximize the system throughput or mini‐
mize the packet error rate, are not suitable for the FEEL sys‐
tem. The proposed scheme makes a tradeoff between model 
training accuracy and retransmission latency, with a retrans‐
mission device selection criterion designed based on the chan‐
nel condition, the number of local data, and the importance of 
model update. Additionally, the air interface signaling is de‐
signed to facilitate the implementation of the proposed scheme 
in practical scenarios. Simulation experiments validate the ef‐
fectiveness of the proposed retransmission scheme.

The second paper titled “Reliable and Privacy-Preserving 
Federated Learning with Anomalous Users” proposes a reliable 
and privacy-preserving federated learning scheme named 
RPPFL, based on a single-cloud model. The scheme addresses 
the issue of anomalous users holding low-quality data, which 
may reduce the accuracy of trained models. The proposed ap‐
proach identifies the user’s reliability and thereby decreases 
the impact of anomalous users, based on the truth discovery 
technique. The additively homomorphic cryptosystem is utilized 
to provide comprehensive privacy preservation (user’s local gra‐
dient privacy and reliability privacy). Rigorous theoretical analy‐
sis shows the security of RPPFL, and extensive experiments 
based on open datasets demonstrate that RPPEL compares favor‐
ably with existing works in terms of efficiency and accuracy.

The third paper titled “RIS-Assisted Federated Learning in 
Multi-Cell Wireless Networks” proposes a reconfigurable in‐
telligent surface (RIS) -assisted AirComp-based federated 
learning (FL) in multi-cell networks. The proposed system en‐
hances the poor user signal caused by channel fading, espe‐
cially for the device at the cell edge, and reduces inter-cell in‐
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Citation （IEEE Format): S. G. Cui, C. C. Yin, and G. X. Zhu, “Editorial: fed⁃
erated learning over wireless networks,” ZTE Communications, vol. 21, 
no. 1, pp. 1–2, Mar. 2023. doi: 10.12142/ZTECOM.202301001.

七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七
七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七

七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七
七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七七 Guest Editors

CUI Shuguang ZHU GuangxuYIN Changchuan

01



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

CUI Shuguang, YIN Changchuan, ZHU Guangxu 

Special Topic   Federated Learning over Wireless Networks

terference. The convergence of FL in the proposed system is 
analyzed, and the optimality gap for FL is derived. To mini‐
mize the optimality gap, the paper formulates a joint uplink 
and downlink optimization problem, which is then divided into 
two separable nonconvex subproblems. Following the succes‐
sive convex approximation (SCA) method, the paper first ap‐
proximates the nonconvex term to a linear form, and then alter‐
nately optimizes the beamforming vector and phase-shift ma‐
trix for each cell. Simulation results demonstrate the advan‐
tages of deploying a RIS in multi-cell networks, and the pro‐
posed system significantly improves the performance of FL.

The fourth paper titled “Hierarchical Federated Learning: 
Architecture, Challenges, and Its Implementation in Vehicu‐
lar Networks” discusses hierarchical federated learning (HFL) 
and its implementation in vehicular networks. HFL, with a 
cloud-edge-client hierarchy, can leverage the large coverage 
of cloud servers and the low transmission latency of the edge 
server. The limited number of participants in vehicular net‐
works and vehicle mobility degrades the performance of FL 
training, and HFL is promising in vehicular networks due to 
its lower latency, wider coverage, and more participants. The 
paper clarifies new issues in HFL, reviews several existing so‐
lutions, introduces some typical use cases in vehicular net‐
works, and discusses the initial efforts on implementing HFL 
in vehicular networks.

The fifth paper titled “Secure Federated Learning over 
Wireless Communication Networks with Model Compression” 
addresses the vulnerability of FL to gradient leakage attacks. 
A method is proposed to compress the model size to reduce the 
leakage risk and enhance the efficiency of FL. Specifically, 
this paper presents a new scheme that applies low-rank matrix 
approximation to compress the model and uses a secure matrix 
factorization technique to recover the original model. Experi‐
ments showed that the proposed method achieved better accu‐
racy and security compared with the state-of-the-art methods.

To conclude, it is hoped that this special issue will serve as a 
valuable resource for researchers, practitioners, and students 
who are interested in federated learning over wireless networks. 
We also hope that it will inspire further research in this field, 
leading to new and innovative solutions that will drive the evolu‐
tion of machine learning. Finally, we would like to express our 
sincere gratitude to all the authors, reviewers, and editorial staff 
who have contributed to the success of this special issue. Hope‐
fully, the articles in this special issue are both insightful and in‐
formative for prospective readers in the field.
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Abstract: As a popular distributed machine learning framework, wireless federated edge learning (FEEL) can keep original data local, while 
uploading model training updates to protect privacy and prevent data silos. However, since wireless channels are usually unreliable, there is 
no guarantee that the model updates uploaded by local devices are correct, thus greatly degrading the performance of the wireless FEEL. Con‐
ventional retransmission schemes designed for wireless systems generally aim to maximize the system throughput or minimize the packet error 
rate, which is not suitable for the FEEL system. A novel retransmission scheme is proposed for the FEEL system to make a tradeoff between 
model training accuracy and retransmission latency. In the proposed scheme, a retransmission device selection criterion is first designed 
based on the channel condition, the number of local data, and the importance of model updates. In addition, we design the air interface signal‐
ing under this retransmission scheme to facilitate the implementation of the proposed scheme in practical scenarios. Finally, the effectiveness 
of the proposed retransmission scheme is validated through simulation experiments.
Keywords: federated edge learning; retransmission; unreliable communication; convergence rate; retransmission latency
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1 Introduction

With the construction of smart cities, a large num‐
ber of Internet of Things devices, smartphones 
and other mobile devices have emerged from all 
aspects of our lives. The current society has en‐

tered the era of big data, and hundreds of millions of data are 
generated on mobile terminals every day[1–3], which poses 
novel challenges to both traditional centralized machine 
learning approaches and wireless communication tech‐
niques[4–5]. On the one hand, due to a large number of data, 
uploading all data to the cloud would result in a huge commu‐
nication burden[6], and on the other hand, since the data con‐
tain user privacy, such as medical health and personal prefer‐
ences, uploading raw data to the cloud would bring about the 
problem of privacy leakage[7–8].

To overcome the abovementioned challenges, a distributed 
machine learning framework named federated edge learning 
(FEEL) has been proposed recently[9–11]. Under FEEL, mul‐
tiple distributed mobile devices use their locally dispersed 
data to jointly train a common machine learning model, rather 
than transferring raw data to a central node. The original data 
containing user privacy are stored on mobile devices, and only 
the intermediate data, such as gradients and parameters, are 
transmitted so that user privacy can be protected. In addition, 
FEEL shifts the model training process from the center to the 
local devices, thus making full use of distributed computing 

resources. Due to the advantages brought by the special archi‐
tecture of FEEL, it has been intensively used in the fields of 
healthcare, computer vision, finance, etc.[12–15]

Recently, most research on FEEL assumes that communica‐
tion links are reliable. For example, Ref. [16] considers the 
method of minimizing the transmitted energy under the delay 
constraint to improve the performance of FFEL. However, in 
practice, especially in wireless FEEL, channel transmission is 
generally unreliable due to random channel fading, shadow‐
ing, and noise. The accuracy of the intermediate data transmis‐
sion during training cannot be guaranteed[17]. Retransmission 
is an important means to improve the accuracy of transmission 
in wireless communication systems, but with the cost of in‐
creasing the communication delay[18]. However, with the appli‐
cation of FEEL in medical and autonomous driving, it is more 
sensitive to the accuracy and delay of transmission[19]. This 
motivates us to investigate novel retransmission schemes for 
FEEL in this paper.
1.1 Related Work

There have been several studies considering the channel 
unreliability of wireless communications in distributed learn‐
ing systems. In Ref. [20], the wireless channel in the FEEL 
system is modeled as an erasure channel and a scheme for 
this situation is proposed, which inherits the previous round 
of gradient when the packet is lost. Based on this, the au‐
thors further analyze the influence of coding rate on wireless 
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FEEL in Ref. [21]. In Ref. [22], a decentralized stochastic 
gradient descent method under the user datagram protocol 
(UDP) is proposed to reduce the impact of unreliable chan‐
nels on decentralized federated learning. Moreover, an asyn‐
chronous decentralized stochastic gradient descent algorithm 
is proposed in Ref. [23] to reduce the impact of unreliable 
channels by performing asynchronous learning and reusing 
outdated gradients in device-to-device (D2D) networks. The 
authors in Ref. [24] have proposed an unbiased statistical re‐
weighted aggregation scheme from the perspective of gradi‐
ent aggregation, which comprehensively considers node fair‐
ness, unreliable parameter transmission, and resource con‐
straints. In Ref. [25], a sparse federated learning framework 
is proposed, which compensates for the bias caused by unre‐
liable communication through the similarity between local 
models, and adds local sparseness to reduce communication 
cost, which further improves performance. In Ref. [26], a fed‐
erated learning framework is proposed, where the central 
server aggregates the global model according to the received 
parameters and the transmission correct probability, thereby 
reducing the impact of unreliable transmission. The authors 
in Ref. [27] further propose a decentralized D2D framework 
under unreliable channels, which reduces the impact of unre‐
liable channels by jointly optimizing the transmission rate 
and bandwidth distribution.

From the perspective of wireless communication, retrans‐
mission has been applied to many current communication 
standards, including 5G and WiFi. So far, only a few works 
have studied the retransmission issue in distributed learning. 
Retransmission can improve the reliability of data packets, 
but it also reduces the timeliness of data. In some scenarios, it 
may even be considered to improve the timeliness of data at 
the cost of reduced reliability[28]. In Ref. [29], a Hybrid Auto‐
matic Repeat reQuest (HARQ) protocol suitable for multi-
layer cellular networks has been proposed, which can enhance 
error detection and correction in D2D communications. In 
Ref. [30], a retransmission scheme based on data importance 
is proposed for the edge learning system. The specific ap‐
proach of this scheme is to make a tradeoff between the signal-
to-noise ratio (SNR) and the uncertainty of the data, and corre‐
spondingly establish a threshold for retransmission.
1.2 Motivations and Contributions

As aforementioned, in wireless FEEL, devices upload gradi‐
ents to the edge server through wireless channels, which is un‐
reliable. This will affect the performance of model training. 
The goal of conventional retransmission schemes is to maxi‐
mize the throughput of correctly transmitted data. However, 
the performance of FEEL with unreliable channels is limited 
by traditional retransmission since FEEL has different goals of 
learning accuracy and learning latency. In particular, the im‐
portance of data from different devices is different and gener‐
ally contributes differently to the model training process. In 

addition, the communication cost introduced by retransmis‐
sion of each device is also different due to various channel fad‐
ing environments. The above factors need to be considered 
when developing a retransmission scheme for the edge learn‐
ing system. The main contributions of this paper can be sum‐
marized as follows.

• We first propose a FEEL framework with unreliable chan‐
nels, in which the gradients uploaded by the local devices are 
split into multiple packets, and the wireless channel exists the 
packet error rate (PER). Unreliable transmission leads to bias 
between the actual global gradient and the theoretical one, 
which is detrimental to model training.

• We mathematically analyze the effect of PER on the con‐
vergence rate and communication cost. To mitigate the impact 
of unreliable communications on learning performance, the re‐
transmission device selection is optimized by making a trad‐
eoff between convergence rate and communication cost.

• We derive the optimal solution to device retransmission 
selection, which greatly improves the model training perfor‐
mance. We also analyze the performance of the proposed re‐
transmission selection scheme and develop a signaling proto‐
col for retransmission.

• We employ a convolutional neural network (CNN) model 
of the CIFAR-10 and MNIST datasets to test the learning per‐
formance of our proposed retransmission selection scheme. 
Test results show that our proposed scheme outperforms sev‐
eral existing retransmission schemes.

The rest of the paper is organized as follows. In Section 2, 
we introduce the system model. In Section 3, the principle of 
retransmission design is introduced, and the corresponding 
protocol is proposed. In Section 4, we analyze the retransmis‐
sion gain and cost and formulate the retransmission selection 
optimization problem. The retransmission selection is derived 
in Section 5. Finally, we draw the conclusions in Section 6.
2 System Model

2.1 Machine Learning Model
As depicted in Fig. 1, we consider a FEEL system consist‐

ing of one edge server and K devices. Device k has nk locally  
labeled data, and the total number of data in the entire system 
can be represented as n = ∑

k = 1

K

nk. All devices only use their 
own data to jointly train a machine learning model w with the 
edge server, and the specific method is stochastic gradient de‐
scent (SGD). Considering the imbalance of data distribution, 
the global loss function can be written as:

L (w ) = 1
n ∑

k = 1

K

nk Lk (w ), (1)
where Lk (w ) is the loss function of device k, and we have
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Lk (w ) = 1
nk

∑
i = 1

nk

f (w, xi,k, yi,k ), (2)
where xi,k represents the i-th training data of device k, yi, k rep‐
resents the corresponding label, and f (⋅) represents the loss 
function of the training model. Some popular machine learning 
loss functions are summarized in Table 1.

The purpose of federated training is to find the optimal w* 
that minimizes L (w ). FEEL is different from the traditional 
centralized machine learning framework. In the FEEL frame‐
work, all the original data are kept on local devices, and the 
training results are uploaded to the edge server. In the t-th 
round of training, the selected devices use the local data and 
the global model wt received from the edge server to obtain the 
loss function Lk (wt ), and upload the gradient of Lk (wt ) to the 
edge server, which can be written as:  

gt
k = ∇Lk (wt ). (3)

After receiving the uploaded gradients of all selected de‐
vices, the edge server decodes the data packets and aggre‐
gates the global gradient gt as:

gt = 1
n ∑

k = 1

K

nk gt
k. (4)

Then the edge server uses the global gradient gt obtained by 
the aggregation to update the model, that is, wt + 1 = wt - ηgt, 
where η is the learning ratio. After completing the update of 
the global model, the edge server broadcasts it to each device 
in the system. In this way, one round of iterative training of 
FEEL is completed.
2.2 Wireless Communication Model

In this paper, we utilize time division multiple access 
(TDMA) as the multiple access method. In a TDMA scenario, 
all devices use the same frequency band in different time slots 
and upload gradients to the edge server in turn. During one 
training iteration, it is assumed that the expected channel 
state information can be obtained by the channel estimation al‐
gorithms. Among the training iterations, the channel of the it‐
eration differs from one another. The expected channel state 
information in each iteration is separately adopted for the per‐
formance analysis. Therefore, when a device uploads the gradi‐
ents, it will occupy the full bandwidth, denoted by B. For ease 
of analysis, it is assumed that the wireless channel is static at 
each training gradient upload and changes in different rounds 
of training iterations. It is further assumed that the distances 
of all local devices to the edge server are known, and the 
small-scale fading is modeled as Rayleigh fading. Then, we 
can express the uploaded data rate of the device k as:

Rk = B log2( )1 + PU
k |hU

k |2
N0 , (5)

where PU
k  is the transmit power of device k, hU

k  is the channel 
power gain between the device and the edge server, and N0 is 
the noise power over the whole bandwidth B. We assume that 
each device is uploading and retransmitting data at the maxi‐
mum available power. Note that this assumption fits many sce‐
narios, such as LTE[31].

Since wireless channels are generally unreliable, channel er‐
rors need to be considered. It is assumed that the uploaded gra‐
dients of each device are divided into several packets, and each 
packet has redundant encoding for error detection. In this pa‐
per, the cyclic redundancy check (CRC) code is used to check 
for errors. Then the PER of device k can be expressed as:

pk = 1 - exp ( - mBN0
PU

k hU
k ), (6)

where m is the PER decision threshold[32].
Since the global model sent by the edge server to all de‐

vices is the same, the downlink channel can be modeled as a 
broadcast channel and a more robust encoding method can be 
used. In this paper, we consider that the channel error occurs 
only in the uplink channel, and assume that there is no chan‐
nel error in the downlink channel. Let the channel bandwidth 
of the downlink channel be BD, and denote γ as the smallest 

▼Table 1. Loss function for popular machine learning models
Learning Model

Linear regression
Least-squared support vector 

machine
Neural network

Loss Function f (w, x, y )
1
2  y - wT x

2

1
2 max { 0,1 - ywT x }2

1
2  y - ϕ (w,x ) , where ϕ (w,x ) is the learning output

▲Figure 1. Federated edge learning system

Device 1

Device 2

Device K

Upload gradient

Retransmission selection

Global model broadcast…
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SNR among all devices, and then the achievable downlink 
data rate is expressed as:

RD = BD log2 (1 + γ ). (7)

3 Retransmission Protocol
In this section, we first introduce the principle of retrans‐

mission design in FEEL. Then, we propose a novel retransmis‐
sion protocol and develop the corresponding processing mod‐
ules for both devices and the edge server.
3.1 Principle of Retransmission Design

In FEEL, the edge server performs global model updates by 
periodically aggregating local gradients uploaded by devices. 
Therefore, the performance of the trained model depends on 
the quality of the gradients received by the edge server. How‐
ever, unreliable gradient transmission may occur due to wire‐
less channel impairments including interference, noise and 
shadowing. Therefore, it is predicted that the performance of 
model training is largely affected by channel impairments.

A common solution to unreliable transmission is retransmis‐
sion. Conventionally, the purpose of retransmission is to ensure 
the reliability of data and at the same time maximize the system 
throughput. However, the main goal of FEEL is to maximize the 
training accuracy for a given training time. Therefore, a novel 
retransmission protocol is required for the FEEL system.

When designing the retransmission protocol for a FEEL sys‐
tem, one should consider both the training accuracy and the ad‐
ditional communication cost brought by retransmission. Re‐
transmission can reduce erroneous packets so that the gradient 
updates received by the edge server deviate less from the 
ground-truth gradient, which can improve the 
convergence speed and the accuracy of model 
training. However, retransmission also increases 
the communication latency, resulting in an in‐
crease in training time. Therefore, we need to 
properly select the devices that need to be re‐
transmitted and design appropriate signaling to 
make a fair tradeoff between learning accuracy 
and learning latency.
3.2 Retransmission Protocol and Processing 

Module
In our proposed retransmission protocol, not 

all devices participate in retransmission, that 
is, retransmission selection is required. Consid‐
ering the characteristics of FEEL, the device se‐
lection depends on not only the channel condi‐
tions but also the local data volume and the im‐
portance of the upload gradient. Gradient up‐
dates that have a more significant impact on 
global model training will be retransmitted with 
a larger probability. Moreover, the latency 

caused by retransmission should also be accounted for. In our 
proposed protocol, a device with a higher data rate is also 
more likely to be retransmitted because it brings less addi‐
tional communication cost. In addition, the PER between the 
device and the edge server shall also be taken into account. 
Due to the robustness of model training, devices with a small 
PER would bring little performance gain when retransmitting. 
Also, for a device with a large PER, the reduction of the PER 
after retransmission is very limited, but it will cause a rela‐
tively large communication cost. Therefore, when the PER is 
too large or too small, the probability of the device being se‐
lected for retransmission is both small.

We also consider a new design of retransmission signaling, 
as shown in Fig. 2. Under the traditional retransmission 
scheme, after receiving an erroneous packet, the edge server 
only sends a negative acknowledgement (NACK) signal to the 
device, requiring the device to retransmit. Until the edge 
server successfully decodes the data packet, it sends an ac‐
knowledgement (ACK) signal to the device, and the device 
starts to transmit the next data packet. In our protocol, when 
an edge server receives a packet and detects an error using 
CRC codes, it sends a signal to the corresponding device that 
includes the information shown in Fig. 2.

In Fig. 2, NACK indicates that the packet is transmitted 
with an error, but unlike that in the traditional retransmission 
schemes, it does not indicate that the device needs to retrans‐
mit the packet. Whether to retransmit needs to be judged ac‐
cording to the retransmission selection algorithm. Retransmis‐
sion allowed signal νk indicates whether the device is selected 
for retransmission, which is related to the channel conditions, 
the number of local data, and the importance of the gradient. 

▲Figure 2. Retransmission signaling

Traditionalretransmission

Proposed retransmission

Packet with error
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Specifically, νk = 1 indicates that the device k is selected for re‐
transmission; otherwise νk = 0 indicates no retransmission. 
When νk = 1, it is equivalent to traditional NACK. Error packet 
index represents the gradient position contained in the transmis‐
sion data packet. If it is selected for retransmission, the device 
can retransmit the gradient of the corresponding position.

According to the received signal, the device will determine 
whether the uploaded packet is transmitted correctly and 
whether it is allowed to retransmit. After that, it retransmits 
the particular data corresponding to the erroneous packet, as 
indicated by the edge server.
4 Retransmission Design

In this section, we first analyze the one-round convergence 
rate with unreliable channels. Then, we propose a new crite‐
rion to evaluate the gain of retransmission on learning perfor‐
mance. The retransmission cost is analyzed as well. Based on 
this, we formulate a mathematical optimization problem to 
make a tradeoff between retransmission gain and retransmis‐
sion cost.
4.1 One-Round Convergence

Due to the PER, during one round of training, the global 
gradient obtained by the edge server using the received gradi‐
ent is not equal to the theoretical gradient gt in Eq. (4). There‐
fore, we define the actual global gradient obtained by the ag‐
gregation under the unreliable channel as ĝt, and we have:

ĝt = ∑
k = 1

K

nk ĝt
k

n , (8)
where ĝt

k is the actual local gradient of device k received by 
the edge server. Therefore, when there exists PER, the model 
update is:

wt + 1 = wt - ηĝt = wt - η ( gt - ot ), (9)
where ot is the deviation of the global gradient introduced by 
unreliable transmission, and we have:

ot = gt - ∑
k = 1

K

nk ĝt
k

n . (10)
To facilitate mathematical analysis, we make the following 

assumption.
Assumption 1: (ℓ-smooth loss function) The global loss 

function is Lipschitz continuous with positive parameter ℓ, 
shown as:

 gt + 1 - gt ≤ ℓ wt + 1 - wt . (11)
Based on the above assumption, we can obtain the conver‐

gence rate of one round under an unreliable channel.
Theorem 1: When the learning rate η = 1

ℓ
, the training loss 

function in one round can be written as:
E{L (wt + 1 )} ≤ E{L (wt )} - 1

2ℓ E{ gt 2} + 1
2ℓ E{ ot 2}.

(12)
See Appendix A for details.

From Eq. (12), it can be seen that the loss function is con‐
strained by three terms. The first term E{L (wt )} represents 
the loss function of the previous training round, which is inde‐
pendent of unreliable transmissions. The second item 1
2ℓ E{ gt 2} is related to the theoretical gradient value of this 
round, which depends on the data in local devices, but is inde‐
pendent of PER and the retransmission scheme. The third 
term 1

2ℓ E{ ot 2} is the bias term introduced by channel er‐
rors, which will reduce the loss function, thus affecting the 
convergence speed. In order to reduce the influence of unreli‐
able channels and improve training performance, we need to 
reduce channel interference. Therefore, we next analyze the 
impact of PER ( pt

k ) on the gradient bias E{ ot 2}. Since we 
focus on the retransmission design of each round, for the con‐
venience of presentation, we ignore the superscript t that rep‐
resents the number of training rounds in the following.

We first assume that the machine learning model has a total 
of D layers of neural networks, and the device divides the cor‐
responding gradients into D packets during the uploading pro‐
cess. The d-th packet contains gradient updates for the d-th 
layer of the neural network, which is denoted as gk,d. Let indi‐
cator ρk,d denote whether the transmission of the d-th packet of 
device k is correct. That is, ρk,d = 1 indicates that there is no 
error in the transmission, which means that the edge server 
can decode and obtain the correct gradient gk,d, and there is a 
probability of P ( ρk,d = 1) = 1 - pk. Similarly, we let ρk,d = 0 
denote the occurrence of a transmission error with probability 
of P ( ρk,d = 0) = pk. After the edge server receives the pack‐
ets, if the error is detected and retransmission is not consid‐
ered, the corresponding gradient is set to zero, which can be 
written as:

ĝk,d = ì
í
î

gk,d, ρk,d = 1
0, ρk,d = 0  . (13)

Lemma 1: The impact of error transmission on learning per‐
formance can be expressed as the bias of gradients caused by 
packet transmission errors, which can be written as:
E{ o 2} ≤ K

n2 ∑
k = 1

K

n2
k p2

k ḡ2
k, (14)
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where ḡk = ∑
d = 1

D

gk,d denotes the sum of the gradient of device k.
See Appendix B for details.

First, the gradient bias term is affected by the PER pk. The 
larger the PER of the device is, the larger the error term will 
be, and the smaller the loss function will decrease in one 
round. Second, the error term is affected by the number of lo‐
cal data on each device. The larger the number is, the more 
significant the impact of the device’s PER on the entire 
model. Third, the error term is also affected by the gradient ob‐
tained from training. The larger the sum of uploaded gradients 
is, the larger the bias term would be introduced. Finally, since 
the global gradient is obtained by aggregating the uploaded 
gradients of selected devices, the bias term can be expressed 
as the sum of the bias introduced by each device due to unreli‐
able transmission. Through the above analysis, we can obtain 
the convergence rate of one round in the presence of transmis‐
sion errors as:
E{L (wt + 1 )} ≤ E{L (wt )} - 1

2ℓ E{ gt 2} +
K

2ℓn2 ∑
k = 1

K

n2
k p2

k ḡ2
k. (15)

4.2 Gain of Retransmission
Next, we analyze the learning performance gain brought by 

retransmission. Define the PER of device k after the retrans‐
mission selection as qk, which can be written as:

qk = pk(1 - νk(1 - pk ) ), (16)
where pk is the probability that an error occurs in one transmis‐
sion, and νk (1 - pk ) represents the probability that device k is 
selected for retransmission and there is no error in the retrans‐
mission. Based on Eq. (14), considering the retransmission, 
the impact of PER on the convergence can be expressed as:
E{ or

2} ≤ K
n2 ∑

k = 1

K

n2
k q2

k ḡ2
k, (17)

where or represents the bias between the theoretical gradients 
and the actual gradients after retransmission.

The PER of the device selected for retransmission will be 
reduced after retransmission, and its impact on learning per‐
formance will also be reduced. Therefore, we can present the 
following definition to analyze the gain which is achieved by 
retransmission.

Definition 1: We define the gain of retransmission as the 
difference between the bias of global gradients before and af‐
ter retransmission on the learning performance, which can be 
written as

Ω = K
n2 ∑

k = 1

K

n2
k p2

k ḡ2
k - K

n2 ∑
k = 1

K

n2
k q2

k ḡ2
k = ∑

k = 1

K Ωk, (18)
where Ωk is the gain of retransmission of device k. Since the whole 
system can be regarded as a collection of all devices, we have:

Ωk = K
n2 n2

k ḡ2
k( p2

k - q2
k ). (19)

Eq. (19) reveals that the retransmission gain of the device 
is related to the number of local data, the value of the gradi‐
ent update, and the reduction of the PER before and after re‐
transmission. A larger data volume and gradient value of the 
device will bring a larger gain of retransmission to the learn‐
ing performance. This solution can also be applied to dy‐
namic wireless channels, just changing the retransmission 
PER to the actual PER.
4.3 Cost of Retransmission

Although device retransmission will bring gains to the learn‐
ing performance, retransmission will also increase communica‐
tion latency due to the additional resource required by retrans‐
mission. Therefore, we give the definition of the cost of retrans‐
mission as follows.

Definition 2: The cost of retransmission of device k is de‐
fined as the increase in latency introduced by retransmission, 
which can be expressed as

Ck = qNpk

Rk
νk, (20)

where q is the number of quantization bits and N is the total 
number of parameters.
4.4 Problem Formulation

Until now we have analyzed the gain and cost of retransmis‐
sion. Retransmission will bring a gain in learning performance 
but increase additional communication costs. Therefore, we 
need to consider the tradeoff between cost and gain when de‐
veloping a retransmission scheme. Our goal is to maximize re‐
transmission gain while minimizing retransmission cost. We 
define β ∈ [ 0,1 ] as a factor for the tradeoff between retrans‐
mission gain and retransmission cost, and the following re‐
transmission gain-cost tradeoff problem can be established.

P1: min
νk

∑
k = 1

K ( )-βΩk + ( )1 - β Ck , (21)
subject to
νk ∈ {0,1},∀k. (21a)

Eq. (21a) represents the retransmission indicator limitation. 
When β is close to 0, it means that the main goal is to reduce 
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the latency when retransmission is selected. When β is close 
to 1, it means that improving the convergence rate is the 
main goal.
5 Retransmission Optimization and Theoreti⁃

cal Analysis
In this section, we first give a retransmission selection strat‐

egy based on P1. Then, we analyze the effect of PER on re‐
transmission selection.
5.1 Optimal Solution

By inserting Eqs. (16), (19), and (2) into Eq. (21), and relax‐
ing the { 0,1 } variable νk to [0,1], P1 can be formulated as:

P2: min
νk

∑
k = 1

K - β K
n2 n2

k ḡ2
k( p2

k - ( pk - νk pk(1 - pk ) ) 2 ) +

(1 - β ) qNpk

Rk
νk, (22)

subject to
νk ∈ [ 0,1 ] ,∀k. (22a)

Eq. (22) consists of two parts: the first part is related to feder‐
ated learning (FL) training loss, and the second part is related 
to FL one-round training latency. This is a classical convex op‐
timization problem, and the optimal solution can be obtained 
through the Karush-Kuhn-Tucker (KKT) condition.

Theorem 2: The retransmission selection policy can be ex‐
pressed as:

ν*
k = é

ë

ê
êê
ê 1

1 - pk
- (1 - β )qNn2

2βKn2
k ḡ2

k p2
k (1 - pk )2 Rk

ù

û

ú
úú
ú

1

0
,∀k, (23)

where [ X ]10 = min {1, max { X,0 } }. See Appendix C for fur‐
ther details.

Theorem 2 reveals that the retransmission indicator is a 
value bounded by 0 and 1, which is related to the local data vol‐
ume, gradient value, data rate, and the PER of the device. Spe‐
cifically, the probability of being selected for retransmission ν*

k increases with the data number nk and the gradient value ḡk in 
the order of - 1

2 . This is because with a large number of device 
data and gradient values, the learning performance gain ob‐
tained by retransmission is also large. Also, ν*

k increases with 
the data rate Rk in the order of −1. Since the data rate is large, 
the communication cost of retransmission will be small, and the 
probability of the device being selected for retransmission will 
increase. The impact of the device PER on the retransmission 
selection will be analyzed in the next section.

Since the obtained ν*
k is the optimal solution after relax‐

ation, we need to consider how to convert it into a { 0,1 } vari‐
able for retransmission selection. We give two strategies. The 

first is to perform threshold processing on ν*
k, with 0.5 as the 

limit. If ν*
k ≥ 0.5, it means retransmission, and if ν*

k < 0.5, it 
will not be retransmitted. The second is to sort all devices 
from large to small according to the value of ν*

k, and select the 
largest proportion M% of devices of ν*

k for retransmission. The 
choice of M reflects the tradeoff between model accuracy and 
training latency.
5.2 Theoretical Analysis

In this section, we will analyze the impact of PER on the re‐
transmission indicator. We first define:

mk = (1 - β )qNn2

2βKn2
k ḡ2

k Rk . (24)
From Eq. (24), mk is related to the number of local data, gra‐

dient value and data rate, but is irrelevant to the PER. When 
the local data volume, the gradient value, and the uploaded 
data rate of device k are large, device k is more important in 
the retransmission design, and mk is correspondingly small. 
Therefore, mk reflects the contribution of the gradient of de‐
vice k to the global model training, as well as the state of its 
channel. And mk is always greater than 0. Moreover, the im‐
portance of device decreases as mk increases. Then, in order 
to analyze the influence of pk on the retransmission indicator 
ν*

k, we define the following function:
f ( pk ) = 1

1 - pk
- (1 - β )qNn2

2βKn2
k ḡ2

k p2
k (1 - pk )2 Rk

= 1
1 - pk

-
mk

p2
k (1 - pk )2 , (25)

where f ( pk ) is a strictly unimodal function with pk ∈ [ 0,1 ].
See Appendix D for details.

Theorem 2 reveals that the optimal retransmission indicator 
first increases and then decreases with pk. Therefore, there ex‐
ists an optimal p*

k that maximizes f ( pk ). This result is rather 
intuitive, which shows that there is a tradeoff between retrans‐
mission gain and cost. For the device with a low PER, due to 
the robustness of neural networks, retransmission has little 
gain in learning performance, but will increase communica‐
tion cost. Therefore, its probability of being selected for re‐
transmission is relatively low. For the device with a relatively 
high PER, there will still be a high PER after retransmission. 
Thus, the gain in model training performance is not large. 
Also, the retransmission cost is large, and the probability of 
being selected is low. Note that devices with intermediate 
PER can improve the accuracy of gradient data after retrans‐
mission, and will not bring reused data or additional deviation.
6 Numerical Result

In this section, we conduct extensive experiments to verify 
the effectiveness of the proposed retransmission scheme.
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6.1 Simulation Settings
Assume that the coverage area of the edge server is 1.5 km, 

and there are K (K=10) mobile devices that are randomly dis‐
tributed across the cellular network. The transmit power of 
each device is 28 dBm, and the transmit power of the edge 
server is 33 dBm. Then, the noise power spectral density is 
-174 dBm/Hz and the PER decision threshold m = 0.2 dB. 
Since in the TDMA scenario, all devices occupy one channel 
to upload gradients. The uplink channel takes into account 
large-scale fading, given by 128.1 + 37.6log (d), where d rep‐
resents the distance between the device and the edge server 
in kilometers. We also consider small-scale fading of the 
channel, specifically represented by Rayleigh fading. All de‐
vices and the edge server jointly train a CNN model. We 
choose CIFAR-10 and MNIST as datasets. CIFAR-10 con‐
sists of 50 000 training images and 10 000 testing images. 
And MNIST consists of 55 000 training images and 5 000 
testing images. The datasets are both non-identically and in‐
dependently distributed (non-IID) and divided into 10 cat‐
egories. Also, we choose the learning ratio η = 0.05. We 
quantize each element of the uploaded gradient with 16 
bits. All elements of each layer are treated as one packet, 
and a 32-bit CRC code is added. Other major parameters 
are listed in Table 2.
6.2 Performance of Proposed Retransmission Scheme

Based on the previous theoretical analysis, the proposed al‐
gorithm can make a tradeoff between reducing the gradient ag‐
gregation bias caused by unreliable transmission and control‐
ling the transmission delay, thereby accelerating the model 
convergence. We use the global training loss and global test 
accuracy to evaluate the learning performance of the whole 
learning system. In the simulation of this section, the discreti‐
zation method for the retransmission factor ν*

k is to take 0.5 as 
the threshold. That is, the selection indicator is set to 0 if ν*

k is 
less than 0.5 and set to 1 if it is larger than 0.5.

The comparison algorithms in Fig. 3 are shown as follows.
• Without PER: The wireless channel is ideal and PER-

free, meaning that all gradients can be transmit‐
ted correctly.

• Without retransmission: There is PER in 
the uplink channel, but retransmission is not 
considered. If the uploaded data packet is 
judged to be incorrect, it will be set to zero and 
the packet will be discarded.

• Existing retransmission schemes: Using the 
existing retransmission scheme based on the 
transmission result. The devices retransmit the er‐
roneous data packets after receiving the NACK.

• The proposed retransmission scheme: Us‐
ing the scheme proposed in this paper, we made 
the retransmission selection according to the de‐
vice’s local data, gradient data, and PER.

We first perform simulations under the CIFAR-10 dataset. 
The curves of training loss and test accuracy versus training 
time under different retransmission schemes are shown in 
Fig. 3. As can be seen from the figure, when transmitting on 
a reliable channel, no retransmission is required. At this 
time, the model training can reach convergence in a very 
short time with a high model accuracy. When the channels 
are unreliable and retransmission is not performed, the per‐
formance of model training will be greatly degraded. When 
retransmission is not performed, model training can reach 
convergence very fast, but the accuracy of the final model is 
pretty low. As a result, when there is no retransmission, the 
communication cost is relatively small. Although multiple 
rounds of training are required, one round of training latency 
is short, so the overall latency is short. However, due to the 
large bias between the received gradient and the local gradi‐
ent, the performance of the final trained model is not satisfac‐
tory, which also confirms the necessity of retransmission. It 
can also be seen that, in the existing retransmission scheme, 
although the accuracy of the final model is high, it takes 
much longer time to converge. This is because the existing re‐
transmission scheme aims to maximize the throughput, without 
considering selecting retransmission devices, or the importance 
of uploading gradients for model training. Due to a large num‐
ber of transmitted gradient data and participating training de‐
▼Table 2. Simulation parameters

Parameters
Path loss model

Transmission power of the edge server
Transmission power of device

Additive white Gaussian noise power
Bandwidth of downlink

Quantization bit of each element
Number of devices

Bandwidth of uplink
CRC code

Values
128.1 + 37.6 log (d)

33 dBm
28 dBm

−174 dBm/Hz
10 MHz

16
10

10 MHz
32

CRC: cyclic redundancy check

Training time/s ×104
0 0.5 1 1.5 2

Tra
in l

oss

2.5

2

1.5

1

0.5

0

Without PERWithout retransmissionExisting retransmission schemesProposed retransmission scheme

Training time/s
0 0.5 1 1.5 2

×104

0.9
0.8
0.7
0.6
0.5
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0.2
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(a) Training loss versus training time (b) Training accuracy versus training time

▲Figure 3. Performance comparison between transmission schemes under CIFAR-10

PER: packet error rate
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vices, the wireless FEEL system needs to spend 
a lot of time to achieve model convergence with‐
out retransmission selection. Therefore, the exist‐
ing retransmission schemes cannot exhibit good 
performance under the FEEL system. As shown 
in Fig. 3, the retransmission scheme proposed in 
this paper can make the model training converge 
in a short time, and achieve high accuracy at the 
same time. The reason is that the influence of 
different gradients has been considered in the re‐
transmission. This scheme can maximize the re‐
transmission gain, reduce the influence of chan‐
nel errors, and improve the performance of 
model training by selecting proper retransmis‐
sion devices. In order to further illustrate the ef‐
fectiveness of our proposed scheme, we increase 
the number of devices to 20 for simulation, and 
the results are shown in Fig. 4.
6.3 Performance with Difference Retrans⁃

mission Ratios
When selecting M% of devices for retrans‐

mission in each round of transmission, the 
choice of parameter M may reflect the tradeoff 
between model accuracy and training latency in 
our proposed retransmission scheme.

From Fig. 4, when M is too small, e.g., 20% or 
40%, both the convergence rate and final model 
accuracy become low. This is because the im‐
pact of channel error is strong when the number 
of selected retransmission devices is small. 
When M is too big, e. g., 80%, the convergence 
speed is low and the final accuracy has no sig‐
nificant advantage. This is because retransmis‐
sion will increase the latency, and some devices 
are not of high importance, resulting in limited 
retransmission gain.
6.4 Performance Comparison Under Other 

Datasets
To verify the broad effectiveness of our pro‐

posed scheme, we change the training dataset 
to MNIST for further simulations. MNIST con‐
sists of 0–9 numbers handwritten by different 
people. The curves of training loss and test ac‐
curacy are shown in Fig. 6. After the dataset is 
changed, the effect of channel unreliability on 
model training and the performance improve‐
ment of our proposed scheme can still be seen. 
From Fig. 7, the proportion M of retransmission 
devices still affects performance, which further 
proves the necessity of retransmission device 
selection.

▲ Figure 4. Performance comparison between different retransmission schemes under 
CIFAR-10 with device number K=20

PER: packet error rate

(a) Training loss versus training time (b) Training accuracy versus training time
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7 Conclusions
In this paper, we mainly study the retransmission design for 

FEEL under unreliable channels. We first analyze the impact 
of unreliable transmission on the training performance of the 
FEEL model, and derive the relation between the loss function 
and the channel PER in one round. Based on this, we analyze 
the gain to the convergence rate brought by device retransmis‐
sion, as well as the communication cost introduced. Then, we 
propose a retransmission selection scheme for FEEL with un‐
reliable channels, which can make a tradeoff between the 
training accuracy and the transmission latency. It comprehen‐
sively considers the channel conditions, the number of local 
data, and the importance of updates. We also present the air 
interface signaling and retransmission protocol design under 
the proposed retransmission selection scheme. Finally, the ef‐
fectiveness of the proposed retransmission scheme is verified 
by extensive simulation experiments. The results show that 
our proposal can effectively reduce the impact of unreliable 
wireless channels on the training of the FEEL model, and is 
superior to the existing retransmission schemes.

Appendix A
Proof of Theorem 1

We first use the second-order Taylor expansion of L (wt + 1 ) to get
L (wt + 1 ) = L (wt ) + (wt + 1 - wt )∇L (wt ) +
1
2 (wt + 1 - wt ) T∇2 L (wt ) (wt + 1 - wt ) . (26)

Based on Eq.  (11) in Assumption 1, we can get
L (wt + 1 ) ≤ L (wt ) + (wt + 1 - wt ) gt + 1

2 β  wt + 1 - wt 2.
(27)

By taking expectation over both sides, it follows
E { L (wt + 1 ) } ≤ E { L (wt ) } + E {-η (gt - ot ) T

gt } +
1
2 βη2E {  gt - ot 2 } . (28)

To remove the cross-term, we fix η = 1
β .  Then it follows

E { L (wt + 1 ) } ≤ E { L (wt ) } -
1
β E { (gt - ot ) T

gt } + 1
2β

E {  gt - ot 2 } =

 E { L ( )wt } - 1
2β

E { (gt - ot ) T
gt } + 1

2β
E { (gt - ot ) T

ot } =
     E { L (wt ) } - 1

2β
E { (gt - ot ) T(gt + ot ) } =E { L (wt ) } -

     1
2β

E {  gt 2 } + 1
2β

E {  ot 2 }. (29)

Thus, we have completed the proof of Theorem 1.

Appendix B
Proof of Lemma 1

First, the bias term can be expressed as the difference be‐
tween the ground-truth gradient and the aggregated gradient, 
which can be expressed as
E{ o 2} = E{ gt - ĝt 2} =

E
ì
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. (30)
By opening it with the sum of squares formula and substitut‐

ing the probability of the indicator ρk,d, P ( ρk,d = 0) = pk and 
P ( ρk,d = 1) = 1 - pk, we can get

E{ o 2} = 1
n2 E

ì
í
î

ïï
ïï∑k1 = 1

K ∑
k2 = 1

K ∑
d1 = 1

D ∑
d2 = 1

D

nk1 (1 - ρk1,d1 ) gk1,d1 nk2(1 -

ρk2,d2 ) gk2,d2

ü
ý
þ

ïï
ïï

= 1
n2 ∑

k1 = 1

K ∑
k2 = 1

K ∑
d1 = 1

D ∑
d2 = 1

D

nk1 pk1 gk1,d1 nk2 pk2 gk2,d2 =
1
n2 ( )∑

k = 1

K

nk pk∑
d = 1

D

gk,d
2

≤ K
n2 ∑

k = 1

K

n2
k p2

k( )∑
d = 1

D

gk,d
2

. (31)

Denoting ḡk = ∑
d = 1

D

gk,d, we can obtain the solution in Lemma 1.

Appendix C
Proof of Theorem 2

First, we take the first-order and second-order differentials 
of the objective function, and get

∂∑
k = 1

K ( )-βΩk + ( )1 - β Ck

∂νk
=

- 2βK
n2 n2

k ḡ2
k p2

k(1 - pk - νk(1 - pk ) 2 ) + (1 - β ) qNpk

Rk , (32)

∂2∑
k = 1

K ( )-βΩk + ( )1 - β Ck

∂ν2
k

= 2βK
n2 n2

k ḡ2
k p2

k(1 - pk ) 2 ≥ 0 .(33)
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So the objective function of P2 is convex.  In addition, Eq.  
(22a) is a linear constraint.  Therefore, we can conclude that 
P2 is convex and we can use the KKT condition to find the 
optimal solution.  We define the Lagrangian function L un‐
der the inequality constraints, as
L = ∑

k = 1

K

β K
n2 n2

k ḡ2
k( p2

k - ( pk - νk pk(1 - pk ) ) 2 ) +

(1 - β ) qNpk

Rk
νk + ∑

k = 1

K

μk( - νk ) + ∑
k = 1

K

λk(νk - 1), (34)
where μk ≥ 0 and λk ≥ 0, which are both constraint coeffi‐
cients of Eq.  (22a).  Let ν*

k represent the optimal solution of 
P2.  Then using the KKT condition, we can get

∂L
∂ν*

k

= - 2βK
n2 n2

k ḡ2
k p2

k(1 - pk - ν*
k(1 - pk ) 2 ) +

(1 - β ) qNpk

Rk
- μk + λk,∀k, (35)

μk( - ν*
k ) = 0,∀k, (36)

λk(ν*
k - 1) = 0,∀k. (37)

By solving the above equations, we can get the optimal solu‐
tion, as shown in Theorem 2.

Appendix D
Proof of Theorem 3

Taking the partial derivative of f ( pk ) over pk, it follows
∂f ( )pk∂pk

= p3
k( )1 - pk + 2mk( )1 - 2pk

p3
k( )1 - pk . (38)

Then we define h ( pk ) = p3
k(1 - pk ) + 2mk(1 - 2pk ).  Tak‐

ing the first-order and second-order differentials of h ( pk ), we 
have:

∂h ( )pk∂pk
= 3p2

k - 4p3
k - 4mk, ∂2 h ( )pk

∂p2
k

= 6pk(1 - 2pk ) . (39)

Let ∂2 h ( )pk

∂p2
k

= 0, we have ∂h ( )pk∂pk
 that increases on (0, 

0. 5) and decreases on (0. 5, 1).  There is a unique p*
k so that

h ( pk )
ì

í

î

ïïïï

ïïïï

< 0, pk ∈ ( p*
k , 0 )

= 0, pk = p*
k

> 0, pk ∈ ( p*
k , 1) . (40)

where p*
k is related to mk.  And since mk > 0, p*

k ∈ (0,1).
Therefore, we can prove that f ( pk ) increases on (0, p*

k ) and 
decreases on ( p*

k ,1).
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1 Introduction

With the popularity of big data techniques, machine 
learning has promoted wide applications in artifi‐
cial intelligence fields, such as the smart IoT[1–2], 
smart industry[3–4], and autonomous driving[5–6]. 

Nowadays, due to the emergence of data protection regulations, 
like General Data Protection Regulation (GDPR)[7] and Califor‐
nia Consumer Privacy Act (CCPA)[8], users pay increasing atten‐
tion to data privacy. Data privacy significantly hinders training 
data collection, which limits the development of machine learn‐
ing. Federated learning (FL), as a collaborative machine learn‐
ing paradigm, is considered a promising solution to the chal‐
lenges and has attracted tremendous attention from industry 
and academia. Specifically, a typical framework of FL consists 
of a server and some users (i.e., data owners). In FL, to preserve 
data privacy, users only share the trained local models’ param‐

eters instead of sharing raw data.
In spite of the benefits, there are two challenges in design‐

ing such an FL scheme. The first one is that the gradient at‐
tack may lead to privacy leakage. Specifically, in the gradient 
attack, adversaries utilize user-shared model parameters to in‐
fer sensitive information from training data. Thus far, some 
works[9–10] have been proposed to utilize the gradient leak at‐
tack to compromise user privacy. For instance, ZHU et al. [10] 
introduced a gradient inversion attack scheme to reconstruct 
sensitive information from public shared gradients, where ad‐
versaries launch attacks by iteratively optimizing the dummy 
inputs and the corresponding labels. Followed by Ref. [10], 
some gradient attack schemes have been proposed[11–12]. For 
instance, to enhance the performance of gradient inversion at‐
tacks, ZHAO et al.[11] proposed a simple and effective gradient 
inversion attack. Their scheme improves the effectiveness of 
recovering label information by combining the mathematical 
analysis of the gradients. Subsequently, YIN et al.[12] extended 
the gradient inversion attack into FL applications that are 
more practical, e. g., high-resolution images with large batch-
size. If gradient attacks are not considered well in designing 
FL schemes, user privacy will incur serious threats. Therefore, 
users will be reluctant to participate in these applications, 
which significantly hinders the development of FL. The sec‐
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ond challenge is that users with low-quality data decrease the 
performance of FL. In practical applications, the data quality of 
different users is usually uneven due to various reasons (e. g., 
device quality and education level) [13]. For example, users with 
high-quality devices usually own superior data, while users with 
low-quality devices have poorer data. If anomalous users are 
not identified in the training process, they will impair the perfor‐
mance of FL and even lead to the unavailability of FL models. 
Thus, it is also crucial to identify anomalous users and reduce 
their negative influence on the FL training process.

In recent years, to deal with the gradient attacks and pre‐
serve user privacy in FL, some solutions[14–16] have been pro‐
posed. Particularly, based on their cryptographic tools, these 
schemes can be categorized into three classes, i. e., secure 
multi-party computation (SMC) based schemes, homomorphic 
encryption (HE) based schemes, and differential privacy (DP) 
based schemes. DP-based FL schemes address the privacy 
leakage issues by adding noise[14]. However, the introduction 
of noise unavoidably reduces the model accuracy, hindering 
the applications of FL. To preserve user privacy, some SMC-
based schemes[15] are proposed without compromising model 
accuracy. However, frequent user interaction introduces tre‐
mendous resource overhead to users and the server. To make a 
trade-off among the model’s accuracy, user privacy, and re‐
source overhead, some HE-based FL schemes are proposed[16].

Unfortunately, most existing privacy-preserving FL 
schemes ignore anomalous users. To address the challenge, 
several works[17–18] have been proposed to identify anomalous 
users and reduce their impacts. Specifically, ZHAO et al. [17] 
utilized the differential privacy technique and function mecha‐
nism to enable privacy-preserving FL. In their scheme, the 
server is allowed to access each user’s data quality for identi‐
fying anomalous users. However, in practice, the user’s data 
quality should be private. Once the data quality is disclosed to 
the server, it will lead to discrimination in the training pro‐
cess, which significantly reduces the users’ enthusiasm to par‐
ticipate in FL. To preserve data quality information when iden‐
tifying anomalous users, XU et al. [18] designed a framework to 
support privacy-preserving FL by introducing a non-colluding 
two-cloud model. In their scheme, additively homomorphic 
cryptosystem and YAO’s garbled circuits are utilized to evalu‐
ate user data quality without compromising user privacy. It is 
hard to find two non-colluding clouds in practice, thereby lim‐
iting its implementation in real-world applications. Moreover, 
it also ignores the problem of user collusion. In FL, users may 
collude with each other to infer others’ sensitive information. 
Therefore, a privacy-preserving FL scheme with anomalous 
user identification and user collusion resistance deserves to 
be investigated.

To solve the challenges, we propose a reliable and privacy-
preserving FL (RPPFL) scheme based on the single-cloud 
model. The comparison results of RPPFL and other existing 
works are shown in Table 1. To identify anomalous users, 

RPPFL evaluates data quality without compromising user pri‐
vacy. Particularly, we epitomize the contributions as follows:

• We first discover the challenges in designing a privacy-
preserving FL scheme that supports anomalous identification. 
Then, to resolve these challenges, we design a reliable and 
privacy-preserving FL scheme named RPPFL, which is also 
resilient to user collusion attacks.

• We adopt the truth discovery technique to evaluate data 
quality. Subsequently, we utilize the ( p, t ) threshold Paillier 
cryptosystem to strengthen RPPFL to protect user privacy 
from being exposed and defend against user collusion attacks.

• Formal analysis proves the security of RPPFL. Then, 
based on the open datasets MNIST and CIFAR-10, extensive 
experiments are conducted to demonstrate that RPPFL is prac‐
tically efficient and effective.

In this paper, the remainder is established as follows. In the 
next section, we illustrate the related models and security re‐
quirements of our construction. The preliminaries are re‐
viewed in Section 3, and the detailed construction is pre‐
sented in Section 4. Section 5 provides the security analysis. 
The experiments are given in Section 6, and Section 7 dis‐
cusses the related works. Section 8 concludes the paper.
2 Models and Security Requirements

We first present the system model and threat model of 
RPPFL. After that, based on the threat model, we give the se‐
curity requirements. To have a better understanding, we list 
some frequently used notations that appear in RPPFL, which 
is shown in Table 2.
2.1 System Model

As we can see in Fig. 1, the system model of RPPFL con‐
sists of an aggregation server and several users.

• The aggregation server is an entity with strong computing 
and storage capabilities. To reduce the anomalous users’ 
negative impacts on the accuracy of the model, the aggrega‐
tion server is allowed to identify users’ data quality (i.e., user 
reliability). Then, with the user’s reliability and local gradi‐
ents, the aggregation server aggregates the global gradients in 
a privacy-preserving manner. Subsequently, global gradients 

▼Table 1. Comparison of RPPFL and other existing works

PPDL[16]

PPML[19]

SecProbe[17]

PPFDL[18]

RPPFL

User Privacy 
Preservation

√
√
√
√
√

Robust to 
User Insta‐

bility
×
√
×
√
√

Support for 
Anomalous 

Users
×
×
√
√
√

Collusion 
Resistance

×
√
√
×
√

Server Setting

Single-cloud
Single-cloud
Single-cloud

Two non-collud‐
ing clouds

Single-cloud
PPDL: privacy-preserving deep learning
PPFDL: privacy-preserving federated deep learning
PPML: privacy-preserving machine learning
RPPFL: reliable and privacy-preserving federated learning
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will be sent to the users.
• The users are entities holding different datasets that can 

be utilized to train FL models. To get models with better per‐
formance, they cooperate in training models with the help of 
an aggregation server. Instead of sharing datasets directly, 
they share the gradients of local models. To protect gradient 
privacy, users first encrypt local gradients with an additively 
homomorphic cryptosystem. Then, users send them to the ag‐
gregation server and update local models after receiving 
global gradients from the aggregation server.
2.2 Threat Model

In our scenario, like previous works[20–21], we presume that 
the aggregation server and all users are honest-but-curious. 
That is, the server will faithfully obey the designed procedures 

to accomplish its task. However, it may try to retrieve others’ 
sensitive information using prior acquired knowledge. Be‐
sides, we presume that the aggregation server will not collude 
with users and there are at most t - 1 users colluding. Then, 
we mainly consider the following two adversaries.

1) The aggregation server may try to deduce users’ local gra‐
dients and reliability according to the information it acquired.

2) The user may try to infer the information of his/her reli‐
abilities according to the information he/she acquired.
2.3 Security Requirements

On the basis of system and threat models, we have devel‐
oped the following security requirements.

1) User’s local gradient privacy. To effectively preserve 
user privacy, the user’s local gradients should be sent to the 
aggregation server in the ciphertext, which prevents the adver‐
sary (e.g., the server) from recovering the user’s sensitive in‐
formation from the shared gradients and global parameters.

2) Privacy protection of reliability for users. To ensure the 
fairness of the FL process, all information related to the reli‐
ability of the user should be kept secret and unavailable to 
any participant, even to the user itself.
3 Preliminaries

In this section, we will illustrate the preliminaries about 
truth discovery, FL, and the additively homomorphic crypto‐
system.
3.1 Truth Discovery

Truth discovery aims at estimating ground truth data from 
numerous heterogeneous data. In general, it is composed of 
two main steps: weight update and truth update.

1) Weight update
In this step, the weight of each user is computed based on 

the distance between their provided data and the ground 
truths. Without losing generality, we here assume the ground 
truths are fixed. Typically, each user’s weight wk can be com‐
puted as wk = f ( ∑

m = 1

M

d ( xk
m, x*

m ) ), where f denotes a monotoni‐
cally decreasing function, and d ( xk

m, x*
m ) is a distance function 

(i. e., the Euclidean distance). Therefore, if the provided data 
from a specific user are close to the ground truth, the user’s 
weight will be assigned to a higher value.

2) Truth update
In this step, on the basis of each user’s weight, the ground 

truth is estimated according to Eq. (1):

x*
m = ∑

k = 1

K

xk
m ⋅ wk

∑
k = 1

K

wk

 
. (1)

In the case of continuous data, x*
m means the estimated 

▼Table 2. Frequently used notations
Notation

n

Zn

Z*
n

N

K

M

Mf

xk
m

~
xk

m

x*
m

Rk

C
skk

skN + 1
Encpk (⋅)

rk

Meaning
A large positive integer

The set of integers modulo n
The multiplicative group of reversible elements of Zn

The number of users
The number of the selected users

The number of gradient types
A big integer of the magnitude of 10
The m-th gradient of the k-th user

The integer corresponding to the enlargement of xk
m

The aggregated result of the m-th gradient
The reliability (indicates the data quality) of the user k

The coefficient used to amplify users’ reliability
The secret key of the selected user k

The secret key of the aggregation server
The ciphertext encrypted by a public key
The random value selected by the user k

▲Figure 1. System model of reliable and privacy-preserving federated 
learning (RPPFL)

Upload gradients
Download aggregated results Server

User 1 User 2 User i User N

Localdataset Localdataset Local dataset(low quality) Localdataset

…
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ground truth. As for the categorical data, x*
m represents a prob‐

ability vector. Each element in the vector means the probabil‐
ity of a specific answer being the truth[22].
3.2 Federated Learning

As a collaborative learning paradigm, FL intends to train 
models based on data from distributed users. The basic train‐
ing process of FL is shown below.

1) Selecting users
Assume there exist N users, each holding a local dataset 

D j, j ∈ [1,N ], which is derived from the whole training dataset 
D={(ui,vi ) ;  i = 1,2,⋯,M }, where D = ∪ j ∈ [1,N ] D j. For each 
epoch t ∈ {1,2,⋯ } in FL, the aggregation server chooses K us‐
ers at random, where K < N.

2) Local training
Each selected user k, k ∈ [1, K ], randomly chooses a small 

batch of dataset Bk. Then, they leverage stochastic gradient de‐
scent (SGD), a commonly used optimization algorithm, to calcu‐
late gradients over their local datasets. Specifically, we let uk

i  and vk
i  denote the feature vector and its corresponding label in 

Bk, respectively, and θk
t  denotes the parameters of the model in 

the current epoch. The loss function, indicating the distance be‐
tween prediction results and real labels, can be denoted as 
L (θk

t ,uk
i ,vk

i ). Then, the gradient can be calculated as Eq. (2):

∇θk
t

= ∇L (Bk,θk
t ) = ∑< ui,vi > ∈ Bk

∇L ( )θk
t ,uk

i ,vk
i

|| Bk
 . (2)

After that, ∇θk
t
 will be transmitted to the aggregation server.

3) Global aggregation
After receiving local gradients from all selected users, the 

aggregation server will aggregate the global gradients as 
Eq. (3):

Global = ∑
k = 1

K ∇θk
t

K . (3)
Finally, the global gradients will be transmitted to the users 

to update their local model as:
θk

t + 1 = θk
t - η ⋅ Global, (4)

where η denotes the learning rate.
3.3 Additively Homomorphic Cryptosystem

The cryptosystem in RPPFL is on the basis of the ( p,t)-
threshold Paillier cryptosystem[22]. As a typical asymmetric 
cryptosystem, it utilizes the public key (pk) to encrypt the 
plaintexts and secret key (sk) to recover the plaintexts. Note 
that ( p,t)-threshold Paillier cryptosystem splits the secret key 
into p parts, i.e., (sk1,sk2,…,skp ), and sends them to p differ‐

ent parties. In ( p,t)-threshold Paillier cryptosystem-based ap‐
plications, any entity cannot decrypt the ciphertexts alone. 
That is, the ciphertext can only be decrypted if at least t enti‐
ties cooperate together. Moreover, even if some users are 
dropped off during the process because of the insatiability, the 
ciphertext can still be recovered.

We use Encpk( ⋅ ) to denote the ciphertexts encrypted by 
the public key. Then, assuming m ∈ Zn denotes a plaintext, 
its corresponding ciphertext can be calculated as follows:

C = Encpk(m) = gmrn mod n2, (5)
where r ∈ Z*

n is a randomly selected value and should be kept 
secret. For decryption, each party l,  l ∈ [1,p], requires to com‐
pute the partial decryption cl according to Eq. (6) with the se‐
cret key sk l,

cl = c2Δskl , (6)
where we denote Δ = p!. Based on the algorithm in Ref. [23], 
these partial decryptions can be composed together for de‐
crypting the ciphertext C in order to recover the plaintext m.

Then, we further present additively homomorphic properties 
of our adapted cryptosystem. Specifically, given the cipher‐
texts of two plaintexts, m1,m2 ∈ Zn are encrypted with the 
same public key：

C1 = Encpk( )m1 = gm1 r1 n mod n2,
C2 = Encpk( )m2 = gm2 r2 n mod n2. (7)

We have
Encpk( )m1 + m2 = Encpk( )m1 ⋅ Encpk( )m2

= gm1 + m2( )r1r2
n mod n2, (8)

Encpk(b ⋅ m1 ) = Encpk(m1 ) b = gbm1 rbn1  mod n2, (9)
where b denotes a constant.
4 Scheme Design and Details

In this section, we first illustrate the approach that we uti‐
lize to handle anomalous users. Then, we give the details of 
our proposed RPPFL.
4.1 Approach to Handling Anomalous Users

To decrease the negative influence of anomalous users on 
the trained model in federation learning, here we describe the 
mechanism MeAU, which is inspired by the truth discovery[24]. 
In RPPFL, we assume that the data from different users are in‐
dependently and equally distributed. We assume that each 
user holds M categories of gradients (in Section 3.2) after train‐
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ing on their local dataset. The m-th gradient of the k-th user 
can be represented as xk

m, where m ∈ [1, M ] , k ∈ [1, K ]. We 
use x*

m to denote the global m-th gradient of K selected users. 
Additionally, we let Rk represent the reliability (indicates the 
data quality) of the user k. MeAU mainly includes two phases: 
updating the user’s reliability and updating global gradients.

1) Update user’s reliability
The user’s reliability will be given a high value when the 

calculated gradient is close to the global gradient from the 
server. Specifically, given the global gradient x*

m, the reliabil‐
ity of user k is calculated as follows:

Rk = f (∑m = 1

M

d ( xk
m, x*

m ) ), (10)
where f denotes a monotonically decreasing function, and 
d ( ⋅ ) denotes a function that measures the distance between 
the local gradients and global gradients. In RPPFL, we use the 
same method as in Ref. [18], and formulate Eq. (10) as:

Rk = C
∑
m = 1

M

d ( )xk
m, x*

m , (11)
where C is used to amplify users’ reliability, which is calcu‐
lated according to Eq. (12):

C = χ 2
( )1 - α

2 , || M , (12)
where χ denotes the Chi-squared distribution, and α repre‐
sents its corresponding significance level. It is noteworthy that 
when the value of α and M (the number of gradients) is deter‐
mined, the coefficient C can be regarded as a constant. On the 
basis of some proposed works[18, 25–26], for users with high-
quality data for training, the obtained gradients are always 
consistent in the direction of the vector with high probability. 
To guarantee the convergence of training, the direction of the 
local gradient xk

m is always required as the same with the 
global gradient x*

m. Thus, we compute d ( xk
m,x*

m ) = ( xk
m - x*

m )2 
if xk

m and x*
m are both positive or negative. If not, we set 

d ( xk
m,x*

m ) to a large positive integer (illustrated in Section 4.2).
2) Update global gradients
With the reliability of each user given, the aggregated result 

of m-gradient is calculated as

x*
m = ∑

k = 1

K

Rk xk
m

∑
k = 1

K

Rk . (13)
Note that we do not directly remove these anomalous users. 

The reason is that the reliability information is kept secret 
from all participants, even the users themselves, to prevent 

discrimination during the training phase. The existence of 
low-quality data is inevitable. In some rare cases where all 
users are normal, there is still the possibility that the trained 
model will be overfitted in the actual prediction. Based on 
the above facts, RPPFL tolerates gradients from anomalous 
users but ensures that the global gradients are mainly con‐
tributed by normal users. However, ensuring that each par‐
ticipant in federated learning is unaware of users’ reliability 
will inevitably increase the difficulty of reducing the impacts 
of low-quality data.
4.2 Reliable and Privacy-Preserving Federated Learning

As shown below, we first briefly summarize the main pro‐
cess of RPPFL, i.e., reliability identification and gradient ag‐
gregation, and then give its details. The workflow of RPPFL is 
displayed in Fig. 2, and the protocol framework is shown as 
Protocol 1. We assume that a trusted third party (TTP) has ex‐
ecuted the ( p,t)-threshold Paillier cryptosystem before run‐
ning the reliable and privacy-preserving federated learning 
protocol, where p = N + 1 and t = K + 1. The secret keys 
(sk1,sk2,…,skN ) are sent to N different users, respectively, 
and skN + 1 is sent to the aggregation server. Besides, the pub‐
lic key is distributed to all entities.

• Reliability identification. In this step, each selected user 
first calculates the Euclidean distance between its local gradi‐
ents and the global gradients from the aggregation server. 
These calculation results will be encrypted using the public 
key and then transmitted to the aggregation server. With these 
ciphertexts, the aggregation server calculates the reliability of 
each user while protecting data privacy. Ultimately, the en‐
crypted reliability will be sent to the corresponding user for 
the following procedure.

• Gradient aggregation. In this phase, each user calcu‐
lates the product of their gradient and reliability in the en‐
cryption domain. These ciphertexts are transmitted to the 
server. With the help of K selected users, the server de‐
crypts these received ciphertexts and subsequently updates 

▲ Figure 2. Workflow of reliable and privacy-preserving federated 
learning (RPPFL)

Aggregation server User k
Global gradients

Encrypted gradient information

Encrypted user reliability

Encrypted multiplication result
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the global models.
Note that the additively homomorphic cryptosystem is de‐

fined over the integer ring. However, the gradient often con‐
sists of many floating-point numbers in real-world federated 
learning. We define a big integer Mf, which is a magnitude of 
10. Before utilizing homomorphic encryption on the gradient 
xk

m, we calculate ⌊Mf ⋅ xk
m⌋, which we denote as ~xk

m⋅~ xk
m is the 

rounded version of the gradient for encryption, and the origi‐
nal approximated result can be easily recovered by simply di‐
viding ~xk

m with Mf. Unless otherwise mentioned, we also use 
this format to represent other rounded values in the remaining 
parts of the paper. Then, for each negative integer xk

m, we use 
the trick adopted in Ref. [27] by simply replacing it with its in‐
verse in the cryptosystem.

The update of the global models in federated learning lasts 
for several iterations. Here, we give the calculation procedure 
in one of the iterations.

1) Reliability identification
Step 1: The aggregation server first selects K users and 

sends the global gradient { x*
m }M

m = 1 to them. If it is in the first 
iteration, { x*

m }M
m = 1 is the random value initialized by the ag‐

gregation server; otherwise, { x*
m }M

m = 1 is derived in the previ‐
ous iteration. Upon receiving { x*

m }M
m = 1, the user k, k ∈ [1,K ], 

calculates:
D = ∑

m = 1

M

d ( xk
m,x*

m ), (14)
and obtains its reciprocal, i.e., D-1. Then, to preserve the pri‐
vacy of D-1, the user k, k ∈ [1, K ], chooses a random value 
rk ∈ Z*

n and encrypts it as follows:
Encpk(~D-1 ) = g

~D-1 rn
k  mod n2. (15)

When the encryption is completed, each user sends 
Encpk(~D-1 ) to the aggregation server.
Step 2: After receiving Encpk(~D-1 ) from all selected K users, 
the aggregation server calculates the reliability of each user in 
ciphertexts as

Encpk( )[ ]~Rk = Encpk( )ê
ë
êêêê ú

û
úúúúMf ⋅ 1

D ⋅ ë ûMf ⋅ C =

Encpk( )ê
ë
êêêê ú

û
úúúúMf ⋅ 1

D
ë ûMf ⋅ C

=

g
C͂
~1
D rC͂n

k  mod n2 , (16)
where the aggregation server calculates C and keeps it se‐
cretly. [~  ⋅   ] denotes the product of two rounded values. After 
that, the aggregation server transmits the encrypted reliability 

Encpk([~Rk ] ) to user k, k ∈ [1,K ].
Protocol 1. Reliable and privacy-preserving federated 
learning 

Input:
K selected users, M types of gradients, local gradients 

{ xk
m }M,K

m,k = 1, initialized global gradients { x*
m }M

m = 1, and coeffi‐
cient C

Output:
Global gradients { x*

m }M
m = 11. The aggregation server sends { x*

m }M
m = 1 to each user k.

2. Each user k computes the local gradients.
3. Each user k computes Encpk (D-1 ), where D-1 =

1/ ∑
m = 1

M

d ( xk
m, x*

m ).
4. Each user k sends Encpk (D-1 ) to the aggregation server.
5. The aggregation server computes Encpk ( [ ~Rk ]) for each 

user k.
6. The aggregation server sends Encpk ( [ ~Rk ]) back to each 

user k.
7. Each user k computes the product of local gradients and 

their reliability Encpk ( [ ~Rk ] ⋅  ~xk
m ), m ∈ [1,M ].

8. Each user k sends Encpk ( [ ~Rk ] ⋅  ~xk
m ), m ∈ [1,M ] to the 

aggregation server.
9. The aggregation server computes EncGlobal and 

Encpk( )[ ∑
k = 1

K ~Rk ] .
10. The aggregation server computes { x*

m }M
m = 1 according to 

Eqs. (19) and (20).
11. Repeat steps 3–7 until the convergence criteria in FL 

is reached.
2) Gradient aggregation
Once the reliability of each user has been obtained, the 

next step is to update the global gradients according to the reli‐
ability and local gradients of all selected users.

Step 1: After receiving Encpk([~Rk ] ) from the aggregation 
server, the user k calculates the product of local gradients and 
their reliability in ciphertexts

Encpk( )[ ]~Rk ⋅ ~xk
m = Encpk( )[ ]~Rk

~
xk

m = g
~
xk

m [ ]~Rk r
~
xk

m n
k  mod n2. (17)

Then, Encpk([~Rk ] ⋅ ~xk
m ) will be transmitted to the aggrega‐

tion server.
Step 2: When the aggregation server receives the cipher‐

texts Encpk([~Rk ] ⋅ ~xk
m ) , k ∈ [1,K ], from all selected users, it 

aggregates them in ciphertexts according to the homomorphic 
property of the ( p,t)-threshold Paillier cryptosystem.
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EncGlobal = ∏
k = 1

K Encpk ( )[ ]~Rk ⋅ ~xk
m =

g
∑
k = 1

K ( )[ ]~Rk ⋅ ~xk
m ( )∏

k = 1

K

rk

n

 mod n2 =

Encpk( )∑
k = 1

K ( )[ ]~Rk ⋅ ~xk
m . (18)

After that, EncGlobal is sent to K selected users. Each user k 
uses their secret key skk to partially decrypts EncGlobal and 
then sends them to the aggregation server. The aggregation 
server first obtains the partial decryption with its secret key 
skN + 1. Then, based on K + 1 partially decrypted ciphertexts, 
the aggregation server recovers the plaintexts 
∑k = 1

K ( )[ ]~Rk ⋅ ~xk
m . Similarly, the aggregation server can also 

calculate the summation of each user’s reliability, i. e., ∑k = 1
K [ ]~Rk . Therefore, the global gradients can be updated as:

~
x*

m = ∑
k = 1

K ( )[ ]~Rk ⋅ ~xk
m

∑
k = 1

K

[ ]~Rk , (19)
which will be sent to K users to update their local models. 
Note that x*

m can be recovered by calculating
x*

m = ê
ë

ú
û

~
x*

m / ( )Mf . (20)
Reliability identification and gradient aggregation are per‐
formed iteratively until the convergence criteria are fulfilled.
5 Security Analysis

Based on the threat model in Section 2.2, the potential 
threats mainly come from the entities (i.e., users and the aggre‐
gation server). Thus, the objective of RPPFL is to protect the 
user’s local gradient and the user’s reliability from being ex‐
posed to any entity in RPPFL. Furthermore, it should also be 
resilient to the user collusion attack. Here, we prove the secu‐
rity of RPPFL by giving Theorem 1, followed by the corre‐
sponding proof.

Theorem 1. Assuming that the aggregation server is non-
colluding with users and there are at most t - 1 users collud‐
ing, neither the user’s local gradient nor the user’s reliability 
will be leaked to any entity in RPPFL.

Proof.First, we prove that each user cannot infer their own 
reliability from the information they have acquired and the ci‐
phertexts returned by the aggregation server. Next, we show 
that the aggregation server cannot infer each user’s local gra‐
dient and reliability from the information it holds and the ci‐
phertexts returned by the user.

The user knows the ciphertexts Encpk([~Rk ] ), EncGlobal, and 
plaintexts { x*

m }M
m = 1, D = ∑m = 1

M d ( xk
m,x*

m ). Since there are at 
most t - 1 users colluding, the user cannot recover the secret 
key (sk), from skk. Additionally, the ( p,t)-threshold Paillier 
cryptosystem has already been demonstrated to defend against 
chosen-plaintext attacks[22]. Therefore, the user cannot decrypt 
these ciphertexts. With the global gradient { x*

m }M
m = 1, the user 

calculates D locally. However, since C is only known by the ag‐
gregation server. Without knowing C, it is impossible for the 
user to acquire its reliability.

For the aggregation server, it knows the ciphertexts 
Encpk(~D-1 ), Encpk([~Rk ] ⋅ xk

m ), and plaintexts C, 
∑k = 1

K ( )Rk ⋅ xk
m , ∑k = 1

K Rk. Since the ( p,t)-threshold Paillier 
cryptosystem has been demonstrated to defend against chosen-
plaintext attacks, the aggregation server cannot recover the se‐
cret key, and thus cannot decrypts these ciphertexts. As for C, 
without the plaintexts D, the aggregation server cannot obtain 
the users’ reliabilities. Although the aggregation server knows 
the sum of K users’ reliabilities, i. e., ∑k = 1

K Rk, it is impos‐
sible to identify the individual reliability of each user without 
knowing other information. Similarly, it is also impossible to 
separate the individual reliability and model weight 
from ∑k = 1

K ( )Rk ⋅ xk
m .

Therefore, RPPFL can prevent the user’s local gradient 
and reliabilities from disclosing to other entities. Moreover, for 
the user collusion attack, the properties of the Paillier crypto‐
system ensure the safety of the scheme when there are no 
more than t - 1 users colluding.
6 Experiments

In this section, we perform experiments to observe the per‐
formance of RPPFL. The FL framework is built via PyTorch 
with Cuda 10.2, which runs on the server with two Nvidia 
Tesla-P40 GPUs for hardware and RedHat for the operating 
system. For the cryptosystem, we utilize the Paillier library for 
implementation, and the running environment is Java 18.0. 
Moreover, we choose MNIST and CIFAR-10 as the datasets in 
FL, which are commonly used in many scenarios. As for the 
users in FL, they are all equipped with the same convolutional 
neural network (CNN) to calculate local gradients with the use 
of their local data. The model in the experiments is inspired 
by LeNet widely used in various situations. Finally, as for the 
hyper-parameters, the learning rate is set to 0.001, while the 
batch size is 128.
6.1 Accuracy Performance

In this part, we observe the accuracy performance of 
RPPFL. As mentioned before, many attributes influence the 
model’s accuracy. Here, we mainly focus on the impact of the 
number of users and the number of gradients per user. With‐
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out losing generality, we set the dataset D i for each user k in 
the same size. Meanwhile, to construct low-quality data for  
anomalous users, we replace a fixed proportion of their origi‐
nal data with random noises ϵ ∈ [0,1]. The ratio of the re‐
placed data is set to 20% in our experiments.

1) Number of users
We first illustrate the influence of the number of users that 

take part in the training process. To better demonstrate the 
performance of RPPFL, we take two related works[18, 28] for 
comparison.

Fig. 3 displays the comparison of accuracy based on a dif‐
ferent number of users, where the number of gradients for 
each user is set to 2 500. The figure demonstrates that the in‐
crement in the number of users in RPPFL does improve the 
model accuracy because more data from corresponding users 
contribute to the trained model. Moreover, for both the 
MNIST dataset in Fig. 3(a) and CIFAR-10 dataset in 
Fig. 3(b) , the accuracy of RPPFL is about the same as 
PPFDL in Ref. [18] and outperforms that in Ref. [28]. 
Therefore, we can reach the conclusion that RPPFL 
can ensure the aggregation gradients are mainly con‐
tributed by users with data of high quality.

2) Number of gradients per user
We then discuss the influence of the number of gra‐

dients for each user on accuracy performance.
Fig. 4 demonstrates that the model accuracy will also 

improve when the number of gradients increases. It is 
evident that more involved gradients in the FL training 
procedure will boost the convergence rate and make the 
model more accurate. From Figs. 4(a) and 4(b), the per‐
formance of RPPFL is still better than the schemes in 
Refs. [28] and [18]. In conclusion, RPPFL ensures that 
the user with high-quality data is rewarded with high re‐
liability and guarantees that the aggregation result is 
mainly contributed by these users.
6.2 Efficiency

In this part, we observe the efficiency performance of 
RPPFL. For simplicity, we here only discuss and visual‐
ize the efficiency in the aggregation phase of FL. To keep 
fairness, we test the schemes in Refs. [28] and [18] on 
the same platform (hardware and software) for RPPFL. 
Specifically, the CNN network is the same for every user, 
and other hyper-parameters remain the same.

Fig. 5(a) demonstrates the computational cost for dif‐
ferent user numbers, while Fig. 5(b) presents the one 
for different gradient numbers per user. It can be ob‐
served that with the growth of the number of users and 
the number of gradients per user, the aggregation time  
increases for all the schemes. Moreover, RPPFL has 
better efficiency than the one in Ref. [28]. As we can 
see, the RPPFL is moderately inferior to the one in 
Ref. [18]. It is because the PPFDL in Ref. [18] adopts 

a two-cloud model, where the computational costs are shared 
between the two cloud servers, while RPPFL is established on 
a single cloud model. However, PPFDL requires two non-
colluding cloud servers, which is not practical in real-world 
scenarios compared with RPPFL.
7 Related Works

In this section, we illustrate some related works of privacy-
preserving federated learning.

Since the proposal of the original FL, many schemes have 
been designed to preserve data privacy in FL based on 
privacy-preserving techniques. These techniques can be 
mainly divided into three categories: differential privacy, secure 
multi-party computation, and homomorphic encryption. As for 
the differential privacy, the authors in Ref. [29] proposed a 

▲ Figure 4. Accuracy performance with different gradient numbers for MNIST 
and CIFAR-10 datasets
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▲Figure 5. Computational costs for different schemes
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mechanism that set different proportions of selected parameters 
to preserve data privacy while preserving training accuracy. In 
2016, ABADI et al.[30] leveraged differential privacy with a mod‐
erate privacy budget to learn models of deep neural networks. 
When it comes to secure multi-party computation, the authors 
in Ref. [19] proposed a safe and practical aggregation protocol 
in the FL training process. SMC was adopted to ensure the pri‐
vacy of the users’ gradients shared with the aggregation server. 
In 2018, JAYARAMAN et al.[31] introduced a distributed learn‐
ing method that combines DP with SMC. Moreover, because the 
users’ access to power and network bandwidth is always under 
a particular constraint in real-world scenarios, secret sharing 
and key exchange protocols are also considered to enhance the 
robustness of FL. Authors in Ref. [32] proposed a scheme lever‐
aging the secret key-sharing technique to protect privacy in FL 
while verifying the integrity of aggregation results. For homo‐
morphic encryption, in 2018, PHONE et al. [16] presented a sys‐
tem for privacy-preserving collaborative deep learning. It uti‐
lizes Learning with Errors (LWE) -based homomorphic encryp‐
tion to secure the privacy of publicly shared model parameters 
among the participants. Furthermore, the authors in Ref. [20] 
designed high-efficiency protocols by adopting secure two-party 
computation, which was established on the two-server model 
(non-collusion). In 2021, MADI et al. [28] presented a scheme 
with a combination of homomorphic encryption and verifiable 
computing. The aim was to execute a federated averaging opera‐
tor directly in the ciphertext and prove that the operator is cor‐
rectly executed.

In conclusion, homomorphic encryption can be applied for 
privacy-preserving federated learning according to its property 
of addition and multiplication in the ciphertext domain. How‐
ever, the enormous computational burden is unacceptable in 
scenarios that exist plenty of users or training data with large 
dimensions. Although SMC is better that HE in terms of com‐
putational costs, it always needs many interactions among enti‐
ties. This brings a high communication burden and a lack of 
robustness. Compared with the other two techniques, differen‐
tial privacy performs better in cost. But a balance between pri‐
vacy and accuracy should always be considered. Ref. [33] 
demonstrated that if the model accuracy was acceptable, ad‐
versaries could still reconstruct the user’s private data. Au‐
thors in Ref. [34] successfully leveraged a generative adver‐
sarial network (GAN) to violate data privacy even if all shared 
parameters were protected by differential privacy. Therefore, 
combining the advantages of different privacy-preserving 
mechanisms while overcoming their drawback has raised 
much concern for researchers.

Moreover, all these solutions mentioned above fail to con‐
sider the problem of anomalous users. To tackle this problem, 
SecProbe was proposed[17] as the first solution to handling 
anomalous users in collaborative deep learning while protect‐
ing data privacy. It utilized techniques based on DP to per‐
turb the objective function of the target network. However, 

Ref. [34] showed that the current mechanism of DP can 
hardly reach an acceptable balance between security and ac‐
curacy. XU et al.[18] designed PPFDL with the leverage of ad‐
ditively homomorphic cryptosystem and garbled circuits. How‐
ever, their system structure is based on the two-cloud model, 
and it requires two non-colluding cloud servers. Therefore, 
such limitation makes their scheme impractical in many real-
world situations like edge computing. Moreover, their PPFDL 
is also vulnerable to user collusion attacks.
8 Conclusions

In this paper, we propose RPPFL, a reliable and privacy-
preserving federated learning scheme. RPPFL uses a truth dis‐
covery technique to identify each user’s reliability according 
to their data quality and thereby reduce the contribution of 
anomalous users on the global models. Specifically, we lever‐
age an additively homomorphic cryptosystem to enrich the 
truth discovery technique to provide comprehensive privacy 
protection (e. g., model privacy and data quality privacy) and 
user collusion resistance. Security analysis demonstrates the 
security of RPPFL. Experimental results of two different real-
world datasets indicate that RPPFL has acceptable perfor‐
mance on both accuracy and efficiency. For future work, con‐
sidering that the user may infer data information of others with 
the global gradients, we will focus on designing a reliable and 
privacy-preserving federated learning scheme that can protect 
the privacy of gradients on both the aggregation server side 
and the user side.
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Abstract: Over-the-air computation (AirComp) based federated learning (FL) has been a promising technique for distilling artificial intelli‐
gence (AI) at the network edge. However, the performance of AirComp-based FL is decided by the device with the lowest channel gain due to 
the signal alignment property. More importantly, most existing work focuses on a single-cell scenario, where inter-cell interference is ignored. 
To overcome these shortages, a reconfigurable intelligent surface (RIS) -assisted AirComp-based FL system is proposed for multi-cell net‐
works, where a RIS is used for enhancing the poor user signal caused by channel fading, especially for the device at the cell edge, and reduc‐
ing inter-cell interference. The convergence of FL in the proposed system is first analyzed and the optimality gap for FL is derived. To mini‐
mize the optimality gap, we formulate a joint uplink and downlink optimization problem. The formulated problem is then divided into two 
separable nonconvex subproblems. Following the successive convex approximation (SCA) method, we first approximate the nonconvex term to 
a linear form, and then alternately optimize the beamforming vector and phase-shift matrix for each cell. Simulation results demonstrate the 
advantages of deploying a RIS in multi-cell networks and our proposed system significantly improves the performance of FL.
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1 Introduction

With the development of the Internet of Things 
(IoT) and wireless technologies, recent years have 
witnessed an explosion of IoT devices and mobile 
data, which is of great significance for training AI 

models to enable various kinds of intelligent applications, 
such as auto-driving vehicles, equipment condition monitor‐
ing, and smart cities[1–2]. However, conventional methods 
that upload massive distributed data to a cloud encounter 
huge communication overhead and violate data privacy. To 
overcome these problems, federated learning (FL) emerges as 
a promising solution, where a shared AI model is trained 
among multiple devices without raw data transmission[3–6]. 
Specifically, there are three steps in each training iteration 
of FL. First, a central server generates an initial global model 
and then broadcasts the global model to the edge devices cov‐
ered by it. Then, each edge device performs one or more 
steps of local training based on the received global model 
and local dataset to calculate a local model or gradient vector 
and uploads it to the central server. Finally, the central 
server aggregates all local information and updates the global 
model for the next communication round.

One main research direction of FL is to overcome the com‐

munication bottleneck caused by frequent transmission of the 
high dimensional model and gradient vectors. To combat the 
influence of wireless communications, the authors in Ref. [7] 
proposed a joint learning and communication framework to 
minimize the FL loss function. Partial device participation ap‐
proaches, such as random scheduling and proportional fair‐
ness, have been proposed for the rational allocation of limited 
communication resources in FL[8]. To improve the communica‐
tion efficiency of the FL uplink model aggregation, an over-
the-air computation (AirComp) technique based on the wave‐
form superposition characteristics of the multiple access chan‐
nels (MACs) was proposed in Refs. [9–13], which realizes the 
summation calculation of the receiver function during informa‐
tion transmission. To overcome the bottleneck of limited com‐
munication bandwidth in the aggregation process, the authors 
in Ref. [14] presented a fast model aggregation method to im‐
prove the performance of FL by jointly optimizing beamform‐
ing vectors and device selection. In Ref. [15], a federated 
zeroth-order optimization (FedZO) algorithm based on Air‐
Comp was proposed to enable communication-efficient trans‐
mission by performing multiple local updates and partial de‐
vice participation. Compared with the orthogonal multiple ac‐
cess (OMA) method, where the information of other users is re‐
garded as interference, and the summation of all signals is 
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then calculated, i. e., computing after communication, Air‐
Comp greatly improves communication efficiency. The ben‐
efits of AirComp-based FL have motivated its application in 
the unmanned aerial vehicle (UAV) [16–17] and reconfigurable 
intelligent surface (RIS)-enabled networks[18–23].

The schemes mentioned above cannot solve the essential 
problem that wireless channel fading leads to poor signal 
strength of many devices, especially for AirComp-based FL, 
whose performance generally depends on the worst device in 
the network. To mitigate the effects of wireless channel fad‐
ing, RIS is recognized as a revolutionary technology that 
achieves high spectrum and energy efficiency by reconfigur‐
ing the wireless channel environment at a low cost[24–27]. The 
authors in Ref. [25] designed a RIS-assisted AirComp system 
to increase the performance of AirComp by optimizing the 
transceivers and RIS phase-shift. It was shown in Refs. [19–
20] that configuring RISs in AirComp-based FL further re‐
duced the error of model aggregation, thereby improving the 
learning performance. Considering the low latency and 
privacy-secure nature of FL, a differentially private FL sys‐
tem via RIS was proposed in Ref. [12] to achieve a better 
tradeoff between the learning performance and privacy under 
the constraints of privacy and power. In order to further re‐
duce the aggregation error, a multi-RIS scenario was pre‐
sented in Ref. [28], where both the base station and the user 
used one dedicated RIS to mitigate the effects of poor chan‐
nels. However, all the aforementioned works are limited to a 
single-cell setting. In fact, considering a multi-cell scenario 
is more in line with practical large-scale network de‐
sign[29–31]. Due to the serious fading of the signal received by 
users at the cell edge, deploying RISs can relay the intended 
signal to enhance signal strengths for edge users and expand 
network coverage in multi-cell scenarios[31–33]. Besides, the 
authors in Refs. [30] and [34] proved that deploying a RIS at 
the cell edge can achieve the highest performance gain com‐
pared with other RIS deployments. Most of the existing RIS-
assisted multi-cell networks focus on communication-only 
system models, ignoring the application of FL. Although the 
multi-cell FL interference management was considered in 
Ref. [29], RIS was not considered to enhance the perfor‐
mance of FL. To the best of our knowledge, this is the first 
work that investigates AirComp-based FL in RIS-assisted 
multi-cell networks.

In this paper, we investigate a RIS-assisted AirComp-based 
FL system in multi-cell networks, where a RIS is deployed at 
the cell edge to help each cell complete different FL tasks. In 
the process of FL, we consider both the impact of downlink 
and uplink communications. For the fast aggregation of uplink 
gradients, we adopt AirComp to improve communication effi‐
ciency. However, the performance of AirComp-based FL is de‐
pendent on the device with the worst link gain (e.g., the cell-
edge device with a large path loss). Besides, the inter-cell in‐
terference also degrades its performance. To address these is‐

sues, we further deploy a RIS at the cell edge to enhance sig‐
nal strength and mitigate inter-cell interference, thereby im‐
proving the FL performance. In our proposed system, there are 
some difficulties that we need to highlight. First, we consider 
both the impact of downlink model dissemination and that of 
uplink gradient aggregation, both are inevitably affected by 
channel fading, noise and inter-cell interference. It is different 
from most FL works, i. e., only uplink aggregation errors are 
considered. Second, considering the downlink influence 
makes the convergence analysis of our system more compli‐
cated. This derivation result is related to noise and inter-cell 
interference. Third, the optimization problems are non-convex 
and complex. We have to jointly optimize the beamforming 
vector and phase shift to improve the performance of our pro‐
posed system. The main contributions of this paper are sum‐
marized as follows:

• We propose a RIS-assisted AirComp-based FL system in 
two-cell networks, where a RIS is used for enhancing the sig‐
nal of cell-edge devices during the process of both downlink 
and uplink transmission as well as for canceling the inter-cell 
interference. Then, we derive the convergence analysis of the 
proposed framework. The optimal gap of FL is determined by 
the uplink error and the downlink error of two cells, and each 
error contains channel fading, inter-cell interference and re‐
ceived noise.

• To maximize the learning performance for all cells, it is 
necessary to minimize the optimal gap. To this end, we de‐
couple this optimization problem into two separate subprob‐
lems, respectively for the downlink and uplink optimization. 
Each subproblem requires a joint alternating optimization of 
beamforming vectors and phase-shift matrices. Since the opti‐
mization subproblems remain nonconvex, we first make a vari‐
able conversion and then utilize the successive convex ap‐
proximation (SCA) method to approximate the problem. An al‐
ternative optimization algorithm is then proposed to solve each 
subproblem.

• Extensive simulations are performed to verify the perfor‐
mance of the proposed RIS-assisted FL system in two-cell 
networks. It shows that the proposed scheme can enhance the 
performance of the AirComp-based FL system by enhancing 
the signal strength and suppressing the inter-cell interfer‐
ence. In addition, the proposed algorithm guarantees fairness 
among cells.

The rest of this paper is organized as follows. Section 2 in‐
troduces the system model of RIS-assisted AirComp-based FL 
in a two-cell scenario. Section 3 provides the convergence 
analysis and the problem formulation. In Section 4, we pro‐
pose an SCA-based joint alternating beamforming and phase-
shift matrix optimization to minimize the upper bound of all 
cells. Simulation results are provided in Section 5 to support 
the advantages of the proposed system. Finally, we conclude 
this work in Section 6.
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2 System Model

2.1 Network Model
As shown in Fig. 1, we mainly develop a RIS-assisted 

AirComp-based FL system in a two-cell network, where each 
cell has K single-antenna edge devices and one access point 
(AP), where each AP is equipped with N antennas. At the 
edge of two cells, we deploy a RIS to enhance the signal 
strength of edge devices, where the RIS has S passive reflect‐
ing elements. Edge device k  ∈ K l   =  {1,2,…, K} is associ‐
ated with AP l ∈ L = {1, 2} to complete information exchange 
under both downlink and uplink communications, where 
K l ∩ K j = ∅, ∀l ≠ j and l, j ∈ L. During the process of trans‐
mission, we assume that each AP knows the channel state in‐
formation for all edge devices.
2.2 Federated Learning Model

In the two-cell FL system, each edge device k ∈ K l has its 
own local dataset Dk = {( xi, yi )}Dk

i = 1 with Dk = |Dk | data 
samples and each cell trains an individual FL model. The goal 
of FL is to collaboratively train a shared model w l ∈ Rd of di‐
mension d without making any local dataset public. The local 
loss function for edge device k ∈ K l is defined as

Fl,k(w l ) = 1
Dk

∑
( )xi,yi ∈ Dk

fl( )w l ; xi, yi , (1)
where fl( ⋅ ) is the sample-wise loss function defined by the 
learning task for cell l. In this work, we consider a general 
model where learning tasks of the two cells are different. With‐
out loss of generality, all local datasets for users in the same 
cell are assumed to have the same size, i. e., |Dk1 | =
|Dk2 |, ∀k1, k2 ∈ K l. As a result, the global loss function for the 
learning task in cell l can be expressed as 

Fl(w l ) = 1
K∑k ∈ K l

Fl,k( )w l . (2)

Then the global model for the l-th cell is obtained by
w*

l =  arg minwl ∈ Rd  Fl(w l ). (3)
To achieve the above FL purpose, we utilize the federated 

stochastic gradient descent (FedSGD) algorithm to perform lo‐
cal updates, which means only part of the datasets partici‐
pates in training. Specifically, at the t-th communication 
round, AP l and the edge devices perform the following three 
procedures:

1) Broadcasting: AP l broadcasts the current global model 
w t

l  to the edge devices belonging to this cell l.
2) Local model update: Based on the received global model 

w t
l, each edge device k ∈ K l performs a one-step local model 

update via the local mini-batch SGD algorithm, which is 
given by

w t
l,k = w t

l   -   ζt

B     ∑
( )xi,yi   ∈ B t

k  
∇ fl  ( )w t

l ; xi, yi, B t
k   =

w t
l   -  ζt  ∇Fl,k  ( )w t

l  , (4)
where ζt denotes the learning rate and B t

k is the mini-batch da‐
taset with size B t

k. Besides, we let p t
k = ∇Fl,k (w t

l ) denote the 
trained gradient information. Then all edge devices upload the 
computed gradient information p t

k.3) Model aggregation and update: The AP aggregates the re‐
ceived local gradient information and then generates a new 
global model as:

w t + 1
l = w t

l - ζt

Kl
∑
k ∈ K l

p t
k. (5)

Algorithm 1 summarizes the above steps of FedSGD.
Algorithm 1: FedSGD
 Input: Initialize the global model w0, communication round T, 
local iteration epoch E, mini-batch dataset B , and learning rate ζ.
 for communication round t = 1, 2,…, T do
     AP broadcasts the global model wt to the edge devices;
    Edge devices initial local model w t,0

k = wt and make E lo‐
cal training;
      for local iteration epoch e = 1, 2,…, E do
          w t,e

k ← LocalSGD(w t,e - 1
k , B t

k)      end
     Compute the cumulative gradient information 
∇fl,k ← w t,e

k  -  w t,0
k ;

    Upload the gradient information and update the global 
model
      wt + 1 = wt -  ζt∇Fl,k (w t

l );  end

In the proposed two-cell system, we assume that these steps 
are synchronous in both cells and their gradient information is ▲Figure 1. RIS-assisted AirComp-based FL system in a two-cell network

AP: access point      RIS: reconfigurable intelligent surface

AP to device
Interference

AP to RIS
RIS to device
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uploaded to the AP. The synchronization can be enabled by 
AirShare[35], which transmits the clock over the air and pro‐
vides a distributed protocol. In the next section, we elaborate 
on the communication process of the proposed system follow‐
ing the procedure of FL.
2.3 Downlink Communication for RIS-Assisted FL System

From the perspective of communication, we utilize the uni‐
versal frequency reuse technique to improve spectral effi‐
ciency. In other words, the two cells share the same frequency 
during both downlink and uplink communications, inevitably 
causing inter-cell interference.

Considering a round of downlink communications in cell l, 
AP l shares the global model with each edge device in cell l. 
However, in most of the existing works on FL, the process of 
broadcast is error-free, which indicates the edge device k ∈ K l can accurately receive signals from AP l. In this subsection, 
we consider the effects of noise and inter-cell interference in 
downlink communications. Here, we omit the time index and 
denote the downlink transmitted signal from AP l to the edge 
device k as wl. In addition, we assume wl follows the standard 
Gaussian distribution, i.e., wl ∼ CN (0,1). However, the trans‐
mitted signals may go through poor channel conditions in the 
communication process, which results in a larger receive error 
at edge device k. To lift the accuracy of the received signal, 
we deploy a RIS to mitigate the distortion of signals.

Specifically, we let θd = [ βejθdl1 ,…, βejθdl
S ] represent the diago‐

nal phase-shift matrix of the RIS in the downlink communica‐
tion and Θd = diag (θd ) with θdl

s ∈ [0, 2π] and β ∈ [0, 1] is 
the amplitude reflection coefficient on the incident signal. To 
be specific, we set β = 1 in this paper and mainly consider the 
first reflected signal[24], because the signal reflected by mul‐
tiple times appears insignificant due to propagation loss. Sub‐
sequently, we let h l

l,k ∈ CN, hr
l,k ∈ CS, and G l ∈ CN × S denote 

the equivalent channels from edge device k in cell l to AP l, 
from edge device k in cell l to the RIS, and from the RIS to AP 
l, respectively. We define the k-th edge device in K l as the 
( l, k)-th edge device. And then, the received signal at edge de‐
vice k in K l from AP to the device and that from AP to RIS 
and to the device are given by

yl,k = (hrH
l,kΘdGH

l + hl,H
l,k ) tl wl +∑

j ≠ l
(hrH

j,k ΘdGH
l + hl,H

j,k ) tj wj + nk, (6)
where t l ∈ CN denotes the transmit beamforming vector at AP 
l, and nk ∼ CN (0, σ2

d ) is the additive white Gaussian noise 
with zero mean and variance σ2

d at the ( l, k)-th edge device. 
The transmit power constraint at AP l satisfies E [ |t l wl|2 ] =
|t l|2 ≤ Pd, where Pd ≥ 0 denotes the maximum transmit power 
at AP l. Supposing perfect channel state information (CSI) is 
available, each edge device k in cell l can estimate the re‐
ceived global model by scaling a designed receive scalar rl,k 

which is set to rl,k = ((hrH
l,kΘdG H

l + h l,H
l,k ) t l)-1. The received 

global model at edge device k is given by
wl,k = rl,k yl,k = wl + edl

k , (7)
where edl

k = ( )∑j ≠ l( )hrH
j,k ΘdG

H
l + h l,H

j,k t j wj + nk ( )( )hrH
l,kΘdG

H
l + h l,H

l,k t l  
consists of the inter-cell interference and noise. Repeating d 
times, the global model is

w l,k = w l + Re { edl
k }, (8)

where w l,k, w l and edl
k  are all vectors of dimension d. After re‐

ceiving the global model w l,k, all edge devices start training 
based on the local data and then generate new local model pa‐
rameters. The gradient information is the difference between 
the global model and the local model as in Eq. (4). After that, 
all edge devices upload their gradient information to AP l 
through the uplink communication.
2.4 Uplink AirComp Aggregation for RIS-Assisted FL 

System
In uplink communications, since the average sum in Eq. (5) 

for gradient aggregation is included in the category of nomo‐
graphic functions, AirComp, as a promising technique, takes 
advantage of the waveform superposition properties of MACs 
in wireless networks to improve transmission efficiency. Fig. 2 
shows the process of AirComp. For the sake of briefness, we 
also omit the time index in the following presentation. The 
transmitted signal and pre-processing function of the ( l, k)-th 
edge device are denoted by xl,k ∈ C and ψl.k( )⋅ : C → C, re‐
spectively. The target function processed at the l-th AP is 
given by

f = ϕ ( ∑k ∈ K l

ψl.k( )xl, k ), (9)
where ϕ ( )⋅  is the post-processing function at the AP. After 
pre-processing, the symbol transmitted at the ( l, k)-th edge de‐
vice sl, k is assumed to be independent and has the nature of 
zero mean and unit variance, i.e., E [ sl, k ] = 0, E [ sl, k sH

l, k ] = 1. 
In this case, the aggregation at the l-th AP is expressed as

gl = ∑
k ∈ K l

sl, k. (10)
Similar to the downlink communication, we let θu =

[ βejθul1 ,…, βejθul
S ] represent the diagonal phase-shift matrix of the 

RIS in the uplink communication and Θu = diag (θu ) with 
θul

s ∈ [0, 2π]. AP l mainly aggregates three types of signals, 
namely, the signal of cell l, the interference signal of other cells, 
and noise, where the first two items both contain the signal from 
the edge devices to AP l and the signal from the edge devices to 
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RIS and to AP l. Thus, the received signal at AP l is given by
y l = ∑

k ∈ K l

(G lΘu hr
l, k + h l

l, k ) zl, k sl, k +
∑

i ∈ K j, j ≠ l
(G jΘu hr

j,i + h l
j,i) zj,i sj,i + n l , (11)

where zl, k ∈ C is the transmit scalar at the ( l, k)-th edge device 
and it satisfies the maximum power constraint | zl, k |

2 ≤ P, and 
n l ∈ CN ∼ CN (0, σ2 I ) denotes the additive white Gaussian 
noise with zero mean and variance σ2. Then, the estimated 
function at AP l after post-processing is marked as

gl = 1
ηl

mH
l y l = 1

ηl

mH
l ∑

k ∈ K l

( )G lΘu hr
l,k + h l

l,k zl,k sl,k +
1
ηl

mH
l ∑

i ∈ K j, j ≠ l
( )G jΘu hr

j,i + h l
j,i zj,i sj,i + mH

l n l

ηl

 
, (12)

where m l   denotes the received beamforming vector at AP l 
and ηl denotes the denoising factor to suppress noise. Follow‐
ing Ref. [34], each transmit scalar can be designed as

zl, k = ηl (mH
l (G lΘu hr

l,k + h l
l,k ) )-1. (13)

Therefore, the estimated function at AP l can further be ex‐
pressed as

gl = gl + eul
l , (14)

where eul
l = (mH

l ηl )∑i ∈ K j, j ≠ l(GjΘu hr
j,i + hl

j,i ) zj,i sj,i + (mH
l n l ηl ) 

denotes the total uplink error, which includes the inter-cell in‐
terference and noise. When AP l completes the aggregation 
process, a new round of global model updates is generated ac‐

cording to Eq. (5), i.e., w t + 1
l = w t

l - ζt

Kl
gl .

3 Convergence Analysis and Problem For⁃
mulation
In this section, we provide the convergence analysis of the 

proposed RIS-Assisted AirComp-based two-cell FL system. 
Based on the convergence results, we get an optimality gap 
bound that is influenced by both the downlink and uplink er‐
rors. In addition, we formulate the optimization problem to im‐
prove the performance of the proposed system.
3.1 Convergence Results

Assumption 1: M-Smoothness. All local loss functions 
(F1,…, Fk) are M-Smoothness. For all x and y, we have

Fk ( x ) ≤ Fk ( y ) + ( x - y )T∇Fk ( x ) + M
2 | | x - y | |2. (15)

Assumption 2: µ-strongly convexity. All local loss functions 
F1,…, Fk are µ-strongly convex. For all x and y, we have

Fk ( x ) ≥ Fk ( y ) + ( x - y )T∇Fk ( x ) + μ
2 | | x - y | |2. (16)

Theorem 1: Let Assumptions 1 and 2 be hold. In cell l, the 
learning rate satisfies 0 ≤ ζt ≡ ζ = 1 M. After T communica‐
tion rounds, the expected optimality gap in the RIS-Assisted 
FL system is upper bounded by
E[ ]Fl( )wT

l - Fl( )w⋆
l ≤ ρTE[ ]Fl( )w0

l - Fl( )w*
l +

∑
t = 0

T - 1
ρT - t - 1 ( )M

2K ∑
k ∈ K

E é
ë
êêêê ù

û
úúúú|| || edl

k, t
2 + 1

2MK 2 E é
ë
êêêê ù

û
úúúú|| || eul

l, t
2

, (17)
where ρ = 1 - μ M.

Proof: Please refer to Appendix for details.

▲Figure 2. Process of over-the-air computation (AirComp) in the two-cell network

AP: access point

xl,1

xl,k

Sl,1

Sl,k

Cell l

Cell j

Ψl,1(·)

Ψl,k(·)

hl,1

Zl,k hl,k

… … … …

Zl,1

xj,1

xj,k

Ψj,1(·)

Ψj,k(·)

Sj,1

Sj,k

Zj,1

Zj,k

hj,1

hj,k

Z

yl
ml

mj

yj

ϕl (·)

ϕj (·) f

f

AP l

AP j
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3.2 Problem Formulation
According to Theorem 1, the first term to the right of the in‐

equality gradually tends to zero as the number of T increases. 
Thus, the upper bound is dominated by the last term, which in‐
cludes the inter-cell interference and noise error in the down‐
link and uplink communications. we aim to minimize the up‐
per bound in each time slot for transmitting the gradient infor‐
mation in all cells, given by

∑
l = 1

L ( )M
2K ∑

k ∈ K
E é

ë
êêêê ù

û
úúúú|| || edl

k,t
2 + 1

2MK 2 E é
ë
êêêê ù

û
úúúú|| || eul

l,t
2 ,∀t ∈ T,∀l ∈ L, (18)

We denote the optimization objective in Eq. (18) by the 
symbol E. Specially, the denoising factor ηl in Eq. (14) is de‐
signed as

ηl = Pmink mH
l (G lΘu hr

l,k + h l
l,k ) 2

. (19)
Then, the corresponding optimization problem can be for‐

mulated as
minimize
m l, Θu, tl, Θd

 E
subject to || θul

s = 1, ∀s = 1,…, S,
                   || θdl

s = 1, ∀s = 1,…, S,
                    t l

2 ≤ Pd , (20)
where θul

s  and θdl
s  mean the phase-shift constraints, and t l is the 

transmit beamforming constraint.

E é
ë
êêêê| | edl

l,t | |
2ù
û
úúúú =

∑
j ≠ l





( )hrH

j,k ΘdG H
l + h l,H

j,k t j

2 + σ2
d

 ( )hrH
l,kΘdG H

l + h l,H
l,k t l

2
, (21)

E é
ë
êêêê| | eul

l,t | |
2ù
û
úúúú = ∑

i ∈ K j

j ≠ l

ηj




mH

l ( )G jΘu hr
j,i + h l

j,i
2

ηl




mH

j ( )G jΘu hr
j,i + h j

j,i
2 +  mH

l

2
σ2

ηl .
(22)

For Problem (20), the optimization variables are the re‐
ceived beamforming vector m, uplink phase-shift matrix Θu, transmit beamforming vector t, and downlink phase-shift ma‐
trix Θd. The first two correspond to variables in the uplink pro‐
cess, and the last two are variables in the downlink process. 
We observe that the variables in these two processes are not 
coupled and their corresponding constraints are independent. 
Therefore, we can decompose the optimization objective into 
two sub-problems, i. e., downlink and uplink optimizations. 
Then, we can further solve Problem (20) by minimizing the fol‐
lowing two sub-problems in Eqs. (23) and (24) simultaneously.

minimize
m l, Θu

∑
l = 1

L

E é
ë
êêêê ù

û
úúúú|| || eul

l, t
2 ,            

subject to || θul
s = 1, ∀s = 1,…, S. (23)

minimize
tl, Θd

∑
l = 1

L ∑
k ∈ K

E é
ë
êêêê ù

û
úúúú|| || edl

k, t
2 ,

subject to || θdl
s = 1, ∀s = 1,…, S,

 t l

2 ≤ Pd .                   (24)

4 Optimization Framework
In this section, we specify the optimization framework for 

solving the uplink and downlink optimization problems, re‐
spectively. Each optimization problem also includes both 
beamforming optimization and phase-shift optimization.
4.1 Uplink Optimization

To simplify Eq. (19), we introduce an auxiliary variable vec‐
tor γ l = mink‖mH

l (G lΘu hr
l, k + h l

l, k )‖2 for cell l. By taking Eq. 
(19) to Problem (23) and introducing a new optimizing vari‐
able v l = m l / γl , the minimum problem in Eq. (23) can be 
adapted as

minimize
v l, Θu

∑
l = 1

L ∑
i ∈ K j

j ≠ l

 vH
l ( )G jΘu hr

j, i + h l
j, i

2

 vH
j ( )G jΘu hr

j, i + h j
j, i

2 + ∑
l = 1

L

q v l

2,

subject to  vH
l ( )G jΘu hr

l, k + h l
l, k

2 ≥ 1, ∀k ∈ K l, ∀l,     
|| θul

s = 1, ∀s = 1,…, S .                                  (25)
where q = σ2 P is a constant. We observe that the above 
problem turns out to be highly intractable due to the non-
convexity of the objective function and nonconvex quadratic 
constraints for v and Θ. First, we decompose the above opti‐
mization problem into L + 1 subproblems, i.e., L beamforming 
problems and a phase-shift problem. Then, we propose an al‐
ternative optimization algorithm to solve the uplink optimiza‐
tion problem.

1) Received beamforming optimization: We fix the diagonal 
phase-shift matrix Θu, and the l-th optimization sub-problem 
can be written as

minimize
v l

∑
i ∈ K j

j ≠ l

 vH
l h l,Θu

j,i
2

 vH
j h j,Θu

j,i
2 + q v l

2,   

subject to  vH
l h l,Θu

l,k
2 ≥ 1, ∀k ∈ K l, ∀l, (26)

where h l,Θu
j, i = G jΘu hr

j, i + h l
j, i, and h j,Θu

j, i  and h l,Θu
l, k  are also fol‐

lowed by this representation. Then we introduce an auxiliary 
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variable bj, i which satisfies  vH
l h l,Θu

j, i
2  vH

j h j,Θu
j, i

2 ≤ bj, i. Sub‐
sequently, Problem (26) can be equivalent to

minimize
v l, b ∑

i ∈ K j

j ≠ l

bj, i + q v l

2,                    

subject to  vH
l h l,Θu

l, k
2 ≥ 1, ∀k ∈ K l, ∀l,

 vH
l h l,Θu

j, i
2

 vH
j h j,Θu

j, i
2 ≤ bj, i, ∀j ≠ l .        

(27)
However, the constraints in Eq. (27) are nonconvex for the op‐

timization variable v l. To address the nonconvexity of the con‐
straints, we use the SCA method to transform the quadratic form 
into a linear constraint[11]. We let a l,k=[Re ( vH

l hl,Θu
l,k ) , Im ( vH

l hl,Θu
l,k ) ] 

and a j,i = é
ëRe ( vH

l hl,Θu
j,i ) , Im ( vH

l hl,Θu
j,i )ùû, and the corresponding 

linear constraints are
 a( )t

l, k
2 + 2 (a( )t

l, k )T (a l, k - a( )t
l, k ) ≥ 1, ∀k, ∀l,

 a( )t
j, i

2 + 2 (a( )t
j, i )T (a j, i - a( )t

j, i ) ≤ bj, i vH
j h j,Θu

j, i
2, ∀i, ∀j, (28)

where a( )t
l, k and a( )t

j, i are the t-th iteration solution. At the begin‐
ning of the iteration, the initial a( )0

l, k and a( )0
j, i  can be randomly 

generated. By substituting Eq. (28) into Eq. (27), we have the 
following optimization problem:

minimize
v l,b,a ∑

i ∈ K j

j ≠ l

bj, i + q v l

2,                                            

subject to  a( )t
l, k

2 + 2 (a( )t
l,k )T (a l,k - a( )t

l,k ) ≥ 1, ∀k, ∀l, 
 a( )t

j, i
2 + 2 (a( )t

j, i )T (a j, i - a( )t
j, i ) ≤ Bj, i, ∀i, ∀j,

a l, k = [ ]Re ( )vH
l h l,Θu

l,k , Im ( )vH
l h l,Θu

l,k ,              
a j, i = é

ë
ù
ûRe ( )vH

l h l,Θu
j, i , Im ( )vH

l h l,Θu
j, i  ,                (29)

where Bj, i = bj, i|vH
l h j, Θu

j, i |2 . Then, we find that the objective 
function and constraints are convex for any optimization 
variable, which means we can adopt the CVX tools to obtain 
the optimal beamforming vector v l . When the beamforming 
vectors of all cells are obtained, we start optimizing the 
phase shift.

2) Uplink phase-shift optimization: With the given beam‐
forming vector v, we transform the channel as 
G jΘu hr

j, i = Rr
j, iθu, where θu = diag (Θu ) and Rr

j,i ∈ CN × S de‐
notes the channel without phase-shift from node i to AP j. 
Then, the phase-shift optimization problem is rewritten as

minimize
θu

∑
l = 1

L ∑
i ∈ K j

j ≠ l





vH

l ( )Rr
j, iθu + h l

j, i
2





vH

j ( )Rr
j, iθu + h j

j, i
2 ,                 

subject to  vH
l ( )Rr

l, kθu + h l
l, k

2 ≥ 1, ∀k ∈ K l, ∀l,
|| θul

s = 1, ∀s = 1,…, S .                             (30)
Unlike Problem (26), the optimization variable of the objec‐

tive function in Problem (30) appears in both the numerator 
and denominator, which requires that we have to optimize the 
phase shift of all cells at the same time. For the equation con‐
straints in Problem (30), we can reduce it to a convex con‐
straint, i.e., | θul

s | ≤ 1. In addition, we let x lji = vH
l (Rr

j,iθu + h l
j,i ), 

x jji = vH
j (R r

j, iθu + h l
j, i ), x llk = vH

l (R r
l,kθu + h l

l,k ) and  x lji

2  x jji

2 ≤ rj,i. 
After applying the SCA method, the corresponding phase-shift 
problem is expressed as:

minimize
θu, r, y ∑

l = 1

L ∑
i ∈ K j

j ≠ l

rj, i ,                                                         

subject to  y ( )t
llk

2 + 2 ( y ( )t
llk )T ( y llk - y ( )t

llk ) ≥ 1, ∀k, ∀l,
 y ( )t

lji

2 + 2 ( y ( )t
lji )T ( y lji - y ( )t

lji )
rj, i

≤                  

 y ( )t
jji

2 + 2 ( y ( )t
jji )T ( y jji - y ( )t

jji ), ∀i, ∀j,          
y lji = é

ë
ù
ûRe ( )x lji , Im ( )x lji ,                             

y jii = é
ë

ù
ûRe ( )x jji , Im ( )x jji ,                             

y llk = [ ]Re ( )x llk , Im ( )x llk ,                           
|| θul

s ≤ 1, ∀s ,                                                     (31)
where y ( t )

llk , y ( t )
lji  and y ( t )

jji  are the t-th iteration solution. For Prob‐
lem (31), the objective function and all constraints are convex, 
which indicates the optimal solution can be obtained from a 
convex program. Since we have scaled down the phase-shift 
equation constraints, when we get the optimal phase-shift solu‐
tion from the convex program, we need to normalize it to sat‐
isfy the equation constraint.

The framework of optimization is summarized in Algorithm 2, 
where the process of solving Problems (29) and (31) is based on 
the SCA algorithm. For the equation constraint, we first relax 
it to obtain the optimal solution and then normalize the solu‐
tion to satisfy the original condition.
Algorithm 2: Alternative beamforming and phase⁃shift al⁃
gorithm

 Input: The number of cells L, initial beamforming vector of 
each cell v l, ∈ L, initial random phase-shift matrix Θu, and 
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constant q.
 Alternative beamforming optimization:
   for the number of cell l =  1, 2,…, L do
    Fixing Θu and other cell v j, j ≠ l, introducing the auxil‐
iary variable bj, i;       v l ← solve Problem (29) by ( v l, v j, Θu, bj, i );      end
 Phase⁃shift algorithm:
   Fixing the beamforming vector v l, ∀l, introducing the aux‐
iliary variable zj,i;  Relaxing the equation constraint of Problem (30), i. e., 
| θul

s | = 1.
   Θu ← solve Problem (31) by ( v l, v j,Θu, zj, i );   Θu ← normalize Θu, i.e., | θul

s | = | θul
s | /abs (θul

s ).
 Output: {v l, ∀l ∈ L, Θu}.
4.2 Downlink Optimization

The downlink optimization problem is

minimize
tl,Θd

∑
l = 1

L ∑
k ∈ K

∑j ≠ l




( )θH

d T r,H
j, k + h l,H

j, k t j

2 + σ2
d

 ( )hrH
l, kΘdG H

l + h l,H
l, k t l

2  , 

subject to  t l

2 ≤ Pd, ∀l,                                                  
|| θdl

s = 1, ∀s = 1,…, S .                                     (32)
We observe that Problem (32) is nonconvex for any optimi‐

zation variable, and we cannot directly solve this optimization 
problem. For simplicity, we first let h l,Θd

j,k = hrH
j, kΘdG H

l + h l,H
j, k 

and h l,Θd
l, k = hrH

l, kΘdG H
l + h l,H

l, k. Then we divide this optimization 
problem into two parts (transmit beamforming and downlink 
phase-shift optimizations).

1) Transmit beamforming optimization: For a given diagonal 
phase-shift matrix Θd, we mainly focus on the downlink re‐
ceived beamforming optimization. Then, we introduce an auxil‐
iary variable Δ l,k which satisfies ( )∑

j ≠ l
|hl,Θd

j,k tj |2 + σ2
d |hl,Θd

l,k tl|2 ≤
Δ l,k. The optimization Problem (32) can now be converted to

minimize{ t,Δ } ∑
l = 1

L ∑
k ∈ K

Δ l,k ,                                                   
subject to  t l

2 ≤ Pd, ∀l,                                              
∑
j ≠ l

∙ h l,Θd
j, k t j

2 + σ2
d

 h l,Θd
l, k t l

2 ≤ Δ l, k, ∀k ∈ K l, ∀l
. (33)

For Constraint (33), we can adjust the inequality to 
(dl,k Δ l,k ) ≤  h l,Θd

l, k t l

2, where dl,k = ∑j ≠ l
∙ h l,Θd

j, k t j

2 + σ2
d. In 

this case, for the nonconvex quadratic constraints concerning 

the variable tl, we can exploit the SCA algorithm to linearly 
approximate the constraint as

 c( )t
l, k

2 + 2 (c( )t
l, k )T (c l, k - c( )t

l, k ) ≥ dl, kΔ l, k
, ∀k, ∀l, (34)

where c l, k = [ Re(h l,Θd
l, k t l ),Im (h l,Θd

l, k t l ) ] , ∀k, ∀l, and c( t )
l, k is the 

optimized solution after the t-th iterative optimization. Then, 
the optimization problem at the l-th iteration is

minimize
tl,Δ ∑

l = 1

L ∑
k ∈ K

Δ l, k ,                                                          
subject to  t l

2 ≤ Pd, ∀l,                                                    
 c( )t

l, k
2 + 2 (c( )t

l, k )T (c l, k - c( )t
l, k ) ≥ dl, kΔ l, k

,∀k,∀l,
c l,k = [ ]Re ( )h l,Θd

l, k t l , Im ( )h l,Θd
l, k t l , ∀k,∀l          .(35)

Problem (35) is convex and we can easily solve it by utiliz‐
ing convex optimization tools.

2) Downlink phase-shift optimization: We fix the transmit 
beamforming vector t and denote the channel as G lΘd hr

j,k =
T r

j,kθd, G lΘd hr
l,k = T r

l,kθd, where θd = diag (Θd ), T r
j,k and 

T r
l,k ∈ CN × S. The corresponding phase-shift optimization prob‐

lem can be reformulated as

minimize
tl,Δ ∑

l = 1

L ∑
k ∈ K

∑j ≠ l




( )θH

d T r,H
j, k + h l,H

j, k t j

2 + σ2
d

 ( )θH
d T r,H

l, k + h l,H
l, k t l

2 ,  

subject to || θdl
s = 1, ∀s = 1,…, S .                                  (36)

Problem (36) is in the same form as Problem (30), which 
means we can use the same strategy to solve the downlink 
phase-shift optimization.
5 Simulation Results

In this section, we provide some important simulation re‐
sults to demonstrate the performance of the proposed RIS-
assisted multi-cell FL network.
5.1 Experiment Setup

We consider a RIS-assisted two-cell wireless FL network in 
two-dimensional space where the coordinates of the APs are 
(0, 0) and (200, 0) . The RIS is deployed at the edge of the two 
cells, i. e., (100, 0). The edge devices of each cell are ran‐
domly scattered within a circle with a center of (90, 0) or 
(100, 0) and a radius of 10 m. We assume that the antennas of 
the APs and the reflecting elements of the RIS are both ar‐
ranged in a uniform linear array. In the experiments, the path 
loss is modeled as T (d/d0 )-α at a distance of d0 = 1 m, where 
d denotes the link distance and α is the pass loss exponent. 
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We consider Rician fading for all channels and the channel 
coefficients are given as

hk = T (dk /d0 )-α ( β
1 + β

hLoS
k + β

1 + β
hNLoS

k ), (37)
where hLoS

k  and hNLoS
k  represent the line-of-sight (LoS) and non-

line-of-sight (NLoS) components. The Rician factor β is set to 
be 3. Particularly, we consider the same path loss exponent for 
all links, which is 2.2. Besides, we set Pd = 30 dBm, and σ2

d =
σ2 = -10 dBm, which means the constant q = 1.

In this paper, we adopt the sample-wise loss function and 
Modified National Institute of Standards and Technology 
(MNIST) datasets[36] in the process of learning. We assume that 
each cell performs a different learning task (0 - 4 in Cell 1 
and 5 - 9 in Cell 2) and that the learning rate is 0.1. The mini-
batch datasets at different cells are 12 and 16, respectively. 
Next, we make the following specific schemes to compare the 
performance:

1) Without RIS: This scheme does not consider the RIS, 
which indicates the channel only contains the direct link be‐
tween the APs and devices, i.e., Θ = 0 (for both downlink and 
uplink communications).

2) Random phase-shift: Under this scheme, the phase-shift 
matrix is randomly generated in a RIS-assisted system, that is, 
we only need to optimize the beamforming vectors.

3) Optimal phase-shift: Under such a scheme, we optimize 
both the beamforming vectors and the phase-shift matrix of the 
RIS (Algorithm 2).

4) Error-free: The scheme is the benchmark of FL, which 
implies both the downlink model dissemination and uplink 
gradient aggregation are transmitted in an error-free manner.
5.2 Performance of RIS-Assisted FL Two-Cell System

In this subsection, we first present the performance of the 
uplink aggregation based on AirComp and downlink dissemi‐
nation error. Then we compare the performance of a two-cell 
FL system under different schemes.

For the uplink aggregation, the mean-square error (MSE) 
is a very common performance metric in AirComp[12, 14, 25, 34]. 
Therefore, we discuss the impact of the number of users, 
the number of antennas at each AP, and the number of re‐
flecting elements at RIS on the average MSE across all 
cells. Fig. 3 displays the relationship between the MSE and 
the number of users, where the number of antennas at AP 
and the number of elements at RIS are set to be N1 = N2 =
10 and S = 30 , respectively. It is obvious that the MSE in‐
creases with the number of users and deploying the RIS can 
significantly reduce the value of MSE compared to the ab‐
sence of the RIS. This is because RIS can perform channel 
compensation for users at the edge of the corresponding 
cells with poor signals. On the one hand, with the increase 
of users, the inter-cell interference is more obvious, which 

also enlarges the MSE. On the other hand, when a RIS is 
deployed at the edge of two cells, it can mitigate inter-cell 
interference. Besides, the RIS with optimal phase-shift is 
better than that RIS with random phase-shift on MSE, 
which indicates that the RIS with optimal phase-shift signifi‐
cantly enhances the signal strengths received at the APs. 
Fig. 4 compares the effects of the different numbers of an‐
tennas at AP on MSE, where the number of users per cell 
is fixed to 10 and the number of elements at RIS is also 
30 . We observe that the MSE decreases with the number of 
antennas, due to the diversity gain of antennas. RIS can im‐
prove the total MSE performance of the two-cell system. 
Correspondingly, the RIS with optimal phase shift can also 
achieve better MSE performance than the other two baseline 
schemes.

To compare the effect of the number of RIS elements on 

▲Figure 3. Relationship between MSE and the number of users
MSE: mean-square error       RIS: reconfigurable intelligent surface

▲Figure 4. Effects of the number of antennas on MSE

AP: access point MSE: mean-square error RIS: reconfigurable intelligent surface

Number of users
5 10 15 20 25

Without RIS
Random phase shfit
Optimal phase shfit

MS
E/d

B

−3
−4
−5
−6
−7
−8
−9

−10
−11
−12

Without RIS
Random phase shfit
Optimal phase shfit

Number of antennas at AP
5  10 15 20 25

MS
E/d

B

−3
−4
−5
−6
−7
−8
−9

−10
−11
−12
−13

33



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

WANG Yiji, WEN Dingzhu, MAO Yijie, SHI Yuanming 

Special Topic   RIS-Assisted Federated Learning in Multi-Cell Wireless Networks

MSE, we first set the number of users and antennas at AP to 10, 
i. e., N1 = N2 = K1 = K2 = 10, and then we fix the location of 
users in each cell to avoid the influence of channel random‐
ness. Fig. 5 shows that the number of elements at a RIS has a 
positive tendency correlated with the MSE, and as a result, the 
performance gradually gets better as the number of elements 
increases. In addition, the gap between random phase-shift 
and optimal phase-shift becomes larger and larger as the num‐
ber of elements increases, which demonstrates the benefits of 
the optimal phase-shift scheme.

Since the downlink optimization and the uplink optimiza‐
tion have similar forms and are solved by the same algorithm, 
the impacts of the number of users and antennas at AP and 
the elements at the RIS on the downlink MSE have the same 
performance trend as those on the uplink MSE. We further 
compare the downlink errors in the case that K1 = K2 = 10, 
N1 = N2 = 10, and S = 30, i. e., ∑k ∈ KE [ ||edl

k,t||2 ]. The results 
are shown in Table 1.

According to the results, the RIS with optimal phase shift 
still achieves the best performance, despite the small gaps in 
these errors. Moreover, we observe that the downlink error is 
much smaller than the uplink MSE, which indicates the down‐
link error has little effect on the convergence result of the over‐
all system when the number of users is relatively small and 
M = 10 (the learning rate is ζ = 0.1).

Next, we compare the performance of these schemes in the 
proposed two-cell FL system, where the number of users and 
that of antennas at AP in each cell are 5, and the number of el‐

ements at RIS is set by 15. Each cell performs the same FL 
task with one local update in different mini-batch datasets. In 
order to compare the performance of the entire system, we av‐
erage the train loss and test accuracy of the two cells and the 
results are shown in Fig. 6. Fig. 6 (a) shows, although the train‐
ing loss of these schemes varies, all the schemes can achieve 
convergence and converge fast. Based on the proposed 
schemes, the RIS with optimal phase-shift scheme can demon‐
strate its advantages to enhance the performance of FL. From 
Fig. 6 (b), we notice that the RIS with optimal phase shift can 
achieve approximately 85% accuracy, the RIS with random 
phase-shift can get 83.5% accuracy, and the scheme without 
RIS only attains 82.7% accuracy, which proves that the RIS-
assisted schemes can improve the performance of FL. To 
clearly show the effectiveness of our proposed system, we make 
additional time statistics for each scheme and each scheme 
runs for almost 800 s under K = 5, M = 15, N = 5, and T = 300, 
indicating that the proposed system can converge quickly. In 

▼Table 1. Comparison of downlink errors
Scheme

Without RIS
Random PS
Optimal PS

Error/dB
−52.77
−53.16
−53.91

PS: phase-shift      RIS: reconfigurable intelligent surface

▲Figure 5. Relationship between MSE and the number of elements at RIS

MSE: mean-square error      RIS: reconfigurable intelligent surface

▲ Figure 6. Performance of different schemes in the proposed two-cell 
FL system: (a) training loss vs communication rounds; (b) test accuracy 
vs communication rounds

RIS: reconfigurable intelligent surface
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summary, RIS can compensate for the signal degradation of 
edge users and thereby decrease the error of communication. 
Moreover, we can adjust the phase-shift matrix of RIS to miti‐
gate the inter-cell interference.
6 Conclusions and Future Work

In this paper, we develop a RIS-assisted AirComp-based 
two-cell FL wireless network, where each cell learns a differ‐
ent FL task and both the effects of downlink and uplink com‐
munications are considered. We first analyze the convergence 
of FL in the proposed system and show that the convergence is 
mainly influenced by the error of downlink and uplink trans‐
missions. To enhance the performance of FL, we formulate the 
joint uplink and downlink optimization problem to minimize 
the optimality gap. To solve the problem, we divide the optimi‐
zation problem into two separate subproblems. The beamform‐
ing vector and phase-shift matrix in each subproblem are opti‐
mized by alternative optimization based on SCA. In the end, 
simulation results show the performance and advantage of our 
proposed system and optimization algorithm.

In this work, we mainly focus on a scenario where a RIS as‐
sists two cells. In our future work, we will consider the sce‐
nario of a multi-RIS-assisted multi-cell wireless network, 
which makes the system model more complex. Since the place‐
ment of multi-RIS has a great impact on multi-cell perfor‐
mance, it is necessary to improve the average learning perfor‐
mance of all cells, as well as to avoid the poor performance of 
one cell. Most existing RISes only support a reflection or trans‐
mission mode. A new simultaneous transmitting and reflecting 
reconfigurable intelligent surface (STAR-RIS) can achieve full 
spatial coverage and have the advantage of adjusting more de‐
grees of freedom. Therefore, promoting the deployment of 
SART-RIS is conducive to the implementation of more appli‐
cation scenarios.

Appendix
Proof of Theorem 1

For presentation clarity, we omit the cell index in the follow‐
ing analysis.  According to Eqs.  (5), (7) and (14), we have

wt + 1 = wt - ζt

K ( ∑k ∈ K l

∇Fk( )wt + edl
k + eul

t ). (38)

Let ∇F ( ŵt ) = 1
K∑k ∈ K l

∇Fk( )wt + edl
k,t  and eup

t = 1
K eul

t , and 
then the global update can be rewritten by

wt + 1 = wt - ζt(∇F ( ŵt ) + eup
t ). (39)

According to Assumption 1, we obtain

F ( )wt + 1 - F ( )wt ≤ ∇F ( )wt , wt + 1 - wt + M
2 || || wt + 1 - wt

2 =     
Mζ2

t2 || || ∇F ( )ŵt + eup
t

2 - ζt ∇F ( )wt , ∇F ( )ŵt + eup
t   .               (40)

By taking the expectation on both sides of Eq.  (40) and uti‐
lizing E [ eup

t ] = 0, we have
E[ ]F ( )wt + 1 - F ( )wt ≤ -ζtE[ ]∇F ( )wt , ∇F ( )ŵt + eup

t +
Mζ2

t2 E é
ë
êêêê ù

û
úúúú|| || ∇F ( )ŵt + eup

t

2 =
-ζtE[ ]∇F ( )wt ,∇F ( )ŵt + Mζ2

t2 E é
ë
êêêê ù

û
úúúú|| || ∇F ( )ŵt

2 +
Mζ2

t2 E é
ë

ù
û|| || eup

t

2   . (41)
We let T1 = E[ ∇F ( )wt , ∇F ( )ŵt ] and T2 = E é

ë
êêêê| | ∇F ( ŵt ) | |2ù

û
úúúú .

First, we make a upper bound of T2, and then we have
T2 = E [ || || ∇F ( )ŵt ± ∇F ( )wt

2 ] =
E é

ë
êêêê ù

û
úúúú|| || ∇F ( )ŵt - ∇F ( )wt

2 + E é
ë
êêêê ù

û
úúúú|| || ∇F ( )wt

2 +
2E[ ]∇F ( )wt , ∇F ( )ŵt - ∇F ( )wt ≤
M 2

K ∑
k ∈ K

E é
ë
êêêê ù

û
úúúú|| || edl

k,t
2 - E é

ë
êêêê ù

û
úúúú|| || ∇F ( )wt

2 +
2E[ ]∇F ( )wt , ∇F ( )ŵt , (42)

where a ± b = a + b - b and the last inequality follows M-
smoothness property ||∇F ( x ) - ∇F ( y )|| ≤ M||x - y||.  Therefore,
E[ ]F ( )wt + 1 - F ( )wt ≤ -ζt( )1 - Mζt E[ ]∇F ( )wt , ∇F ( )ŵt +
M 3 ζ2

t2K ∑
k ∈ K

E é
ë
êêêê ù

û
úúúú|| || edl

k,t
2 + Mζ2

t2 E é
ë

ù
û|| || eup

t

2 - Mζ2
t2 E é

ë
êêêê ù

û
úúúú|| || ∇F ( )wt

2

.
(43)

By setting 0 ≤ ζt ≡ ζ = 1
M , we obtain

E[ ]F ( )wt + 1 - F ( )wt ≤ - 1
2M

E [ ||∇F (wt )||2 ] +
M
2K ∑

k ∈ K
E [ ||edl

k,t||2 ] + 1
2M

E [ ||eup
t ||2 ]  . (44)

Based on Assumption 2, we have ||∇F (wt )||2 ≥ 2μ (F (wt ) -
F (w⋆) ) .

Thus, Eq.  (44) can be represented as
E[ ]F ( )wt + 1 - F ( )wt ≤ - μ

M E [ F (wt ) -
F (w⋆ ) ] + M

2K ∑
k ∈ K

E [ ||edl
k,t||2 ] + 1

2M
E [ ||eup

t ||2 ]  . (45)
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Rearranging Eq.  (45) and applying recursion, we have
E [ F (wT ) - F (w⋆ ) ] ≤ ρTE [ F (w0 ) - F (w⋆ ) ] +
∑
t = 0

T - 1
ρT - t - 1 ( )M

2K ∑
k ∈ K

E é
ë
êêêê ù

û
úúúú|| || edl

k,t
2 + 1

2MK 2 E é
ë
êêêê ù

û
úúúú|| || eul

t

2
, (46)

where ρ = 1 - μ M.  Therefore we get Theorem 1.
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Abstract: Federated learning (FL) is a distributed machine learning (ML) framework where several clients cooperatively train an ML model 
by exchanging the model parameters without directly sharing their local data. In FL, the limited number of participants for model aggregation 
and communication latency are two major bottlenecks. Hierarchical federated learning (HFL), with a cloud-edge-client hierarchy, can lever‐
age the large coverage of cloud servers and the low transmission latency of edge servers. There are growing research interests in implementing 
FL in vehicular networks due to the requirements of timely ML training for intelligent vehicles. However, the limited number of participants in 
vehicular networks and vehicle mobility degrade the performance of FL training. In this context, HFL, which stands out for lower latency, 
wider coverage and more participants, is promising in vehicular networks. In this paper, we begin with the background and motivation of HFL 
and the feasibility of implementing HFL in vehicular networks. Then, the architecture of HFL is illustrated. Next, we clarify new issues in 
HFL and review several existing solutions. Furthermore, we introduce some typical use cases in vehicular networks as well as our initial ef‐
forts on implementing HFL in vehicular networks. Finally, we conclude with future research directions.
Keywords: hierarchical federated learning; vehicular network; mobility; convergence analysis
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1 Introduction

Recently, the evolution of intelligent technologies gives 
rise to a wide range of emerging applications includ‐
ing the Internet of Things (IoT), autonomous driving, 
and so on. While opening up new ways of life for us‐

ers, these applications also produce numerous data scattered 
on mobile devices. Transmitting these data to a centralized 
server for traditional machine learning (ML) is no longer ca‐
pable due to limited communication resources, tight latency 
requirements and stringent privacy concerns. As a result, fed‐
erated learning (FL) is proposed as a distributed learning solu‐
tion, where multiple mobile devices and a parameter server co‐
operatively train an ML model by only exchanging the model 
parameters without directly sharing their local data.

In recent years, many works have been done to deal with the 

different challenges of FL[1]. Among them, communication effi‐
ciency is one of the most important issues[2]. Many FL frame‐
works consider the cloud server as the parameter server, but 
the communication between clients and the cloud server is in‐
efficient and unpredictable. Federated edge learning (FEEL)[3], 
where the clients share the ML model parameters with edge 
servers, has been proposed to reduce communication latency. 
However, the edge servers in FEEL have limited coverage and 
the number of clients for FL training cannot meet the require‐
ments, resulting in the degradation of training performance. 
Therefore, it is necessary to characterize the tradeoff between 
communication latency and training performance.

To deal with this issue, the concept of hierarchical FL 
(HFL) has been proposed[4–5], which leverages the large cover‐
age of the cloud server and the high communication efficiency 
of the edge server. This architecture consists of one cloud 
server, multiple edge servers, and a multitude of clients. In 
HFL, the clients update their local parameters and send them 
to the edge servers for edge aggregations as conventional FL 
does. The difference is that after several rounds of edge aggre‐
gations, multiple edge servers send their parameters to a cloud 

The work of YAN Jintao, CHEN Tan, XIE Bowen, ZHOU Sheng and NIU 
Zhisheng are sponsored in part by the National Key R&D Program of China 
under Grant No. 2020YFB1806605, the National Natural Science Founda⁃
tion of China under Grant Nos. 62022049, 62111530197, and 61871254, and 
OPPO. The work of SUN Yuxuan is supported by the Fundamental Re⁃
search Funds for the Central Universities under Grant No. 2022JBXT001.
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server for cloud aggregation, which allows more clients to be 
involved in the framework. Experimental results and theoreti‐
cal analysis have shown that this client-edge-cloud FL archi‐
tecture has higher convergence speed and less training time 
compared with the conventional framework[5].

During the last several years, FL has witnessed its potential 
in vehicular networks. The advantage of implementing FL in ve‐
hicular networks is twofold. First, FL can satisfy the latency 
and privacy requirements that the applications in vehicular net‐
works, such as trajectory planning and traffic flow optimization, 
call for. Second, intelligent vehicles have computation and com‐
munication capabilities and can sample abundant data for train‐
ing[6]. There have been many papers on the implementation of 
FL in vehicular networks. In Ref. [7], an FL-based approach is 
proposed to allocate the power and resource for ultra-reliable 
low-latency communications in vehicular networks. In Ref. [8], 
FL is used to update an edge caching scheme for vehicular net‐
works, which considers the cached content and vehicular mobil‐
ity. Considering the computation and communication resources 
and local dataset of vehicles, the authors of Ref. [9] propose a 
joint vehicle selection and resource allocation scheme for FL 
training. In Ref. [10], the vehicle speed and position are taken 
into consideration and an optimization problem is formulated 
for resource allocation for FL.

However, implementing FL in vehicular networks may be 
more challenging than that in conventional wireless net‐
works[11]. First, the ML application in vehicular networks has 
more stringent requirements for latency. This is because ve‐
hicles may leave the coverage of the central server due to mo‐
bility before successfully uploading their updated local model 
to the server. Second, since the physical distances between ve‐
hicles are much larger than those of humans or mobile de‐
vices, the number of clients participating in model aggregation 
in vehicular networks is much lower than that in conventional 
wireless networks, which degrades the convergence perfor‐
mance of FL. In this context, HFL stands out for its properties 
of lower latency, wider coverage, and more participants, inspir‐
ing us to search for the possibility of implementing HFL in ve‐
hicular networks.

There are some existing surveys and tutorials on FL, as 
shown in Table 1. In Ref. [1], a comprehensive survey of FL in 
wireless networks is provided, and research directions includ‐
ing compression and sparsification, convergence analysis, 

wireless resource management, and FL training method design 
are presented. The authors of Ref. [2] focus on minimizing the 
communication and computation latency and introduce the 
concept of timely edge learning. The key challenges and solu‐
tions to the timely issues are discussed. In Ref. [11], the con‐
cept of FL is combined with mobile edge computing (MEC) 
and a comprehensive survey of FL and MEC is provided. In 
Ref. [12], the implementation of FL in vehicular networks is 
studied and the major challenges are analyzed from a learning 
and communication perspective. In this work, we provide a 
comprehensive review of HFL and explore the feasibility of 
implementing HFL in vehicular networks.

The rest of this paper is organized as follows. The HFL ar‐
chitecture is introduced in Section 2. In Section 3, we clarify 
the new issues and challenges in HFL compared with FL and 
provide a review of existing works dealing with these issues. 
In Section 4, we introduce the typical use cases of HFL in ve‐
hicular networks. Section 4 concludes this paper and gives 
some future research directions in this field.
2 HFL Architecture

In a typical HFL system, a cloud, some edges and several 
clients collaboratively train an ML model. The cloud covers 
all the edges and each edge covers some of the clients. All of 
the participants initialize a model of the same parameters and 
perform cloud epochs. Each cloud epoch is composed of edge 
learning stages and a cloud aggregation stage. During the edge 
learning stage, each edge, together with clients under its cover‐
age, trains the learning model in the way of FL for some itera‐
tions. During the cloud aggregation stage, edges transmit their 
model parameters or gradients to the cloud. The cloud aggre‐
gates the parameters or gradients to update the global model 
and broadcasts the global model to edges. The cloud epoch is 
repeated until the global model converges. The training proce‐
dure is illustrated in Fig. 1.

Different from clients in FL, who are always connected to 
the same parameter server, those clients in HFL can be associ‐
ated with different edges during training. First, in cellular net‐

▼Table 1. Existing surveys on FL
Highlight

A comprehensive survey of FL in wireless networks
A tutorial on timely edge learning, aiming to minimize the communi‐

cation and computation latency in FL training
A comprehensive survey of FL and MEC

A tutorial on the implementation of FL in vehicular networks and the 
major challenges of learning and communications

Reference
Ref. [1]
Ref. [2]

Ref. [11]
Ref. [12]

FL: federated learning          MEC: mobile edge computing ▲Figure 1. Architecture of a hierarchical federated learning system

Edge server

Cloud aggregation
w = ∑

n
βn w (e)

n

Edge aggregation
w (e)

n = ∑
m

αm wm

Cloud server

wm

Client
Local dataset

39



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

YAN Jintao, CHEN Tan, XIE Bowen, SUN Yuxuan, ZHOU Sheng, NIU Zhisheng 

Special Topic   Hierarchical Federated Learning: Architecture, Challenges, and Its Implementation in Vehicular Networks

works, the coverage areas of cells are generally overlapping, 
so clients in the overlapped area of some edges can be associ‐
ated with either of them. Second, in a scenario of wireless com‐
munications, especially in vehicular networks, clients may be 
moving, which means they can step from the coverage of one 
edge into that of another during training, while generally stay‐
ing in the range of the cloud. Therefore, in HFL, edges may 
need to reconstruct connections with clients at the beginning 
of each iteration.

To formulate the training procedure, we assume there are M 
clients and N edges and denote wm ( t ) as a client’s m-th local 
model parameters at the t-th local update. Assume the clients 
perform local updates t1 before edge aggregation and the edges 
perform FL iterations t2 before cloud aggregation. For client m, 
given the loss function Fm (⋅), learning rate η and the set of cli‐
ents that are associated with the same edge at the t-th local up‐
date ε ( t )

m , the local model evolves as follows:
w͂m ( t ) = wm ( t - 1) - η∇Fm (wm ( t - 1) ),

wm ( t ) =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

w͂m ( t ), t1 ∤ t ∑
i ∈  ε ( t)

m

αi w͂ i ( t ), t1| t, t1 t2 ∤ t

∑
j = 1

N

βj ∑
i ∈  ε ( t)

m

αi w͂ i ( t ), t1 t2| t , 

where αi and βj are edge and cloud aggregation weights sepa‐
rately, with ∑i ∈  ε ( t)

m

αi = 1 and ∑j
 βj = 1. Here a | b means b is  

divisible by a. On the opposite, a ∤ b means b is not divisible 
by a. The timescale of HFL training is further shown in Fig. 2, 
which demonstrates the relationships of t, t1 and t2 more 
clearly.

3 Overview of New Research Issues in HFL
Compared with FL, HFL brings many new research issues, 

both theoretically and practically. From the theoretical per‐
spective, the convergence analysis for HFL is more complex 
because of the multi-layer architecture. From the practical per‐
spective, the resource management strategies for HFL should 
not only focus on allocating the wireless resources under one 
server, but also arrange resources among different edge serv‐
ers. Also, the popularity of HFL gives rise to many new consid‐
erations, such as HFL with device-to-device (D2D) communi‐
cations and mobility-aware HFL. We provide a survey on HFL 
based on these three categories: convergence analysis, re‐
source management, and new considerations of HFL. Note 
that these three categories might overlap with each other. For 
instance, the convergence analysis results might be used to de‐
sign the resource allocation strategy in some works.
3.1 Convergence Analysis

In FL, convergence analysis illustrates how different factors 
influence the FL training performance, and thus can be used 
as a guideline for FL system design. In HFL, the convergence 
analysis is more complex. For FL, the clients only perform lo‐
cal updates before global aggregation. However, edge aggrega‐
tion is conducted before global aggregation, which results in a 
loose bound of convergence analysis. Many works on conver‐
gence analysis for HFL have been done. In Ref. [5], an HFL 
framework is proposed and the convergence analysis of this 
framework is provided. By investigating how the distributed 
weights deviate from the centralized sequence, the authors 
give an upper bound for the deviation. The results show how 
the edge and the cloud intervals influence the convergence 
performance for both convex and non-convex loss functions. 
Following this work, the authors of Ref. [13] provide a tighter 
convergence bound. In this work, model quantization is ad‐
opted to improve communication efficiency, and the edge and 
cloud aggregation intervals are optimized based on the theo‐
retical results to improve the training performance. The au‐
thors of Ref. [14] assume a graph topology where each edge is 
considered as a node in the graph, and occasionally averages 
its model parameters with adjacent nodes in a decentralized 
manner. Furthermore, a probabilistic approach is adopted for 
analyzing local updates. Convergence analysis of this scenario 
is then provided, showing the influence of local iterations, 
edge epochs, cloud epochs, network topology and node hetero‐
geneity on the convergence performance. Ref. [15] is the first 
work that takes both data heterogeneity and stochastic gradi‐
ent descent into consideration for convergence analysis. By de‐
noting client-edge and edge-cloud data divergence, data het‐
erogeneity is connected to the convergence bound and a worst-
case upper bound for convergence is provided. The conver‐
gence bound shows that local aggregates accelerate the conver‐
gence speed of the global model by a “sandwich” behavior. 
The results are also extended to the cases in which the group‐▲Figure 2. Timescale of hierarchical federated learning (HFL) training
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ing is random or there are more than three layers.
However, most of the above papers consider a static topol‐

ogy. In vehicular networks, the mobility of clients may de‐
grade model convergence, which should be taken into consid‐
eration. The authors of Ref. [16] propose a mobility-aware 
HFL framework. First, the HFL framework with mobile clients 
is modeled by a Markov chain. Then, convergence analysis is 
provided, showing how user mobility influences training per‐
formance. Based on the theoretical analysis, the local update 
mode and access scheme are modified to reduce the impact of 
client mobility. Experimental results illustrate that the pro‐
posed scheme can outperform the baselines, especially when 
the data heterogeneity or user mobility is high or the number 
of users is small.
3.2 Resource Management

Resource management is an important issue in FL. It means 
how the communication bandwidth, power and computing re‐
sources are allocated to clients under the coverage of one 
server. In HFL, there is more than one edge server and new is‐
sues arise.

One new issue in HFL is edge association, which is defined 
to find which clients should be allocated to which edge server. 
In Ref. [17], a joint resource allocation and edge association 
problem is formulated under HFL. The authors first propose 
the architecture of HFL and an optimization problem that aims 
to minimize both latency and energy consumption. Then, this 
problem is decomposed into two subproblems: a resource allo‐
cation problem and an edge association one. The resource allo‐
cation problem is proved to be convex and the optimization 
value can be reached. The edge association problem is solved 
via an iterative global cost reduction adjustment method. 
Simulation results show that the proposed scheme can outper‐
form the baselines in terms of FL training performance with 
low latency and energy consumption. The authors of Ref. [18] 
focus on the interactions and limited rationalities of the cli‐
ents. A dynamic resource allocation and edge association prob‐
lem is proposed based on the game theory in self-organizing 
HFL frameworks. The edge association problem is solved via a 
lower-level evolutionary game and the resource allocation 
problem is solved via an upper-level Stackelberg differential 
game. Experiments show that the proposed scheme can well 
suit the dynamics of the HFL system. In Ref. [19], the effect of 
data heterogeneity is taken into consideration. The model er‐
ror and the latency for HFL are first analyzed, and the optimi‐
zation problem of user association and resource allocation is 
then proposed under both independent identically distributed 
(i. i.d.) and non-i. i.d. settings. For the non-i. i.d. settings, the 
distance of data distribution is considered and a primal-dual 
algorithm is proposed to solve the problem. Simulation results 
show that under both i. i. d. and non-i. i. d. settings, the pro‐
posed scheme can outperform the baselines in terms of latency 
and testing accuracy.

Other issues in HFL include aggregation interval and incen‐
tive mechanism design. In Ref. [20], a joint resource alloca‐
tion and aggregation interval control problem is proposed, aim‐
ing to minimize the training loss and the latency. Convergence 
analysis is provided to show the dependency of the conver‐
gence performance on the number of participants, the aggrega‐
tion interval and training latency. Then, the original problem 
is decomposed into two subproblems. The resource allocation 
problem is proved to be convex and the optimal value can be 
reached. For the aggregation interval control problem, a round‐
ing and relaxation approach is adopted. Experimental results 
show that the proposed scheme can reach lower latency and 
higher training performance compared with the baselines. In 
Ref. [21], a two-level joint incentive design and resource allo‐
cation problem is proposed. At the lower level, the cluster se‐
lection problem is formulated as an evolutionary game. At the 
upper level, the action of the cluster head is solved via a deep 
learning-based approach. Experiments show the robustness 
and uniqueness of the proposed scheme.
3.3 New Considerations of HFL

The popularity of HFL gives rise to many novel architec‐
tures, such as HFL with device-to-device (D2D) communica‐
tions. In Ref. [22], a multi-layer hybrid FL framework is pro‐
posed. The authors first introduce the architecture of this new 
FL architecture, where there are more than three layers. In 
each layer, clients aggregate the model parameters via D2D 
▼Table 2. Summary of recent papers on HFL

Category

Convergence 
analysis

Resource 
management

Other practical 
considerations

Highlight

Effect of edge and cloud aggregation intervals 
and local update step size with both convex and 

non-convex loss functions

Extending Ref. [5] into HFL with quantization 
and carrying out the convergence analysis

Effect of local iterations, edge epochs, global 
epochs, network topology and node heterogene‐
ity on the convergence performance for a graph-

based edge topology
Extending Ref. [14] into HFL with data hetero‐
geneity, random grouping and multi-layer archi‐

tecture
Mobility-aware HFL

Joint resource allocation and edge association

Joint resource allocation and interval control
Joint resource allocation and incentive mecha‐

nism design
Multi-stage HFL with device-to-device commu‐

nications

Reference

Ref. [5]

Ref. [13]

Ref. [14]

Ref. [15]

Ref. [16]
Refs. [17–19]

Ref. [20]

Ref. [21]

Ref. [22]

HFL: hierarchical federated learning
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communications and then transmit the parameters to the up‐
per layers. Convergence analysis is provided to derive an up‐
per bound of this framework and a distributed control algo‐
rithm is proposed to improve the convergence performance. 
Experiment results show that the proposed framework can uti‐
lize the network resources more efficiently without loss of con‐
vergence speed and testing accuracy.
4 HFL in Vehicular Networks

There are many application scenarios that can benefit from 
the deployment of HFL in vehicular networks, such as autono‐
mous driving, intelligent transportation systems and smart 
wireless communications. Recent studies on these scenarios 
have adopted FL as the training framework of AI models to ob‐
tain advantages in higher convergence speed, lower energy 
consumption and better privacy protection[23]. However, re‐
search on applying HFL to vehicular networks is still in its in‐
fancy, leaving a large room for further study.

In this section, we first introduce several typical use cases 
of ML in vehicular networks, showing the great potential of 
HFL. Then we analyze the challenges and opportunities of 
HFL caused by mobility in vehicular networks. Finally, we 
show our own work on the implementation of HFL in vehicular 
networks, taking into account the mobility aspect.
4.1 Typical Use Cases

1) Autonomous driving: Autonomous driving is one of the 
key technologies in future vehicular networks. Trajectory pre‐
diction and path planning are two necessary capabilities of au‐
tonomous driving vehicles. To avoid collision with pedestri‐
ans, vehicles and other traffic agents, autonomous driving ve‐
hicles must reliably predict the future trajectories of surround‐
ing agents and safely and efficiently plan their own future 
driving paths[24]. Their decisions are based on the sensing 
data from onboard cameras, Lidars, GPS, and map informa‐
tion. To meet the stringent latency and precision require‐
ments, ML algorithms have been applied for these two 
tasks[25–26], which perform better than traditional approaches. 
However, the traffic environments of vehicular networks vary 
all the time as they keep driving, which requires vehicles to 
continually update their ML models with the latest data gener‐
ated by sensors. HFL is more promising to provide well-
trained and up-to-date ML models over centralized ML or con‐
ventional FL, since HFL can utilize much more training data 
generated from a large number of vehicles driving in various 
areas, which can improve the adaptability of ML models to dy‐
namic environments.

2) Intelligent transportation systems (ITS): ITS are novel 
traffic systems that utilize advanced information technologies 
to reduce traffic congestion, accident rate, energy consump‐
tion and carbon emissions, and thus enhance efficiency, 
safety, reliability and eco-friendliness[27]. Many typical appli‐
cations of ITS are critical to future vehicular networks, such as 

collaborative perception and vehicle platooning. Collaborative 
perception, where data from multiple traffic agents are col‐
lected and fused to conduct object detection, can achieve 
higher accuracy and precision than single-vehicle percep‐
tion[28]. Vehicle platooning, where a coordinated group of au‐
tonomous vehicles travels collectively, can achieve faster and 
safer autonomous driving with shorter spacing than single-
vehicle traveling[29]. Existing research[28, 30] on these use cases 
also considers applying machine learning methods to achieve 
better performance. Note that the ML models for ITS tasks usu‐
ally require vehicles to share data, and the data, such as photo‐
graphs and videos, can be private and sensitive. However, the 
centralized ML needs to collect the raw data from all vehicles 
to train an ML model, which leads to heavy communication 
burdens, as well as privacy problems. To reduce the unneces‐
sary raw data transmission and the resulting privacy leakage, 
HFL is a promising paradigm of model training in ITS, since it 
only collects the lightweight gradient data, rather than the 
heavyweight and private raw data.

3) Smart wireless communications: In smart wireless com‐
munications, ML algorithms are utilized in many wireless com‐
munication tasks, such as multiple ‐ input, multiple ‐ output 
(MIMO) beam selection[31], channel modeling and estima‐
tion[32], and joint source-channel coding[33]. Compared to tradi‐
tional wireless communications, ML algorithms designed and 
exploited for smart wireless communications can decrease 
communication overhead, improve the signal-to-noise ratio 
(SNR), and save transmission power, with much lower latency 
and fewer computing resources. Similar to the use cases of au‐
tonomous driving, it is a challenge for ML models to adapt to 
the dynamic characteristics of channel states in vehicular net‐
works. Therefore, HFL is also a promising training approach 
for smart wireless communications.

Although the use cases aforementioned have taken ML into 
account, there are few papers applying HFL to train the ML 
models for these scenarios in vehicular networks. Actually, 
HFL can exploit the data and computing resources of more ve‐
hicles, and thus train ML models more efficiently than central‐
ized ML. Compared to FL, vehicles from larger areas can 
bring richer data features to the training of HFL, which im‐
proves the robustness of ML models. Therefore, it is promising 
to further study the application of HFL in vehicular networks.
4.2 Challenges and Opportunities with Vehicle Mobility

Despite the promising potential of applying HFL to vehicu‐
lar networks, some properties of vehicular networks may stand 
as great barriers, in particular the mobility. Unlike other FL 
scenarios where clients stay in the same place or move at a 
low speed, intelligent vehicles usually travel fast on road, es‐
pecially when they drive on the highway. This brings more dy‐
namics and uncertainties to the topology of vehicles, leading 
to a change of association between vehicles and edges. First, 
vehicles may leave the coverage of an edge when uploading its 
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model parameters while transmitting model parameters, or 
even before finishing one round of local updates, leading to a 
waste of communication and computation resources as well as 
leakage of training data. Second, the varying channel condi‐
tions of vehicular communication links and the Doppler effect 
caused by vehicle mobility may result in the failure of model 
transmission or transmission errors in the received param‐
eters, which also influences the FL training performance.

However, there are also chances brought by mobility. On 
the one hand, the mobility of vehicles creates more opportuni‐
ties to meet[6] other vehicles, inspiring the leverage of vehicle-
to-vehicle (V2V) communications through side links to com‐
pensate for the loss of changing edge and also accelerate the 
speed of edge aggregation. On the other hand, since the hierar‐
chical structure of HFL brings a wide coverage, even though 
vehicles step out of the coverage of an edge, there’s a great 
chance that they still stay in the range of the cloud, so their 
data can still be used by training. What’s more, due to the het‐
erogeneity of clients and the dynamic nature of the road envi‐
ronment, data distribution generally varies from one edge to 
another. Mobility of vehicles promotes data fusion of edges 
and thus reduces data heterogeneity, which helps the global 
training model to converge faster. In the following section, we 
will give two case studies as examples of leveraging these op‐
portunities.
4.3 Case Study 1: V2V-Assisted Hierarchical Federated 

Learning
In this case study, we propose a V2V-assisted hierarchical 

federated learning (VAHFL) framework, where the V2V com‐
munication is utilized to speed up the aggregation process. In 
this framework (Fig. 3), the uploading of model parameters in‐
cludes both vehicle-to-infrastructure (V2I) and V2V communi‐
cation. Some vehicles act as relay nodes that help other ve‐
hicles with parameter transmission. Vehicles leaving the cover‐
age of the central server can transmit their model parameters to 
the nearby relay nodes via the V2V link before it leaves, while 
vehicles near the server directly transmit its parameter to the 
server via the V2I link. We formulate a communication latency 
minimization problem by optimizing the uploading strategy, and 
a graph neuron network-reinforcement learning (GNN-RL) 
based algorithm is designed to solve this problem.

An experimental platform is built based on Simulation of 
Urban Mobility (SUMO) to evaluate the proposed framework, 
where there is one cloud server, four edge servers and 200 ve‐
hicles. The vehicles move over time according to the Manhat‐
tan mobility model. The vehicles cooperatively train a convolu‐
tional neural network (CNN) model for an image classification 
task using the CIFAR-10[34] dataset. The V2I bandwidth is set 
to 30 MHz, and the V2V bandwidth is set to 10 MHz. For the 
benchmark, we consider that the vehicles directly transmit 
their model parameters to the server. Fig. 4 illustrates that the 
proposed framework can reduce transmission latency by 

41.54% and increase the percentage of successful transmis‐
sions by 10.97%.
4.4 Case Study 2: Edge-Heterogeneous Hierarchical Fed⁃

erated Learning
In this case study, we investigate the influence of mobility 

when training data of edge servers are heterogeneous. Before 
training, vehicles sample data to form local datasets. Data dis‐
tribution is dependent on the location of vehicles, which 
means vehicles under the coverage of the same edge server 
sample from the same distribution, while vehicles from the 
coverage of different edge servers sample differently. There‐
fore, at the start of training, the data distribution of edges is 
heterogeneous. During training, vehicles constantly travel 
across edges, driving the data from different edge servers to 
mix up. We analyze the convergence speed of this edge-
heterogeneous HFL system and prove that mobility acceler‐
ates convergence by promoting data fusion.

▲ Figure 3. Schematic of V2V-assisted hierarchical federated learning 
framework

V2V: vehicle-to-vehicle

V2V communication

Edge aggregation

Cloud server Cloud aggregation

Edge server

Vehicles

▲ Figure 4. Latency and the percentage of successful transmission of 
the proposed scheme and baseline
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Experiments are also conducted based on SUMO. We as‐
sume one cloud server, four edge servers and 32 vehicles coop‐
eratively train a four-layer CNN on the CIFAR-10 dataset, and 
we only choose data of eight classes from 10 classes for train‐
ing and inference. Initially, each edge has data of two classes, 
which is uniformly distributed in vehicles under the coverage 
of the edge. During training, vehicles travel by the Manhattan 
mobility model, with their local datasets unchanged, which 
leads to changes in edge data distribution. The network is 
trained on three settings of vehicle mobility: no mobility, low 
mobility and high mobility. As Fig. 5 shows, mobility in‐
creases the convergence speed and final test accuracy of HFL. 
What’s more, when vehicles are moving, a higher vehicle 
speed results in a faster convergence speed. As is shown by 
the dashed line and stars in the figure, if we set the target test 
accuracy as 0.75, the low mobility and high mobility scenario 
reduces the training epochs by 40.6% and 51.9% separately.
5 Conclusions

This paper presents an overview of HFL and its application 
in vehicular networks. First, we introduce the background and 
motivation of HFL and the possibility of implementing it in ve‐
hicular networks. Then, the architecture of HFL is presented. 
Afterward, we discuss new issues and challenges of HFL com‐
pared with FL and review existing solutions. Furthermore, 
some typical use cases in vehicular networks are introduced 
and our existing works of implementing HFL in vehicular net‐
works are presented. Apart from the works mentioned above, 
there are still some challenges and research directions for 
HFL and its implementation in vehicular networks:

1) Heterogenous vehicular networks: For HFL in vehicular 
networks, the participants may be more than just vehicles. Mo‐
bile devices and other transportation infrastructures can also 
participate in model aggregation. In such a case, the network 
is heterogeneous, i.e., the computing capability, the communi‐

cation capacity and the mobility patterns of clients in this net‐
work are quite different. This brings challenges to FL system 
design and resource management strategy.

2) Variation of channel conditions: Due to the high mobility 
of vehicles, the channel conditions of vehicular communica‐
tion links may vary rapidly. This may result in the failure of 
model transmission or transmission errors in the received pa‐
rameters. Therefore, the communication system should be 
carefully designed to prevent such cases.

3) Exploration of benefits of mobility: Usually, mobility is 
considered a bottleneck for FL implementation and training. 
However, mobility may also be explored to enhance FL train‐
ing performance. In our initial efforts, the convergence speed 
of an edge-heterogeneous HFL is shown to be enhanced by 
the data fusion brought by vehicle mobility. Apart from that, 
other benefits of utilizing vehicle mobility are also worth be‐
ing explored.
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1 Introduction

Federated learning (FL) [1], an emerging distributed 
learning algorithm, has received much attention in re‐
cent years due to its data protection property[2]. This 
algorithm has been extensively employed in applica‐

tions where preserving user privacy is of utmost importance, 
such as in the case of hospital data[3]. FL allows clients to uti‐
lize private sensitive data to collaboratively train a machine 
learning model locally without explicitly sharing individual 
sensitive data. In the context of wireless networks with lim‐
ited bandwidth and latency requirements, the advantages of 
FL are even more pronounced, especially when there are a 
large number of users and data. This is because only models 
or gradients are transmitted, which not only enhances the pri‐
vacy of the data but also significantly improves communica‐
tion efficiency.

Although FL offers default data privacy by avoiding the ex‐
change of raw data between participants and a server, recent 
studies have noted that FL faces various attacks such as 
membership inference attacks[4], generative adversarial net‐
work attacks[5–6], gradient leakage attacks[7–10], model inven‐

tion attacks[11], model poisoning, data poisoning and free-
riding attack during the training process[12]. These attacks 
will expose users’ private data, such as the location of confi‐
dential sites, and the condition of patients, or corrupt the 
global model and affect the performance of the model. One of 
the most advanced privacy leakage techniques is gradient 
leakage, where an honest-but-curious server could illegally re‐
construct the user’s privacy data by performing gradient leak‐
age attacks on the client’s uploaded model weights or gradi‐
ents. Furthermore, even if the federated server is reliable, gra‐
dient leakage can occur by eavesdroppers near the clients or 
server in the wireless network. Therefore, tackling the gradi‐
ent leakage issue is essential for promoting FL in practical ap‐
plications, such as edge computing and UAV swarms.

The related work is as follows.
1) Gradient leakage attacks: Gradient leakage attacks are 

used to reconstruct training input data (e. g., images or text) 
and labels through shared gradients or weights. The work in 
Ref. [7] first discussed the recovery of image data from gradi‐
ents in neural networks and demonstrated the feasibility of re‐
constructing data from a single neuron or linear layer net‐
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works. In Ref. [6], a single image was reconstructed from a 4-
layer CNN comprising a significantly large fully-connected 
layer. ZHU et al. in Ref. [8] proposed the deep leakage from 
gradient (DLG) algorithm. In particular, it yields dummy gradi‐
ents by randomly generating dummy data and dummy labels, 
then minimizing the difference between the dummy gradient 
and the original gradient, which in turn makes the dummy input 
close to the original input, and finally recovering the original 
data. They successfully reconstructed training data and ground-
truth labels from a 4-layer CNN. Moreover, they demonstrated 
that it is indeed possible to recover multiple images from their 
averaged gradients (maximum batch size of 8). Following up 
Ref. [8], due to the difficulties of DLG in convergence perfor‐
mance and extracting ground truth labels consistently, the im‐
proved deep leakage from gradient (iDLG) algorithm was pro‐
posed in 2020[9] as a simple and effective method to recover the 
original data and discover ground truth labels. GEIPING et al.
[13] studied the reconstruction of multiple images from their aver‐
aged gradients, where they used cosine similarity as a cost func‐
tion and optimized the sign of the gradient. The simulations 
show that it only reconstructs single images from gradients. Fur‐
thermore, the work in Ref. [10] introduced a GradInversion 
method to recover training image batches by inverting averaged 
gradients.

2) Defense methods for privacy leakage: Recently, a num‐
ber of studies have focused on defense strategies for privacy 
leakage in FL. These methods can be categorized into four 
types: homomorphic encryption[7, 14–15], multi-party computa‐
tion[16–17], differential privacy (DP) [18–20], and gradient com‐
pression. Homorphic encryption and multi-party computation 
incur a significant extra computational cost, thus it is not suit‐
able for wireless network scenarios with limited communica‐
tion resources and delay requirements. For the DP method, it 
is to add Gaussian noise or Laplacian noise to the gradient be‐
fore transmission, which can mitigate privacy leakage, but it 
also negatively affects the training process and model perfor‐
mance[21]. Gradient compression defends against data leakage 
by pruning gradients with small magnitudes to zero so that 
eavesdroppers cannot match the original gradients. The work 
in Ref. [8] demonstrated that it is not possible to prevent leak‐
age when the sparsity is less than 10%, but when the compres‐
sion rate is more than 20%, the recovered image is no longer 
recognizable, and the leakage is successfully prevented. How‐
ever, excessive compression may affect the model 􀆳 s perfor‐
mance. Overall, these defense approaches achieve adequate 
defense either by incurring significant overhead or by compro‐
mising the accuracy of the model and they are not specifically 
designed to defend against data leakage on a gradient[22]. Un‐
like the general-purpose protection mentioned above, the stud‐
ies in Refs. [22–24] focus on defending against gradient leak‐
age attacks. SUN et al. in Ref. [22] observed that the class-
wise data presentations of each client 􀆳s data are embedded in 
shared local model updates, which is why privacy can be in‐

ferred from the gradient, and the proposed Soteria could effec‐
tively protect training data via perturbing data presentation in 
an FC layer. In PRECODE[23], variational modeling is used to 
disguise the original latent feature space susceptible to pri‐
vacy leakage by DLG attacks. Moreover, WANG et al. [24] pro‐
posed a lightweight defense mechanism against data leakage 
from gradients. They used the sensitivity of gradient changes 
w. r. t. the input data to quantify the leakage risk and perturb 
gradients according to leakage risk. In addition, global correla‐
tions of gradients are applied to compensate for this perturba‐
tion. These three methods provide a significant defense 
against DLG attacks and have little effect on model perfor‐
mance. However, one essential part, wireless network re‐
sources (e. g., bandwidth and power), are not considered in 
these defense frameworks.

Although the aforementioned methods (Soteria, PRE 
CODE, and a lightweight defense mechanism) have been suc‐
cessful in defending against DLG attacks, all the proposed de‐
fense methods focus solely on the theoretical process of FL 
training and only the server or participants are considered ma‐
licious attackers. To the best of our knowledge, there is a lack 
of research on defending against DLG attacks for FL in wire‐
less networks. The fact is that the convergence and perfor‐
mance of FL may be affected by bandwidth, noise, delay, 
power, etc. in dynamic wireless networks. Therefore, to fill in 
the blank, we propose a novel defensive mechanism, weight 
compression for gradients, to protect data privacy from DLG 
attacks in FL. Moreover, we consider external eavesdroppers, 
such as users around the clients or servers who are not in‐
volved in FL training. Key contributions of this work include:

• We propose a novel defensive framework, weight compres‐
sion, for protecting the data privacy of FL over wireless net‐
works by considering FL and wireless metrics and factors. 
This defense is implemented by compressing the local gradi‐
ent by taking into account the user’s location and channel 
quality. In addition, Gaussian artificial noise is added to the 
compressed gradients for further defense.

• We formulate this joint resource allocation and weight 
compression matrix for FL as an optimization problem with the 
goal of minimizing the training loss while satisfying the delay 
and leakage requirement. Thus, our defensive mechanism 
jointly considers learning and wireless network metrics.

The rest of this paper is organized as follows. The system 
model and problem formulation are analyzed in Section 2. The 
analysis of the FL convergence rate is presented in Section 3. 
In Section 4, the joint optimization problem is simplified and 
solved. Then, the simulation result and analysis are described 
in Section 5. Finally, conclusions are summarized in Section 6.
2 System Model and Problem Formulation

In this paper, we consider a small network consisting of one 
server and a set of N clients to jointly train an FL model for 
task inference in a wireless environment, which includes an 

47



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

DING Yahao, Mohammad SHIKH-BAHAEI, YANG Zhaohui, HUANG Chongwen, YUAN Weijie 

Special Topic   Secure Federated Learning over Wireless Communication Networks with Model Compression

eavesdropper, as shown in Fig. 1.
2.1 Federated Learning Model

In the FL model, the training data as input of the FL algo‐
rithm collected by each client i is denoted as X i =
[ x i 1,⋯, x iKi

] , where Ki is the number of samples collected by 
client i and each element x ik denotes the K‑th sample of client 
i. The matrix y i = [ yi 1,⋯, yiKi

] is the corresponding labels of 
training data X i. After collecting data, each client i trains its 
local model using (X i, y i ) and the server aggregates received 
local models to update the global model for the next round of 
training. The main objective of the FL training process is to 
find optimal model parameters w*  that minimize the global 
loss function and the training process can be considered as 
solving an optimization problem, defined as:

min
w1,…, wN

  1K ∑
i = 1

N  ∑
k = 1

Ki  f (w i, x ik, yik ), (1)
where K = ∑i = 1

N Ki is the total size of the training data of all 
clients; w i is a vector that represents the local model of each 
client i; f (w i, x ik, yik ) is the loss function of the i-th client with 
one data sample. Fi(w i, x i 1, yi 1,⋯, x iKi

, yiKi ) is the total loss 
function of the i-th client with the whole data sample, which is 
abbreviated as Fi(w i ) . Moreover, the expression of f (·) is 
application-specific.

In general, Eq. (1) could be solved by performing gradient 
descent in each client periodically. The detailed training pro‐
cess consists of the following three steps:

1) Training initialization: The server first initiates a global 
model w0 and sets up hyperparameters of training processes, 
e. g., the number of epochs and learning rate. The initialized 
global model w0 is broadcast to clients in the first round. The 
clients start local model training after receiving w0.

2) Local training and updating: At each step j, after receiv‐
ing the global weight wj from the server, each client i samples 
a batch from their own dataset to compute the updated local 
gradients g j

i.

g j
i = 1

B ∑
k ∈ K j + 1

i

∂f ( )wj, x ik, yik

∂wj , (2)
where K j

i is a randomly selected subset of B training data 
samples from user i’s training dataset Ki at the j-th training round.

3) Model aggregation and download: Once the server receives 
all local gradients from N clients, it combines them to update 
the global gradients g j

g. Then, the weights wj + 1 are updated and 
sent back to the clients for the next training round. The update 
of the global gradient vector and weights is given by[25]:

g j
g = 1

K ∑
i = 1

N

Ki g j
i, (3)

wj + 1 = wj - ηg j
g, (4)

where η is the learning rate. Finally, processes 2 and 3 are it‐
erated until the global loss function converges or achieves the 
desired accuracy.
2.2 Threat Model

In this work, we consider the DLG attack[8] performed by the 
eavesdropper on the uplink and downlink to recover the original 
private data from the client. The DLG attack is conducted by 
making the gap between the generated dummy gradient and the 
eavesdropped local FL gradient smaller and smaller through 
multiple iterations, so that the corresponding dummy data be‐
come more and more similar to the original data.

We assume that the eavesdropper taps only one nearby cli‐
ent i at a time, eavesdropping on the last updated local gradi‐

ent (g J
i ) of the uplink trans‐

mission and the weight (wJ) 
from the downlink, where J 
is the number of iterations 
for FL to reach conver‐
gence. After that, the eaves‐
dropper randomly generates 
a set of dummy inputs x̂ =
[ x̂1,⋯, x̂B ] and ŷ =
 [ ŷ1,⋯, x̂B ], which are ini‐
tialized as random noise 
and optimized toward the 
ground truth data x*. These 
dummy data and labels are 
updated by the difference 
between the dummy gradi‐
ent and the original gradi‐▲Figure 1. Architecture of FL algorithm with one eavesdropper in wireless networks
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ent in each loop. Finally, the privacy data are recovered by 
minimizing the following objective[10, 26].

x̂*, ŷ* = arg min
x̂, ŷ

 ĝ - g J
i 2, (5)

ĝ = 1
B ∑

b = 1

B ∂f ( )wJ, x̂b, ŷb

∂wJ , (6)
where x̂ and ŷ are the synthetic dummy data and labels, re‐
spectively; x* and y*  are the ground truth data and labels cor‐
responding to the eavesdropped gradient g J

i ; x̂* and ŷ* are the 
recovered data and labels. If B = 1, Eq. (5) can be expressed as

x̂*, ŷ* = arg min
x̂,ŷ









 







∂f ( )wJ, x̂, ŷ

∂wJ - g J
i

2 . (7)

2.3 Defense Method
Data leakage is mainly caused by the leakage of the gradi‐

ent transmitted in the wireless network. Therefore, it can be 
considered to compress or encrypt the gradient on the client 
side to make it difficult for eavesdroppers to recover private 
data. In this section, we propose a defense method against data 
leakage called weight compression. The weight compression 
scheme belongs to gradient compression, which is based on 
the user’s location and channel quality to determine the com‐
pression matrix. Local gradients are divided into several parts 
by the compression matrix and only some of the gradients are 
sent to the server at a time for aggregation. Moreover, we add 
Gaussian noise to compressed gradients as the second defense 
strategy to strengthen the defense. Fig. 2 shows the result of ap‐
plying DP to defend against DLG attacks. Fig. 2(a) illustrates 
that DLG can recover the original image easily without adding 
any defense methods and Fig. 2(b) demonstrates its effective‐
ness with the addition of the Gaussian noise defense approach.

We define uj
i as the weight matrix of client i  at the j‑th itera‐

tion. To further prevent privacy data leakage, we add artificial 
Gaussian noise to the compressed gradient, and then the se‐
lected partial local gradient is given as:

g͂ j
i = g j

i⊙u j
i + n j

i, (8)
where g j

i = [ gj
i,1,⋯, gj

i,M ] and u j
i = [uj

i,1,⋯, uj
i,M ], M refers to 

the number of gradients, and ⊙ is the dot product. In Eq. (8), 
the first part g j

i⊙u j
i represents the selected partial gradient, 

and the second part represents the addition of Gaussian noise, 
where n ∼ N (0, σ2 ). An example is shown in Fig. 3. More‐
over, the compression ratio is controlled by α, i. e., ∑m = 1

M uj
i, m ≤ αi M, uj

i,m ∈ {0, 1}.
In this work, we define Eq. (9) to restrict the leakage of gra‐

dients[27].

∑
m = 1

M

ρi,mui,m ≤ DP0, (9)
where ρi,m = 1 ( Ki σ

2 ) stands for the data leakage level of each 
gradient and DP0 denotes the maximum amount of gradient 
leakage.
2.4 Transmission Model

In the FL training process, all clients upload their local FL 
gradient to the BS via orthogonal frequency domain multiple 
access (OFDMA). For the uplink, the upper bound of the trans‐
mission rate of client i can be given by:

rU
i = bi B0 log2 (1 + Pi hi

N0 B0 ), (10)
where bi = ∑q = 1

Q
bi, q is the number of RBs allocated to client i. 

Note that we assume that all clients participate in the FL train‐
ing, so bi ≥  1. Q is the total number of RBs, B0 is the band‐
width of each RB, and ∑i = 1

N bi B0 ≤ B, where B is the total 

▲Figure 2. Illustration of the differential  privacy (DP) method to pro⁃
tect the privacy of federated learning (FL)

(a)

(b)

▲Figure 3. An example of proposed weight compression
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bandwidth. Pi is the transmit power of client i, hi is the chan‐
nel gain between client i and the BS. N0 is the Gaussian noise 
power spectral density.

According to the data rate of the uplink in Eq. (10), the 
transmission delay between client i and the BS on the uplink 
can be expressed by:

tU
i = Z ( )g͂ i

rU
i , (11)

where the function Z ( g͂ i ) denotes the size of the data transmit‐
ted by each client i to the BS, i. e., the number of bits corre‐
sponding to the selected local gradients. We set Z ( g͂ i ) =
C∑m

M ui, m + 1∑m
M (1 - ui, m ), where C denotes the number of 

bits per selected gradient.
2.5 Problem Formulation

In order to prevent eavesdroppers from recovering the pri‐
vate data of clients and to guarantee FL model convergence, 
we propose a defense method called weight compression to 
compress the transmission gradient and formulate an optimiza‐
tion problem to implement this joint-designed defense method 
and the FL algorithm. The objective is to minimize data leak‐
age with limited iterations or delays by optimizing the portion 
selection of the local FL gradient for transmission. The optimi‐
zation function is defined by

min
u,b

1
K ∑

i = 1

N ∑
k = 1

Ki

f ( )w i, x ik, yik , (12)

s.t.  bi = ∑
q = 1

Q

bi,q ≥ 1, ∀i ∈ N, (12a)

∑
i = 1

N

bi B0 ≤ B, ∀i ∈ N, (12b)

ui,m ∈ {0,1}, ∀i ∈ N, (12c)

∑
m = 1

M

ui,m ≤ αi M, ∀i ∈ N, (12d)

∑
m = 1

M

ρi,mui,m ≤ DP0, ∀i ∈ N, (12e)

tU
i (bi, u i ) ≤ τ, ∀i ∈ N, (12f)

where B0 is the bandwidth of each RB, B is the total uplink 
bandwidth, τ is the requirement for uplink transmission delay, 

and DP0 is the constraint of gradient leakage. Eq. (12c) shows 
the sum of the bandwidth allocated to each user is less than or 
equal to the total bandwidth of the uplink. Eq. (12e) indicates 
the compression requirement for the number of valid gradients 
uploaded by each user.
3 Analysis of FL Convergence Rate

Since we add defense methods to the original FL algorithm, 
we need to investigate how transmitting compressed gradient 
affects the performance of FL to solve Eq. (12). Therefore, in 
this section, we derive the upper bound on the optimality gap 
of the defense-added FL algorithm.

We assume that F (w) = 1
K∑i = 1

N ∑k = 1
Ki f ( )wj, x ik, yik  and 

Fi(w) = ∑k = 1
Ki f ( )wj, x ik, yik . Based on Eq. (4), the updated 

global FL model w at step j will be
wj + 1 = wj - η (∇F (wj ) - o), (13)

where o = ∇F (wj ) - ∑i = 1
N  ∑k = 1

Ki   u i⊙∇f ( )w,x ik,yik∑i = 1
N   Ki

.
Before deriving the convergence rate of FL, we first make 

the following assumptions, the same as Ref. [28].
• A1: We assume that the gradient ∇F (w) of F (w) is uni‐

formly Lispschitz continuous with respect to w, such that
 ∇F ( )wj + 1 - ∇F ( )wj ≤ L wj + 1 - w j  , (14)

where L is a positive constant which is determined by the loss 
function and  ∙  presents the two-norm.

• A2: We assume that F (w) is the µ-strongly convex, such that
F (w j + 1 ) ≥ F (w j ) + (w j + 1 - w j ) T∇F (w j ) + μ

2  w j + 1 - w j 2
.

(15)
• A3: We assume that F (w) is twice continuously differen‐

tiable. Based on A1 and A2, we have
μI ⪯ ∇2F (w) ⪯ LI. (16)
• A4: we assume that  ∇f ( )wj, x ik, yik

2 ≤ δ1 + δ2 ∇F ( )wj
2 

with δ1, δ2 ≥ 0.
Theorem 1: If we run the FL algorithm with the weight matrix 

u, optimal global model w* and learning rate η = 1 L , we have
F (wj + 1 ) - F (w* ) ≤ At(F (w0 ) - F (w* ) ) +
2δ1
LK ∑

m = 1

M  ∑
i = 1

N  Ki(1 - ui,m ) At - 1
A - 1 , (17)

where A = 1 - μ
L + 4μδ2

LK ∑m = 1
M  ∑i = 1

N  Ki(1 - ui,m ) and the 
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proof process of F (wj + 1 ) - F (w* ) is shown below.
According to the second-order Taylor expansion, F (wj + 1 ) 

can be rewritten as
F ( )wj + 1 = F ( )wj + ( )wj + 1 - wj T∇F ( )wj +
1
2 ( )wj + 1 - wj T∇2F ( )w ( )wj + 1 - wj ≤
F ( )wj + ( )wj + 1 - wj T∇F ( )wj + L

2  wj + 1 - wj 2
. (18)

Based on Eq. (13) and given the learning rate η = 1/L, the 
F (wj + 1 ) can be expressed as

F ( )wj + 1 ≤ F ( )wj - η ( )∇F ( )wj - o
T∇F ( )wj +

Lη2
2  ∇F ( )wj - o

2 = F ( )wj - 1
2L  ∇F ( )wj

2 +
1

2L
 o 2  . (19)

Next, we derive  o 2, and the derivation is given as follows:

 o 2 = ∑
m = 1

M   om

2 =

















 


















∇F ( )wj - ∑
i = 1

N  ∑
k = 1

Ki   u i⊙∇f ( )w,x ik,yik

∑
i = 1

N   Ki

2

=

∑
m = 1

M  

















 


















∇F ( )wj - ∑
i = 1

N  ∑
k = 1

Ki   ui,m∇fm( )w, x ik, yik

∑
i = 1

N   Kiui,m

2

=

∑
m = 1

M  
























- ( )K - ∑
i = 1

N   Kiui,m ∑
i ∈ D1,m

 ∑
k = 1

Ki   ∇fm( )w, x ik, yik

K∑
i = 1

N   Kiui,m
+





















∑
i ∈ D0,m

 ∑
k = 1

Ki   ∇fm( )w, x ik, yik

K

2

≤

∑
m = 1

M  
æ

è

ç

ç

ç

ç

ç
çç
ç
ç

ç

ç

ç ( )K - ∑
i = 1

N   Kiui,m ∑
i ∈ D1,m

 ∑
k = 1

Ki   ∇fm( )w, x ik, yik

K∑
i = 1

N   Kiui,m
+

ö

ø

÷

÷

÷

÷

÷
÷÷
÷
÷

÷

÷

÷∑
i ∈ D0,m

 ∑
k = 1

Ki   ∇fm( )w, x ik, yik

K

2

 ,
(20)

where D1, m is the set of users with ui,m = 1 and D0, m is the set 
of users with ui, m = 0; the inequality equation is realized 
based on the triangle inequality. According to A4,  o 2 can be 

expressed by

 o 2 ≤ ∑
m = 1

M  ( 4
K 2 (K - ∑

i = 1

N  Kiui,m ) 2( δ1 + δ2 ∇F ( )wj
2 ) ).(21)

Since 0 ≤ K - ∑i = 1
N  Kiui,m ≤ K, we have

 o 2 ≤ ∑
m = 1

M   ( )4
K ( )K - ∑

i = 1

N   Kiui,m ( )δ1 + δ2 ∇F ( )wj
2 ≤

   4K ∑
m = 1

M   ( )∑
i = 1

N   Ki( )1 - ui,m ( )δ1 + δ2 ∇F ( )wj
2

. (22)
Substituting Eq. (22) into Eq. (19), we have

F (wj + 1 ) ≤ F (wj ) + 2δ1
LK ∑

m = 1

M  ∑
i = 1

N  Ki(1 - ui,m ) -
1

2L (1 - 4δ2
K ∑

m = 1

M  ∑
i = 1

N  Ki(1 - ui,m ) ) ∇F ( )wj
2
, (23)

F ( )wj + 1 - F ( )w* ≤ ( )F ( )wj - F ( )w* +
2δ1
LK ∑

m = 1

M  ∑
i = 1

N   Ki( )1 - ui,m -
1

2L ( )1 - 4δ2
K ∑

m = 1

M  ∑
i = 1

N   Ki( )1 - ui,m  ∇F ( )wj
2
. (24)

Based on Eq.(15) and Eq.(16), we get
 ∇F (wj ) 2 ≥ 2μ (F (wj ) - F (w* ) ), (25)

F(wj + 1 ) - F(w* ) ≤ 2δ1
LK ∑

m = 1

M  ∑
i = 1

N  Ki(1 - ui,m ) + A(F(wj) - F (w* ) ),
(26)

where A = 1 - μ
L + 4μδ2

LK ∑m = 1
M  ∑i = 1

N  Ki(1 - ui,m ). Applying 
Eq. (26) recursively, we have

F (wj + 1 ) - F (w* ) ≤ At(F (w0 ) - F (w* ) ) +
2δ1
LK ∑

m = 1

M  ∑
i = 1

N  Ki(1 - ui,m ) At - 1
A - 1 . (27)

This completes the proof.
According to Theorem 1, we obtain the gap between 

F (wj + 1 ) and F (w* ). Next, we derive the conditions for δ2 that 
guarantees the convergence of FL and simplify the optimiza‐
tion problem in Eq. (12). In Theorem 1, if we set A < 1 and 
At = 0, we can get F (wj + 1 ) - F (w* ) = ∑m = 1

M ∑i = 1
N Ki (1 -

51



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

DING Yahao, Mohammad SHIKH-BAHAEI, YANG Zhaohui, HUANG Chongwen, YUAN Weijie 

Special Topic   Secure Federated Learning over Wireless Communication Networks with Model Compression

ui,m ) At - 1
A - 1  and FL converges. Therefore, we only need to 

make A = 1 - μ
L + 4μδ2

LK ∑m = 1
M  ∑i = 1

N  Ki(1 - ui,m ) < 1 to en‐
sure FL convergence. Moreover, we can get the relationship 
between µ and L, µ < L, from Eq. (16). Hence, we get δ2 <
K 4∑m = 1

M  ∑i = 1
N   Ki( )1 - ui,m . In addition, since δ2 satisfies 

the assumption A4, we have
0 < δ2 < K

max
u,b  4 ∑

m = 1

M  ∑
i = 1

N   Ki( )1 - ui,m . (28)

4 Optimization of Training Loss
In this section, we aim to minimize the training loss of FL by 

optimizing the weight compression matrix and RB allocation 
and considering the constraints under the wireless network. 
We first simplify the objective function in Eq. (12). From Theo‐
rem 1 and the analysis of FL convergence conditions in Sec‐
tion 3, we see that if we want to minimize the training loss of 
FL, we only need to minimize the gap between F (wj + 1 ) and 
F (w* ), under the condition that A < 1. Then we get

2δ1
LK ∑

m = 1

M  ∑
i = 1

N   Ki( )1 - ui,m
At - 1
A - 1 =

2δ1
LK ∑

m = 1

M  ∑
i = 1

N   Ki( )1 - ui,m

μ
L - 4μδ2

LK ∑
m = 1

M  ∑
i = 1

N   Ki( )1 - ui,m .
(29)

It is obvious to find that to minimize Eq. (29), only ∑m = 1
M ∑i = 1

N Ki( )1 - ui,m  needs to be minimized, so the optimi‐
zation problem can be simplified as

min
u,b   ∑

m = 1

M  ∑
i = 1

N  Ki(1 - ui,m ), (30)

s.t.  bi = ∑
q = 1

Q  bi,q ≥ 1, (30a)

∑
i = 1

N  bi B0 ≤ B, ∀i ∈ N, (30b)
ui,m ∈ {0,1}, ∀i ∈ N, (30c)

∑
m = 1

M

ui,m ≤ αi M, ∀i ∈ N, (30d)

∑
m = 1

M  ρi,mui,m ≤ DP0, ∀i ∈ N, (30e)
tU

i (bi,u i ) ≤ τ, ∀i ∈ N. (30f)

Next, we aim to find the optimal RB allocation and weight 
compression matrix for each user. To accomplish this, we uti‐
lize ant colony optimization (ACO) for a large number of RBs 
and exhaustive search for a small number of RBs.
5 Simulation Results and Analysis

For our simulations, we investigate how the wireless net‐
work parameters (Pi, b), user sample size Ki and gradient com‐
pression restrictions αi affect the convergence rate under the 
premise that FL can converge. This simulation topology is a 
circular wireless network area with a central base station serv‐
ing N = 5 uniformly distributed users with d = 30 m. Specifi‐
cally, we consider only six RBs and five users, first finding all 
solutions for b by exhaustive search (at most one user is as‐
signed two RBs), and then we solve the optimization problem 
by using a CVX (a Matlab‐based modeling system for convex 
optimization) toolbox and MOSEK solver in MATLAB. Other 
key parameters used in this simulation are listed in Table 1.

Fig. 4 shows how the change of Pi and the allocation of RB 
▼Table 1. Simulation Parameters

Description
Total bandwidth of uplink

Bandwidth of each RB
Noise power spectral density

Total number of training samples for user
Gradient compression ratio of user
Number of gradients for each user

Delay requirement of uplink
Distance between user and BS

Number of RBs
Transmit power of user

Parameter
B

B0
N0
Ki

αi

M

τ

d

Q

Pi

Value
20 MHz

3.33 MHz
−174 dBm/MHz

[10, 20, 15, 25, 10]
é
ë
êêêê ù

û
úúúú3

9 , 69 , 49 , 69 , 59
9

2 s
30 m

6
0.001–0.012 W

BS: base station      RB: resource block

▲Figure 4. Objective function as user power and resource block (RB) al⁃
location varies
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change the objective function value, i.e., the convergence rate 
of the FL algorithm. As can be seen from Fig. 4, with the in‐
crease of Pi, the objective function first decreases and then 
tends to remain unchanged. This is because when the user 
power increases, the uplink transmission rate of the user be‐
comes larger, allowing the user to upload more gradients, thus 
accelerating the convergence speed and optimizing the objec‐
tive function. However, when Pi is very large, the optimal num‐
ber of gradients that users can upload is already saturated due 
to DP0 constraints, so the objective function cannot continue 
to decline.

Different RB allocations also affect the convergence speed 
of FL at the same Pi, and here we analyze three cases. The ob‐
jective function value of the red line in Fig. 4 is the smallest, 
which is because the number of samples K4 and the compres‐
sion ratio α4 of user 4 are the largest. Therefore, assigning 
more RBs to the user with more samples and larger αi can in‐
crease the transmission rate of that user and reduce the total 
delay of uplink transmission, thereby accelerating the conver‐
gence speed. When Ki is the same but αi is different, that is, 
the blue line and the black line, the larger αi  is, the smaller 
the value of the objective function is. The reason is that if αi is 
large, more gradients can be transmitted, so assigning more 
RBs to it will result in faster convergence. When αi is the 
same and Ki is different, i.e., green and red lines, the larger Ki is, the smaller the value of the objective function is. This is 
because the larger Ki is, the smaller DP0 is and the smaller 
ρi, m is. According to Constraint (30e), more ui, m can be 
taken as 1, resulting in a smaller objective function and 
better performance. Overall, optimizing b can make the con‐
vergence faster given a fixed Pi.
6 Conclusions

In this work, we propose a novel defensive framework to pro‐
tect data privacy from DLG attacks in wireless networks. We 
jointly optimize RBs allocations and weight compression ma‐
trix to minimize FL training loss. We first formulate this opti‐
mization problem and simplify it by finding the relationship 
between the weight matrix and FL convergence rate. Optimal 
RB allocation is solved by ACO for a large number of RBs and 
exhaustive search for a small number of RBs. The optimal 
weight matrix is solved by the CVX toolbox. The simulation re‐
sults illustrate that optimizing RBs can effectively improve the 
convergence speed given fixed user power.
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1 Introduction

In recent years, the advances in computation, communica‐
tion and application design and the rapid development of 
the Internet of Things (IoT) have been driving the realiza‐
tion of intelligence and automation in the industry[1–2]. 

Through various IoT devices, a large number of data can be 
collected, such as images, sounds and temperatures, to judge 
the operating status of equipment and efficient follow-up main‐
tenance/management strategies are then made. For the tradi‐
tional Industrial IoT with the cloud, the system performance 
may be affected by the network performance and computing 
capability of the cloud since data should be transmitted to a re‐
mote cloud via the Internet for processing. With the develop‐
ment of industry, more and more data needs to be collected 
and processed in real time, leading to explosive growth in com‐
munication overhead and computation requirements, which 
brings significant challenges in the design of Industrial IoT, 
especially with high-reliability requirements.

To solve data transmission issues in the Industrial IoT, the 
communication framework has been updated to improve the 
speed and reliability of data transmission[3–4] and a new wire‐

less transmission system framework has also been proposed to 
help design an operable and effective end-to-end wireless so‐
lution[5]. Moreover, many works have focused on improving 
data transmission technologies, such as time slot frequency 
hopping technologies[6] and clustering of data transmission[7]. 
Besides optimizing the communication framework of the Indus‐
trial IoT, some researchers have considered and studied the 
energy consumption, delay, cost and other parameters associ‐
ated with the data transmission issues; for example, Ref. [8] 
proposed a bandwidth allocation strategy based on deep rein‐
forcement learning algorithm and Ref. [9] enables the control 
of transmission energy consumption for the dynamic change of 
bandwidth. To deal with the large and unstable communica‐
tion latency, an edge computing system with computing re‐
sources deployed at the network edge has been introduced 
into the Industrial IoT and become a potential mainstream so‐
lution[10–12]. These works alleviate the problem of insufficient 
wireless resources.

To solve the computation resource issues, there exists a lot 
of work focusing on the optimization of task offloading perfor‐
mance for cloud computing/edge computing or collaborative 
edge-cloud computing, such as computation delay, energy con‐
sumption, resource efficiency and data quality, to guarantee 
the quality of computation service[13–16]. With the gradual 
deepening of machine learning research, it has been discov‐
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ered that the number of training epochs directly affects the ac‐
curacy of the system model after training[17–18]. Considering 
that allocated computation resources can determine the train‐
ing epochs in a given time scale, some researchers have inves‐
tigated the relationships among accuracy of the system model, 
the number of processed data, the number of computation re‐
sources, the training speed/delay and the energy consumption, 
and made use of machine learning based algorithms to further 
improve the performance of the computation system[19–22]. In 
such a way, the performance of the computation system can be 
further improved.

However, most of the current works do not consider the in‐
ner relationship between the bandwidth allocation and the 
computation resource management incurred by the data trans‐
mission and just assume that the IoT devices transmit all of 
collected data to the edge server via access points (AP). The 
AP needs to try its best to forward the data to the edge server 
and the edge server processes all the received data making 
use of its available computation resources. Unfortunately, with 
the explosive increase of IoT devices, it is difficult for the ex‐
isting Industrial IoT system to carry on such a heavy work‐
load, which may lead to network congestion, even network 
crash when wireless communication resources are exhausted. 
Therefore, to solve the data transmission problem, it is worth‐
while to consider the inner relationship among the computa‐
tion resources, the accuracy of the system model and the data 
transmission. Making up for the shortage of wireless resources 
by increasing the computing resources can guarantee system 
accuracy.

In this paper, we aim at the scenario of resource manage‐
ment in the Industrial IoT, which can allocate the wireless 
communication resources by the AP and train a high-accuracy 
model by computation resources at the edge server. First, we 
model the available channel bandwidth for each IoT device 
based on the allocated bandwidth and the distance between 
the IoT device and the AP. Second, we formulate the band‐
width allocation and computation configuration as a resource 
requirement minimization problem. Then, we analyze the rela‐
tionship among the transmitted data, the computation re‐
sources and the system accuracy, and design a heuristic algo‐
rithm to obtain the optimal computation resources allocation 
and communication resources management to each IoT de‐
vice. The contributions of this paper can be summarized as 
follows:

• The bandwidth allocation and computation resource man‐
agement problem for Industrial IoT is formulated as a cost 
minimization problem with the given accuracy requirement.

• The relationship among the accuracy of the system model, 
the transmitted data and the computation resources is investi‐
gated and an efficient bandwidth allocation and resource man‐
agement scheme is designed to satisfy the system requirement 
with a minimal resource requirement.

• Simulation results show the proposed algorithm can mini‐

mize the resource requirement with a performance guarantee.
The rest of the paper is organized as follows. Section 2 pres‐

ents the system model and problem formulation. An algorithm 
that can minimize the resource requirement with performance 
guarantee is proposed in Section 3. An operational perfor‐
mance analysis is demonstrated based on simulation results in 
Section 4. Finally, Section 5 concludes our work.
2 System Model and Problem Formulation

Fig. 1 shows an industrial scenario of the Industrial IoT sys‐
tem. In this system, there are N IoT devices and the set of IoT 
devices is denoted as N = {1, 2, …, N }, and several APs 
(small cell base stations or Wi-Fi APs) with edge servers. Gen‐
erally, an IoT device collects monitoring data and transmits 
the data to the edge server via AP using the wireless communi‐
cation technology, the AP allocates the available wireless 
bandwidth to each IoT device and forwards the monitoring 
data to the edge server for processing, and the edge server pro‐
cesses the monitoring data using machine learning models to 
satisfy the requirement of system performance. Here, we as‐
sume that each IoT device can adjust its monitoring data ac‐
cording to the available wireless bandwidth, and the connec‐
tions of the IoT devices and APs are given due to specified 
monitoring objects. Thus, for ease of description, we only fo‐
cus on optimizing communication bandwidth allocation and 
computation resource management strategies in a single AP 
with an edge server with multiple IoT device scenarios in this 
paper, but the results can be extended to multiple APs with 
multiple edge servers based on the deployment of the infer‐
ence model. Note that we mainly focus on the allocation of 
communication resources and the configuration of computa‐
tion resources at the edge server.

Considering the time-varying feature of industrial scenarios, 
one optimization period can be divided into T time segments 
T = {1, 2,···, T }, and t represents the t-th time segment. The 

▲Figure 1. An example of industrial scenarios
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accuracy requirement of a system model for one IoT device 
during one time segment is a constant and can be changed at 
different time segments.
2.1 Communication Model

Generally, all IoT devices need to send their real-time 
monitoring data to the edge server for processing via the AP. 
It means that several IoT devices will transmit their data to 
the AP simultaneously. To mitigate interference among IoT 
devices, some effective interference cancellation techniques, 
such as orthogonal frequency-division multiple access 
(OFDMA) and time division multiple access (TDMA), can be 
used by the AP. In this paper, we assume that OFDMA is 
used for wireless communications. Besides the interference, 
signal pass loss is another important factor that affects data 
transmission. According to Refs. [23] and [24], the pass loss 
can be formulated as a function of transmission distance with 
a path loss exponent 2 ≤ α ≤ 4. Let hn,t denote the small-
scale channel gain from the n-th mobile device to the AP dur‐
ing time segment t. The achievable data transmission rate for 
IoT device n during time segment t, denoted by Rn,t, can be 
given by

Rn,t =  wn,t log2 (1 + Pn,t || hn,t
2

( )dn,t
α
σ2 ) , n = 1, 2,…, N

, (1)
where wn,t denotes the allocated bandwidth for IoT device n 
during time segment t, Pn,t denotes the transmission power of 
IoT device n during time segment t, dn,t denotes the distance 
between IoT device n and AP, and σ2 denotes the background 
noise power. Generally, wn, t is determined by AP, dn,t and σ2 
are constants, and the value of Pn,t can be calculated by the 
power control algorithms[24–25]. Due to the limitation of AP’s 
wireless communication resources, the total bandwidths that 
can be allocated to IoT devices have an upper bound, denoted 
by W̄. Thus, we have

∑
n

wn,t ≤ W̄. (2)
It is obvious that the bandwidth allocation strategy of the 

AP should consider the distance dn, t for IoT device n and the 
requirements of all the IoT devices. The data set of IoT device 
n that have been transmitted to the edge server during time 
segment t, denoted by Dn,t, is

Dn,t = Rn,t* t, (3)
where t is the total number of time units in one time segment.
2.2 Computation Model

The edge server can make use of the received data and the 
machine learning based algorithm to train a high-accuracy sys‐

tem model for each IoT device. We define accuracy as the op‐
posite of the loss function in a training model based on feder‐
ated learning. In general, the performance of the system model 
achieved by the machine learning algorithm can be affected 
by multiple factors, including feature selection, user-defined 
parameters, data sets and computation resources for training. 
In this paper, we mainly consider the impact of the data set 
and the computation resources on the training results and in‐
tend to find an appropriate data set and computing resources 
to satisfy the requirements of system accuracy.

According to Refs. [17] and [19], the accuracy of the system 
model through training of traditional machine learning algo‐
rithms generally tends to increase with the increase of the data 
set. At the same time, due to the noise δn,t in the data set and 
the limitation of the model capacity, the accuracy growth rate 
of the system model will gradually slow down until it becomes 
stable[26]. Besides, the precision of a machine learning algo‐
rithm, such as a neural network, has a logarithmic relationship 
with the number of training epochs[17]. Thus, with the increase 
of computation resources, the number of training epochs 
within the limited time scale can be increased, which can im‐
prove the precision of the system model in a logarithmic form. 
Thus, in this paper, the accuracy of the system model for IoT 
device n during time segment t, denoted by ξn,t, can be mod‐
eled as

ξn,t = a log10 ( Cn,t
Cepoch

*
Dn,t
Dunit

+ b) + δn, (4)
where a and b are accuracy parameters based on the machine 
learning algorithm and 0 ≤ a,b ≤ 1, Cepoch denotes the compu‐
tation resources required for training the data set for one ep‐
och, Dunit denotes a reference unit of the data set for training, 
and δn is the influence factor of the noise in the data set on the 
accuracy. Generally, δn,t (-1 ≤ δn < 0) is a constant affected 
by the noise during time segment t[27].

It can be found that both the data set and computation re‐
sources can affect the accuracy of the system model. Because 
of this, it provides the industrial IoT with an opportunity to 
solve the wireless resource issues by managing the computa‐
tion resources.
2.3 Problem Formulation

In this paper, we intend to design an efficient bandwidth al‐
location and computation resource management scheme for 
the Industrial IoT to satisfy the accuracy requirement of each 
IoT devices. Let 

-
ξn,t denote the accuracy requirement of IoT 

device n during time segment t. Thus, we have
ξn,t ≥

-
ξn,t ,  ∀n, t. (5)

To achieve the accuracy requirements of each IoT device, 
the AP allocates its available communication resources to IoT 
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devices for data transmission while the edge server manages 
the computation resources for data processing. In other words, 
when wireless communication resources are scarce/costly, 
more computation resources can be used to improve the accu‐
racy of the system model. Otherwise, more computation re‐
sources can be saved to keep the accuracy of the system 
model at a given level.

Considering that the wireless communication resources for 
each AP are limited, our objective function is to minimize the to‐
tal computation resources requirement, which can both minimize 
the operating cost and identify the bottleneck of the system per‐
formance. The bandwidth allocation and the computation re‐
source management problem can be formulated as following

P1: min
w,C

 ∑
n

Cn,t, (6)

s.t. ∑
n

wn, t ≤ W̄,    ∀t, (7)

ξn,t ≥
-
ξn,t ,     ∀n, t, (8)

where w = {wn,t, ∀n,t} is the set of the bandwidth allocation of 
the AP and C = {Cn,t, ∀n,t} is the set of the computation re‐
sources for data processing. The objective of Problem P1 is to 
obtain the optimal bandwidth allocation, which can minimize 
the total number of computation resources. The first constraint 
ensures the sum of the bandwidth resources that are allocated 
to the IoT devices does not exceed the total numer of the avail‐
able bandwidth resources of the AP. The second constraint 
guarantees that the accuracy of the system model for each IoT 
device can meet the industrial requirements.
3 Optimal Bandwidth Allocation and Com⁃

putation Configuration Scheme
To solve this problem, from the perspective of the edge 

server, we study the relationship among accuracy ξn,t, compu‐
tation resources Cn,t, and data set Dn, t of a specific IoT device 
n. To satisfy the accuracy requirement of each IoT device, we 
can analyze the influence of data set Dn,t on the computation 
resource requirements for each IoT device. Then, through the 
communication model, the relationship between the data set 
and the allocated bandwidth resources can be obtained. Thus, 
we can derive the impact of bandwidth allocation decisions on 
the computation resource requirements for each IoT device.

By analyzing the relationship among ξn,t,  Cn,t and Dn, t, we 
have the following results.

Lemma 1: The accuracy ξn,t obtained by the edge server is 
an increasing and concave function with respect to the compu‐
tation resources Cn,t when the data set Dn,t is given.

Proof: According to Eq. (4), we can derive the first and sec‐

ond derivatives of ξn,t with respect to Cn,t as follows:
∂ξn,t∂Cn,t

= 1
ln 10

a
Cn,t

Cepoch
*

Dn,t
Dunit

+ b

Dn,t
Cepoch*Dunit

, (9)

∂2 ξn,t
∂Cn,t 2 = 1

ln 10 ( Dn,t
Cepoch*Dunit ) 2 -a

( )Cn,t
Cepoch

*
Dn, t
Dunit

+ b
2

. (10)
Since each item of Eq. (9) is positive, ( ∂ξn,t ) (∂Cn,t ) > 0 

holds. Since only − a in Eq. (10) is negative, 
( ∂2 ξn,t ) (∂Cn,t 2 ) < 0 holds. Thus ξn,t is an increasing and con‐
cave function of Cn,t.Lemma 2: The accuracy ξn, t obtained by the edge server is 
an increasing and concave function with respect to the data 
set Dn,t when the computation resources Cn,t is given.

The proof of Lemma 2 is similar to that of Lemma 1, so we 
omit it. We can also derive that ( ∂ξn,t ) (∂Dn,t ) > 0 and 
( ∂2 ξn,t ) (∂Dn,t 2 ) < 0. Thus ξn,t is an increasing and concave 
function of Dn,t.Theorem 1: Accuracy ξn,t is an increasing and concave func‐
tion with respect to both the computation resources Cn, t and 
the data set Dn,t.Proof: According to Lemma 1 and Lemma 2, ξn,t is an in‐
creasing and concave function with respect to Cn,t or Dn,t when 
the other variable is given. Furthermore, since Cn,t and Dn,t are 
independent, according to Ref. [28], it can be proved that ξn,t is an increasing and concave function with respect to Cn,t and  Dn,t.Based on Theorem 1, we have the following theorem for the 
optimal solution to P1.

Theorem 2: The optimal solution to P1 should satisfy {ξn,t=
-
ξn,t , ∀n} and ∑n

wn, t = W̄.
Proof: According to Theorem 1, for a specific IoT device n, 

ξn,t is an increasing function of Cn,t and  Dn,t. First, we can 
prove that ∑n

wn,t = W̄ is a necessary condition for the optimal 
solution by contradiction as follows.

Assuming that there exists an optimal solution, denoted by 
{w'n,t, ∀n}, satisfying ∑n

w'n,t < W̄ and ξn,t =
-
ξn,t, we can in‐

crease any w'n,t by δn, 0 < δn ≤ W̄ - ∑n
w'n,t, and find a smaller 

C'n,t satisfying C'n,t < Cn,t to make ξn,t =
-
ξn,t. This contradicts the 

objective function. Thus, ∑n
wn,t = W̄ always holds for the op‐

timal solution to P1.
Then, we can prove that {ξn,t= 

-
ξn,t ,  ∀n} is a necessary condi‐

tion for the optimal solution by contradiction. If there exists an 
optimal solution, denoted by ξ'n,t, satisfying ξ'n,t> 

-
ξn, t and ∑n

w'n,t < W̄. According to Theorem 1, we can decrease Cn,t to 
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make ξn,t= 
-
ξn,t and keep ∑n

w'n, t = W̄. This contradicts the ob‐
jective function. Thus, {ξn,t= 

-
ξn, t , ∀n} is another necessary 

condition for the optimal solution to P1.
According to Theorem 2, we have the relationship among 

ξn,t, Cn,t and Dn,t as follows:

ξn,t =
-
ξn,t = a log10 ( Cn,t

Cepoch
*

Dn,t
Dunit

+ b) + δn. (11)
Therefore, we can obtain the expression of Cn,t about Dn,t as 

follows:

Cn,t = Cepoch Dunit(10
 
-
ξn,t - δn

a - b) 1
Dn,t . (12)

Based on Eq. (12), we have the following property:
Lemma 3: The optimal computation resource Cn,t is a de‐

creasing and convex function of the data set Dn,t.Proof: Based on Eq. (11), we can calculate the derivative of 
Cn,t with respect to Dn,t as follows:

∂Cn,t∂Dn,t
= Cepoch Dunit(10

 
-
ξn,t - δn

a - b) -1
Dn, t 2 , (13)

∂2Cn,t
∂Dn,t 2 = Cepoch Dunit(10

 
-
ξn,t - δn

a - b) 2
Dn,t 3 . (14)

It can be found that (∂ξn,t ) (∂Cn,t ) > 0 and 
(∂2 ξn,t ) (∂Cn,t 2 ) < 0, which means that Cn,t is a decreasing 
and convex function of Dn,t.According to the definition of data transmission rate Rn,t in 
Eq. (1) and the data set Dn, t in Eq. (3), it can be found that Dn,t is a linear function of the bandwidth allocation wn,t. Thus, we 
have the following lemma:

Lemma 4: The optimal computation resource Cn,t is a de‐
creasing and convex function of the bandwidth allocation wn,t.Proof: According to Lemma 3, Cn,t is a decreasing and con‐
vex function of Dn,t. Thus, we have (∂ξn,t ) (∂Cn,t ) > 0 and 
(∂2 ξn,t ) (∂Cn,t 2 ) < 0. Since Dn,t is a linear function of wn,t, ac‐
cording to the chain rule of derivation, (∂ξn,t ) (∂Cn,t ) > 0 and 
(∂2 ξn,t ) (∂Cn,t 2 ) < 0 hold. Thus, Cn,t is a decreasing and con‐
vex function of wn,t.Theorem 3: There exists a unique optimal solution 
{ wn,t, ∀n,t } for P1.

Proof: According to Lemma 4, the objective function of P1 
is a decrease and convex function of the bandwidth allocation 
wn, t. It can be found that the first and second constraints are 
linear constraints of wn,t. Hence, P1 is a convex optimization 
problem with respect to wn,t. According to the properties of the 

convex optimization problem in Ref. [28], there exists a 
unique optimal bandwidth allocation { wn,t, ∀n,t } for P1.

Since P1 is a convex optimization problem, based on its 
KKT conditions, the optimal solution can be achieved by the 
following theorem.

Theorem 4: The optimal solution to P1 is

w*
n,t =

W̄
β 1

n, t
β 2

n, t

∑n′
β1, n'
β2, n' . (15)

Proof: Generally, since P1 for one time segment is indepen‐
dent with the other time segments, we can solve P1 for each 
time segment t.

Let vt be the Lagrange multiplier associated with the con‐
straint ∑n

wn, t ≤  W̄. The Lagrangian of P1 is

L (wn,t, vt) = ∑
n

Cn, t + vt( )∑
n

wn,t - W̄ =

-W̄*vt + ∑
n
( )Cn,t + vt*wn,t . (16)

It can be found that the above equation is separable. Thus, 
the dual function is

g ( vt ) = -W̄*vt + min
w  ∑

n
( )Cn,t + vt*wn,t . (17)

According to Lemma 4, Cn,t is a decreasing and convex func‐
tion of wn, t. Thus, we can get the minimal value of ∑n

(Cn, t +
vt* wn,t ) when [ ∂Cn, t + vt* wn,t ] ∕ ( )∂wn,t = 0, which means

w*
n,t = β 1

n,t
β 2

n,t
* 1

vt , (18)

where β 1
n,t = Cepoch Dunit (10-

ξn,t - δn

a - b) and β 2
n, t = log2 (1 +

Pn,t || hn,t
2

(dn, t )α σ2 ). Thus we can rewrite Eq. (17) as

g ( vt ) = -W̄ * vt + 2 vt ∑
n

β 1
n,t

β 2
n, t , (19)

and the dual problem is
min

vt

         g ( vt ),
s.t.     vt ≥ 0. (20)
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Since [ ∂2 g ( vt ) ] ∕ (∂vt
2 ) = - 1

2  vt
-  32 ∑n

β 1
n,t β 2

n,t  < 0, the 
dual function g ( vt ) is a concave function. According to the 
convex optimization theorem, the optimal vt

* should satisfy 
[ ∂g ( vt ) ] (∂vt ) = 0. Thus, the optimal vt

* can be calculated by

vt
* = ( 1

W̄
 ∑

n

β 1
n,t

β 2
n,t ) 2

, (21)
and substituting vt

* into Eq. (18), we can obtain Eq. (15).
Therefore, according to the location information and accu‐

racy requirements of all IoT devices, we design an efficient 
bandwidth allocation and computation configuration algo‐
rithm, named EBACC, which can solve P1 and get the opti‐
mal decision of bandwidth allocation and computation con‐
figuration.
Algorithm 1. Efficient Bandwidth Allocation and Computa‐
tion Configuration Algorithm (EBACC)
1: for each time segment t,  t ∈ [1,T ], do
2: Input: { dn,t, Pn,t, -ξn,t , ∀n }.
3: According to Eq. (1) in the communication model, calcu‐
late β 1

n,t of each IoT device.
4: According to Eq. (13) in the computation model, calculate 
β 2

n,t of each IoT device.
5: According to Eq. (15), calculate the decision of bandwidth 
allocation w t by using β 1

n,t and β 2
n,t.6: According to Eqs. (1) and (4), calculate the decision of 

computation configuration Ct based on w t.7: Output: optimal w t and Ct.8: end for

4 Simulation
In this section, numerical experiments have been con‐

ducted to verify the correctness of the lemmas and perfor‐
mance of the proposed algorithm EBACC. We first consider a 
scenario where the AP has a coverage range of 200 m and 
there are N = 60 randomly scattered IoT devices within the 
coverage region. We randomly generate the distance dn,t be‐
tween each IoT device and AP within [10 m, 200 m ]. In the 
communication model, we assume that the upper bound of to‐
tal bandwidth resources of the AP is W̄ = 200 MHz. And the 
reference signal-to-noise ratio (SNR) at the transmission dis‐
tance d0 = 10 m is set to γ0 = é

ë
êêêê ù

û
úúúúPn,t || hn,t

2 ∕ (dn,t )α σ2 = 80 dB. 
The propagation distance can be converted to d'n,t = dn,t /d0, which is within [1, 20] , and the path loss exponent is set to α = 3. 
Meanwhile, we randomly generate the accuracy requirement 
of each device within [0.8, 0.95].

In the following subsection, we firstly explore the relation‐
ship between variables in the computation and communica‐

tion models. Then we verify the correctness of the lemmas 
in Section 3. Last, we evaluate the performance of the pro‐
posed algorithm EBACC, which can get the optimal band‐
width resource allocation to minimize the total computation 
resources while satisfying the accuracy requirements of IoT 
devices.
4.1 Impact of Computation Resources and Data Set on 

Accuracy of Training Results
As shown in Figs. 2(a) and 2(b), the accuracy of training re‐

sults shows a growing trend with the increase of data set size 
or computing resources, and the growth rate will be gradually 
slowed down, which verifies the conclusion of Lemma 1 that 
the accuracy ξn, t is an increasing concave function with re‐
spect to Cn, t and Dn, t. Thus, we can configure more computing 
resources or upload more data to improve the accuracy of 
training results.
4.2 Impact of Distance from IoT devices to AP on Actual 

Transmission Rate
As shown in Fig. 3(a), it is obvious that the actual transmis‐

sion rate Rn, t is a decreasing and convex function of distance 

(a) Impact of Cn, t on ξn, t

(b) Impact of Dn, t on ξn, t

▲Figure 2. Impact of computation resources and data set on the accu⁃
racy of training results
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dn, t from IoT devices to the AP. The closer the IoT device is to 
the AP, the higher the actual transmission rate will be. Thus, 
we can allocate more bandwidth resources to the farther IoT 
devices, which can reduce the impact of distance to get 
smaller computing resource requirements.
4.3 Impact of Data Set on Computation Resources Re⁃

quirement
As shown in Fig. 3(b), when the accuracy 

-
ξn, t is given, the 

computation resource requirement Cn, t by the IoT device is a 
decreasing and convex function of the data set Dn, t, which has 
been proved by Lemma 3. It means when the uploaded data 
set is larger, the computing resources required by the model 
will be reduced. In addition, it can be found that, with the im‐
provement of the accuracy ξn, t of model requirements, the 
computation resources Cn, t will become larger. Therefore, 
when the accuracy of model requirement is given, we can 
make a trade-off between the number of uploaded data and 
computing resources.

4.4 Impact of Bandwidth Resources Allocation on Data 
Set and Computation Resources Requirement

As shown in Fig. 4(a), during one time segment, data set Dn,t that the IoT device can upload to the edge server is a linear 
and increasing function of the allocated bandwidth resources 
wn,t. It can be found that the IoT device closer to the AP has a 
higher positive slope. Meanwhile, as shown in Fig. 4(b), for an 
IoT device, the computation resources requirement Cn,t is a de‐
creasing and convex function of the bandwidth resources allo‐
cated to it, which has proved the correctness of Lemma 4. We 
also find that the IoT device, which is farther away from the 
AP, will need more computation resources to satisfy the accu‐
racy requirements when the bandwidth resource is given. 
Thus, if we want to minimize the total computation resources, 
we need to allocate bandwidth resources reasonably. In this 
way, the IoT device farther away from the AP should be allo‐
cated with more bandwidth resources.
4.5 Optimal Bandwidth Resources Allocation

We compare two strategies of bandwidth allocation: 1) the 
optimal bandwidth resources allocation decided by EBACC; 
2) allocating bandwidth resources equally to all IoT devices. 
As shown in Fig. 5(a), when the total computation resource 

(a) Impact of dn, t on Rn, t

(b) Impact of Dn, t on Cn, t

▲ Figure 3. Impact of distance from IoT devices to AP on the actual 
transmission rate and that of data set on computation resources

▲ Figure 4. Impact of bandwidth resources allocated to IoT device on 
data set and computation resources
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available is 3 000 MHz, the first strategy can use 77.85% of 
the total computation resource to satisfy the accuracy require‐
ment of all IoT devices, but the second strategy needs 
86.28%. It means that the proposed algorithm can signifi‐
cantly improve the efficiency of computing and bandwidth re‐
sources. Meanwhile, as shown in Fig. 5(b), the optimal band‐
width resource allocation can significantly reduce the demand 
of total computation resources of all IoT devices. Specifically, 
when the total bandwidth resource is W̄ = 300 Mbit/s, the opti‐
mal bandwidth resource allocation can reduce the total compu‐
tation resource requirement from 2 588.1 MHz to 2 335.4 MHz.
4.6 Relationship Between Optimal Bandwidth Allocation 

and Distance of IoT Devices
As shown in Figs. 6(a) and 6(b), we explore the relationship 

between the optimal bandwidth allocation decision w t =
{ ŵ1,t, ŵ2,t,…, ŵN,t } and the distances of all IoT devices d t =

{ d1,t, d2,t,…, dN,t }. Compared with the average allocation strat‐
egy, the optimal bandwidth allocation decision will be obvi‐
ously affected by the accuracy requirement of IoT devices and 
the distance between the device and the AP. And it can be 
found that more bandwidth resources will be allocated to the 
IoT device farther away from the AP or with higher accuracy 
requirements.
5 Conclusions

In this paper, we focus on the bandwidth allocation of AP 
and the computation resource management of the edge server 
to ensure the system accuracy can meet the industrial require‐
ment. We formulate the bandwidth allocation and computation 
resource management problem for the industrial IoT as a cost 
minimization problem with a given accuracy requirement. 
Then, we analyze the relationship among the transmitted data, 
computation resources and system accuracy and then design 
an efficient algorithm to obtain the optimal computation re‐
source allocation and communication resource management. 
Numerical experiment results demonstrate that the proposed 
algorithm EBACC can significantly reduce the number of total 
computation resources while satisfying the accuracy require‐
ments of the industrial IoT.

For future work, we are going to consider the more general 
cases where IoT devices can choose different APs and edge 
servers to process their data and obtain a high-accuracy sys‐

▲Figure 5. CDF of computation resource requirement of each IoT de⁃
vice and total computation resources requirement under two situations: 
1) optimal bandwidth resources allocation decided by EBACC; 2) allo⁃
cating bandwidth resources equally to all IoT devices.

CDF: Cumulative Distribution Function EBACC: Efficient Bandwidth Allocation and Computation Configuration Algorithm IoT: Internet of Things

(b) Total computation resources requirement
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▲Figure 6. Relationship between the optimal bandwidth allocation deci⁃
sion and distances of IoT devices
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tem model. We will focus on the bandwidth allocation between 
multiple APs and multiple IoT devices, which would be more 
technically challenging.
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1 Introduction

During the COVID-19 Pandemic, video conferencing 
systems have become indispensable tools for individu‐
als to keep in touch with friends and for enterprises 
and organizations to connect with customers. Inside 

these systems, video compression technologies play critical 
roles in the efficient representation and transportation of video 
data. Great progress has been achieved in past years in repre‐
senting high-fidelity videos with low bitrates; e. g., the high-
efficiency video coding (HEVC) [1] was designed with the goal 
of allowing video content to have a data compression ratio up 
to 1 000:1. However, video conferencing systems still face the 
dilemma between smooth streaming and decent visual quality 
because current video compression technologies fail to pro‐
duce bitstreams low enough for bandwidth-constrained net‐
works due to a large number of concurrent users.

Recently, some novel talking-head video compression meth‐
ods[2–5] based on face animation have been proposed, which 
can significantly cut down the bandwidth usage of video con‐
ferences. These face animation methods usually consist of two 
parts: encoder and decoder. The encoder is a motion extractor 
to derive a compact motion feature representation from the 
driving video frame, and the decoder is an image generator to 
synthesize photorealistic images according to the motion fea‐
ture. Due to its extreme compactness, the extracted face fea‐
ture can be used to reduce the bandwidth of video conferences 

and hence improve user experience in bandwidth-constrained 
networks. However, most of the talking-head video compres‐
sion methods are too complicated to run in real time without 
the support of high-end graphics processing units (GPUs), let 
alone on mobile devices. For example, the model size of the 
First Order Motion Model (FOMM)[6] is 355 MB and the com‐
putation complexity is 121 G multiply-accumulate operations 
(MACs). Aiming at practical applications, we propose an ultra-
lightweight motion extractor to obtain effective motion repre‐
sentations from the driving video and an animation generator 
to synthesize high-quality face videos accordingly.

We find out that the face animation method may sometimes 
fail, which is usually caused by extreme head poses and/or fa‐
cial expressions. To tackle the problem, we propose an effi‐
cient visual quality evaluation method to reject the synthe‐
sized images that are visually unacceptable. We also notice 
that only displaying face without context regions looks unnatu‐
ral and weird to users. To cope with it, we composite full-
resolution images by stitching face regions with other body 
parts and backgrounds. These two mechanisms effectively pre‐
vent user experience degradation during a conference.

Our main contributions are as follows:
• An ultra-lightweight motion extraction algorithm is pro‐

posed to derive effective facial motion features from driving 
videos, which is efficient enough to run on mobile devices 
without high-end GPUs.
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• An efficient visual quality evaluation algorithm is pro‐
posed to select visually acceptable generated images and an 
image composition algorithm to generate full-resolution vid‐
eos, which ensures consistent and natural user experience dur‐
ing conferences.

• A practical video conferencing system is built to integrate 
the best parts of face-animation-based methods and traditional 
video-compression-based methods, which significantly re‐
duces uplink bandwidth usage and ensures decent user experi‐
ence even when the network bandwidth is constrained.
2 Related Work

Due to the space limitation, we only review previous works 
about face animation and deep video compression that are 
most related to ours.
2.1 Face Animation

Face animation is an image-to-image translation task, 
which transfers the talking-head motion of a person in an im‐
age to persons in other images. The former image is called the 
driving image, while the latter image is called the source im‐
age. Face animation has become a popular topic since the 
generative adversarial network (GAN) [7] was proposed by 
GOODFELLOW et al. Most recently published face animation 
methods can synthesize photo-realistic images with the help 
of GANs.

Some works[8–12] were proposed to solve the face animation 
task with the prior knowledge of the 3D Morphable Model 
(3DMM) [13]. However, the traditional 3D-based works[8–10] 
failed to render details of talking heads, such as hair, teeth 
and accessories. Ref. [11] allowed fine-scale manipulation of 
any facial input image into a new expression while preserving 
its identity with the help of a conditional GAN. To improve 
the realism of the rendering, Ref. [12] designed a novel space-
time GAN to predict photorealistic video frames from the 
modified 3DMM directly.

Contrary to 3D-based models, 2D-based models synthesize 
talking heads directly without any prior knowledge of 3DMM. 
They can be classified into warping-based models and 
warping-free models.

Warping-free models[14–19] directly synthesize images with‐
out any warping. Few-shot vid2vid[16] learned to transform 
landmark positions into realistically looking personalized pho‐
tographs with the help of meta-learning. Ref. [19] decomposed 
a person’s appearance into a pose-dependent coarse image 
and a pose-independent texture image. LI-Net[20] decoupled 
the face landmark image into pose and expression features 
and reenacted those attributes separately to generate identity-
preserving faces with accurate expressions and poses.

Warping-based methods[21–25] predicted dense motion fields 
to warp the feature maps extracted from the source images and 
inpaint the warped feature maps to generate photorealistic im‐
ages. X2Face[22] used an encoder-decoder architecture to learn 

the latent embedding to encode pose and expression and re‐
cover the dense motion fields from it. Many works attempted 
to predict the dense motion field from sparse object keypoints. 
The key to those methods is how to represent motions with 
sparse object keypoints. Monkey-Net[23] was proposed to learn 
pure keypoints to describe motions in an unsupervised man‐
ner. Although it cannot describe subtle motions, Monkey-Net 
provided a strong baseline for further improvements. FOMM[6] 
represented sparse motion with some keypoints along with lo‐
cal affine transformations. Motion representations for articu‐
lated animation (MRAA)[24] defined the motion with regions us‐
ing the motion estimation based on principal component analy‐
sis (PCA), rather than keypoints, to describe locations, shapes 
and pose. The thin-plate spline (TPS) motion model[25] esti‐
mated thin-plate spline motion to produce a more flexible opti‐
cal flow. Ref. [5] extended the baseline to 3D optical flows to 
produce 3D deformations. The above mentioned methods ex‐
tracted compact motion representations, which showed great 
potential in lowering the bitrate of video conferencing.
2.2 Deep Learning-Based Video Compression

For decades, researchers have made great efforts to transmit 
higher quality videos with lower bitrates. Recently several ap‐
proaches based on deep learning were explored.

For general-purpose video compression, some works[26–27] at‐
tempted to reduce the bandwidth by making a balance between 
the cost of transferring the region of interest (ROI) and back‐
ground. Compared to traditional codecs, such methods can 
achieve better visual quality with the same bitrate. Other 
works[28–29] focused on enhancing the visual quality of low bi‐
trate videos by image super-resolution and image enhancement.

For the compression of talking-head videos, great progress 
has been achieved. In Ref. [30], the encoder detected and 
transmitted keypoints representing the body pose and the face 
mesh information, and the receiver displayed the motion in 
the form of puppets. However, this method failed to produce 
photorealistic images. Inspired by the promising results 
achieved by face animation models, many works demonstrated 
the effectiveness of video compression based on face anima‐
tion. VSBNet[3] reconstructed original frames from face land‐
marks with a low bitrate of around 1 kB/s. Ref. [5] proposed a 
neural talking-head video synthesis model and set up a video 
conferencing system that achieves the same visual quality as 
the commercial H. 264 standard with only one-tenth of the 
bandwidth. Ref. [2] introduced an adaptive intra-refresh 
scheme to address the problem of reconstruction quality that 
might rapidly degrade due to the loss of temporal correlation 
as frames get farther away from the initial one. Ref. [4] evalu‐
ated the advantages and disadvantages of several deep genera‐
tive adversarial approaches and designed a mobile-compatible 
architecture that can run at 19 f/s on iPhone 8. However, those 
methods can hardly run in real time without the support of 
high-end GPUs. What’s more, they could only generate near-
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frontal faces, looking unnatural and weird when faces were not 
near-frontal. In this paper, we specifically focus on improving 
the efficiency and visual quality of video compression based 
on face animation.
3 Proposed Ultra-Lightweight Face Anima⁃

tion Method

3.1 Overview
The overall pipeline of our video conference system is 

shown in Fig. 1. Each user provides an avatar image to the sys‐
tem and uses its animation during a conference for ensuring 
privacy and elegant presence. When the system starts run‐
ning, videos of users are captured and the face region in each 
video frame is cropped out by the face detection algorithm. 
Face images are then encoded by the keypoint detector and 
represented as the keypoints described in Section 3.2. Before 
the encoded data are sent out, the visual quality of the face im‐
age that will be reconstructed by a decoder according to these 
keypoints is evaluated to prevent unnatural results. It is high‐
lighted here that the visual quality evaluation method in Sec‐
tion 3.3 requires no actual reconstruction of the face image 
but executes on encoded data, for the sake of efficiency.

Upon receiving the encoded keypoint data from the sender, 
the conference server calls the image generator to synthesize 
the face image animated from the keypoints, as described in 
Section 3.2. The decoded face image replaces the face region 
in the avatar image by our method in Section 3.4 to create a 
full-resolution video frame, which is then encoded by H. 264 

or HEVC and sent to the receiver. The receiver simply de‐
codes the video stream and displays it on the screen, which 
can usually take advantage of the hardware accelerator in the 
device’s chip.

With the prevalence of mobile phones, the demand for run‐
ning video conferencing on mobile devices is growing. In most 
commercial video conference systems, mobile devices account 
for a significant portion of all terminals. For better compatibil‐
ity with existing commercial video conference systems, our 
system and algorithms here are intentionally designed to 
make the sender/receiver module deployable on mobile de‐
vices and to keep their computational burdens to a minimum, 
thus reducing power consumption and extending the working 
time of mobile devices.
3.2 Model Distillation

Giving a source image S of the target person, a driving 
video can be denoted as {D1, D2, D3, …, DN}, where Di is the 
i‑th frame in the sequence and N is the total number of frames 
in the video. The output images can be denoted as {O1, O2, 
O3, …, ON}, where Oi is the i‑th frame of the output sequence. 
The output Oi shares the same identity with S and the same 
face motions with Di. We adopt the face animation model simi‐
lar to FOMM, which consists of a keypoint detector K (en‐
coder) and a generator G (decoder). First, face landmarks are 
estimated from S and Di separately by K, whose locations 
serve as the sparse motion information. Second, dense motion 
fields and occlusion maps are predicted by G. Finally, G 
warps the feature map extracted from S with the dense motion 
fields and the warped feature map is masked by the occlusion 

maps to generate the output image 
Oi. Following the idea of FOMM, 
we extract 10 keypoints and their 
corresponding Jacobian matrices 
from the face image.

We design our model to be light‐
weight and can generate an image 
with excellent visual quality. For 
the decoder, we adopt the same ar‐
chitecture as the generator model 
in FOMM but cut down the chan‐
nels of the model by half. We de‐
note the simplified generator as 
Gsim. For the encoder, we replace 
the hourglass network in FOMM, 
which brings about high computa‐
tional cost, with a greatly simpli‐
fied version of MobileNetV2[31]. 
However, it is very difficult to train 
the proposed model from scratch 
since the training process often 
fails to converge. We come up with 
a training strategy described as fol‐

▲ Figure 1. Proposed video conference system consists of three parts: the sender on mobile devices, 
video generator on servers, and receiver on mobile devices. In the encoder part, the motion encoder ex⁃
tracts keypoints from the driving images. The feature-based image quality evaluation filters out unnatu⁃
ral images. The decoder synthesizes images from the keypoints and reconstructs full-resolution images, 
which are encoded by H.264 or H.265 and sent to the receiver. The receiver decodes the video stream 
and shows it on the phone screen

Captured video frame
Sender on 

mobile devices

Driving face image Keypoints

Motion encoder Visual quality evaluation

Decoding with H.264/265 Encoding with H.264/265

Source avatar image
Source face image

Decoded face image

Full-resolution imageReceiver on 
mobile devices

Video generator 
on server

Motion decoder
Full-resolution im‐age generation
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lows to solve the problem.
1) Step 1: model distillation. We use the original encoder 

Kfomm in FOMM as the teacher model and our proposed en‐
coder Kpro as the student model. The loss function consists of 
distillation loss Ldis and equivariance loss Leq, which can be 
written as Eq. (1).

L1 = Ldis + Leq = | Kpro ( I ) - K fomm ( I ) | +
| Kpro (T ( I ) ) - T (Kpro ( I ) ) | , (1)

where I is the training sample and T is a thin plane spline de‐
formation. The distillation loss ensures that the student en‐
coder extracts the same motion representation as the teacher 
encoder. And the equivariance loss ensures the consistency of 
the motion representation when random geometric transforma‐
tions are applied to the images.

2) Step 2: iterative model pruning and distillation. Since 
the encoder has to extract motion representation from every 
video frame, it should be as lightweight as possible to reduce 
computational costs. In our attempt to further simplify the en‐
coder, we find out most of the complexity comes from the last 
several convolutional layers. Therefore, we drop the last con‐
volutional layer in the encoder model and retrain it following 
Step 1. This step can be repeated several times until we ob‐
tain Kbest that strikes a balance between the model complexity 
and accuracy.

3) Step 3: generator fine-tuning. Due to the simplification 
made to the generator, we train the simplified generator Gsim 
along with the keypoint detector Kfomm of the original FOMM to 
make a good initialization of Gsim.

4) Step 4: overall fine-tuning. Once the encoder models Kbest and Gsim are determined, we fine-tune Kbest and Gsim accord‐
ingly in an unsupervised manner. Finally, Kbest and Gsim act as 
the encoder and the decoder in our system respectively.
3.3 Visual Quality Evaluation

Although video conferences based on face animation can re‐
sult in a very high video compression rate, the visual quality 
of a reconstructed image may sometimes degrade in the follow‐
ing two cases (Fig. 2). First, due to current algorithmic limita‐
tions, most of the face animation models may generate inaccu‐
rate expressions and visual artifacts on faces with large poses 
and/or extreme expressions. Second, with the increase of the 
frame distance, the temporal correlation weakens, and hence 
the quality of generated video deteriorates. This phenomenon 
becomes particularly obvious when faces are occluded. The 
degraded image brings inconsistent experience to users. In or‐
der to alleviate the problem, Ref. [2] introduced an adaptive 
intra-refresh scheme using multiple source frames. Before 
sending the features to the decoder, the sender reconstructs 
the image first and evaluates the generated image to avoid de‐
graded images. However, this scheme not only incurs large 

computational costs which makes it impossible to run it on mo‐
bile devices, but also leads to significant time delay at the re‐
ceiving end. What’s more, frequent scene switching also re‐
quires the system’s frequent sending of source frames, mak‐
ing the system lose its advantage of reducing video bandwidth.

We propose here an adaptive degraded frame filter method 
by an efficient image quality evaluation algorithm directly 
based on the extracted features. We find out that when a large 
head pose and/or extreme facial expression happens, most of 
the regions in the generated image are inpainted by the gen‐
erator, which degrades the image quality. The difference be‐
tween the driving image and the source image can be mea‐
sured by analyzing the dense motion field, which is predicted 
from the sparse motion field in our setting. Therefore, instead 
of using the decoder to synthesize the generated image, we de‐
cide to evaluate image quality based on the relative motion. 
The loss L2 in the algorithm can be formulated as follows.

L2 = α∑
i = 0

10
 v1i - v2i + β∑

i = 0

10
 J1i J

-12i , (2)
where v1i is the value of the i⁃th keypoint in the first frame, v2i is the value of the i⁃th keypoint in the second frame, J1i is the 
Jacobian of the i⁃th keypoint in the first frame, J2i is the Jaco‐
bian of the i⁃th keypoint in the second frame, and hyperparam‐
eters α and β control the weight of each part. In our experi‐
ments, we set the hyperparameters to 2 and 1 respectively.

In the proposed scheme, the balance between image quality 
and robustness is controlled by a threshold τ. Although the 
identity of the people in the driving images and the source im‐
age are the same, the two images may look different. For better 
visual quality, we adopt a relative motion transfer method, as 
described in Ref. [6]. We first find a driving image that has a 

▲ Figure 2. Examples of face animation failure. The first row shows a 
result caused by large-pose; the face area becomes blurred and there 
are some artifacts on the hair of the woman. The second row shows a de⁃
graded image caused by weak temporal correlation and the recon⁃
structed image looks terrible and weird

Source image Driving image Reconstructed image
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similar pose to the source image, which is called the initial im‐
age DI. Then, we extract keypoints from the source image S 
and the initial image DI, which can be denoted as Ks and KI. The source keypoints are sent to the receiver. For every frame 
Dt, we estimate keypoints Kt from the frame, and compare the 
relative motion between Kt and Ks and that between KI and Ks. If the former is smaller, we set this driving keypoint as an ini‐
tial image. Finally, we compare the relative motion between Kt and KI with the threshold τ. If the former is smaller, it means 
the relative motion is suitable for robust image generation. 
The relative motion is sent to the server. If the latter is 
smaller, the default motion is sent to avoid freezing in video 
streams. The default keypoints can be motions of some natural 
expressions, such as blinking and smiling. In this way, the de‐
graded frames are replaced by frames of natural expressions. 
Compared to the method proposed in Ref. [2], our method can 
greatly reduce the computation cost at the sender and the de‐
lay at the receiver.
3.4 Full-Resolution Image Composition

The face animation described above cannot be directly used 
in video conferences due to two facts. Face animation cannot 
synthesize face images with a size up to video resolution (at 
least 1 280×720) because computational complexity grows ex‐
ponentially with the image size. Also, only displaying the fa‐
cial region on the screen without other body parts such as the 
neck and shoulder looks unnatural and weird. In order to 
make our face animation method applicable, instead of gener‐
ating full-resolution images, we propose to generate a facial re‐
gion with a size of no more than 384×384 and stitch it with 
other body parts and background regions in the source frame 
to form a full-resolution image. The 
problem is that there will be a 
sharp blocky artifact between the 
head region and body region be‐
cause the head region moves while 
the body region may remain station‐
ary. We find that the keypoints 
spread over the talking-head area 
and each keypoint is responsible 
for the local transformation of its 
neighborhood. To reduce the arti‐
fact, we fix the keypoints related to 
the shoulder part. As a result, the 
dense motion field predicted by the 
generator will stay stationary near 
the shoulder region and have a 
smooth transition from the head re‐
gion to the shoulder region, which 
makes the composite image look 
more natural. We show the ex‐
ample images in Fig. 3 for compari‐
son.

4 Experiments

4.1 Implementation Details
1) Datasets. We train and evaluate our face animation 

model on the VoxCeleb dataset and an in-house dataset. Vox‐
Celeb[32] is a dataset of interview videos of different celebri‐
ties. We crop the videos and resize them to 256×256 for a 
fair comparison with the original FOMM and 384×384 for the 
generation of high-resolution images according to the bound‐
ing boxes of faces. The in-house dataset consists of 4 124 
Chinese people videos collected from the Internet and is 
used to reduce bias towards Western people. We fine-tune 
our model on the in-house dataset to make better adaptations 
to Chinese.

2) Evaluation metrics. We evaluate the models using the L1 
error, average keypoint distance (AKD) and average Euclid‐
ean distance (AED). The L1 error is the mean absolute differ‐
ence between pixel values in the reconstructed images and the 
ground-truth images, which measures the reconstruction accu‐
racy. AKD and AED stand for semantic consistency. AKD is 
the average distance between the face landmarks extracted 
from the ground-truth images and the reconstructed images re‐
spectively by the face landmark detector[33], which measures 
the pose difference between the two images. AED measures 
identity preservation, which is the L2 distance of the corre‐
sponding features extracted by a pre-trained re-identification 
network[34].

3) Hardware. In our video conference system, we implement 
a conferencing APP on a ZTE A30 Ultra mobile phone with 
Snapdragon 888 System on a Chip (SoC) and conferencing 
server software on a computer with Nvidia Tesla V100 GPU.

FOMM: First Order Motion Model
▲Figure 3. Qualitative comparisons with state-of-the-art methods. The first three rows are images from 
the VoxCeleb dataset and the following four rows are images from our in-house dataset. Our method 
produces competitive results

FOMM: First Order Motion Model

Source image

Driving image

FOMM

Ours
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4.2 Comparisons with FOMM
1) Efficiency of the proposed face animation algorithm
First, we compare our encoder, i.e., the face motion extrac‐

tor, with that of the original FOMM. We convert the encoder to 
the mobile neural network (MNN) [35] model and calculate the 
model size. As listed in Table 1, our encoder model is only 
600 kB in size with theoretical computation complexity of 
14.62 M MAC, both of which are about 1% of FOMM. Our en‐
coder processes every frame in 3.5 ms on Snapdragon 888, 
which is 16.3 times faster than FOMM.

Second, we compare our decoder, i.e., the generator to syn‐
thesize a 384×384-resolution face image, also with FOMM. 
For the generator, we convert the model to TensorRT[36] model 
and calculate the model size. As listed in Table 1, our decoder 
model is 81.77 MB in size with theoretical computation com‐
plexity of 31.42 G MAC, and these two values are 26.0% and 
27.3% of FOMM respectively. Our encoder runs in 5 ms on 
Tesla V100, which is 4 times faster than FOMM.

2) Effectiveness of the proposed face animation algorithm
We compare the visual quality of face images generated by 

our method with other face animation methods. For quantita‐
tive comparison, we evaluate our model with existing studies 
on the VoxCeleb dataset for an image generation task. For a 
fair comparison, we generate images with the resolution of 
256×256. The first frame of each test video is set as the 
source image, while the subsequent frames are set as the 
driving images. Evaluation metrics are computed for every 
frame and our result is the mean value of all frames. The re‐
sults are summarized in Table 2, which clearly shows the pro‐
posed method outperforms X2Face and Monkey-Net. Com‐
pared to FOMM, our method can generate competitive re‐
sults, even though our model is much lighter than FOMM. 
For a qualitative comparison, we list some example images in 
Fig. 3 for visual comparisons.

4.3 Results of Full-Resolution Image Generation
The avatar images provided by a user are usually not face-

only, but with other upper body parts. When head regions in 
the avatar images are cropped and animated by our method, 
they should be stitched back into original images to form new 
images with predefined resolutions, e. g., 1 280×720. Special 
treatment should be given to the point where the head region 
and body region connect because these regions move non-
rigidly and disproportionately. As shown in the top two rows in 
Fig. 4, simply replacing the head region in an avatar image 
with a new animated head region will result in visual disconti‐
nuities. As comparisons, the bottom two rows show results of 
the proposed method described in Section 3.4. Our method 
successfully eliminates discontinuities and makes whole im‐
ages visually natural.
4.4 Ultra-Low Bitrate Video Conference

As described in Section 3.1, our video conference system is 
comprised of server software running on the cloud server and 
application software, with the sender module and receiver 
module, running on the mobile phone. The most important dif‐
ference between our sender module and those inside other 
video conference systems is we encode captured videos into 
compact keypoint motion information, rather than traditional 
H.264 or HEVC streams, which greatly cuts down the uplink 
bandwidth usage. For example, when encoded in H.264, 720 p 
conference videos are typical of bitrates between 1 Mbit/s and 
2 Mbit/s. By comparison, each video frame is encoded by our 
sender module as 10 keypoint information, each of which in‐
cludes a position (2 floating points) and a Jacobian matrix (4 
floating points). We empirically determine the half precision 
floating point format (FP16) is enough for data representation 
and thus reaches the bitrate of 6×16×10×30=28.8 kbit/s, 
which is only less than 3% of H. 264 encoding. We note the 

▼ Table 2. Visual quality comparison among different face animation 
methods on VoxCeleb dataset

X2Face[22]

Monkey-Net[23]

FOMM[6]

Ours

L1

0.078
0.049
0.041
0.043

AKD

7.69
1.89
1.27
1.37

AED

0.405
0.199
0.134
0.147

AED: average Euclidean distance 
AKD: average keypoint distance 

FOMM: First Order Motion Model

▼ Table 1. Efficiency comparison between our face animation method 
and FOMM

Model

Encoder

Decoder

FOMM
Ours

FOMM
Ours

MAC
1 280 M
14.62 M
120.70 G
31.42 G

Parameters/M
14.21
0.16

45.56
16.16

Model size/MB
55.54
0.60

299.10
81.77

Inference 
time/ms

57
3.5
20
5

FOMM: First Order Motion Model     MAC: multiply-accumulate operation

T=0
▲ Figure 4. Results of full-resolution image generation. The first row 
shows images generated by simply replacing the head region in the 
source image with the new animated head region. The third row shows 
image results by our method in Section 3.4. In the second and fourth 
rows, connections between head regions and body regions are zoomed 
in for clearer comparison

T=1 T=2 T=3 T=4
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keypoint information can be compressed by the entropy en‐
coder for further bandwidth usage saving.

In our real-world user studies, reducing the uplink bitrate 
can greatly improve the conference user experience. For one 
thing, since wireless bandwidth is not evenly allocated for up‐
link and downlink data transportation, a smaller uplink bitrate 
can result in less congestion and faster upward transmission. 
For another thing, more aggressive schemes can be applied 
when Forward error correction (FEC) is used to tackle data 
loss in transmission, leading to less data retransmission, 
which brings about lower remote interaction latency and more 
real-time engagement.

The server software in our system runs on a cloud server 
with Nvidia GPUs because the image generator in face anima‐
tion is much more computationally expensive than the key‐
point extractor, as demonstrated in Section 4.1. Although our 
simplified image generator can be deployed on some flagship 
mobile phones with powerful GPUs, we choose server-side de‐
ployment to make our application software lightweight enough 
to run on most mobile phones and consume less power to ex‐
tend working time, which is also critical to user experience.
5 Conclusions

In this paper, we propose a face-animation-based method to 
greatly reduce bandwidth usage in video conferences, com‐
pressing face video frames by using only 60 FP16 data to rep‐
resent the face motion. We design an ultra-lightweight face 
motion extraction algorithm that runs on mobile devices, as 
well as an efficient visual quality evaluation algorithm and a 
full-resolution image composition algorithm to ensure consis‐
tent and natural user experience. We also build a practical 
system to enable user communication using animated avatars. 
Experimental results demonstrate the efficiency and effective‐
ness of our methods and their superiority over previous stud‐
ies. However, one limitation of our current work is that our 
method is only applicable to upper-body videos. A full-body 
animation method should be our next work to cover more real-
world scenarios. Another improvement to our system will be 
saving downlink bandwidth by reconstructing videos on mo‐
bile devices, which requires further research in GAN accelera‐
tion to meet real-time constraints on mobile devices.

References
[1] SULLIVAN G J, OHM J R, HAN W J, et al. Overview of the high efficiency 

video coding (HEVC) standard [J]. IEEE transactions on circuits and systems 
for video technology, 2012, 22(12): 1649 – 1668. DOI: 10.1109/
TCSVT.2012.2221191

[2] KONUKO G, VALENZISE G, LATHUILIÈRE S. Ultra-low bitrate video confer‐
encing using deep image animation [C]//IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 4210–4214. 

DOI: 10.1109/ICASSP39728.2021.9414731
[3] FENG D H, HUANG Y, ZHANG Y W, et al. A generative compression frame‐

work for low bandwidth video conference [C]//IEEE International Conference on 
Multimedia & Expo Workshops (ICMEW). IEEE, 2021: 1– 6. DOI: 10.1109/
ICMEW53276.2021.9455985

[4] OQUAB M, STOCK P, GAFNI O, et al. Low bandwidth video-chat compression 
using deep generative models [C]//IEEE/CVF Conference on Computer Vision 
and Pattern Recognition Workshops (CVPRW). IEEE, 2021: 2388–2397. DOI: 
10.1109/CVPRW53098.2021.00271

[5] WANG T C, MALLYA A, LIU M Y. One-shot free-view neural talking-head syn‐
thesis for video conferencing [C]//IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR). IEEE, 2021: 10034–10044. DOI: 10.1109/
CVPR46437.2021.00991

[6] SIAROHIN A, LATHUILIÈRE S, TULYAKOV S, et al. First order motion 
model for image animation [J]. Advances in neural information processing sys‐
tems. 2019, 32: 7135–7145

[7] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adver‐
sarial nets [J]. Advances in neural information processing systems. 2014, 27: 
2672–2680

[8] VLASIC D, BRAND M, PFISTER H, et al. Face transfer with multilinear mod‐
els [J]. ACM transactions on graphics, 2005, 24(3): 426–433. DOI: 10.1145/
1073204.1073209

[9] DALE K, SUNKAVALLI K, JOHNSON M K, et al. Video face replacement [J]. 
ACM transactions on graphics, 2011, 30(6): 1 – 10. DOI: 10.1145/
2070781.2024164

[10] THIES J, ZOLLHÖFER M, STAMMINGER M, et al. Face2Face: real-time 
face capture and reenactment of RGB videos [C]//IEEE Conference on Com‐
puter Vision and Pattern Recognition (CVPR). IEEE, 2016: 2387 – 2395. 
DOI: 10.1109/CVPR.2016.262

[11] NAGANO K, SEO J, XING J, et al. PaGAN: real-time avatars using dynamic 
textures [J]. ACM transactions on graphics, 2018, 37(6): 1–12. DOI: 10.1145/
3272127.3275075

[12] KIM H, GARRIDO P, TEWARI A, et al. Deep video portraits [J]. ACM trans‐
actions on graphics (TOG), 2018, 37(4): 1 – 14. DOI: 10.1145/
3197517.3201283

[13] BLANZ V, VETTER T. A morphable model for the synthesis of 3D faces [C]//
26th Annual Conference on Computer Graphics and Interactive Techniques. 
ACM, 1999: 187–194. DOI: 10.1145/311535.311556

[14] BURKOV E, PASECHNIK I, GRIGOREV A, et al. Neural head reenactment 
with latent pose descriptors [C]//IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR). IEEE, 2020: 13783–13792. DOI: 10.1109/
CVPR42600.2020.01380

[15] OLSZEWSKI K, LI Z M, YANG C, et al. Realistic dynamic facial textures 
from a single image using GANs [C]//IEEE International Conference on Com‐
puter Vision (ICCV). IEEE, 2017: 5439–5448. DOI: 10.1109/ICCV.2017.580

[16] SONG Y, ZHU J W, LI D W, et al. Talking face generation by conditional re‐
current adversarial network [C]//Twenty-Eighth International Joint Conference 
on Artificial Intelligence. IJCAI, 2019: 919 – 925. DOI: 10.24963/ij‐
cai.2019/129

[17] YU J H, LIN Z, YANG J M, et al. Generative image inpainting with contextual 
attention [C]//IEEE/CVF Conference on Computer Vision and Pattern Recogni‐
tion. IEEE, 2018: 5505–5514. DOI: 10.1109/CVPR.2018.00577

[18] ZAKHAROV E, SHYSHEYA A, BURKOV E, et al. Few-shot adversarial 
learning of realistic neural talking head models [C]//IEEE/CVF International 
Conference on Computer Vision (ICCV). IEEE, 2020: 9458 – 9467. DOI: 
10.1109/ICCV.2019.00955

[19] ZAKHAROV E, IVAKHNENKO A, SHYSHEYA A, et al. Fast bi-layer neural 
synthesis of one-shot realistic head avatars [C]//European Conference on Com‐
puter Vision. Springer, 2020: 524 – 540. DOI: 10.1007/978-3-030-58610-
2_31

[20] LIU J, CHEN P, LIANG T, et al. Li-Net: large-pose identity-preserving face re‐
enactment network [C]//IEEE International Conference on Multimedia and 
Expo (ICME). IEEE, 2021: 1–6. DOI: 10.1109/ICME51207.2021.9428233

[21] ZHAO R Q, WU T Y, GUO G D. Sparse to dense motion transfer for face im‐
age animation [C]//IEEE/CVF International Conference on Computer Vision 
Workshops (ICCVW). IEEE, 2021: 1991 – 2000. DOI: 10.1109/
ICCVW54120.2021.00226

70



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

LU Jianguo, ZHENG Qingfang 

Ultra-Lightweight Face Animation Method for Ultra-Low Bitrate Video Conferencing   Research Paper

[22] WILES O, KOEPKE A S, ZISSERMAN A. X2Face: a network for controlling 
face generation using images, audio, and pose codes [C]//European Conference 
on Computer Vision. Springer, 2018: 690 – 706. DOI: 10.1007/978-3-030-
01261-8_41

[23] SIAROHIN A, LATHUILIÈRE S, TULYAKOV S, et al. Animating arbitrary 
objects via deep motion transfer [C]//IEEE/CVF Conference on Computer Vi‐
sion and Pattern Recognition (CVPR). IEEE, 2020: 2372 – 2381. DOI: 
10.1109/CVPR.2019.00248

[24] SIAROHIN A, WOODFORD O J, REN J, et al. Motion representations for ar‐
ticulated animation [C]//IEEE/CVF Conference on Computer Vision and Pat‐
tern Recognition (CVPR). IEEE, 2021: 13648 – 13657. DOI: 10.1109/
CVPR46437.2021.01344

[25] ZHAO J, ZHANG H. Thin-plate spline motion model for image animation [C]//
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 
IEEE, 2022: 3647–3656. DOI: 10.1109/CVPR52688.2022.00364

[26] AGUSTSSON E, TSCHANNEN M, MENTZER F, et al. Generative adversarial 
networks for extreme learned image compression [C]//IEEE/CVF International 
Conference on Computer Vision (ICCV). IEEE, 2020: 221 – 231. DOI: 
10.1109/ICCV.2019.00031

[27] KAPLANYAN A S, SOCHENOV A, LEIMKÜHLER T, et al. DeepFovea: neu‐
ral reconstruction for foveated rendering and video compression using learned 
statistics of natural videos [J]. ACM transactions on graphics, 2019, 38(6): 1–
13. DOI: 10.1145/3355089.3356557

[28] LU G, OUYANG W L, XU D, et al. Deep kalman filtering network for video 
compression artifact reduction [C]//European Conference on Computer Vision. 
Springer, 2018: 591–608. DOI: 10.1007/978-3-030-01264-9_35

[29] GUO Y H, ZHANG X, WU X L. Deep multi-modality soft-decoding of very low 
bit-rate face videos [C]//28th ACM International Conference on Multimedia. 
ACM, 2020: 3947–3955. DOI: 10.1145/3394171.3413709

[30] PRABHAKAR R, CHANDAK S, CHIU C, et al. Reducing latency and band‐
width for video streaming using keypoint extraction and digital puppetry [C]//
Data Compression Conference (DCC). IEEE, 2021: 360. DOI: 10.1109/
DCC50243.2021.00057

[31] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals 
and linear bottlenecks [C]//IEEE/CVF Conference on Computer Vision and 
Pattern Recognition. IEEE, 2018: 4510 – 4520. DOI: 10.1109/

CVPR.2018.00474
[32] NAGRANI A, CHUNG J S, ZISSERMAN A. VoxCeleb: a large-scale speaker 

identification dataset [C]//18th Annual Conference of the International Speech 
Communication Association. ISCA, 2017: 2616–2620. DOI: 10.21437/inter‐
speech.2017-950

[33] BULAT A, TZIMIROPOULOS G. How far are we from solving the 2D & 3D face 
alignment problem? (and a dataset of 230 000 3D facial landmarks) [C]//IEEE 
International Conference on Computer Vision (ICCV). IEEE, 2017: 1021 –
1030. DOI: 10.1109/ICCV.2017.116

[34] AMOS B, LUDWICZUK B, SATYANARAYANAN M. Openface: a general-
purpose face recognition library with mobile applications: CMU-CS-16-118 
[R]. USA: School of Computer Science, Carnegie Mellon University, 2016. 
DOI:10.13140/RG.2.2.26719.07842

[35] JIANG X, WANG H, CHEN Y, et al. MNN: a universal and efficient inference 
engine [C]//Third Conference on Machine Learning and Systems. MLSys, 
2020, 2: 1–13. DOI: 10.48550/arXiv.2002.12418

[36] NVIDIA. NVIDIA TensorRT [EB/OL]. [2022-02-22]. https://developer.nvidia.
com/tensorrt

Biographies
LU Jianguo received his BS and MS degrees from Huazhong University of Sci‐
ence and Technology, China in 2017 and 2020 respectively. After graduation, he 
has been working at ZTE Corporation. His research interests include computer vi‐
sion, artificial intelligence and augmented reality.

ZHENG Qingfang (zheng.qingfang@zte.com.cn) received his BS degree from 
Shanghai Jiao Tong University, China in 2002, and PhD degree in computer 
science from Institute of Computing Technology, Chinese Academy of Sciences 
in 2008. He is now the chief scientist of cloud video product and deputy direc‐
tor of the Video Technology Committee at ZTE Corporation. His current re‐
search interests include video communication, computer vision and artificial in‐
telligence.

71



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

CAI Weibo, YANG Shulin, SUN Gang, ZHANG Qiming, YU Hongfang 

Research Paper   Adaptive Load Balancing for Parameter Servers in Distributed Machine Learning over Heterogeneous Networks

Adaptive Load Balancing for Adaptive Load Balancing for 
Parameter Servers in Distributed Machine Parameter Servers in Distributed Machine 
Learning over Heterogeneous NetworksLearning over Heterogeneous Networks

CAI Weibo1, YANG Shulin1, SUN Gang1, 

ZHANG Qiming2, YU Hongfang1

(1. University of Electronic Science and Technology of China, Chengdu 
611731, China；
 2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202301009

https://kns.cnki.net/kcms/detail/34.1294.TN.20230301.1800.001.html, 
published online March 2, 2023

Manuscript received: 2022-04-11

Abstract: In distributed machine learning (DML) based on the parameter server (PS) architecture, unbalanced communication load distribu‐
tion of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth. To ad‐
dress this problem, a network-aware adaptive PS load distribution scheme is proposed, which accelerates model synchronization by proac‐
tively adjusting the communication load on PSs according to network states. We evaluate the proposed scheme on MXNet, known as a real-
world distributed training platform, and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and 
heterogeneous network environment.
Keywords: distributed machine learning; network awareness; parameter server; load distribution; heterogeneous network

Citation (IEEE Format) : W. B. Cai, S. L. Yang, G. Sun, et al., “Adaptive load balancing for parameter servers in distributed machine learning 
over heterogeneous networks,” ZTE Communications, vol. 21, no. 1, pp. 72–80, Mar. 2023. doi: 10.12142/ZTECOM.202301009.

1 Introduction

Machine learning is widely used in many fields such 
as image classification[1], speech recognition[2], and 
natural language processing[3]. With the continuous 
increase in training data and the model size, the 

huge time cost of single-machine training is unacceptable to 
users. Therefore, distributed machine learning (DML) based 
on multi-machine parallelism has drawn more and more atten‐
tion. Usually, distributed training is carried out within a single 
cluster, since it is considered that networks with limited band‐
width and complex and changeable states across clusters will 
seriously slow down the communication process of DML. How‐
ever, due to the limitations of data privacy protection[4], data 
aggregation among clusters for model training is not allowed in 
some cases. In addition, with the proposal of Computing First 
Network[5–6], DML model training based on the integrated 
computing power of the whole network gradually shows great 
application prospects. Based on the consideration mentioned 
above, DML in heterogeneous networks across clusters has 

great research value.
There are mainly two communication architectures for DML: 

one is a centerless architecture, represented by AllReduce[7–8], 
and the other is a centered architecture, represented by a pa‐
rameter server (PS) architecture[9–11]. In the PS architecture, 
there are usually two types of nodes in the DML system: the 
worker responsible for model training and the server for model 
aggregation and parameter update. During a typical training it‐
eration of data parallelism and synchronous update mode, work‐
ers send model gradients uniformly after completing the train‐
ing based on the local model and data, and the server receives 
the model gradient from workers. Thereafter, the model aggrega‐
tion operation is performed to generate a global model, and the 
global model is sent to workers. Workers immediately replace 
the local model after receiving the global model from the server 
and start a new training iteration.

In this process, since the data from all workers need to be 
aggregated on the server, servers with limited bandwidth re‐
sources could become the bottleneck of transmission, which is 
also an inherent problem of the PS architecture[12]. In order to 
tackle this problem, a traditional solution[13] is to increase the 
number of servers and let multiple servers share the heavy 
communication load. Since the load distribution of each server 
usually follows the principle of fairness, this scheme has an 
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ideal effect on homogeneous networks. However, in networks 
with heterogeneous bandwidth resources, since the system is 
agnostic about networks, it is impossible to match the com‐
munication load undertaken by each server with its communi‐
cation capability. This leads to a consequence that the serv‐
ers with low communication capacity slow down the commu‐
nication time during the entire iteration process due to exces‐
sive load.

To efficiently handle the problem, this paper proposes an 
adaptive load balancing scheme for network-aware-PS-based 
DML over heterogeneous networks. The scheme senses the 
throughput of each link in networks in real time through a de‐
signed network awareness mechanism, reasonably evaluates 
the communication capability of each server based on this, 
and then selects appropriate servers to undertake the appropri‐
ate model aggregation tasks according to their communication 
capabilities. Finally, each server is assigned with communica‐
tion load that matches its communication capability. The main 
contributions of this paper are as follows:

• We achieve an effective estimation of the link throughput 
by the low-cost and high-precision statistics method of the 
data transmission time with a simple and ingenious design, so 
as to learn the global network state information;

• We conduct an in-depth theoretical analysis of fine-
grained data transmission and find a method to solve the opti‐
mal granularity of data slices.

• We design a simple and effective aggregation node selec‐
tion method and a specific data slice assignment method, 
which can achieve efficient slice assignment.
2 Related Work

Multiple servers are typically used to alleviate heavy traffic 
on a single server in the PS architecture. But the specific 
implementation of the traditional PS architecture is network 
unawareness (such as MXNet[14], TensorFlow[15], and Pe‐
tuum[16]), making it impossible to distribute the communica‐
tion load more reasonably according to the actual communica‐
tion capabilities of each server. Therefore, it is generally as‐
sumed that their communication capabilities are basically the 
same and are distributed according to the principle of fair‐
ness[17]. This usually results in poor performance in heteroge‐
neous networks.

The authors in Ref. [18] have proposed an elastic PS load 
distribution scheme, which mainly analyzes the performance 
of servers by calculating the transmission time of the param‐
eters using the linear regression method, and finally distrib‐
utes communication load accordingly. Considering that the 
load distribution is in a complex network environment, the pri‐
mary problem is the awareness of the network state. However, 
the authors do not provide a statistical method of parameter 
transmission time to implement network awareness, which 
makes the engineering solution to this kind of problem practi‐
cally impossible. In addition, this scheme fails to deeply con‐

sider the optimal granularity of fine-grained transmission, and 
only uses empirical values, which cannot make the transmis‐
sion reach the optimal state.
3 Proposed Approach

Based on the understanding of the related work about the 
PS load distribution of DML and the in-depth thinking of the 
problem, our approach is proposed as follows. First of all, the 
data are segmented according to the established slice granular‐
ity. The system in real time senses the network state through 
the cleverly designed network awareness mechanism, then 
evaluates the network communication capabilities of each 
node accordingly, and selects a part of the nodes as aggrega‐
tion nodes. Finally, the complete distribution of fine-grained 
data is realized according to the PS load distribution and slice 
assignment algorithms.
3.1 Slice Granularity

During the model aggregation for DML, the process of work‐
ers sending data to the server to aggregate (PUSH) and the pro‐
cess of workers receiving the aggregated data returned from 
the server (PULL) are usually carried out synchronously, as 
shown in Fig. 1. The system performs the PULL process of 
data Slice 1 after all workers have completed the PUSH pro‐
cess of data Slice 1 (the time of data aggregation can be ig‐
nored), and the PUSH process of data Slice 2 is performed syn‐
chronously, thus overlapping PUSH and PULL. Theoretically, 
the smaller the data slice is, the better the overlapping of 
PUSH and PULL, ultimately making the aggregation quicker 
to complete. However, in practice, because there is a certain 
overhead in the data segmentation process, and there is also a 
certain additional network overhead in the transmission pro‐
cess of data slices, the granularity of slicing cannot be infi‐
nitely small.

Taking as many factors as possible into account, we analyze 
and solve this problem from a theoretical point of view. Con‐
sidering the situation under a simple homogeneous network, in 
a complete data aggregation process under a single server, for 
a distributed system with a fixed data size M in every worker, 
the network bandwidth is W, and the number of nodes is N, 
where the slice granularity x that determines the times of the 

▲ Figure 1. Illustration of data transmission, where the green block is 
the additional synchronization delay, and the orange block is the trans⁃
mission time of each slice
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data is sent separately by m = M/x (the number of slices). In 
addition to the inherent transmission delay under the band‐
width limit, there are other network delays of data transmis‐
sion during each data transmission. Hence, we compensate for 
the latency factor β. However, our study finds that the segmen‐
tation cost per slice is less than 1 ms, which can be ignored. 
We also find that β ∝ 1

W，thus let β = 1
W α. In addition, con‐

sidering that the start time of the transmission of each node in 
practice is difficult to synchronize absolutely, there is an addi‐
tional synchronization delay Δt in the total data transmission 
time. Eq. (1) shows the relationship between granularity x and 
the total time of data synchronization T.

T = ( x
W/N + α

W )∙( M
x + 1) + ∆t, (1)

where ∆t denotes the delay of synchronization. We can expand 
the above equation to obtain:

T = NM
W + N

W x + Mα
W ∙ 1

x + α
W + ∆t. (2)

We simplify the above equation to the y = x + a
x  form and 

have:
W
N T = x + Mα

N ∙ 1
x + M + α

N + W
N ∆t. (3)

It can be found that when the left part of the equation takes 
the minimum value, the value of x is:

x = Mα
N . (4)

When M and N are determined, α = 1.2 × 105 can be ob‐
tained through actual testing. Obviously, at this point, the 
value x is only related to the data size M and the number of 
nodes N. It illustrates that during the distributed training of 
machine learning, when the training scale and the number of 
model parameters are determined, the value x is determined.

In a heterogeneous network, system performance is limited 
by the node with the smallest communication bandwidth (bottle‐
neck node). If the bottleneck node is related to the server, W is 
calculated according to the bandwidth of the parameter server. 
If the bottleneck node is a worker, W can get the maximum 
value of T according to the bandwidth of the worker. However, 
in any case, the results are not related to W, so Eq. (4) is still of 
reference value for heterogeneous networks.
3.2 Network Awareness

In this scheme, the network state information that needs to 
be measured is only link throughput (available bandwidth). 
To avoid the large injection of probe traffic in the conven‐

tional network measurement technology[19–20] to occupy 
scarce network bandwidth resources, this scheme directly 
takes the model parameter data as the probe traffic. The 
granularity size_probe and the number probe_num of probe 
packets should be the minimum values that help the scheme 
to achieve an accurate measurement (the training iteration 
time remains stable in a stable heterogeneous network within 
a certain period of time), and they need to be determined in 
specific engineering implementation. Probe packets are seg‐
mented by each worker using the probability partition_rate to 
select the probe granularity size_probe to segment local data. 
In Eq. (5), where the coefficient γ is fixed at 0.6 in the ex‐
periment, the value of the probability partition_rate is neces‐
sary to ensure that the number of probe packets sent by the 
worker to each server is not less than probe_num, so as to re‐
alize the complete measurement of links between the worker 
and all servers.

partition_rate = 2N
w/n  γ . (5)

From the perspective of measurement implementation, the 
measurement of link throughput only needs to know the data 
size of the probe packet and the completion time of the probe 
packet transmission. Since the probe packet receiving node 
(receiver) has received the probe packet, the data size of the 
probe packet is known, but its transmission completion time is 
not easy to know. To calculate the transmission completion 
time, the start time and end time of transmission have to be fig‐
ured out. When the probe packet is submitted to the upper 
layer, the receiver only knows the time at which the applica‐
tion layer received it, which is the end time of the probe 
packet transmission. But the receiver does not know the start 
time of the probe packet transmission. To obtain the start time 
of the probe packet transmission, the receiver can consider 
starting from the lower transport layer protocol and analyze the 
start time of the probe packet transmission in more detail, 
such as analyzing the Acknowledge Character (ACK) when the 
transmission is based on the Transmission Control Protocol 
(TCP). But in complex heterogeneous networks where different 
nodes may be deployed on different types of devices and use 
different network protocols, the scheme of obtaining the trans‐
mission start time of the probe packet based on the analysis of 
the underlying communication protocol is obviously not suffi‐
ciently pervasive.

In fact, without considering the underlying protocol analy‐
sis, it is also possible to obtain the start time of probe packet 
transmission. Although the application layer of the receiver 
does not directly know the start time of the probe packet trans‐
mission, the sending node (sender) knows. Therefore, it is only 
necessary to tell the receiver the start time of the probe packet 
transmission through the sender.
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sij = prob_size
tend - tstart . (6)

Specifically, before the probe packet needs to be sent, the 
sender i sends the forecast message to the receiver j. After 
receiving the forecast message, the receiver can assume that 
the end time of the forecast message transmission is the start 
time tstart of the following probe (packet) message transmis‐
sion. Until the following probe message arrives, and the re‐
ceiver obtains the end time of probe message transmission 
tend and the data size of probe messages size_probe. Finally, 
according to Eq. (6), the average rate sij of the probe mes‐
sage transmission from node i to node j can be calculated. 
The process of link throughput measurement is shown in 
Fig. 2. We use sij as an estimate of the throughput of the link 
through which the probe message is transmitted, and then 
use the estimated throughput as a reference for the evalua‐
tion of the communication capabilities of the node associ‐
ated with the link. In this process, although additional traf‐
fic (the forecast message) is also injected into the network, it 
is not probe traffic. It is just the signaling message which is 
responsible for state forecast, and the data size is very small. 
Thus, the overhead of transmission over the network is al‐
most negligible.

From the overall perspective of the network awareness 
mechanism, the specific measurement of network awareness 
is distributed at each node. If the links are required for 
transmission, they all need to be measured. To further en‐
hance the reliability and stability of the measurement, we 
not only use special probe messages but also take data mes‐
sages as probe messages to measure networks. Although it 
leads to some overhead, considering that the final value of 
throughput between nodes is the average value of the 
throughput record, the design can further improve the mea‐
surement effect. These measurements are obtained by the re‐
ceiver, and then summarized to the central scheduling node 
(scheduler) which is responsible for the evaluation of the 
communication capacity of nodes and the distribution of 
communication load. When each node reports the link 
throughput information, the scheduler will update its re‐

corded throughput value, evaluate capacity, and make deci‐
sions under the new network state timely, so that the system 
has a strong adaptive ability.
3.3 Load Distribution

Load distribution is decided by a scheduler, which mainly 
involves the distribution of communication load on each 
server and the assignment of data slices. For the distribution 
of communication load, system deployment needs to be consid‐
ered first. As bandwidth resources are scarce in heterogeneous 
networks, more physical nodes are needed in networks and the 
utilization of link bandwidth between nodes will be lowered if 
servers and workers are placed separately. To avoid these 
problems, we attach a server to each worker to get higher net‐
work resource utilization. In such a deployment, each node not 
only receives and distributes aggregated data as a server but 
also sends and receives aggregated data as a worker. It is im‐
portant to note that in such a deployment, the node acting as a 
worker does not need to actually send the communication load 
to itself acting as a server. As all nodes as servers need to bear 
the corresponding proportion of the communication load, and 
the part of the load undertaken by themselves does not need to 
be actually sent, it is equivalent to reducing the data transmis‐
sion of a worker.

Specifically, when the number of nodes is N, the local data 
size of each node is M, and the communication load of server 
i (i ∈ V ) is assumed to be mi, the communication load Li of 
node i is:

Li = M - mi + (N - 1)mi. (7)
Considering that the throughput information received by the 

scheduler is presented as sij from node i to node j, the actual 
throughput Si of node i can be calculated by Eq. (8):

Si = ∑j ∈ V\i sij. (8)
Based on this, we can calculate the transmission time ti for 

node i to complete communication load Li under throughput Si by Eq. (9):
ti = Li

Si
= M + ( )N - 2 mi

Si . (9)
In the model aggregation stage, the data trans‐

mission of each node is carried out simultane‐
ously, so the total transmission completion time 
in the training iteration is the maximum of the 
transmission completion time of each node 
max i ∈ V ti. The purpose of reasonable communica‐
tion load distribution is to minimize max i ∈ V ti. In 
other words, the current problem model can be 
determined as: ▲Figure 2. Link throughput measurement
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min max i ∈ V
M + ( )N - 2 mi

Si

s.t.  M = ∑i ∈ V
mi. (10)

In Eq. (10), M, N and Si are constants, and only mi  is vari‐
able. The objective function requires to minimize the maxi‐
mum value of ti . Under the strong constraint that the sum of 
all mi is fixed, considering that adjusting the load of one node 
will inevitably affect the load of other nodes, it is intuitively 
difficult to determine the optimal value of mi. However, we 
can write Eq. (10) as:

ti = M
Si

+ N - 2
Si

mi. (11)
Eq. (11) is the linear function of ti on mi. For the training 

system with V = {1,2,3 }, we draw the function curve of ti on mi of each node as shown in Fig. 3.
The problem of Eq. (10) can be approximately transformed 

to determine a point (mi,ti ) on each line li in Fig. 3, and to 
minimize the maximum value in ti on the premise that the 
sum of the abscissa of these points mi is a constant value M. 
If the position of (mi,ti ) is initialized randomly for each line 
and then moved gradually to minimize max i ∈ V ti, the mini‐
mum value of max i ∈ V ti can be achieved if and only if all 
points are on the same horizontal line lh. Otherwise, there 
must be a line lh', above and below which there are at least 
one point respectively. Thus, we can still get all the points 
closer to each other by moving the point above lh' down its 
line and moving the point below lh' up its line, until they are 
on the same horizontal line.

We distribute the communication load of each node accord‐
ing to the principle of equalitarianism in advance. Positions of 
(mi,ti ) are initialized at the intersections of line lv = M

N  and 
each line li. Then each point (mi,ti ) is moved by means of it‐
erative forced equalization of max i ∈ V ti and min i ∈ V ti. Specifi‐
cally, in a moving iteration, it is assumed that i = max , when 
tmax =   max i ∈ V ti, and i = min, when tmin =   min i ∈ V ti. When 

tmax = tmin, the x-coordinates m'max and m'min of the moved points 
(mmax,tmax ) and (mmin,tmin ) have the relationship as shown in 
Eqs. (12) and (13).

M + ( )N - 2 m'max
Smax

= M + ( )N - 2 m'min
Smin . (12)

m'max + m'min = mmax + mmin. (13)
Therefore,

m'max = mmax + mmin - m'min

x'min = ( )N - 2 ( )mmax + mmin Smin - M ( )Smax - Smin
( )N - 2 ( )Smin - Smax . (14)

Now, (mmax, tmax ) and (mmin, tmin ) move to the same ordinate 
position and the next iteration can be started until  max i ∈ V yi =
min i ∈ V yi. Algorithm 1 shows the detailed steps of the process.
Algorithm 1: Load distribution
Input: The local data size of each node M, the number of 
nodes N, the throughput Si of node i，and the similarity thresh‐
old similarity_threshold of ti, where i ϵ V.
Output: The load distribution mi of node i.
1) Initialization: mi = M

N , tmax = -∞, tmin = ∞
2) for i in V do

3) t = M + ( )N - 2 mi

Si4) if tmax < t do
5) tmax = t
6) nodemax = i
7) if tmin > t do
8) tmin = t
9) nodemin = i
10) while tmax - tmin ≥ similarity_threshold do
11) msum = mnodemax + mnodemin

12) mnodemin = ( )N - 2 ( )mmax + mmin Smin - M ( )Smax - Smin
( )N - 2 ( )Smin - Smax

13) mnodemax = msum - mnodemin14) tmax = -∞, tmin = ∞
15) for i in V do

16) t = M + ( )N - 2 mi

Si17) if tmax < t do
18) tmax = t
19) nodemax = i
20) if tmin > t do
21) tmin = t
22) nodemin = i

The first line of Algorithm 1 distributes the communication ▲Figure 3. Geometrization of the load distribution problem
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load of each node according to the principle of fairness in ad‐
vance. Lines 2 – 9 determine the maximum and minimum 
transmission time of the nodes in the current communication 
load distribution, as well as the corresponding node. At Line 
10, we judge whether the moving iteration needs to be 
stopped. In order to reduce the number of iterations, we define 
the difference between the maximum and minimum values of 
node transmission time as approximately equal if the differ‐
ence is no more than similarity_threshold (the experience 
value is 1 s in our experiment). Lines 11–13 adjust the com‐
munication load of the nodes with the maximum and minimum 
transmission time. Lines 14–22 determine the maximum and 
minimum values of the transmission time of nodes after adjust‐
ing the communication load distribution, which is used for 
judgment in Line 10. Based on the above process, Algorithm 1 
has a Θ ( )N + N

2 × N = Θ(N 2 ) time complexity when ti has a 
uniform initial distribution on the timeline and 
similarity_threshold isn’t too small.

In the specific process of slice assignment, data are trans‐
mitted as the slice, just like the basic granularity, thus the fi‐
nal work of load distribution is the assignment of data slices. 
Algorithm 2 shows the data slice assignment.
Algorithm 2: Slice assignment
Input: The load distribution mi of node i, the data size paras j of slice j, the number of slices num_slice, the granularity of 
probe slice size_probe, and the number of probe slices that 
each node sends to other nodes, where i ∈ V, 
j ∈ (0, num_slice).
Output: The assignment result assign j of slice j, where 
j ∈ (0, num_slice).
1) Initialization: Initialize index variables index = 0.
2) for i in V
3) for h in (0, num_probe) do
4) while index < num_slice and parasindex ≠ size_probe do
5) index = index + 1
6) if index > index_end do
7) break
8) assignindex = i
9) mi = mi - parasindex10) index = index + 1
11) for index in (0, num_slice) do
12) if assignindex == NULL do
13) max_m = -∞
14) receiver = 0
15) for i in V do
16) if max_m < mi - parasindex do
17) max_m = mi - parasindex18) receiver = i
19) assignindex = receiver
20) m receiver = max_m

At Lines 2 – 10 in Algorithm 2, the number of probe 
slices that the servers are distributed with is defined as 
num_probe, which is generated by segmentation probability 
partition_rate during data segmentation, mainly to maintain 
the awareness of the network state of idle nodes that are not 
distributed any slices. Lines 11–20 are used to achieve the 
assignment of the remaining slices. Specifically, for each 
slice, we traverse all current aggregation nodes and select 
the node with the largest remaining load as the receiving 
node of this slice. In this way, the receiving node with the 
best network state can be arranged for each slice as much as 
possible, and the excess load that the node needs to bear 
when the slice granularity is larger than the remaining load 
of nodes can be reduced as much as possible. Based on the 
above process, Algorithm 2 has a Ο (min (N ×
num_probe, num_slice) + N × num_slice) time complexity, 
which shows the execution time of the algorithm is mainly re‐
lated to the number of nodes and data slices.

The scheme provides a standard execution process in order 
to make the system adaptive. In each iteration, specifically, at 
the beginning of the communication process, each node first 
reports to the scheduler the link throughput information mea‐
sured in the communication process of the previous iteration, 
then waits for the scheduler to make the latest distribution 
strategy according to the link throughput information, and 
sends it to each node. After receiving the latest strategy infor‐
mation, each node updates its local strategy, transmits data ac‐
cording to the new strategy, and records the link throughput in‐
formation measured during transmission. Based on such an in‐
teractive process, the training system can realize adaptability 
almost in real time.
4 Experiment

4.1 Environment and Deployment
We simulate a 12-node cluster with Intel(R) Xeon(R) E5-

2678 v3 CPUs and NVIDIA 2080TI GPUs and use MXNet as 
a DML training platform. We have implemented our scheme 
by modifying the source code of MXNet and deployed the 
server and the worker in a 1:1 ratio, which means placing one 
server and one worker on each physical node in the cluster. 
The bandwidth limit between nodes is below the typical Wide 
Area Network (WAN) bandwidth of 220 M/bits with a TC‐
Tool[21]. The specific value of bandwidth is randomly deter‐
mined and randomly adjusted periodically (300 s) to simulate 
the dynamic heterogeneous network environment. In addition, 
the hyperparameter configuration of the training system is 
shown in Table 1.
4.2 Experiment Design

We set up two related schemes to compare with our 
scheme (Aware). One scheme is Average[17], which is based 
on the equal distribution principle and network agnosticism, 
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and the other is the elastic parameter distribution scheme 
named Elastic[18]. Since the network awareness mechanism of 
Elastic is unknown, we directly test Elastic based on our net‐
work awareness mechanism in experiments. For these three 
schemes, we test their performance on AleNet (228 MB), 
ResNet50 (93 MB), and MobileNet (21 MB) models respectively.
4.3 Performance Metrics

In our experiments, we use the training speed, namely the 
number of images per minute trained by the system, as the 
main performance evaluation metric. The higher the speed, 
the better the performance of the scheme. Eq. (16) shows the 
definition of speed, where num_iters is the number of itera‐
tions in t_iters time.

speed = num_iters*MiniBatch*N
t_iters . (16)

In addition, single-round iteration time (SRIT) and average 
single-round iteration time (ASRIT) are used in the verifica‐
tions of network awareness validity, verifications of segmenta‐
tion granularity rationality, and cost analysis. SRIT is the time 
to complete a model training iteration, which is directly mea‐
sured in tests. The shorter SRIT is, the better performance the 
scheme has.
5 Results and Analysis

5.1 Training Speed
Fig. 4 shows the training speed of the compared schemes in 

different models. As we can see that network-aware Elastic 

and Aware schemes significantly improves performance: 1.14 
times and 2.68 times for MobileNet, 1.56 times and 1.76 times 
for ResNet50, and 1.23 times and 1.32 times for AlexNet, 
compared with the Average scheme which is agnostic to net‐
work states. This shows that the PS adaptive load balancing is 
feasible and effective based on the network awareness. Com‐
pared with Elastic, Aware has achieved better performance im‐
provement, 2.34 times for MobileNet, 1.13x for ResNet50, and 
1.08 times for Alexnet, especially on the MobileNet model, 
which achieved over 2 times acceleration. This suggests that 
the load distribution strategy of Aware is indeed better than 
that of Elastic.

In addition, by comparing the speed gain on different mod‐
els, it can be found that the gain achieved by Aware is more 
obvious on the smaller model (MobileNet). This is because the 
network load of the small model is small, the iteration time of 
model training is short, and the optimization effect of Aware is 
more significant in the same experimental network, which is fi‐
nally shown as a significant increase in the training speed. On 
the larger model (AlexNet), Aware has almost no gain com‐
pared with Elastic. The reason is that there is no obvious room 
for optimization of the data aggregation process in the experi‐
ment network with limited bandwidth under the excessively 
large communication load.
5.2 Effectiveness Verification of Network Awareness

Fig. 5 shows the changes of SRIT of Aware and Average 
schemes with iteration rounds in the same dynamic network. 
The system parameters num_probe and size_probe are set to 
the best values of 2 and 10 000, respectively, which are deter‐
mined by actual tests in the experiment. Due to space limita‐
tion of the paper, the details are omitted. In the figure, the 
curve of Average which is agnostic about the network is above 
the curve of Aware, which indicates that the optimization ef‐
fect of Aware scheme is significant and lasting. Additionally, 
the curve of Aware exhibits periodic shock wave characteris‐
tics, which can be attributed to its poor performance in re‐
sponse to abrupt changes in network states at the crest and the 
end of the strategy. However, with the release of a new round 

▲ Figure 5. SRIT comparison of Aware and Average schemes in dy⁃
namic networks▲Figure 4. Training speed of different schemes on different models

▼Table 1. Key hyperparameters
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of strategy based on the latest network state, the performance 
of Aware improves rapidly. That also verifies the effectiveness 
and reliability of the network awareness mechanism of our 
scheme.
5.3 Reasonableness Verification of Segmentation Granu⁃

larity
In order to verify the rationality of the theoretical analysis 

conclusion of slice granularity, we take the Resnet50 model as 
an example to test the change of ASRIT with the slice granu‐
larity under multiple network states. As shown in Fig. 6, in dif‐
ferent network states, ASRIT remains almost unchanged 
within the logarithmic range of 5 – 5.5 (quantity of 105 –
3.16 × 105 parameters) of the slice granularity, while our theo‐
retical value of 5.38 is exactly within this range. This indi‐
cates that our theoretical value of slice granularity can indeed 
achieve almost the lowest ASRIT in different network states.
5.4 Overhead Analysis

The overhead of the Aware scheme is likely to be concen‐
trated in frequent forecast messages and synchronization of 
strategy requests with each round. As for the former, there 
should be no significant overhead because the preview mes‐
sage only contains extremely short header fields with a fixed 
length. As for the latter, because the experiments are based on 
the synchronous training mode and the synchronization of 
each round has already existed, there should be no obvious 
overhead. In order to verify this analysis, in a stable (static 
and isomorphic) network environment, we have tested ASRIT 
of the Average scheme under four conditions: requiring probe 
and strategy request synchronization (Probe + Request), only 
requiring probe (Probe), only requiring strategy request syn‐
chronization (Request) and neither requiring probe nor strat‐
egy request synchronization (Original). The ASRIT over doz‐
ens of iterations is shown in Fig. 7. Adding probe or strategy 
request synchronization does incur some overhead, but even 
with Probe + Request having the largest overhead, only 0.44 s 
(2.12%) overhead is added to Original, which is negligible 
compared with the huge gain shown in Fig. 5.

6 Conclusions
In this paper, we study the problem of PS load distribution 

in DML in heterogeneous networks. The state-of-the-art 
schemes cannot match the communication load with the com‐
munication capacity of PSs to achieve load balancing due to 
the lack of network awareness. The existing schemes with net‐
work awareness have not given specific network measurement 
methods, which makes them difficult to be realized in prac‐
tice. This paper proposes a well-designed network awareness 
mechanism, which can realize low cost and high precision net‐
work measurement. In addition, the slice granularity determi‐
nation and slice assignment of fine-grained transmission is 
studied. We have implemented the scheme in MXNet, and 
completed the function verification and performance measure‐
ment based on the experiment cluster. The results show that 
the proposed scheme can significantly accelerate DML.
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1 Introduction

Navigation services applied to mobile devices are an in‐
dispensable part of modern society. At present, the 
outdoor positioning and navigating service technology 
has become mature, and the Global Positioning Sys‐

tem (GPS) can provide relatively accurate position information 
and related supporting navigation services for outdoor pedes‐
trians. For example, the navigation products of Baidu, Amap, 
Tencent and other companies can meet the location informa‐
tion and navigation service needs of outdoor pedestrians in 
terms of location services. However, once pedestrians go in‐
doors, e. g., in shopping malls, airports, underground parking 
lots and other sheltered places, the positioning signal is 
greatly attenuated by factors like walls, and the GPS-based 
outdoor navigation technology becomes insufficient. The exist‐
ing indoor localization methods have many constraints in local‐
ization accuracy, deployment overhead, and resource con‐
sumption, which limits their promotion in real-world naviga‐
tion applications.

In recent years, researchers have designed a variety of in‐
door and outdoor positioning solutions for various types of in‐
formation such as visible light communication (VLC), built-in 
sensors, QR codes, and WIFI. However, these solutions have 

many shortcomings in terms of localization accuracy, deploy‐
ment difficulty, and equipment overhead. For example, the 
VLC-based methods require indoor LED lights to be upgraded 
on a large scale, which greatly increases deployment costs. 
Meanwhile, the WIFI-based methods cannot provide accurate 
direction information, which is difficult to meet the needs of 
precise localization.

However, in a visual scenario perception method, target 
recognition and position calculation are performed by means 
of image processing, so that relatively high positioning preci‐
sion can be provided, and deployment of an additional de‐
vice is not required, which is widely researched and applied 
in recent years.

The main application of scene perception is visual localiza‐
tion, which is a method of determining the position of 6-degree 
of freedom (6-DoF) from the image. The initialization condi‐
tions of visual localization usually require a sparse model of 
the scene and the estimated pose of the query image. Aug‐
mented reality (AR) navigation is an important application sce‐
nario of visual localization technologies, which can interact 
with the real world in a virtual environment through localiza‐
tion. The application of AR navigation technologies has great 
prospects in the future. Shopping malls have the most demand 
for localization and navigation technologies, and users are 
very interested in store discount information, personalized ad‐
vertisements, store ratings, store locations, and indoor road This work was supported by ZTE Industry ⁃University ⁃ Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20210707004.
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guidance. The application of scene visual perception and AR 
navigation can solve most of the above problems well, and 
has vast potential in future development in the expansion of 
added value.

This paper introduces the design and implementation of AR 
navigation applications (APPs) and the cloud algorithm in de‐
tail, and starts from three aspects: navigation map generation, 
the cloud navigation algorithm, and the client design. Com‐
bined with specific cases, this paper introduces in detail the 
process of panoramic data acquisition and processing, point 
cloud map[1] and computer aided design (CAD) map alignment 
in the navigation map generation tool, and introduces the path 
planning algorithm and path correction algorithm in the cloud 
navigation algorithm. In terms of localization and AR path ren‐
dering, the client design method is introduced in detail, and fi‐
nally, the running example of an AR navigation APP is given.
2 Basic Framework of Scene Visual Perception

Similar to humans, machines perceive and understand the 
environment mostly through visual information. In recent 
years, the development of 3D visual perception methods has 
provided great help for building models of the real physical 
world. For various application scenarios, there are currently 
some vision algorithms with commercial application capabili‐
ties, including face recognition, living body detection, 3D re‐
construction, simultaneous localization and mapping (SLAM), 
gesture recognition, behavior analysis, augmented reality, vir‐
tual reality, etc.

Scene visual perception applied to navigation mainly in‐
cludes 3D reconstruction and SLAM. The above steps can be 
regarded as the process of building a visual map. Visual map-
based localization usually includes steps such as visual map 
construction and update, image retrieval, and fine localization, 
among which the visual map is the core of the method. Accord‐
ing to the condition that the image frame has accurate prior 
pose information or not, the process of constructing a visual 
map can be divided into prior pose-based construction meth‐
ods and non-prior pose methods. In the prior pose-based con‐
struction methods, the prior pose of the image frame can be de‐
rived from the high-precision LiDAR data synchronized and 
calibrated with the camera, which is common in high-
precision acquisition vehicles in the field of autonomous driv‐
ing. In small-scale scenes, especially indoors, the prior pose 
can also be obtained from visual motion capture systems such 
as Vicon and OptiTrack. The non-prior pose methods adopt of‐
fline extraction of feature points and offline optimization of 
pose and scene structures, which is similar to structure-from-
motion (SfM). The constructed geometric visual map generally 
includes image frames, feature points and descriptors, 3D 
points, the correspondence between image frames, and the cor‐
respondence between 2D points and 3D points. During the 
process, due to changes in the real scene, the constructed vi‐
sual map also needs to be updated synchronously to detect 

new and expired changes in time, and then update the corre‐
sponding changes to the visual map. When the prior visual 
map is obtained, the image retrieval and fine localization steps 
can usually be performed on the newly acquired image frame 
to complete localization. In the visual map-based localization 
framework, sensor information such as inertial measurement 
unit (IMU), GPS, and wheel odometer can also be fused.
3 Introduction to Key Technologies of Scene 

Visual Perception

3.1 3D Reconstruction
Accurate and robust 3D reconstruction methods are crucial 

to visual localization. The purpose of 3D reconstruction is to 
obtain the geometry and structure of an object or a scene from 
a set of images. SfM is a way to achieve 3D reconstruction, 
which is mainly used in the stage of building sparse point 
cloud in 3D reconstruction. A complete 3D reconstruction pro‐
cess usually also includes a multi-view stereo (MVS) step to 
achieve dense reconstruction. SfM is mainly used for mapping 
and restoring the structure of the scene. According to the dif‐
ference in the image data processing flow, SfM can usually in‐
clude four categories: incremental SfM, global SfM, distrib‐
uted SfM, and hybrid SfM. Among them, distributed SfM and 
hybrid SfM are usually used to solve large-scale reconstruc‐
tion and are based on incremental SfM and global SfM. Incre‐
mental SfM mainly includes two steps. The first step is to find 
the initial correspondence, and the second step is to achieve 
incremental reconstruction. The former aims to extract robust 
and well-distributed features to match image pairs, and the lat‐
ter is used to estimate the image pose and 3D structure 
through image registration, triangulation, bundle adjustment 
(BA), and outlier removal. The initial corresponding outliers 
usually need to be removed by geometric verification methods. 
Generally, when the number of recovered image frames ac‐
counts for a certain proportion, global BA is required. Due to 
the incremental BA processing, incremental SfM usually has 
higher accuracy and better robustness. As the number of im‐
ages increases, the scale of BA processing becomes larger, 
leading to disadvantages such as low efficiency and large 
memory usage. Additionally, incremental SfM suffers from cu‐
mulative drift as images are incrementally added. Typical SfM 
frameworks include Bundler and COLMAP.

CAO et al. [2] proposed a fast and robust feature tracking 
method for 3D reconstruction using SfM. First, to save compu‐
tational costs, a feature clustering method was used to cluster 
a large set of images into small ones to avoid some wrong fea‐
ture matching. Second, the joint search set method was used 
to achieve fast feature matching, which could further save the 
computational time of feature tracking. Third, a geometric con‐
straint method was proposed to remove outliers in trajectories 
produced by feature tracking methods. The method could cope 
with the effects of image distortion, scale changes, and illumi‐
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nation changes. LINDENBERGER et al. [3] directly aligned 
low-level image information from multiple views, optimized 
feature point locations using depth feature metrics after fea‐
ture matching, and performed BA through similar depth fea‐
ture metrics during incremental reconstruction. In this pro‐
cess, the convolutional network was used to extract the dense 
feature map from the image, then the position of the feature 
points in the image was adjusted according to the sparse fea‐
ture matching to obtain the two-dimensional observation of the 
same 3D point in different images, and the SfM reconstruction 
was completed according to the adjustment. The BA optimiza‐
tion residual in the reconstruction process changes from repro‐
jection error to feature metric error. This improvement is ro‐
bust to large detection noise and appearance changes, as it op‐
timizes feature metric errors based on dense features pre‐
dicted by neural networks.

The cumulative drift problem can be solved by global SfM. 
For the fundamental and essential matrix between images ob‐
tained in the image matching process, the relative rotation and 
relative translation can be obtained through decomposition. 
Using the relative rotation as a constraint, the global rotation 
can be recovered, and then the global translation can be recov‐
ered using the global rotation and relative translation con‐
straints. Since the construction of the global BA does not re‐
quire multiple optimizations, the global SfM is more efficient. 
However, since the relative translation constraints only con‐
strain the translation direction and the scale is unknown, the 
translation averaging is difficult to solve. In addition, the trans‐
lational average solution process is sensitive to outliers, so the 
global SfM is limited in practical applications.
3.2 Image Matching

How to extract robust, accurate, and sufficient image corre‐
spondences is a key issue in 3D reconstruction. With the de‐
velopment of deep learning, learning-based image matching 
methods have achieved excellent performance. A typical im‐
age matching process usually includes three steps: feature ex‐
traction, feature description, and feature matching.

Detection methods based on deep convolutional networks 
search for interest points by constructing response graphs, in‐
cluding supervised methods[4–5], self-supervised methods[6–7], 
and unsupervised methods[8–9]. Supervised methods use an‐
chors to guide the training process of the model, but the perfor‐
mance of the model is likely to be limited by the anchor con‐
struction method. Self-supervised and unsupervised methods 
do not require human-annotated data, while they focus on geo‐
metric constraints between image pairs. Feature descriptors 
use local information around interest points to establish the 
correct correspondence of image features. Due to the informa‐
tion extraction and representation capabilities, deep learning 
techniques have also achieved good performance in feature de‐
scriptions. The deep learning-based feature description prob‐
lem is usually a supervised learning problem, that is, learning 

a representation so that the matched features in the measure‐
ment space are as close as possible, and the unmatched fea‐
tures are as far as possible[10]. Learning-based descriptors 
largely avoid the requirement of human experience and prior 
knowledge. Existing learning-based feature description meth‐
ods include two categories, namely metric learning[11–12] and 
descriptor learning[13–14], and the difference lies in the output 
content of the descriptor. Metric learning methods learn met‐
ric discriminants for similarity measurement, while descriptor 
learning generates descriptor representations from raw images 
or image patches.

Among these methods, SuperGlue[14] proposed a network ca‐
pable of feature matching and filtering outliers simultaneously, 
whose feature matching was achieved by solving a differen‐
tiable optimization transfer problem. The loss function was con‐
structed by a graph neural network, and a flexible content ag‐
gregation mechanism was proposed based on the attention 
mechanism, which enabled SuperGlue to simultaneously per‐
ceive potential 3D scenes and perform feature matching. 
LoFTR[15] used a transformer module with self-attention and 
cross-attention layers to process dense local features extracted 
from convolutional networks. Dense matches were first ex‐
tracted at a low feature resolution (1/8 of the image dimension), 
from which high-confidence matches were selected and refined 
to high-resolution sub-pixel levels using correlation-based 
methods. In this way, the large receptive field of the model en‐
abled the transformed features to reflect context and location in‐
formation, and the prior matching was achieved through mul‐
tiple self-attention and cross-attention layers. Many methods in‐
tegrate feature detection, feature description, and feature match‐
ing into matching pipelines in an end-to-end manner, which is 
beneficial for improving matching performance.
3.3 Visual Localization

Visual localization is a problem of estimating the pose of a 
6-DoF camera, from which a given image is obtained relative 
to a reference scene representation. Classical approaches to vi‐
sual localization are structure-based, which means that they 
rely on 3D reconstructions of the environment (e. g. point 
clouds) and use local feature matching to establish correspon‐
dences between query images and 3D maps. Image retrieval 
can be used to reduce the search space by considering only 
the most similar reference images instead of all possibilities. 
Another approach is to directly interpolate the pose from the 
reference image or estimate the relative pose between the 
query and the retrieved reference image, which does not rely 
on the 3D reconstruction results. Scene point regression meth‐
ods can directly obtain the correspondence between 2D pixel 
positions and 3D points using a deep neural network (DNN), 
and compute camera poses similar to structure-based meth‐
ods. Modern scene point regression methods benefit from 3D 
reconstruction during training but do not rely on it. Absolute 
pose regression methods use a DNN to estimate poses end-to-
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end. These methods differ in generalization ability and local‐
ization accuracy. Furthermore, some methods rely on 3D re‐
construction, while others only require pose-labeled reference 
images. The advantage of using 3D reconstructions is that the 
generated poses can be very accurate, while the disadvantage 
is that these 3D reconstructions are sometimes difficult to ob‐
tain and even more difficult to maintain. For example, if the 
environment changes, they need to be updated.

The typical work of the structure-based approach can refer 
to a general visual localization pipeline proposed in Ref. [17]. 
Through a hierarchical localization approach, the pipeline can 
simultaneously predict local features and global descriptors 
for accurate 6-DoF localization, which utilizes a coarse-to-fine 
localization paradigm, first performing global retrieval to ob‐
tain location hypotheses and then matching local features in 
these candidate locations. This hierarchical approach saves 
runtime for real-time operations and proposes a hierarchical 
feature network (HF-Net) that jointly estimates local and 
global features, thereby maximizing shared computation, and 
compresses the model through multi-task distillation.
4 AR Navigation Based on Scene Visual Per⁃

ception
AR navigation usually works in the following process: 1) 

The real-world view is got from the user’s point of view; 2) the 
location information is obtained and used to track the user; 3) 
virtual-world information is generated based on the real-world 
view and location information; 4) the generated virtual world 
information is registered into the real-world view and dis‐
played to the user, creating augmented reality. The main chal‐
lenge of AR navigation is how to integrate the virtual and real 
worlds, and design and present the navigation interface. Regis‐
tration is the process of correctly aligning virtual information 
with the real world, which gives 
the user the illusion of keeping 
the virtual and the real coexist‐
ing. For AR in navigation, accu‐
rate registration is critical, and 
AR navigation systems can 
cause confusion when orienta‐
tion changes rapidly due to reg‐
istration errors. So even small 
offsets of registering dummy in‐
formation can be harmful. In an 
AR navigation system, the dis‐
play should not interfere with 
the user’s movement. The aug‐
mented reality display technol‐
ogy is also known as video see-
through. Video see-through dis‐
play refers to placing a digital 
screen between the real world 
and the user, where the user 

can see the real world and augmented information, use a cam‐
era to capture the real-world view, and then combine it with 
the augmented information and display it on the screen supe‐
rior. Typical examples of displays include head-mounted dis‐
plays with cameras and smartphone displays.

On the basis of scene visual perception, this paper designs 
an AR navigation APP developed based on Unity and AR‐
Core. Its overall framework is shown in Fig. 1. The system con‐
sists of three parts, namely, the navigation map generation 
tool, the cloud navigation algorithm, and the terminal naviga‐
tion APP design.

The navigation map generation tool works offline, including 
scene panoramic video capture, dense point cloud generation, 
point cloud and plane CAD map alignment, navigation map 
management and other functions. The map generated by the 
navigation map generation tool is stored in the cloud. In addi‐
tion, the cloud is also responsible for providing navigation al‐
gorithms to the terminal, including visual localization meth‐
ods, path planning algorithms, path correction algorithms, 
floor judgment algorithms and cross-layer guidance algo‐
rithms. When users request a navigation activity with the ter‐
minal APP, they first select the current location map, and the 
cloud issues the corresponding navigation map according to 
the user’s selection. After selecting the starting point and end‐
ing point, the user requests the navigation service from the 
cloud, and realizes local real-time localization, global path 
and current position display, and AR path rendering in the lo‐
cal APP.
4.1 Panoramic Data Collection and Processing

This paper uses a panoramic camera to capture video to col‐
lect mapping data. Instead of rotating the camera around its 
optical center, this panoramic camera can be used to capture 

▲Figure 1. Overall framework of an AR navigation application (APP)
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multiple images of a scene from 
different viewpoints, from which 
stereoscopic information about 
the scene can be calculated. 
The stereo information is then 
be used to create a 3D model of 
the scene, and arbitrary views 
can be computed. This ap‐
proach is beneficial for 3D re‐
construction of large-scale 
scenes. The dense reconstruc‐
tion results of the proposed ap‐
proach on the building dataset 
are shown in Fig. 2.

Taking a large shopping mall 
as an example, for the process‐
ing and 3D reconstruction of the 
data collected from the pan‐
oramic video, this paper goes 
through the following steps:

1) Shoot a panoramic video of the scene, and the shooting 
area should be covered as much as possible;

2) Frame the obtained panoramic video to obtain a pan‐
oramic image and segment the panoramic image according to 
the field of view (FOV);

3) Realize sparse point cloud reconstruction for each floor 
and finally output all camera parameters and sparse 3D point 
cloud;

4) Complete the single-layer dense point cloud reconstruc‐
tion;

5) Integrate multiple layers of dense point clouds to obtain 
a complete 3D structure of the scene.
4.2 Alignment of Point Cloud Map and CAD

The point cloud obtained in Section 3.1 is based on the 
camera coordinate system, which must be aligned with the 
world coordinate system if it is to be used for navigation tasks. 
This paper takes the CAD map as the world coordinate sys‐
tem, because CAD can provide accurate position information 
and scale information. The problem is transformed into the 
alignment of the point cloud map and the plane CAD. The spe‐
cific process of its realization is as follows:

1) The point cloud is dimensionally reduced and projected 
to the XoY plane to form a plane point cloud map, as shown in 
Fig. 3.

2) Marker points (such as walls and other points that are 
easy to be distinguished) and the corresponding points are 
found on the plane point cloud map and the CAD map, re‐
spectively.

3) Alignment is completed through the scale information 
provided by the CAD map, output rotation and the displace‐
ment matrix.

Once the point cloud X is sampled, it can be mapped to a 

2D plane by simply removing the 𝑧 coordinates. The problem 
is transformed into finding the mapping between (X𝑥 , X𝑦) and 
pixels (𝑢 , 𝑣), where (X𝑥 , X𝑦) is the set of 2D coordinates (𝑥 , 
𝑦) extracted from the point cloud X. It is worth noting that (𝑥, 
𝑦) are usually float values, while pixel coordinates (𝑢 , 𝑣) are 
usually positive integer values. Therefore, (𝑥 , 𝑦) needs to go 
through a certain scale, rotation and rounding transformation.

Once the plane point cloud map is obtained, it can be 
aligned with the CAD map through the affine transformation. 
To determine the affine matrix, at least three pairs of corre‐
sponding points are usually required. Considering the need to 
reduce errors, this paper selects multiple pairs of correspond‐
ing points in the point cloud map and CAD map respectively, 
and uses the least square method to achieve alignment. It is 
worth noting that the selection of corresponding points should 
try to select parts that are easy to identify, such as walls and 
other fixed objects with clear structural characteristics. Fig. 3 
shows the process of aligning a point cloud map with a CAD 
map. After the alignment, the position coordinates of the point 
cloud in the world coordinate system can be obtained, which 

▲Figure 2. Result of dense reconstruction: (a) photometric depth map, (b) photometric normal map, (c) geo⁃
metric depth map, (d) geometric normal map, and (e) dense reconstruction effect

(a) 3D point cloud of a shopping mall (b) Corresponding 2D point cloud map
▲Figure 3. An example of a 2D point cloud map generation

(a) (b) (c) (d) (e)
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is beneficial to the subsequent localization and navigation 
tasks. The obtained results can be saved separately according 
to the scene, and the saved content includes the scene pose, 
corresponding geographic information, camera model, and 
other information to form a navigation digital map.
4.3 Cloud Navigation Algorithm

When a user requests a navigation activity with the terminal 
APP, he first selects the map corresponding to the current lo‐
cation, and the cloud issues the corresponding navigation map 
according to the user’s selection. After the user selects the 
destination, the user requests the navigation service from the 
cloud, and at the same time uploads the current scene graph 
to the cloud. At this time, the cloud needs to invoke the visual 
localization algorithm to determine the current initial position 
of the user as a starting point. After obtaining the coordinates 
of the starting point and the ending point, the cloud calls the 
path planning algorithm to obtain the navigation path point se‐
quence and sends it to the terminal APP for AR rendering. 
The user is actually positioned through ARCore during the 
process of traveling. However, this method will generate accu‐
mulated errors after traveling for a certain distance, and since 
the user may deviate from the recommended path, the path 
correction algorithm needs to be implemented through the 
cloud, and the user is directed to the correct path.

According to common practice in the industry, the path 
planning algorithm designed in this paper does not need to 
provide a path from any point to any point. The path planning 
involved in this paper only needs to provide a path from any 
point (user location or user-selected location) to a specific 
point (specified end-point set). Therefore, the path planning 
problem in this paper can be regarded as solving the shortest 
path problem between the vertices of a directed graph. The ba‐
sic flow of the path planning algorithm proposed in this paper 
is as follows:

1) The passable area is determined through the point cloud 
map, and the waypoint is selected in the passable area.

2) The route point and the destination point (the selected 
end-point) form a graph structure.

3) The shortest path is found among all vertices in the graph 
through a search algorithm.

The process of building route points and destination points 
into a graph structure forms a road network. In this process, 
it is necessary to clarify the world coordinates of the way-
point and the destination point, and mark the connection re‐
lationship between points to form a graph structure of the 
road network, which is stored in the form of an adjacency 
list. Since the purpose of this paper is to find the shortest 
path among all vertices in the graph, it constitutes an all 
pairs shortest paths (APSP) problem. The general solution to 
the APSP problem is the Floyd-Warshall algorithm. After the 
shortest path among all points is obtained, the result is saved 
in the cloud according to the scene, so that in practical appli‐

cations, there is no need to calculate the planned path on‐
line, and only the retrieval function will be implemented, 
which is time-consuming.

During the user’s journey, the local positioning provided by 
ARCore will gradually produce errors with the advancing dis‐
tance. At the same time, the user may deviate from the recom‐
mended navigation path due to internal or external reasons. 
Therefore, the cloud needs to provide a path correction algo‐
rithm to guide the user back to the navigation path (the correct 
path). The specific workflow of the path correction algorithm 
is as follows:

1) The user uploads the current scene image while traveling.
2) The cloud determines whether it deviates from the navi‐

gation path recommended by the algorithm according to the 
positioning algorithm.

3) If the user’s deviation is small, the user will be guided to 
the recommended navigation path through the navigation ar‐
rows of the terminal APP. If the user’s deviation is too large, 
the path planning will be re-planned based on the user’s cur‐
rent position.

The path correction process is actually a verification pro‐
cess of the real-time local positioning information fed back by 
the terminal. When the error exceeds the distance threshold τ, 
the path correction function can be activated. In practical ap‐
plications, the selection of the distance threshold τ is usually 
between 50 cm and 200 cm. If the threshold is too small, it 
will increase the influence of visual positioning errors. If the 
threshold is too large, it will not only lose the accuracy of navi‐
gation, but also bring inconvenience to users.
4.4 AR Systems

AR systems contain three basic features: the combination of 
real and virtual worlds, real-time interaction, and accurate 3D 
registration of virtual and real objects. In this way, AR 
changes people’s continuous perception of the real environ‐
ment and obtains an immersive experience by integrating the 
composition of the virtual world into people’s perception of 
the real environment. Specific to AR navigation APPs, users 
can obtain real-world information from smartphones (through 
the phone camera), and by applying the AR technology, vir‐
tual navigation paths can be added to the smartphone’s inter‐
face, enhancing the user’s perception of the real environment 
for a better navigation experience. From the user’s point of 
view, a complete AR navigation includes the following pro‐
cess: 1) The user selects the current scene and obtains the 
navigation map delivered by the cloud; 2) the user selects the 
destination according to the navigation map and requests the 
cloud navigation service; 3) the user follows the terminal inter‐
face rendering AR path to the end. Due to network bandwidth 
limitations, users cannot obtain real-time localization by send‐
ing the current scene image to the cloud in real time. There‐
fore, the ARCore-based method is used to provide real-time lo‐
calization. However, this method will generate accumulated er‐
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rors after traveling for a certain distance. And since users may 
deviate from the recommended path, path correction needs to 
be implemented through a correction algorithm to guide users 
to the correct path. Fig. 4 shows the flow of the AR navigation 
APP and AR rendering.

ARCore is an AR application platform provided by Google, 
which can be easily combined with 3D engines such as Unreal 
and Unity. ARCore provides three main applications for mo‐
tion tracking, environment understanding, and lighting estima‐
tion. Among them, motion tracking enables the phone to know 
and track its position relative to the world, environment under‐
standing enables the phone to perceive the environment, such 
as the size and location of detectable surfaces, and light esti‐
mation allows the phone to obtain the current lighting condi‐
tions of the environment. Localization can be achieved using 
ARCore’s motion-tracking capabilities.

The motion-tracking function of ARCore is actually realized 
by visual inertial odometry (VIO). VIO includes two parts: a vi‐
sual tracking system and an inertial navigation system. The 
camera obtains a frame of pixel matching to track the user’s 
pose. The inertial navigation system realizes position and atti‐
tude tracking through an IMU, which usually consists of an ac‐
celerometer and a gyroscope. The outputs of the two systems 
are combined through a Kalman filter to determine the final 
pose of the user. The local positioning function provided by 
ARCore can track the user’s position in real time, but the er‐
ror in the inertial navigation system of ARCore will accumu‐
late over time. As the user’s advancing distance increases 
and time passes, tracking of the user’s position will be offset. 
In practice, we find that after a user travels about 50 m, the lo‐
calization provided by ARCore will begin to deviate. At this 
time, it is necessary to relocate through the visual localization 
algorithm and correct the path.

On the basis of the previous work, the AR navigation APP 
can obtain the current position of the user and the path point 
sequence of the path planning from the cloud. Then the next 
question is how to realize AR rendering of the path point se‐
quence on the mobile phone interface. From the perspective of 

user experience, the AR markers cannot block the user’s line 
of sight and must provide an obvious guiding role. Therefore, 
in the actual rendering process, this paper chooses to render 
the AR markers close to the ground. The environment under‐
standing section in ARCore provides plane detection capabili‐
ties. In fact, ARCore stipulates that all virtual objects need to 
rely on planes for rendering. After ARCore implements plane 
detection, the AR markers can be placed on the ground. The 
placement of AR markers can be achieved by radiographic in‐
spection. The principle of ray detection is to judge whether 
there is a collision with an object through the ray emitted from 
the camera position to any position in the 3D world. In this 
way, the collision object and its position can be detected. By 
performing collision detection on the planes in the scene, the 
planes can be judged and AR signs can be placed. Here, this 
paper adopts two kinds of AR markers, one is the navigation 
guidance arrow, which is responsible for indicating the for‐
ward direction, and the other is the end prompt sign, which re‐
minds the user to reach the end-point. Fig. 4 shows the actual 
workflow of the AR navigation APP and the rendering effect of 
the AR markers. In the figure, from left to right, the user se‐
lects the destination (elevator entrance), the navigation guide 
arrow is rendered, the user follows the navigation guide arrow, 
and the navigation ends at the end prompt sign.
5 Conclusions and Outlook

This paper analyzes and introduces related technologies in 
the field of scene visual perception, based on which we imple‐
ment AR navigation. In practical application, there are still 
some problems to be solved[18–19]. For example, this paper 
adopts a structure-based localization framework, with an ad‐
vantage that it can effectively handle large-scale scenes and 
has high localization accuracy. However, if the environment 
changes, the 3D structure needs to be re-adjusted to achieve 
re-registration of point clouds. The alignment method of point 
cloud map and plane CAD shown in Fig. 5 still requires 
manual selection of corresponding points, which is not condu‐
cive to large-scale applications, so it needs to be studied in 

▲ Figure 4. Augmented reality (AR) navigation application (APP) and 
AR rendering result

(a) Corresponding points in point cloud map (b) Corresponding points in CAD map

▲Figure 5. An example of a 2D point cloud map aligned with CAD map
CAD: computer aided design
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the follow-up work to realize the automatic process. The pro‐
posed localization method in this paper adopts a pure vision 
solution. In the future, it can also be considered to combine 
other sensor data such as IMU, depth camera or LiDAR to fur‐
ther improve the localization and navigation performance. In 
addition, most of the current visual localization algorithms can‐
not be independent of the scene, and usually need to train dif‐
ferent models on different datasets (such as training models on 
indoor and outdoor datasets), which brings difficulties to prac‐
tical applications. For example, in the AR navigation process, 
image feature matching is usually performed in the cloud. Due 
to the diversity of the user’s scene, if a scene-related localiza‐
tion algorithm is used, the generalization ability of the model 
will be insufficient, which will lead to poor localization perfor‐
mance. Therefore, for AR navigation, it is particularly impor‐
tant to enhance the generalization performance of localization 
algorithms and achieve scene-independent visual localization.
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Abstract: Byte-addressable non-volatile memory (NVM), as a new participant in the storage hierarchy, gives extremely high performance 
in storage, which forces changes to be made on current filesystem designs. Page cache, once a significant mechanism filling the perfor‐
mance gap between Dynamic Random Access Memory (DRAM) and block devices, is now a liability that heavily hinders the writing perfor‐
mance of NVM filesystems. Therefore state-of-the-art NVM filesystems leverage the direct access (DAX) technology to bypass the page 
cache entirely. However, the DRAM still provides higher bandwidth than NVM, which prevents skewed read workloads from benefiting 
from a higher bandwidth of the DRAM and leads to sub-optimal performance for the system. In this paper, we propose RCache, a read-
intensive workload-aware page cache for NVM filesystems. Different from traditional caching mechanisms where all reads go through 
DRAM, RCache uses a tiered page cache design, including assigning DRAM and NVM to hot and cold data separately, and reading data 
from both sides. To avoid copying data to DRAM in a critical path, RCache migrates data from NVM to DRAM in a background thread. Ad‐
ditionally, RCache manages data in DRAM in a lock-free manner for better latency and scalability. Evaluations on Intel Optane Data Cen‐
ter (DC) Persistent Memory Modules show that, compared with NOVA, RCache achieves 3 times higher bandwidth for read-intensive work‐
loads and introduces little performance loss for write operations.
Keywords: storage system; file system; persistent memory
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1 Introduction

In 2019, Intel released the first commercially available 
non-volatile memory (NVM) device called Intel DC Op‐
tane Persistent Memory[1]. Compared with Dynamic Ran‐
dom Access Memory (DRAM), byte-addressable non-

volatile memory provides comparable performance and similar 
interfaces (e.g., Load/Store) along with data persistence at the 
same time. Because of a unique combination of features, NVM 
has a great advantage of performance on storage systems and 
posts the urgent necessity of reforming the old architecture of 
storage systems. Refs. [2–11] re-architected the old storage 
systems to better accommodate NVM and significant perfor‐
mance boost that endorsed these design choices.

Among these novel designs, bypassing the page cache in 
kernel space is a popular choice. The page cache in Linux is 
used to be an effective mechanism to shorten the performance 
gap between DRAM and block devices. Since NVM has a 
close performance to the DRAM, the page cache itself posts 

severe performance loss to the NVM filesystem, because the 
page cache introduces extra data copy at every file operation 
and leads to write amplification on NVM. Therefore, the 
legacy page cache in the Linux kernel has become a liability 
for the NVM system. For the above reasons, recent work sim‐
ply deployed the DAX[12] technology to bypass the page cache 
entirely[12–17]. With the DAX technology, NVM filesystems ac‐
cess the address space of NVM directly, without the necessity 
of filling the page cache first, which reduces the latency of file‐
system operations significantly.

However, although NVM achieves bandwidth and latency at 
the same order of magnitude as DRAM, DRAM still provides 
bandwidth several times higher than NVM and fairly lower la‐
tency than NVM. Therefore, the DAX approach reduces extra 
data copy and achieves fast write performance at the cost of 
cached read, especially for read-intensive workloads[18–20]. 
The page cache provides benefits for reading but has severe 
performance impacts on writing because of the extra data copy 
and write amplification. And the DAX approach is efficient for 
writing due to direct access to NVM but fails to utilize DRAM 
bandwidth for reading. Therefore, in order to utilize DRAM This paper was supported by ZTE Industry⁃University⁃Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20181128026.
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bandwidth and avoid extra data copy and write amplifications, 
the page cache should be redesigned to allow both direct ac‐
cess and cached read.

In this paper, we propose RCache, a read-intensive 
workload-aware page cache for the NVM filesystem. RCache 
aims to provide fast read performance for read-intensive work‐
loads and avoid introducing significant performance loss for 
write operations at the same time. To achieve this, RCache as‐
signs DRAM and NVM to hot and cold data separately, and 
reads data from both sides. Our major contributions are sum‐
marized as follows.

• We propose a read-intensive workload-aware page cache 
design for the NVM filesystem. RCache uses a tired page 
cache design, including reading hot data from DRAM and ac‐
cessing cold data directly from NVM to utilize DRAM band‐
width for reading and preserving fast write performance. In ad‐
dition, RCache offloads data copy from NVM to DRAM and to 
a background thread, in order to remove a major setback of 
caching mechanism from the critical path.

• RCache introduces a hash-based page cache design to 
manage the page cache in a lock-free manner using atomic in‐
structions for better scalability.

• We implement RCache and evaluate it on servers with In‐
tel DC Persistent Memory Modules. Experimental results show 
that RCache effectively utilizes the bandwidth of DRAM with 
few performance cost to manage the page cache and outper‐
forms the state-of-the-art DAX filesystem under read-
intensive workloads.
2 Background and Motivation

2.1 Non-Volatile Memory
Byte-addressable NVM technologies, including Phase-

change Memory (PCM) [22–24], ReRAM, and Memristor[21], 
have been intensively studied in recent years. These NVMs 
provide comparable performance and a similar interface as 
the DRAM, while persisting data after power is off like block 
devices. Therefore, NVMs are promising candidates for pro‐
viding persistent storage ability at the main memory level. 
Recently, Intel has released Optane DC Persistent Memory 
Modules (DCPMM) [1], which is the first commercially avail‐
able persistent memory product. Currently, new products 
come in three capacities: 128 GB, 256 GB, and 512 GB. Pre‐
vious studies show that a single DCPMM provides band‐
widths at 6.6 GB/s and 2.3 GB/s at most for read/write. Note 
that these bandwidth have the same order of magnitudes com‐
parable to the DRAM but is a lot lower than the DRAM[25].
2.2 Page Cache and DAX Filesystem

Page cache is an important component in a Linux kernel 
filesystem. In brief, the page cache consists of a bunch of 
pages in DRAM and the corresponding metadata structures. 
The page cache is only accessed by the operating system in 

the context of a filesystem call and acts as a transparent layer 
to user applications. For a write system call, the operating sys‐
tem writes data on pages in the page cache, which cannot guar‐
antee the persistence of the data. To guarantee the persistence 
of the data, the operating system needs to flush all data pages 
in the page cache to the storage devices, probably within an 
fsync system call. For a read system call, the operating system 
first reads data from the page cache; if not present, the operat‐
ing system further reads data from the storage devices. Note 
that this may involve loading data into the page cache depend‐
ing on the implementation. In the current implementation, the 
operating system maintains an individual radix tree for each 
opened file.

As for the DAX filesystem, note that the page cache is ex‐
tremely useful for block devices with much higher access la‐
tency than DRAM, but not suitable for the NVM devices with 
comparable access latency to DRAM. As mentioned before, to 
ensure data persistence, the user must issue an fsync system 
call after a write system call. This brings substantial access la‐
tency to persisting data in an NVM filesystem. Therefore, the 
state-of-the-art NVM filesystems leverage the DAX technology 
to bypass the page cache entirely and achieve instant persis‐
tence immediately when the write system call returns. In a 
DAX filesystem, read/write system call does not access the 
page cache at all, instead, data are loaded/stored from/to the 
NVM respectively using a memory interface. The DAX tech‐
nology reduces extra data copy and accomplishes lower-cost 
data persistence.
2.3 Issue of DAX and Page Cache

The performance of NVM is close to that of DRAM but not 
equal to it. We measure the read and write latency of two differ‐
ent filesystems (NOVA[17] and EXT4[26]) representing two differ‐
ent mechanisms (DAX and Page Cache). Fig. 1(a) shows that 
the read latency of the DAX is much higher than the page 
cache (4 kB sequential read). Fig. 1(b) shows that the write la‐
tency of the DAX is much lower than the page cache (4 kB se‐
quential write).

To sum up, the DAX technology prevents the read opera‐
tions from benefiting a much higher bandwidth of DRAM in 
the NVM filesystem, and the presence of the page cache sig‐
nificantly increases the latency of write operations with imme‐
diate data persistence. To overcome this, the page cache 
mechanism needs to be redesigned.
3 Rcache Design

3.1 Overview
We build RCache for servers with non-volatile memory to 

accelerate read-intensive workloads. In order to benefit from 
the DRAM bandwidth for read operations but not to induce no‐
table latency for data persistence, we build RCache, a read-
intensive workload-aware page cache for the NVM filesystem.
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1) RCache assigns DRAM and NVM to hot and cold data 
separately, and allows cached read and direct read from NVM 
to coexist. Furthermore, RCache offloads data copy to a back‐
ground thread to alleviate the pressure of the critical path.

2) In addition, RCache deploys a lock-free page cache us‐
ing hash-table to further reduce the performance cost of cache 
coherence management.

The architecture of RCache is described in Fig. 2. RCache 
keeps an individual cache structure for each opened file. The 
page cache consists of a bunch of DRAM pages and a cache 
entry table containing a certain number of cache entries in the 
DRAM. A cache entry represents a DRAM page. It carries 
necessary information for RCache to manage the cache and 
navigate data given a logical block number. As shown in Fig. 
3, a cache entry carries a validation flag to indicate the status 
of this cache entry, a timestamp for the least recently used 
(LRU) algorithm, a Blocknr to indicate the logical block num‐
ber that the entry represents, a DRAM page that is a pointer 

points to the actual cache page in DRAM, and an NVM page 
that is a pointer points to the actual data page in NVM.
3.2 Tiered Page Cache Design

As shown in Fig. 2, the page cache is accessed in two con‐
texts: a read/write system call and a background thread.

For a read operation, the operating system accesses the 
page cache first. If the data required by the user are present 
and valid in the page cache, the operating system copies data 
directly from the cached page in the DRAM to the user’s buf‐
fer; if a cache miss happens, the operating system falls back to 
the legacy procedure where the operating system reads data di‐
rectly from the NVM and inserts the newly read data to the 
page cache. For cache insertion, since reading all the data 
blocks into the page cache introduces extra data copy and 
then leads to higher latency, RCache only inserts a small 
cache entry carrying a pointer to the physical block to the 
page cache instead of the actual data blocks.

For a write operation, the operat‐
ing system needs to invalidate all 
cached pages affected by this write 
operation before returned to users. 
We further explain why the invali‐
dation procedure is light weight in 
Section 3.3.

RCache depends on a back‐
ground kernel thread to finish the 
management of the cache. As de‐
scribed above, in the read operation, 
RCache only inserts cache entries to 
the page cache. In the context back‐
ground thread, once a pending 
cache entry is discovered, RCache 
first allocates a DRAM page to 
cache data, and then copies data 
from the NVM block to the DRAM 
page according to the cache entry. 
At last, RCache declares the validity 
of the cache entry by switching the 
validation flag atomically. Note that 
only when RCache updates the vali‐
dation flag in the cache entry to vali‐
dation, the cache entry is available 
for read/write context.
3.3 Lock-Free Cache Management

The decoupled cache mechanism 
splits the cache management into 
two separating and concurrent con‐
texts, which makes coordinating 
across all units more expensive 
since it  leads to more cross-core 
communications. Therefore, RCache 

▲Figure 1. Performance comparison between different hardware and different filesystem settings
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deploys a lock-free cache management procedure to minimize 
the impact. First, RCache operates cache entries by manipu‐
lating the validation flag atomicity using Compare-and-Swap 
(CAS) instructions. In the current implementation, a cache en‐
try switches among five states using the Compare-and-Swap in‐
struction. Fig. 3 depicts the transition diagram among these 
five states. At the initial point, all cache entries are invalid. 
To insert a cache entry, RCache first acquires control of a can‐
didate entry by setting the validation flag of this entry to “In 
use” atomically using CAS, which prevents other threads from 
operating on this entry. Then, RCache fills necessary informa‐
tion (e. g. the block number and the NVM page pointer) and 
changes the status to “Prep”, which tells the background 
thread that this entry has all information needed and is ready 
for data copy. From the background thread view, before copy‐
ing data from persistent memory to DRAM, the background 
thread first sets the status of a cache entry to “Copy”, then the 
background thread initiates a data copy procedure. When the 
data copy completes, the background thread sets the status of 
a cache entry to “Ready” by using CAS instruction operating 
on the validation flag, and, only at this point, the cache is 
available for read operations. To write data into a certain page, 
if cache hits, RCache needs to invalidate the cache entry rep‐
resenting this page by switching the status to “Invalid” by 
CAS, and the validation flag of the entry to “Invalid”. Note 
that RCache never invalidates an “In use” cache entry, be‐
cause the “In use” status only exists in the context of a read 
syscall. Since the file is locked up in write operations, this 
situation never happens. To read data from a cache entry, 
RCache first switches the status from “Ready” to “In use” us‐
ing CAS, then copies data from the DRAM page to user buffer, 
and at last, changes the status back to “Ready”. However, this 
leads to an inconsistent status where users might be given 
wrong data, since there might be several threads reading data 
from the cache entry concurrently. Therefore, RCache incar‐
nates an additional counter in the validation flag, when a 
reader wants to read this cache, it must increase this counter; 

and when a reader finishes reading, it 
must decrease the counter. Therefore, 
only the last reader can switch the status 
back to “Ready”.
3.4 Implementation

We implement RCache on NOVA, a 
state-of-the-art NVM filesystem devel‐
oped with the DAX technology. We keep 
the metadata and data layout in NOVA in‐
tact, and add extra logic for managing the 
cache in the context of read/write proce‐
dure. We launch the background thread 
in kernel at the mount phase, and reclaim 
this thread during the unmount phase. To 
tackle the hotness of a block, we extend 

the block index in NOVA, and add an extra counter to each 
leaf node of the radix tree. We insert a block into the cache 
only when it is accessed more times than a threshold in a time 
window. The threshold and the time window are predefined.
4 Evaluation

In this section, we first evaluate RCache’s read/write la‐
tency, then we evaluate the read performance under read-
intensive workload, and at last, we evaluate the read perfor‐
mance under a skewed read-intensive workload.
4.1 Experimental Setup

We implement RCache and evaluate the performance of 
RCache on the server with Intel Optane DCPMM. The server 
has 192 GB DRAM and two Intel Xeon Gold 6 240 M proces‐
sors (2.6 GHz, 36 cores per processor) and 1 536 GB Intel Op‐
tane DC Persistent Memory Modules (6×256 GB). Because 
cross-non-uniform memory access (NUMA) traffic has a huge 
impact on performance[27], throughout the entire evaluation, we 
only utilize NVMs on one NUMA node to deploy RCache and 
other file systems (e. g., only 768 GB NVMs on this server). 
The server is running Ubuntu18.04 with Linux Kernel 4.15.

Table 1 lists file systems for comparison. We build all file‐
systems on the same NVM device with a PMem driver. For 
EXT4, we build it following the traditional procedure with a 
page cache involved. For both NOVA and RCache, since 
RCache shares most of the filesystem routines with NOVA, we 
deploy both of them on an NVM device with a PMem driver 
and DAX enabled.

For a latency test, we use custom micro benchmarks and Fx‐
mark[28] for bandwidth evaluation. Fxmark is a benchmark de‐
▼Table 1. Evaluated file systems

File System

NOVA[17]

EXT-4[26]

Description
A state-of-the-art NVM filesystem in the kernel. NOVA adopts conven‐

tional log-structured file system techniques and optimizes file systems for 
hybrid memory systems to maximize performance

A well-known kernel file system in Linux

▲Figure 3. Cache structure and status shifting paradigm
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signed to evaluate the scalabil‐
ity of file systems. In this 
evaluation, we use three sub-
benchmarks, namely DRBL, 
DRBM and DWAL, in Fxmark.
4.2 Overall Performance

To evaluate the read/write 
performance, we use a custom 
micro-benchmark. All evalua‐
tion on each filesystem spawns 
only one thread. We first create 
a file with 64 MB, then issue  4 
kB read/write data with 100 
000 requests, and finally calcu‐
late the average latency. Since 
EXT4 does not ensure data per‐
sistency in the write system 
call, we issue another fsync af‐
ter each write system call to 
preserve  data persistency. Fig. 
4 shows the read/write latency 
for three evaluated filesystems.

For read operations, EXT4 
shows the lowest latency, and 
the latency of RCache is close 
to that of EXT4 and much 
lower than that of NOVA. This 
is because RCache utilizes the 
DRAM bandwidth to acceler‐
ate read.

To evaluate the read band‐
width under a read-intensive 
workload, we use sub-benchmark DRBL from Fxmark. DRBL 
first creates a 64 MB file for each thread and then issues se‐
quence read operation to the filesystem. We conduct the evalua‐
tion for 20 s. If a read operation reaches the tail of the file, the 
next read operation is set at the beginning of the file. From Fig. 
5(a) we can see that the RCache shows much better read perfor‐
mance than NOVA and close to that of EXT4.
4.3 Read Performance Under Skewness

We evaluate the read performance under the skewed work‐
load. We modify the DRBL benchmark instead of reading files 
sequentially, where each thread post-read request at an offset 
is controlled by a random variable that follows the normal dis‐
tribution. Fig. 5(b) shows that, both EXT4 and RCache 
achieve even better performance than that in Fig. 5(a). This is 
because under the skewed workload, the hot pages are more 
likely to be stored in the L3 cache and therefore end up with 
better performance. On the other hand, since NOVA does not 
utilize DRAM for better read performance, the read bandwidth 
achieved is much lower than that of EXT4 or RCache.

5 Conclusions
Traditional page cache in the Linux kernel can benefit read 

workload but cannot fit into an NVM filesystem because it 
causes extra data copy and write amplification. By bypassing 
the page cache, the DAX filesystem achieves better write per‐
formance but gives up the opportunity of cached read. There‐
fore, in this paper, we propose a read-intensive workload-
aware page cache for NVM filesystems. RCache uses a tiered 
page cache design, including assigning DRAM and NVM to  
hot and cold data separately, and reading data from both 
sides. Therefore, cached read and direct access can coexist. In 
addition, to avoid copying data to DRAM in a critical path, 
RCache migrates data from NVM to DRAM in a background 
thread. Furthermore, RCache manages data in DRAM in a 
lock-free manner for better latency and scalability. Evalua‐
tions on Intel Optane DC Persistent Memory Modules show 
that compared with NOVA, RCache has 3 times higher band‐
width for read-intensive workloads and introduces little perfor‐
mance loss to write operations.

▲Figure 4. Read and write latency of different filesystems

▲Figure 5. Read bandwidth under the read-intensive workload of different filesystems
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