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An Improved Parasitic Parameter Extraction
Method for InP HEMT

An improved parasitic parameter extraction method for InP HEMT is
presented. In order to obtain higher accuracy of parasitic parameters,
parasitic parameters are extracted in this paper based on traditional
analytical method and optimization algorithm to obtain the best para‑
sitic parameters. The validity of the proposed parasitic parameter ex‑
traction method has been verified with excellent agreement between
the measured and modeled S-parameters up to 40 GHz for InP HEMT.
The extraction of parasitic parameters not only provides a foundation
for the high-precision extraction of small signal intrinsic parameters of
HEMT devices, but also lays a foundation for the high-precision ex‑
traction of equivalent circuit model parameters of large signal and

noise signals of HEMT devices.
DUAN Lanyan, LU Hongliang, QI Junjun, ZHANG Yuming,

ZHANG Yimen

Auxiliary Fault Location on Commercial
Equipment Based on Supervised Machine

Learning
The authors introduce supervised machine learning to propose a com‑
plete process for fault location. Firstly, they use data preprocessing,
data annotation, and data augmentation in order to process original col‑
lected data to build a high-quality dataset. Then, two machine learn‑
ing algorithms are applied on the dataset. The evaluation on commer‑
cial optical networks shows that this process helps improve the quality

of dataset, and two algorithms perform well on fault location.
ZHAO Zipiao, ZHAO Yongli, YAN Boyuan, WANG Dajiang

Design of Raptor-Like Rate Compatible SC-

LDPC Codes
This paper proposes a family of RL-RC-SC-LDPC codes from RL-RC-

LDPC block codes. There are two important keys. One is the perfor‑

mance of the base matrix. The other is the edge coupling design. The
authors have designed a rate-compatible coupling algorithm, which
can improve performance under multiple code rates. The constructed
RL-RC-SC-LDPC code property requires a large coupling length L and
thus we improved the reciprocal channel approximation (RCA) algo‑
rithm and proposed a sliding window RCA algorithm. It can provide
lower complexity and latency than RCA algorithm. The code family
shows improved thresholds close to the Shannon limit and finite-length
performance compared with 5G NR LDPC codes for AWGN channel.
SHI Xiangyi, HAN Tongzhou, TIAN Hai, ZHAO Danfeng

Derivative-Based Envelope Design Technique
for Wideband Envelope Tracking Power
Amplifier with Digital Predistortion
A novel envelope design for an ET PA based on its derivatives is pro‑
posed, which can trade well off between bandwidth reduction and
tracking accuracy. This paper theoretically analyzes how to choose
an envelope design that can track the original envelope closely and
reduce its bandwidth, and then demonstrates an example to validate
this idea. The GMP model is applied to compensate for the nonlinear‑
ity of ET PA with the proposed envelope design. Experiments are car‑
ried out on an ET system that is operated with the center frequency
of 3.5 GHz and excited by a 20 MHz LTE signal, which show that the
proposed envelope design can make a good trade-off between enve‑
lope bandwidth and efficiency, and satisfactory linearization perfor‑
mance can be realized.
YI Xueya, CHEN Jixin, CHEN Peng, NING Dongfang, YU Chao

End-to-End Chinese Entity Recognition Based
on BERT-BiLSTM-ATT-CRF
The authors propose a Chinese named entity recognition method based
on the BERT-BiLSTM-ATT-CRF model. Firstly, they use the bidirec‑
tional encoder representations from transformers (BERT) pretraining
language model to obtain the semantic vector of the word according to
the context information of the word; Secondly, the word vectors trained
by BERT are input into the BiLSTM-ATT to capture the most important
semantic information in the sentence; Finally, the CRF is used to learn
the dependence between adjacent tags to obtain the global optimal sen‑
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tence level tag sequence. The experimental results show that the pro‑
posed model achieves state-of-the-art performance on both MSRA cor‑
pus and people’s daily corpus, with F1 values of 94.77% and 95.97%

respectively.
LI Daiyi, TU Yaofeng, ZHOU Xiangsheng, ZHANG Yangming,

MA Zongmin

Intelligent Antenna Attitude Parameters
Measurement Based on Deep Learning

SSD Model
This paper introduces a deep learning model for the antenna attitude
parameters measurement, which can be divided into an antenna loca‑
tion phase and a calculation phase of the attitude parameter. In the
first phase, an SSD is applied to automatically recognize and discover
the antenna from pictures taken by drones. In the second phase, the lo‑
cated antennas’feature lines are extracted and their attitude parame‑
ters are then calculated mathematically. Experiments show that the
proposed algorithms outperform existing related works in efficiency
and accuracy, and therefore can be effectively used in engineering ap‑

plications.
FAN Guotian,WANG Zhibin

Multi-Task Learning with Dynamic Splitting
for Open-Set Wireless Signal Recognition

The authors train a MTL network based on the characteristics of wire‑
less signals to improve the performance in new scenes, and provide a
dynamic method to decide the splitting ratio per class to get more pre‑
cise outer samples. To be specific, they make perturbations to the sam‑
ple from the center of one class toward its adversarial direction and
the change point of confidence scores during this process is used as
the splitting threshold. They conduct several experiments on one wire‑
less signal dataset collected at 2.4 GHz ISM band by LimeSDR and
one open modulation recognition dataset, and the analytical results

demonstrate the effectiveness of the proposed method.
XU Yujie, ZHAO Qingchen, XU Xiaodong, QIN Xiaowei,

CHEN Jianqiang

Multi-Cell Uplink Interference Management:
A Distributed Power Control Method

This paper investigates a multi-cell uplink network, where the OFDM
protocol is considered to mitigate the intra-cell interference. An opti‑

mization problem is formulated to maximize the user supporting ratio
for the uplink multi-cell system by optimizing the transmit power. This
paper adopts the user supporting ratio as the main performance met‑
ric. Since the formulated optimization problem is non-convex, it can‑
not be solved by using traditional convex-based optimization methods.
Thus, a distributed method with low complexity and a small amount of
multi-cell interaction is proposed. Numerical results show that a nota‑
ble performance gain achieved by the proposed scheme is without in‑
ter-cell interaction.
HU Huimin, LIU Yuan, GE Yiyang, WEI Ning, XIONG Ke

SVM for Constellation Shaped 8QAM PON
System
The authors investigate the potential of constellation shaping joint
SVM classification. At the transmitter side, the 8QAM constellation is
shaped into three designs to mitigate the influence of noise and distor‑
tions in the PON channel. On the receiver side, simple multi-class lin‑
ear SVM classifiers are utilized to replace complex equalization meth‑
ods. Simulation results show that with the bandwidth of 25 GHz and
overall bitrate of 50 Gbit/s, at 10 dBm input optical power of a 20 km
SSMF, and under a hard-decision FEC threshold, transmission can be
realized by employing Circular (4, 4) shaped 8QAM joint SVM classifi‑
er at the maximal power budget of 37.5 dB.
LI Zhongya, CHEN Rui, HUANG Xingang, ZHANG Junwen,
NIU Wenqing, LU Qiuyi, CHI Nan

General Introduction of Non-Terrestrial
Networks for New Radio
In new radio (NR) access technology, the non-terrestrial networks
(NTN) is introduced to meet the requirement of anywhere and anytime
connections from the world market. With the introduction of NTN, the
NR system is able to offer the wide-area coverage and ensure the ser‑
vice availability for users. In this paper, the general aspects of NTN
are introduced, including the NTN architecture overview, the impact
of NTN on next-generation radio access network (NG-RAN) interface
functions, mobility scenarios and other NTN related issues. The cur‑
rent progress in 3rd Generation Partnership Group (3GPP) Release 17
is also provided.
HAN Jiren, GAO Yin
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DUAN Lanyan, LU Hongliang, QI Junjun, ZHANG Yuming, ZHANG Yimen

An Improved Parasitic Parameter Extraction MethodAn Improved Parasitic Parameter Extraction Method
for InP HEMTfor InP HEMT

Abstract: An improved parasitic parameter extraction method for InP high electron mobil‑
ity transistor (HEMT) is presented. Parasitic parameter extraction is the first step of model
parameter extraction and its accuracy has a great impact on the subsequent internal pa‑
rameter extraction. It is necessary to accurately determine and effectively eliminate the
parasitic effect, so as to avoid the error propagation to the internal circuit parameters. In
this paper, in order to obtain higher accuracy of parasitic parameters, parasitic parameters
are extracted based on traditional analytical method and optimization algorithm to obtain
the best parasitic parameters. The validity of the proposed parasitic parameter extraction
method is verified with excellent agreement between the measured and modeled S-param‑
eters up to 40 GHz for InP HEMT. In 0.1–40 GHz InP HEMT, the average relative error
of the optimization algorithm is about 9% higher than that of the analysis method, which
verifies the validity of the parasitic parameter extraction method. The extraction of parasit‑
ic parameters not only provides a foundation for the high-precision extraction of small sig‑
nal intrinsic parameters of HEMT devices, but also lays a foundation for the high-preci‑
sion extraction of equivalent circuit model parameters of large signal and noise signals of
HEMT devices.
Keywords: parasitic parameters; open-short test structure; parameter extraction; HEMT

Citation (IEEE Format): L. Y. Duan, H. L. Lu, J. J. Qi, et al.,“An improved parasitic parameters extraction method for InP HEMT,”ZTE
Communications, vol. 20, no. S1, pp. 01–06, Jan. 2022. doi: 10.12142/ZTECOM.2022S1001.

1 Introduction

Compared to traditional Si-based Complementary Metal
Oxide Semiconductor (CMOS) devices, InP high elec‑
tron mobility transistors (HEMT) have better frequen‑
cy response characteristics, power density and break‑

down voltage, which makes InP HEMT an excellent candidate
for many monolithic microwave integrated circuits (MMICs)
working at gigahertz frequency ranges[1–2]. As an important
link between transistors and circuits, a small signal model is
the basis of all device models. Therefore, the model accuracy
depends mostly on the small signal equivalent circuit model
which can reflect the physical and electrical properties of the
device[3].
The extraction of parasitic parameters is the first step of

small signal model parameter extraction and its accuracy has
a great influence on the subsequent extraction of intrinsic pa‑

rameters. Commonly used parasitic parameter extraction meth‑
ods include the open-short test structure method and cold-
field effect transistor (FET) method. The former[4–6] requires a
test structure with the same size as the pad on a chip. The lat‑
ter uses the equivalent circuit model of an HEMT device un‑
der the pinch off condition to extract parasitic parameters. The
gate voltage is set at the threshold voltage and the drain
source bias is set to zero. In Ref. [7], two identical capacitors
Cb are used to simulate gate-to-source and gate-to-drain deple‑tion layer capacitances. Cpd depends on the channel capaci‑tance. A large Cb will cause a larger value of Cpd, and Cpd willbe obviously overestimated. In order to avoid Cpd being overes‑timated, WHITE et al.[8] added the third capacitance based on
the Dambrin method, which is equal to Cb. The final resultsshow that this method tends to underestimate Cpd. All cold-
FET methods are based on the assumption that Cgs and Cgd ofsymmetrical field effect devices are equal under cold-FET bi‑
as. For the general HEMT device, this assumption is obviously
not true.
Aiming at the problems of traditional methods, a new meth‑
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od combining analytical and optimization methods to extract
parasitic capacitance and inductance is proposed in this pa‑
per. Compared with previous literatures[7–8], the proposed
method has high accuracy and no complicated extraction pro‑
cess. Firstly, parasitic parameters obtained by the analytical
method are used as the initial values of the optimization meth‑
od, then the optimization method is used to optimize and fit
the parasitic parameters, and finally the optimal values are ob‑
tained. The high precision of the values obtained by the pro‑
posed method has been validated by the open-short test struc‑
ture method.

2 Device Structure and Model Description
Fig. 1 shows the structure and electron micrographs of an

InP HEMT device. The substrate is a semi-insulating InP sub‑
strate, and the buffer layer uses In0.52Al0.48As material with asmall lattice mismatch with the InP substrate, which is mainly
used as a connecting liner. The bottom and the functional lay‑
er can prevent impurities from the substrate entering the chan‑

nel. The channel layer uses a narrow band gap In0.53Ga0.47Asmaterial, and the barrier layer uses an n-type doped
In0.52Al0.48As material. The channel and barrier layers will gen‑erate two-dimensional electron gas. The band is narrow, so the
two-dimensional electron gas will be stored in the potential
well at the interface of the channel layer to form a conductive
channel. In order to reduce the Coulomb scattering of the
channel two-dimensional electron gas by the barrier layer im‑
purities, a thin layer of intrinsic In0.52Al0.48As is added be‑tween the channel layer and the barrier layer. The cap layer
uses a highly doped narrow band gap InGaAs material, which
aims to form a good ohmic contact while reducing the source
and drain resistance. A T-shaped gate is used to reduce the
gate length and improves frequency characteristics while
avoiding the increase of gate parasitic resistance, so that the
device has better frequency characteristics.
Fig. 2 shows the small signal equivalent circuit topology

for this device. This equivalent circuit includes two parts:
the inner part contains intrinsic elements and the outer part
contains parasitic elements. Lg, Ls and Ld represent the gate,source and drain pad parasitic inductances; Rs and Rd are thesource and drain parasitic resistances, and Rg is the gate dis‑tributed resistance; Cpg, Cpgd and Cpd are the gate and drainpad parasitic capacitances; Cgs, Cgd and Cds represent thegate-source, gate-drain, and drain source capacitances, re‑
spectively; Ri, Rgd and Rds are the charge and output resis‑tances; τ and gm are the intrinsic delay and intrinsic trans‑conductance, correspondingly. Cgs, Cgd, Cds, Ri, Rgd, Rds, τ and
gm are intrinsic elements which are emphasized by the reddashed frame in Fig. 2. The rest are extrinsic elements which
are considered to be bias independent.

3 Extrinsic Model Parameter Extraction
and Verification
This modeling and circuit design uses the 0.15 μm InP

(a) Device structure

(b) Device electron microscope image

▲Figure 1. Photograph of InP high electron mobility transistor (HEMT)
device structure

D: drain S: source
▲Figure 2. Small signal equivalent circuit for InP high electron mobili‑
ty transistors (HEMT)
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HEMT process of the Institute of Microelectronics of the Chi‑
nese Academy of Sciences, with a gate width of 2×20 μm. The
frequency range of on-wafer S-parameters is from 0.1 to 40 GHz
with steps of 0.1 GHz, including an open-short test structure.
The whole parasitic parameter extraction process is shown in
Fig. 3.
3.1 Parasitic Capacitances
The equivalent topology of dummy open structure[9] is

shown in Fig. 4. This structure can be equivalent to a π-type
network, and the parameter Y can be used to solve the parasit‑
ic capacitances.
The parasitic capacitance values can be analyzed and char‑

acterized by the following formulas:
Cpg = 1ω Im (Y11 + Y12 ), (1)

Cpgd = - 1ω Im (Y12 ), (2)

Cpd = 1ω Im (Y22 + Y12 ). (3)
According to Eqs. (1–3), three capacitance values can be ex‑

tracted, as shown in Table 1.
3.2 Parasitic Inductances and Resistances
The equivalent topology of dummy short structure[10–11] is

shown in Fig. 5. This structure can be equivalent to a T-type
network, and parasitic resistors and inductors in series can be
extracted by the Z-parameters after the parasitic capacitances
are de-embedded.
The Z-parameters of the equivalent circuit in Fig. 5 are writ‑

ten as
Z11 = Rg + Rs + jω (Lg + Ls ), (4)

Z12 = Z21 = Rs + jωLs, (5)

Z22 = Rd + Rs + jω (Ld + Ls ). (6)
Usually, the parasitic inductances and resistances can be

analyzed and characterized by the following formulas:
Lg = 1ω Im (Z11 - Z12 ), (7)

Ls = 1ω Im (Z12 ), (8)

Ld = 1ω Im (Z22 - Z12 ), (9)

Rg = Re (Z11 - Z12 ), (10)
▼Table 1. Extraction of parasitic capacitance values

Cpg /fF
21.497

Cpgd /fF
1.647

Cpd /fF
20.407

▲Figure 4. Equivalent circuit of the open dummy structure

▲Figure 3. Parasitic parameter extraction process

▲Figure 5. Equivalent circuit of the dummy short structure
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Rs = Re (Z12 ), (11)

Rd = Re (Z22 - Z12 ). (12)
According to Eqs. (7–12), three inductance and resistance

values can be extracted, as shown in Table 2.
Fig. 6 shows the simulation results of the extracted parasitic

parameter values by dummy short structure and measurement
data.
It can be found from Fig. 6 that the parasitic parameters ex‑

tracted by the short structure that directly uses the Z parame‑
ters are not accurate. According to Eqs. (4–6), the extraction
accuracy of Rs and Ls will directly affect the extraction accura‑cy of Rg, Lg, Rd and Ld. Fig. 6(c) shows that the real part of Z12is a quantity that varies with frequency. In this case, extract‑

ing Rs and Ls will increase the extraction error and further re‑duce the accuracy of extracting other parasitic parameters,
which will lead to unsatisfactory fitting results.
There is a Chinese literature that proposed an algorithm

based on feature points to simultaneously extract parasitic in‑
ductances and parasitic resistances. The author regards the
three resistance and inductance series as three separate pa‑
rameters, corresponding to Yg, Ys, Yd, namely
Yi = 1

Ri + jωLi =
Ri

Ri
2 + ω2Li 2 - j

ωLi
Ri

2 + ω2Li 2
(i = g,s,d ). (13)

The imaginary part is
imag (Yi) = - L

Ri
2

ω + ωLi 2
(i = g,s,d )

. (14)
From Eqs. (13) and (14), we can see that when ω=R/L, imag

(Yi) has a minimum value: -1/(2R). Through this point, the in‑
ductance and resistance values can be extracted at the same
time. The experiments show that the results of this extraction
are not unsatisfactory.
Through the comparison of the research results, the open-

▼Table 2. Extraction of parasitic inductance and resistance values
Parasitic Parameter

Lg/pH
Ls/pH
Ld/pH
Rg/Ω
Rs/Ω
Rd/Ω

Value
35.355
3.200
41.599
0.600
0.050
1.000

▲Figure 6. Comparison of parasitic parameters extracted by the dummy short structure and measurement data

(a) Re(Z11) measurement and extracted data (b) Im(Z11) measurement and extracted data (c) Re(Z12) measurement and extracted data

(d) Im(Z12) measurement and extracted data (d) Re(Z22) measurement and extracted data (e) Im(Z22) measurement and extracted data
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short structure combined with the analytical method to solve
the parasitic parameters does not get satisfactory results.
Based on the open-short structure, we propose a method com‑
bining analytical and optimization methods to extract parasitic
parameters. We use the parasitic parameter values obtained
by the analytical method as the initial values of the optimiza‑
tion method, and then use the optimization method to optimize
the parasitic parameters to obtain the final values.
3.3 Extrinsic Parameters Verification
The extraction results of parasitic inductance and parasitic

resistance obtained by the combination of the analytical meth‑
od and optimization method are shown in Table 3.
Fig. 7 shows the comparison between the measured data

and the modeled data of the optimization method and analyti‑
cal method.

It can be seen from Fig. 7 that the parasitic parameter ex‑
traction results obtained by combining the analytical method
and the optimization method fit more accurately. To further
evaluate the accuracy of S-parameters, the percentage error ex‑
pression, Error(S), is defined as follow:

Error (S) = ∑
i,j = 1,2

|| SS,ij - SM,ij
0.5 × || SS,ij + SM,ij

4
, (15)

where SS,ij is the simulated S-parameters and SM,ij is the mea‑sured data. According to Eq. (15), the errors of the fitting data
obtained by the two methods are calculated respectively. Com‑
paring the error calculation results, the average relative error
of the final optimization algorithm is about 9% higher than
that of the analytical method (blue line in Fig. 8). In Fig. 8,
the blue and red solid lines represent the average relative er‑
rors of the optimization method and the analytical method re‑
spectively, and the blue circle and red circle represent the rel‑
ative errors of the optimization method and the analytical
method in the whole frequency band respectively.

4 Conclusions
In this paper, an improved parasitic parameter extraction

▼Table 3. Extraction of extrinsic inductances and resistances
Extrinsic Parameter

Lg/pH
Ls/pH
Ld/pH
Rg/Ω
Rs/Ω
Rd/Ω

Value
39.467
5.076
47.676
0.725
0.034
0.639

▲Figure 7. Comparison of extracted parasitic parameters by dummy short structure and measurement data

(a) Re(Y11) measurement and extracted data (b) Im(Y11) measurement and extracted data (c) Re(Y12) measurement and extracted data

(d) Im(Y12) measurement and extracted data (e) Re(Y22) measurement and extracted data (f) Im(Y22) measurement and extracted data
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method for InP HEMT is presented. Based on the open-short
structure, we use the analytical method to obtain the parasitic
parameters, and then optimize the parasitic parameters by the
optimization method to obtain the final values. An excellent
agreement between the measured and modeled S-parameters
is up to 40 GHz, which verifies the applicability of the pro‑
posed modeling methods for InP HEMT.
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Abstract: As the fundamental infrastructure of the Internet, the optical network carries
a great amount of Internet traffic. There would be great financial losses if some faults
happen. Therefore, fault location is very important for the operation and maintenance in
optical networks. Due to complex relationships among each network element in topology
level, each board in network element level, and each component in board level, the con‑
crete fault location is hard for traditional method. In recent years, machine learning, es‑
pecially deep learning, has been applied to many complex problems, because machine
learning can find potential non-linear mapping from some inputs to the output. In this
paper, we introduce supervised machine learning to propose a complete process for
fault location. Firstly, we use data preprocessing, data annotation, and data augmenta‑
tion in order to process original collected data to build a high-quality dataset. Then, two
machine learning algorithms (convolutional neural networks and deep neural networks)
are applied on the dataset. The evaluation on commercial optical networks shows that
this process helps improve the quality of dataset, and two algorithms perform well on
fault location.
Keywords: optical network; fault location; supervised machine learning
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1 Introduction

With the explosive growth of Internet traffic and the
emergence of new applications, the requirement
for traffic bandwidth increases rapidly. As the
fundamental infrastructure of the network, the op‑

tical network becomes more and more important because of
its super-high transmission speed. Therefore, there should be
considerable economic damages in case of optical network
failures. In reality, the economic loss is closely related to the
network restoration time, which consists of the time to locate
the fault, to drive to the place, and to fix the problem. If the
fault location is fuzzy and even wrong, the restoration time
will be doubled and redoubled. Hence, it’s important to find
the fault location rapidly and accurately[1].
Until now, some researchers have studied fault location

from different aspects. Generally, there is no protocol to de‑
tect network faults in transparent optical networks, because
such protocols will cost more in equipment manufacture and
increase the complexity of current protocol stacks. The cur‑
rent fault location technology is inefficient, which depends
on the expert knowledge base and traditional fiber link fault
location. However, the breakthrough of machine learning in
recent years offers the possibility of solving this problem.
Machine learning (ML) is an important subset of artificial

intelligence, which builds a mathematical model based on
sample data, known as“training data”, to make predictions
or decisions without being explicitly programmed to perform
the task[2]. The introduction of ML into fault location has be‑
come a hot spot. In Ref. [3], a recurrent neural network-
based method is used in the fault detection and isolation of
the satellite’s attitude control subsystem. In Ref. [4], a fault
section estimation in electric power systems is handled,
where neural networks are employed to model the protection
systems, dealing with the uncertainties involved with relay
and circuit-breaker operation messages. In Ref. [5], a deep
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learning (DL) based algorithm is proposed to combine super‑
vised and unsupervised learning, and solve the fault in power
systems. Also, there are some research works related to the
fault in optical networks[6]. In Refs. [7–9], a Bayesian infer‑
ence method is used to judge service-triggered failure in opti‑
cal transport networks and self-diagnosis in fiber to the home
(FTTH) gigabit-capable passive optical networks (GPON). In
Ref. [10], the previously established lightpaths with already
available failure localization and monitoring data are used to
estimate the failure localization at the link level for all light‑
paths with Kriging method. In Ref. [11], two ML based algo‑
rithms are described based on regression, classification, and
anomaly detection. The authors propose a bit error ratio
(BER) anomaly detection algorithm which takes historical in‑
formation (like maximum BER, threshold BER at set-up, and
monitored BER per lightpath) as input, and detects any
abrupt change in BER which might be a result of some fail‑
ures of components along a lightpath. In Ref. [12], two algo‑
rithms for testing optical switching at connection setup time
and failure rootcause localization for optical network are pro‑
posed using decision tree and support vector machine (SVM)
algorithms. And a similar multi-ML algorithm for failure de‑
tection and classification is proposed in Refs. [13–14], in‑
cluding binary and multi-class SVMs, random forests and
neural networks (NN). However, the work mentioned above
fails to take full advantage of the huge data collected from op‑
tical networks, and is difficult to be deployed into the real
commercial environment. In this paper, we study the alarm
data preprocessing to improve the quality of the dataset and
mine the association rules. Based on the dataset, two fault lo‑
cation algorithms based on the convolutional neural network
(CNN) and the deep neural network (DNN) respectively are
proposed.
The rest of this paper is organized as follows. In Section 2,

the originally collected data are converted into the universal
format, and some association rules are studied. Then the
mappings between the input and the label are built for an
available dataset. Meanwhile, some data augmentation meth‑
ods are used to expand the size of the dataset. In Section 3,
CNN and DNN algorithms are explained and introduced to
help solve the fault location problem. In Section 4, based on
the original data collected from commercial optical networks,
the procedure described in Section 2 and the algorithm are
evaluated with the Tensorflow[15] AI platform. In Section 5,
we draw a conclusion.

2 Building Alarm Dataset
The quality of a dataset has an important influence on the

performance of fault location, which determines the perfor‑
mance limit directly and impacts model training indirectly.
Therefore, it is essential to build a high-quality dataset
based on original data. As Fig. 1 shows, in order to make an

available dataset, data collection, data preprocessing, data
annotation, and data augmentation are executed successively.
There are generally four kinds of data in optical equip‑

ment: the performance data, the alarm data, the configuration
data, and the event report. All these data could be collected
from the equipment management system directly. In the
phase of data collection, we use a self-optimizing optical net‑
work (SOON) platform[16–17] to gather all data through an
open application programming interface (API) of optical
equipment.
The original data collected from optical equipment direct‑

ly are generally dirty[18], which means that these data include
missing data, wrong data, non-standard representations of
the same data, etc.[19]. In a fault location application, we only
need to process alarm data, including history alarm data and
current alarm data. The history alarm data are the alarms
that have been confirmed and cleaned. And the current
alarm data summarize the happened alarms that have not
been confirmed and cleaned simultaneously. The indices of
history alarm data include the alarm level, alarm name,
alarm source, network element type, location information,
happen time, clean time, and confirm time. And the indices
of current alarm data include alarm level, alarm name, alarm
source, location information, frequency, time to first alarm,
time to last alarm, and clean time. In the phase of data pre‑
processing, data completion is used to remove the severely
defective data records and complement partial missing data
records. Error repair is used to detect obvious data errors in
format and content, and fix them. Then, useless data deletion
is used to remove the useless data records. For example, if
the repair for the network failure is delayed for a while, the
same alarm data will be triggered again and again. In hun‑
dreds of the same alarm records, we only need one of them.
Finally, we digitalize all data by mapping the text to a specif‑
ic integer.
After some steps of data preprocessing, high-quality alarm

data are generated. Because the used algorithms are super‑

▲Figure 1. Data preprocessing for collected alarm data
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vised, we need to mark data to add a label for each data item.
Firstly, we use a sliding window[20] to convert alarm data re‑
cords into transactions. We assume that b is the beginning
time, w is the length of a time window, and s is the step
length between two adjacent transactions. Then the k-th
transaction includes the data records in time period (b+k*s,
b+k*s+w].According to different value setups of b, s, and w, we could
get multiple original datasets. Considering known algorithms
to mine association rules, we select a frequent pattern
growth[21] (FP-growth) algorithm, as it is one of the fastest ap‑
proaches to a frequent item set mining[22]. The key idea of FP-
growth is partition, which executes a frequent pattern tree
(FP-tree) to generate a common frequent pattern through only
two times that of data traversal. The process is as follows.
1) Firstly, it scans all stored alarm transactions, calculates

the frequency of each transaction as the support degree, and
drops those transactions whose support degree is less than
the minimal support degree. Then, it sorts all transactions
with support degrees in descending order, and stores them in
a list L.
2) Secondly, an FP-tree is built. In an FP-

tree, the root node is initialized as null. Then,
a frequent pattern subtree is created. If the
conditional pattern bases of FP-tree are the
same, the support value on these nodes is
plus 1. If not, then it creates a new node with
the support degree as 1.
3) Lastly, it mines FP-tree in a reverse or‑

der of list L, creates the conditional pattern
base for each item, and combines all bases for
the same alarm data to build its FP-tree. This
step is repeated until there is no unused con‑
ditional pattern base.
The last phase to generate an available da‑

taset is to augment data. In a commercial opti‑
cal network, the data about network failures
are much less than those in the normal state.
So, the size of a fault dataset is quite small.
Meanwhile, the distribution for events caused
by different reasons is uneven. In order to
avoid negative effects of small size and mald‑
istribution, data augmentation could be used
to expand specific data and keep the distribu‑
tion balance. In image recognition, an image
could be augmented to multiple images
through rotation, translation, reversal, clip‑
ping, Gaussian noise, etc. In fault location, al‑
though there are already several data augmen‑
tation methods[17], we still need to manually
expand data depending on artificial expertise
under specific scenarios. For example, if we
want to expand alarm data caused by clock

failure, firstly we should abstract all clock topologies that ex‑
ist in an optical network, and mark where the clock is for
each clock topology. For alarm data caused on a specific
clock, we could simulate the same failure on other clock to
generate new clock alarm data.

3 Auxiliary Fault Location
CNN and DNN are two important tools in supervised ma‑

chine learning which aim to find an accurate mapping be‑
tween the input and the output. Based on the available data‑
set generated in Section 2, these two algorithms are used to
find the relationship between the alarm data and the fault
location.
3.1 Fault Location with Deep Neural Network
DNN is actually the fully-connected neural network where

the number of layers is larger than four. Based on huge la‑
beled training data, DNN can find the proper relationship
mapping between the input and the output, especially for
those fuzzy and complex mappings. As Fig. 2(a) shows, DNN

(b) CNN architecture
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Convolution layer

Full-connected layer

▲Figure 2. CNN and DNN architecture
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consists of the input layer, hidden layer, and output layer.
Each layer contains multiple neurons, and each neuron could
be defined as a non-linear function (Sigmoid[23], tanh, Recti‑
fied Linear Unit[24], etc.). Compared with the neural network
with only 3 layers, DNN owns stronger feature expression.
The update of DNN model normally consists of forward and
back propagation. The forward propagation calculates the
output of each neuron. The back propagation calculates the
gradient of each parameter, and updates all parameters ac‑
cording to some learning rate policy, which is normally
called gradient descent. The selection of the learning rate
policy has an important impact on the performance of the
model.
Apart from the learning rate policy, both parameter initial‑

ization and the neural network architecture are important.
Parameter initialization decides the initial position for an
ML model. As we know, gradient descent means that the ML
model will search for a second-best solution on the hyper‑
plane. The initial position at the beginning may lead the
model to a relatively poor solution. Gaussian and He are two
common initialization methods. The architecture of the neu‑
ral network contains the numbers of hidden layers and neu‑
rons on each layer mainly. More layers and more neurons on
each layer will make the DNN’s own learning ability power‑
ful, meanwhile, it becomes more difficult to train such a
model.
The concepts commonly used in several DNNs are de‑

scribed below:
1) Feature extraction. The purpose of deep learning is to

enable the model to automatically extract the potential fea‑
tures of the data and complete the mapping from data to re‑
sults. The extraction of deep-level valuable features of the
data directly affects subsequent learning tasks and is the ba‑
sis for the entire model training.
2) Multi-layer perceptron. A perceptron is a fully connect‑

ed neural network structure with one input layer and one out‑
put layer through an activation function. Multi-layer percep‑
trons are fully connected neural networks with hidden layers.
3) Activation function. It is an important component of the

artificial neural network (ANN) model. It can help the model
to automatically learn and understand complex non-linear
functions effectively, and introduce non-linear characteris‑
tics into the model.
4) Transfer learning. Transfer learning is to use the trained

model and the acquired knowledge to solve the problem in
the target domain, and realize the use of a small number of
sample sets to train a highly reliable model.
5) Adaptive learning rate. The process of model training is

greatly affected by the learning rate. If the set learning rate is
large, oscillation will likely occur and the model cannot con‑
verge. The model converges slowly, so the adjustment of the
learning rate is very important to the training of the model. If
the learning rate can change with the training process of the

model, the training process of the model and its result are sat‑
isfactory.
6) Gradient descent (GD). A greedy algorithm in the train‑

ing model process, based on the mathematical idea of differ‑
entiation, iterates continuously to find the fastest direction of
gradient descent.
7) Error back-propagation (BP). Calculate the difference

between the estimated value of the model and the actual val‑
ue, continuously propagate the difference, continuously ad‑
just the model parameters, update the global parameters, and
obtain a high reliability model.
8) Regularization. It is used to solve the problem of over-

fitting of model training, prevent the model from over-extract‑
ing data features, and balance the results of model training
and the goal of smaller parameter values.
3.2 Fault Location with Convolutional Neural Network
CNN was firstly proposed in Ref. [25], which consists of

the convolution layer, the pooling layer, and the fully-con‑
nected layer, as Fig. 2(b) shows. The calculation in the con‑
volution layer is sparse, different from that in the fully-con‑
nected layer. In the convolution layer, multiple convolution
kernels are used to execute a convolutional operation on the
input data matrix. Then these values are handled by a non-
linear function to adjust the nonlinear feature. The pooling
layer only summarizes a data matrix into a value through a
pooling function, for example, max-pooling that outputs the
maximal value, min-pooling that outputs the minimal value,
avg-pooling that outputs the average value of all elements,
etc. The pooling layer aims to reduce the size of data while
remaining the most important feature. After several convolu‑
tion layers and pooling layers, the output will be converted to
a one-dimensional array, as the input of the final fully-con‑
nected layer. In the fully-connected layer, the extracted fea‑
tures in different granularities and aspects could be mixed
and considered together.
CNN is similar to DNN in many aspects. The mechanism

of parameter update in CNN is also the combination of for‑
warding propagation and back propagation. The former is
used to calculate the output of each kernel and each neuron
for a specific input, the latter is used to calculate the gradi‑
ents. In weight initialization, learning rate adjustment, and
many other configurations, CNN normally takes the same ap‑
proach as DNN does. Benefited from the extreme reduction
of parameter numbers compared with DNN, CNN can take
hundreds and thousands of convolution layers to extract more
abstract features. However, although CNN has been proved
in image classification and some other domains, due to CNN’
s black-box attribute, it’s hard to prove and explain that
CNN could be deployed on any domain problem strictly.
The following shows all the elements related to CNN and

how they work in detail.
1) Convolution layer. It uses the convolution kernel to
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scroll over the input data set according to the stride to ex‑
tract the characteristics of the input data. The multi-layer
convolution layer can better extract the inherent rich features
of the data. Convolutional layers have important characteris‑
tics that contribute significantly to the performance of the
system, such as sparse weights, but convolution operations
may cause the loss of information that may exist on image
boundaries. Because they are only captured when the filter
slides, they may not have a chance to be seen. A simple and
effective way to solve this problem is to use zero padding.
2) Pooling layer. The pooling layer is used to merge seman‑

tically similar resources in the output of a specific layer of
the network. The pooling layer essentially reduces the input
by merging adjacent values, so subsequent layers are repre‑
sented using a smaller network structure. The most common
pooling operation is max pooling, which returns the maxi‑
mum value from a set of zone values.
3) Non-linearity. The next layer after convolution is non-

linear. Non-linearity can be used to regulate or cut off the
output produced. This layer is applied to saturate the output
or limit the output produced. Sigmod, Tanh, and ReLU func‑
tions are frequently used non-linear functions. Because the
Sigmod and Tanh functions are saturation func‑
tions, gradients disappear easily when the network
layer is deep, which is suitable for situations
where the network layer is not too deep. The gradi‑
ent of the ReLU function in the positive part is
constant, and the gradient of the ReLU function
can be zero. It can be used for sparse representa‑
tion. Therefore, the ReLU function is more widely
used when the network level is deeper.
4) Fully connected layer. Each node in the fully

connected layer is directly connected to each node
in the previous and the next layer. The main disad‑
vantage of the fully connected layer is that it con‑
tains many parameters and needs complex calcula‑
tions in the training example. Therefore, we try to
eliminate the number of nodes and connections,
and use local connections to meet the require‑
ments of reducing the number of nodes and con‑
nections. For example, Lenet and Alexnet are de‑
signed as a network of depth and breadth while
maintaining computational complexity.

4 Simulation and Results
To evaluate the quality of the dataset we built,

we introduce some other algorithms as the bench‑
mark. And to compare the performance of CNN
and DNN in the fault location, we also execute
these algorithms on our dataset. The original data
is collected from the commercial optical network
as shown in Fig. 3.

4.1 Dataset
Table 1 shows the result of the FP-growth algorithm,

which contains six transactions calculated from alarm data.
The capital letter means specific alarm type, and the value in
parentheses is the support degree. In the sliding window
phase, we set w as 10 s, and s as 4 s to get the transaction
set, as the second column shows in Table 1. Then the mini‑
mal support degree is set as 3, and the remaining transac‑
tions after filtering is shown in the third column of Table 1.
After the FP-tree is built, we could get the conditional pat‑
tern base of the alarm data frequent item as follows.
• A→{}:5
• B→{A}:1, {A, C, D}:1, {C, E}:1
• C→{A}:3, {}:1
• D→{A, C}:3
• E→{A, C, D, E}:2, {C}:1
• F→{A, C, D, E}:2, {A, C, D, B}:1
In this paper, we introduce several classical association

rule mining algorithms like MINWAL(w), Apriori, and
BEPMWA, to compare the time performance of FP-growth
as Figs. 4(a) and 4(b) shows. Also, we add a distributed ver‑
sion of FP-Growth, called FP-Growth-Distributed. Fig. 4(a)

▼Table 1. Frequent item using FP-growth
Transaction ID

001
002
003
004
005
006

Included Alarm Data
B, A, H, J, P

A, D, C, W, U, V, F, E
A

B, C, N, O, E
D, B, C, A, Q, F, P
D, A, C, G, Q, E, F, M

Filtered Alarm Data
A(5), B(3)

A(5), C(4), D(3), F(3), E(3)
A(5)

C(4), B(3)
A(5), C(4), B(3), D(3), F(3)
A(5), C(4), D(3), E(3), F(3)

▲Figure 3. Commercial optical network for evaluation
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shows the treatment efficiency for alarm events. The time
cost of MINWAL(w) increases rapidly, but the time cost of

other algorithms remains a linear growth. MINWAL(w) al‑
ways consumes the most time, and FP-Growth-Distributed
always has the highest efficiency. Fig. 4(b) shows the size of
filtered frequent items with different thresholds of the mini‑
mal support degree. All algorithms generate about the same
size of frequent items when the minimal support degree in‑
creases, which means they perform similarly on the fre‑
quent item selection. However, when the minimal support
degree is small, FP-Growth-Distributed performs better.
Then, as mentioned in Section 2, the data augmentation
method is executed manually. Fig. 4(c) shows the size com‑
parison before and after data augmentation. Data augmenta‑
tion balances the distribution of transaction caused by dif‑
ferent failure reasons.
4.2 Performance Evaluation
After the process of the previous subsection, an available

dataset is built. The input is transaction, and the output is
the fault type. In this paper, 8 fault types are introduced, in‑
cluding no fault, fiber interruption, board failure, clock fail‑
ure, control board failure, power failure, base environment
degradation, and line loss. So the size of the output is 8.
In the evaluation for classification task, TP indicates that

network failure happens, and the output of ML algorithm is
correct. FP indicates that network failure doesn’t happen,
but the output makes a mis-judgement. FN indicates that net‑
work failure happens, but the output makes a mis-judgement.
And TN indicates that network failure doesn’t happen, and
the output is correct. Then the sensitivity and specificity are
described as in Eqs. (1) and (2). We make x-axis as the speci‑
ficity, and y-axis as the sensitivity to draw receiver operating
characteristic (ROC) curves for CNN and DNN in Figs. 5(a)
and (b). The area surrounded by line x=y and an arc shows
the performance. The performance is better when the area is
bigger.
Sensitivity = TP

TP + FN , (1)

Specificity = TN
TN + FP . (2)

In Fig. 5(a), CN means the number of convolution layers,
and FCN means the neuron number of fully-connected lay‑
ers. In several different configurations, CNN performs the
best when CN is 2 and FCN is 20. Based on such optimal pa‑
rameter combination, Fig. 5(b) shows the influence of fre‑
quency of alarm trigger (FAT). This CNN model reaches its
best performance while FAT equals 95.
In Fig. 5(c), we set the learning rate as the adjustable

learning rate, and the number of hidden layers is 5. Tanh,
ReLU, and Sigmoid are the activation functions in a neuron.
Gaussian and He are parameter initialization methods. Ac‑▲Figure 4. Results of building an available dataset

(c) Data distribution with and without augmentation

(a) Running time with alarm events

(b) Filtered frequent items under minimal support degree
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cording to some advanced hyper-parameter filters, we skip
many parameter combinations, and only 4 kinds of them re‑
main in Fig. 5(c). In all DNN models, the parameter combina‑
tion with ALR, Layers=5, Tanh, and Gaussian performs the
best. Based on such optimal parameter combination, Fig. 5
(d) shows the influence of FAT on this best DNN model.
Same with Fig. 5(b), this DNN model reaches its best perfor‑
mance while FAT equals 95.
Fig. 5(e) compares the performance of the best CNN model

and the best DNN model where FAT equals 95. When the
specificity is specified, the sensitivity of DNN is larger than
that of CNN, which indicates that the DNN algorithm could
perform better than CNN on the fault location dataset. On the
other side, in Fig. 5(f), we evaluate the time cost of CNN and
DNN under different FATs. DNN costs more time than CNN
does, however, the millisecond level is enough for the com‑
mercial requirement.
Figs. 6(a) and 6(b) are comparisons of different fault loca‑

tion algorithms in terms of fault location accuracy and loca‑
tion delay. DNN stands for fault location based on deep neu‑
ral network, CNN represents fault location based on convolu‑
tional neural network, AA stands for active fault location al‑
gorithm, GA stands for greedy fault location algorithm, and
FA is a fuzzy fault location set algorithm[26–27]. From Fig. 6

(a), it can be seen that the fault location based on deep learn‑
ing is inferior to existing methods in terms of location accura‑
cy. Compared with other fault location algorithms, fault loca‑
tion algorithms based on DNN and CNN have higher accura‑
cy. Comparing with the fault location based on DNN and
CNN, we find that the former has higher accuracy.
As shown in Fig. 6(b), compared with traditional fault loca‑

tion algorithms, the location delay of fault location based on
DNN is more timely. The fault location delay based on DNN
is the second only to the fault location based on CNN. The
time difference between the DNN and CNN is not much. The
specific reason is that the structural level of the fault loca‑
tion model based DNN is deeper than that of CNN, so the
fault location speed has a delay of about 0.1 ms.

5 Conclusions
In this paper, based on huge original data collected from

commercial equipment, we propose a standard process flow
to build a high-quality dataset. Then the supervised machine
learning algorithms CNN and DNN are introduced to analyze
the fault reason as an auxiliary for fault location. The evalua‑
tion shows that when a dataset is built, this method can effec‑
tively improve the quality of the dataset, and DNN is more

▲Figure 5. Evaluation results for CNN and DNN model

(a) ROC of CNN model with different CN and FCN (b) ROC of CNN model with different FAT (c) ROC of DNN model with different configurations

(d) ROC of DNN model with different FAT (e) Comparison between CNN and DNN (f) Time cost for CNN and DNN
CN: convolution layer numberCNN: convolutional neural network DNN: deep neural networkFAT: frequency of alarm trigger FCN: the neuron number of fully-connected layerROC: receiver operating characteristic
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suitable than CNN in application.
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Abstract: This paper proposes a family of raptor-like rate-compatible spatially coupled
low-density parity-check (RL-RC-SC-LDPC) codes from RL-RC-LDPC block codes.
There are two important keys. One is the performance of the base matrix. RL-LDPC codes
have been adopted in the technical specification of 5G new radio (5G-NR). We use the 5G
NR LDPC code as the base matrix. The other is the edge coupling design. In this regard,
we have designed a rate-compatible coupling algorithm, which can improve performance
under multiple code rates. The constructed RL-RC-SC-LDPC code property requires a
large coupling length L and thus we improved the reciprocal channel approximation
(RCA) algorithm and proposed a sliding window RCA algorithm. It can provide lower com‑
plexity and latency than RCA algorithm. The code family shows improved thresholds
close to the Shannon limit and finite-length performance compared with 5G NR LDPC
codes for the additive white Gaussian noise (AWGN) channel.
Keywords: SC-LDPC code; 5G NR LDPC code; rate-compatibility; threshold; sliding win‑
dow RCA algorithm
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1 Introduction

5G has already been deployed and commercialized on a
large scale worldwide. However, with a new round of
global technology industry upgrading, the total amount
of data that needs to be transmitted is increasing, and

new wireless communication technologies still need to be stud‑
ied to adapt to new application scenarios and higher de‑
mands. As one of the most important technologies in physical
wireless communication, channel coding is of great signifi‑
cance to improving system reliability[1].
Spatially coupled low density parity check (SC-LDPC)

codes have received widespread attention due to their thresh‑
old saturation[2]. Threshold saturation is the belief propagation
(BP) threshold of SC-LDPC codes that approaches the maxi‑
mum a posteriori (MAP) threshold of their underlying block
codes if coupling chain length L → ∞[3]. There are many re‑
sults on the optimization of SC-LDPC codes. Ref. [4] introduc‑
es a procedure for constructing QC-SC-LDPC codes with a
girth of at least eight, and the design leads to improved decod‑

ing performance, particularly in the error floor compared with
random constructions. Ref. [5] designs time-invariant spatially
coupled low-density parity-check (SC-LDPC) codes with a
small constraint length and low error floor. This is achieved by
eliminating some of the dominant trapping sets (TSs) of the
codes.
RC-SC-LDPC codes can adapt to the changing conditions of

time-varying channels while allowing transceivers to employ
only one encoder/decoder. There are two ways of constructing
RC-SC-LDPC codes. One is puncturing[6]. In a rate-compatible
puncturing scheme, the transmitter punctures coded symbols,
and as a result of having fewer transmitted code symbols, the
code rate is increased. The other is the extension[7] by select‑
ing a code with a high rate, and constructing a lower code rate
by adding check bits. The code with a high bit rate is nested
in a lower code. In addition to using the extension and punc‑
turing alone to achieve SC-LDPC code rate compatibility, com‑
bining the two methods to design code rate compatibility
makes it easier to cover more code rates while ensuring the
performance of each code rate.
The raptor-like structure is convenient to achieve rate com‑

patibility, and it has better performance at a low code rate[8–9].
RL-LDPC codes have been adopted in the technical specifica‑
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tion of 5G new radio due to their excellent performance[10].
Base matrix performance is one of the key factors affecting the
performance of SC-LDPC codes. Thus, we construct RL-RC-
SC-LDPC codes by coupling RL-RC-LDPC LDPC codes.
The structure of this paper is as follows. Section 2 introduc‑

es the code structure of RL-RC-SC-LDPC codes. In Section 3,
the rate-compatible coupling algorithm is described. Then we
describe our improved sliding window reciprocal channel ap‑
proximation (RCA) algorithm based on the RCA algorithm in
Section 4. In Section 5, we use the 5G NR LDPC code as the
base matrix structure of the SC-LDPC code as an example to
analyze the rate-compatible coupling algorithm we proposed.
Finally, the conclusions are drawn in Section 6.

2 RL-RC-SC-LDPC Codes
SC-LDPC codes have a chain structure and are character‑

ized by the following parity check matrix in Eq. (1). It has two
characteristics: the coupling chain length L and the coupling
depth ms. L and ms affect the code rate of SC-LDPC codes.
The parity check matrix HSC consists of multiple sub-matrices,
and each column contains ms + 1 sub-matrices. The size of
the sub-matrix H0,H1,...,Hms

is the same with m × n, and the
size of HSC is (ms + L )m × nL. If the sub-matrix of each col‑
umn is the same, it is a time-invariant SC-LDPC code but not
time-varying at the same time. Compared with time-varying
SC-LDPC codes, time-invariant SC-LDPC codes show a sub‑
stantial reduction in memory requirements.
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Hms (ms + L )m × nL. (1)
SC-LDPC codes can also be represented by Tanner graphs.

It is easier to illustrate the coupling process of SC-LDPC
codes through Tanner graphs. Take a (2, 4) regular LDPC
code as an example, as shown in Fig. 1. The coupling process
is to select some variable nodes on the Tanner graph not cou‑
pled at the current moment to connect the check nodes on the
subsequent ms Tanner graphs. The generated SC-LDPC code
of coupling chain length L is shown in Fig. 2.
An example of RL-RC-LDPC codes is shown in Fig. 3. The

base matrix consists of 5 sub-matrices, namely A, B, C, D and
I. The parity check matrix can be constructed from a much
smaller sub-matrices A and B, and the other three sub-matri‑

ces are extensions. Matrix A corresponds to the information
bit, and the size is P × K. Matrix B corresponds to the check
digit, which is a square matrix with a double diagonal struc‑
ture and the size is P × P. Matrix D is an zero matrix, and the
size is P × (M - P ). Matrix C is an extended matrix to
achieve rate compatibility, the size of which is
(M - P ) × (K + P ). Matrix I is the identity matrix, and the
size is (M - P ) × (M - P ). One of the most important fea‑
tures of RL-LDPC codes is that the matrix has a lot of degree-
one variable nodes, which are connected to the corresponding
check node one by one.

3 Rate-Compatible Coupling Algorithm
The coupling matrix of the RL-RC-SC-LDPC code is gener‑

ated by coupling the base matrix of the RL-RC-LDPC code.

▲Figure 1. (2, 4) regular low density parity check (LDPC) code

▲Figure 2. (2, 4, L) spatially coupled low-density parity-check (SC-LD‑
PC) code

▲Figure 3. Raptor-like rate-compatible low-density parity-check (RL-
RC-LDPC) codes
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We designed the coupled matrix sequentially from the parity-
check matrix for high code rates to the parity-check matrix for
low code rates. In the complete code-rate compatible parity-
check matrix, the low code-rate parity-check matrix is ob‑
tained by extending the high code-rate parity-check matrix.
Therefore, we only couple the extended matrices to construct
the low code rate SC-LPDC codes. The coupling relationship
in the coupling matrix corresponding to the low code rate in‑
cludes the coupling relationship in the coupling matrix corre‑
sponding to the high code rate. A matrix of RL-RC-LDPC
codes is shown in Fig. 4(a). For the matrix Hk (k = 1,2,...,n ),
H1 is the highest rate sub-matrix, and H2,...,Hn is the expan‑sion matrix. In the process of edge coupling, we only select the
edge for coupling in the matrix Hk (k = 1,2,...,n ). We set Hk0,
Hk1 and Hk to satisfy the following form:
Hk = Hk0 + Hk1 (k = 1,2,...,n ). (2)
Eq. (2) means all edges in Hk0 and Hk1 originate from Hk.This is set up to maximize performance through coupling with‑

out changing the degree distribution.
The complete RL-RC-SC-LDPC code coupling matrix is

generated when the parity-check matrix for the lowest code
rate is coupled as shown in Fig. 4(b).
Code-rate compatible coupling algorithms need to ensure a

good coupling relationship at all code rates. Better coupling at
each code rate means better performance benefits at each
code rate. Thus, the selection of the side for coupling is more
strict. The constraints on the edges selected for coupling are
as follows:
1) Edges do not couple special structures in Hk;2) Avoid all zero columns and all zero rows in Hk0;3) According to the check node degree distribution in Hk,

avoid the edges of check nodes with relatively small coupling
degrees.
4) Under constraint 3), the edge selection is coupled row by

row in Hk, and only one edge is selected in the selected row.Next, the effect of constraint conditions in the rate-compati‑
ble coupling algorithm is explained. To reduce coding com‑
plexity, the Raptor-like structure is often used in combination
with a double diagonal structure. The double diagonal struc‑
ture is the key to encoding and in order to encode correctly,
the integrity of the double diagonal structure needs to be en‑
sured. It is worth noting that constraint 1) is only for the ma‑
trix with the highest rate, and there is no double diagonal
structure in other extension matrices. Constraint 2) avoids all-
zero columns and all-zero rows in Hk0, since their appearancewill greatly affect decoding performance. Constraint 3) is to en‑
sure that the selected number of edges is moderate, which will
not cause too much error propagation, and will not weaken the
coupling relationship. The performance of SC-LDPC will dete‑
riorate if the coupling relationship is weakened. The row-by-
row edge selection in constraint 4) is to connect more variable
nodes with the next check node in the SC-LDPC code cou‑
pling chain under the above constraints, and increase the cou‑
pling relationship in the coupling chain to ensure that useful
information is transmitted in the coupling chain, thereby im‑
proving the performance of the SC-LDPC code.
Finally, the coupling matrix can be expanded by the meth‑

od of the cyclic permutation matrix, and the expanded cou‑
pling matrix can be copied by L and placed according to the
definition of SC-LDPC code. Then an SC-LDPC code with cou‑
pling chain length L can be generated, the matrix of which is
shown in Fig. 5.

4 Sliding Window RCA Algorithm
The RCA algorithm is described in Ref. [11]. Refs. [12–13]

(a) RL-RC-LDPC code matrix (b) RL-RC-SC-LDPC code cou‑pling matrix

▲ Figure 4. RL-RC-LDPC code matrix and constructed RL-RC-SC-
LDPC code coupling matrix

RL-RC-LDPC: raptor-like rate-compatible low-density parity-checkRL-RC-SC-LDPC: raptor-like rate-compatible spatially coupled low-densityparity-check
▲ Figure 5. Raptor-like rate-compatible spatially coupled low-density
parity-check (RL-RC-SC-LDPC) codes
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prove that the deviation of RCA from the accurate density evo‑
lution threshold is less than 0.01 dB. The RCA algorithm can
accurately calculate the threshold of a matrix containing a large
number of variable nodes with degree 1. The SC-LDPC code
can be considered as an LDPC code with a special structure
from the overall check matrix, so the RCA algorithm can also
be used to calculate the SC-LDPC code threshold. However,
when using the RCA algorithm, due to the special coupling
chain structure of the SC-LDPC code, the check matrix is rela‑
tively large, and its structural advantages cannot be highlighted.
Based on the RCA algorithm, we proposed a sliding window
RCA algorithm. The sliding window RCA algorithm can accu‑
rately calculate the SC-LDPC code threshold in the case of
large L.
Set the signal-to-noise ratio to sc. e is the edge connectingthe variable node and the check node. qe is the variable nodepassing information to the check node through edge e. re is thecheck node passing information to the variable node through

edge e. Ev is a set of edges connected to variable node v. Ec isa set of edges connected to check node c. For a variable node
of degree 1, its value will always be determined by the signal-
to-noise ratio of the input channel, independent of the number
of iterations. In this case, the overall reliability Q(n )v of the vari‑able node needs to replace the reliability of the edge. Let T be
the stop threshold and fRCA be a binary-valued function. When
sc is higher than the decoding threshold, the value is 1, other‑wise, it is 0. Set the sub-matrix size of the constructed SC-LD‑
PC code to a × b. The size of the window is W, and the current
sliding times is w. The maximum number of iterations is set
to N.
The sliding window RCA algorithm is as follows:

Algorithm 1. sliding window RCA algorithm
1. ifif w=1

for edges e connected to punctured variable
nodes in a sliding window, set q(0)e = 0. For all
other edges, set q(0)e = sc；

else
edges connecting the 1st to the b-th variable node
in the window are initialized to Q(n )v after the previ‑ous window converges. From b + 1 to Wb variable
nodes in the window and edges connected to punc‑
tured variable nodes in the sliding window,
set q(0)e = 0, for other edges, set q(0)e = sc.

end
2. forfor the number of iterations n,

compute (qne ,rne ) in the sliding window
r(n )e = ∑

i ∈ Ec \e
R ( )q(n - 1)i

q(n )e = q(0)e + ∑
i ∈ Ev \e

R ( )r(n )i .

3. Calculate Q(n )v for each iteration in the sliding window
Q(n )v = Q(0)v +∑

e ∈ Ev
R ( )r(n )e

Q(0)v = {0 if v is punctured
sc otherwise .

4. Set the minimum value of Q∗ (n ) to Q(n )v . At each itera‑tion,
if w=1,

Count the Q∗ (n ) of 1 to b variable nodes in the
sliding window.

else
Count the Q∗ (n ) of b + 1 to 2b variable nodes in
the sliding window.

end
5. if Q∗ (n ) > T

fRCA = 1, slide to the next window until the lastwindow;
else

fRCA = 0, the number of iterations is increased by1 until the maximum number of iterations N is
reached.

end
end

5 Simulation Results

5.1 Comparison with 5G NR LDPC Code Threshold
We use BG1 in the 5G NR LDPC code as the base matrix toconstruct the SC-LPDC code and compare the threshold of the

5G NR LDPC code. The coupling chain length L of the con‑
structed SC-LDPC code is 100, using RA termination[14], corre‑
sponding to the base matrix rate 1/3，2/5，1/2，2/3，3/4，5/6，and
8/9. The rate losses are 0.002 3, 0.002 5, 0.002 7, 0.002 6,
0.002 4, 0.002 1, and 0.001 8. When using the sliding window
RCA algorithm, set the window size to 10, and the iteration
number in each window is 250. The threshold results are shown
in Table 1.
The coupling chain length L is 100, and a repeat-accumu‑

▼Table 1. Threshold results corresponding to the base matrix rate 1/3,
2/5, 1/2, 2/3, 3/4, 5/6, and 8/9

Rate

1/3
2/5
1/2
2/3
3/4
5/6
8/9

SC-LDPC Code
Threshold/dB
−0.338 6
−0.073 1
0.353 9
1.238 0
1.681 4
2.350 7
3.073 9

5G NR LDPC Code
Threshold/dB
−0.218 8
0.099 4
0.450 3
1.370 9
1.797 0
2.439 4
3.145 2

Gap/dB

−0.119 8
−0.172 5
−0.096 4
−0.132 9
−0.115 6
−0.088 7
−0.071 3

NR: new radio SC-LDPC: spatially coupled low density parity check
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late (RA) method is used to terminate. When the window size
is 10, the iteration number in each window is 250. The SC-LD‑
PC code coupling matrix threshold is calculated with BG2 asthe base matrix and the information bit Kb is 10, correspond‑ing to the base matrix rate 1/5, 1/3, 2/5, 1/2, and 2/3. The rate
losses are 0.001 7, 0.002 4, 0.002 7, 0.003, and 0.003 1. The
thresholds compared with 5G NR LDPC codes are as follows.
The threshold results for each code rate in Tables 1 and 2

show that the thresholds for the RL-RC-SC-LDPC codes con‑
structed in this paper are closer to the Shannon limit than those
for the 5G NR LDPC codes. It is worth noting that this is the
threshold value calculated when L is 100. If L continues to be
increased, the threshold can approach the Shannon limit further.
5.2. Performance Compared with 5G NR LDPC Codes
In this section, we evaluate the performance of the proposed

RL-RC-SC-LDPC codes over the additive white Gaussian
noise (AWGN) channel using binary phase shift keying
(BPSK) modulation. For decoding, we use sliding window de‑
coding[15]. When the window size is 2, BP decoding is used in
the window, and the number of iterations is 30. 5G NR LDPC
code decoding adopts BP decoding and BPSK modulation over
the AWGN channel. The number of iterations is 60. We use
the SC-LDPC code constructed by the base matrix of the 5G
NR LDPC code, which ensures that the number of edges of the
5G NR LDPC code is the same as the number of edges of the
coupling matrix of the constructed SC-LDPC code. We set the
number of iterations for BP decoding of 5G NR LDPC codes to
be the product of the number of iterations in the SC-LDPC
code window and the size of the window. This ensures that SC-
LDPC codes and 5G NR LDPC codes have the same decoding
complexity. We constructed a sub-matrix with an information
bit length of 512 bits, which compares performance with 5G
NR LDPC codes under 8 rates. The coupling chain length L of
the constructed SC-LDPC code is 100, using RA termination.
Fig. 6 shows the bit error ratio (BER) and frame error ratio

(FER) simulation curves of the SC-LDPC code with a sub-ma‑
trix information bit length of 512 bits and code rates of 1/5, 1/3,
2/5, and 1/2. When the BER is 10−5, it is at least about 0.5 dB
better than the 5G NR LDPC code with the same information
bit length and rate. When the FER is 10−4, the 5G NR LDPC
code with the same information bit length and the same code

rate is at least 0.1 dB and at most 0.3 dB.
Fig. 7 shows the BER and FER simulation curves of the SC-

LDPC code with a sub-matrix information bit length of 512 bits
and code rates of 2/3, 3/4, 5/6 and 8/9. When the BER is 10-5,
the 5G NR LDPC code with the same information bit length and
the same code rate is at least 0.1 dB and at most 0.4 dB. When
the FER is 10-4, the 5G NR LDPC code with the same informa‑
tion bit length and the same code rate is at least 0.1 dB and at
most 0.3 dB.

▼Table 2. Threshold results corresponding to the base matrix rate 1/5,
1/3, 2/5, 1/2, and 2/3

Rate

1/5
1/3
2/5
1/2
2/3

SC-LDPC Code
Threshold/dB
−0.724 0
−0.321 1
−0.051 2
0.376 3
1.261 1

5G NR LDPC Code
Threshold/dB
−0.690 3
−0.268 8
0.029 4
0.470 3
1.310 9

Gap/dB

−0.033 7
−0.052 3
−0.080 6
−0.094 0
−0.049 8

NR: new radio SC-LDPC: spatially coupled low density parity check

(a) Sub-matrix rate is 1/5 (b) Sub-matrix rate is 1/3

(c) Sub-matrix rate is 2/5 (d) Sub-matrix rate is 1/2
BER: bit error ratioFER: frame error ratio NR: new radioSC-LDPC: spatially coupled low-density parity-check

▲Figure 6. Performance comparison under 4 rates of 1/5, 1/3, 2/5, and 1/2

(a) Sub-matrix rate is 2/3 (b) Sub-matrix rate is 3/4

(c) Sub-matrix rate is 5/6 (d) Sub-matrix rate is 8/9

▲Figure 7. Performance comparison under 4 rates of 2/3, 3/4, 5/6, and 8/9

BER: bit error ratioFER: frame error ratio NR: new radioSC-LDPC: spatially coupled low-density parity-check
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The analysis above shows that the RL-RC-SC-LDPC code
proposed in this paper has a significant performance gain com‑
pared with the 5G NR LDPC code, indicating that the rate-
compatible coupling algorithm proposed in this paper has cer‑
tain advantages.

6 Conclusions
In this paper, we propose a family of RL-RC-SC-LDPC

codes from RL-RC-LDPC block codes. We have designed a
rate-compatible coupling algorithm, which can improve perfor‑
mance under multiple code rates. We use the 5G NR LDPC
code as the base matrix, and construct the RL-RC-SC-LDPC
code through the coupling algorithm proposed in this paper.
The simulation results show that the performance of the SC-
LDPC code we designed can surpass the 5G NR LDPC code
under the same parameters. To calculate the RL-RC-SC-LD‑
PC code threshold with a large L, we improve the RCA algo‑
rithm and propose a sliding window RCA algorithm. The code
family shows improved thresholds close to the Shannon limit
to 5G NR LDPC codes for the AWGN channel.
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Abstract: A novel envelope design for an envelope tracking (ET) power amplifier (PA)
based on its derivatives is proposed, which can trade well off between bandwidth reduc‑
tion and tracking accuracy. This paper theoretically analyzes how to choose an envelope
design that can track the original envelope closely and reduce its bandwidth, and then
demonstrates an example to validate this idea. The generalized memory polynomial (GMP)
model is applied to compensate for the nonlinearity of ET PA with the proposed envelope
design. Experiments are carried out on an ET system that is operated with the center fre‑
quency of 3.5 GHz and excited by a 20 MHz LTE signal, which show that the proposed en‑
velope design can make a good trade-off between envelope bandwidth and efficiency, and
satisfactory linearization performance can be realized.
Keywords: bandwidth reduction; envelope tracking; shaping function; supply modulator

Citation (IEEE Format): X. Y. Yi, J. X. Chen, P. Chen, et al.,“Derivative-based envelope design technique for wideband envelope tracking
power amplifier with digital predistortion,”ZTE Communications, vol. 20, no. S1, pp. 22 – 26, Jan. 2022. doi: 10.12142/ZTEC‑
OM.2022S1004.

1 Introduction

In the fifth-generation communication systems (5G), com‑
plex modulated signals with high peak-to-average power
ratio (PAPR) and wide bandwidth (BW) are applied to in‑
crease the spectrum utilization and data transmission

rate[1–2]. However, a high PAPR leads to more challenges in
efficiency and linearity. The envelope tracking (ET) tech‑
nique is a promising candidate to improve the efficiency of the
power amplifier (PA)[3–4].
In ET architecture, the supply modulator adjusts the drain

voltage of the PA for signals according to input power, by
which the PA is always working at a saturated state. Unfortu‑
nately, the envelope of the radio frequency (RF) signal cannot
be directly used as the input of the supply modulator. On the
one hand, the envelope of the RF signal usually has a band‑
width of four times to eight times the original modulated band‑

width, placing high challenges on the design of the supply
modulator. Thus the bandwidth reduction of the envelope is re‑
quired. On the other hand, since the PA cannot operate when
the drain voltage is below the knee voltage, the envelope sig‑
nal needs to be mapped to a voltage value for the PA[5]. There‑
fore, a proper envelope design should be applied before the en‑
velope of the RF signal enters the supply modulator.
Several techniques for reducing the bandwidth of the enve‑

lope signal have been proposed to meet the requirements of
the supply modulator. A method to limit the slew rate of the
envelope was discussed in Ref. [6], and low-pass filters were
applied in Refs. [7–8] to narrow the bandwidth of the enve‑
lope. In real applications, these methods need memory blocks
and then introduce additional information to the original enve‑
lope, which places more challenges on digital predistortion.
Several shaping functions also track the envelope closely and
reduce its bandwidth to a constant without memory blocks. N6
was applied in Refs. [5, 7, 9–10] to make a good trade-off be‑
tween linearity and efficiency of ET PA. Besides, the Wilson
function[11–12] and power envelope tracking (PET) [13] technique
can also reduce the envelope bandwidth to a certain value at a
cost of efficiency degradation.
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Taking considerations on both bandwidth reduction and
shaping function, this paper proposes a novel technique to es‑
tablish envelope design based on the derivatives of envelope
functions, by which a trade-off can be made between the band‑
width and the tracking accuracy of the envelope. An example
is demonstrated to verify the proposed idea. Furthermore, the
corresponding digital predistortion is employed to compensate
for the nonlinearity of the envelope tracking power amplifier
with this method.

2 Envelope Analysis
The efficiency of ET PA is usually the product of the effi‑

ciency of the supply modulator and that of PA. However, an
envelope with a bandwidth wider than the one of the supply
modulator degrades the efficiency of the supply modulator.
Generally, the closer the shaping function tracks the original
envelope, the higher the efficiency of the PA is. Therefore, an
envelope design always has two characteristics:1) It can effec‑
tively reduce the bandwidth of envelope; 2) it tracks the enve‑
lope closely.
1) Reducing the bandwidth of the envelope
An envelope design f (|x|) can be expressed in Taylor expan‑

sion at zero as follows.
f (| x |) = f (0) + f '(0) ⋅ | x | + f '' ( )0

2 ⋅ | x |2 + ... + f n ( )n
n! ⋅

| x |n, n = ∞. (1)
Here, x represents the baseband signal whose bandwidth is
BRF. The bandwidth of |x| is theoretically infinite because ofthe absolute sign. And |x|2 can be expressed as
| x |2 = x ⋅ x*, (2)

whose bandwidth is BRF[13]. Therefore, the odd order of the en‑velope is infinite, while the even order of the envelope is fi‑
nite. It can be inferred that it is a necessary condition for f (|x|)
that f’(0) equals zero to effectively reduce the bandwidth of
the original envelope.
2) Tracking the envelope closely
The de-trough envelope can convert the original envelope

above the knee voltage and simultaneously track it most
closely. But the non-smoothness of de-trough function curve
derivative widens the bandwidth of envelope and brings
strong nonlinearity. Therefore, a smooth envelope design is
desirable, whose curve is close to the de-trough function. It
can also be inferred that if a function is close to the de-
trough function, its derivative is also close to that of the de-
trough function.
In summary, a smooth envelope design is desired, whose de‑

rivative at zeros equals zero and whose derivative is close to
that of the de-trough function. In the next section, the pro‑

posed envelope design will be analyzed based on its deriva‑
tives and followed by an example.

3 Proposed Method

3.1 Envelope Design with Monotonous Derivative
In Fig. 1, the red solid lines are an objective monotonous

envelope design and its derivative, and the blue dotted lines
represent the de-trough function and its derivative. It should
be noted that the f (|x|) and |x| in Fig. 1(a) represent the nor‑
malized drain voltage and original envelope in the envelope
tracking application, respectively. There are two points of in‑
tersection (also tendency) of f (|x|) and the de-trough function,
which are at (0, Vmin) and (1, 1). In such a situation, the enve‑lope design can be deduced by:
f (0) = Vmin ; f '(0) = 0 ; f (1) = 1; f '(1) = 1. (3)
From the aspect of the envelope bandwidth, when the deriv‑

ative of the envelope design equals that of the de-trough func‑
tion, the envelope design equals the de-trough function, which
converts the bandwidth of envelope to infinite. When the de‑
rivative is a straight line from (0, 0) to (1, 1), it can be de‑
duced that
f '(| x |) = | x |⇒ f (| x |) = ∫ || x d | x | = 0.5 ⋅ | x |2 + c ⇒
BW = BRF . (4)
It can reduce the envelope bandwidth to BRF. Therefore, theenvelope design with monotonous derivative can realize the

envelope bandwidth from BRF to infinite, theoretically.From the aspect of the tracking accuracy, when the normal‑
ized Vmin is less than 0.5, this envelope design brings poortracking accuracy if the derivative curvature is small, because
the following inequality holds if the last three equations in Eq.
(3) are satisfied. To validate this method, an example is dem‑
onstrated in the next section.
f (0) = 1 - ∫01 f '( )|| x d | x | > Vmin. (5)

▲Figure 1. Proposed envelope design with monotonous derivative: (a)
envelope design; (b) monotonous derivative

(a) (b)
Vmin 1 || x

Vmin

1
f ( || x ) f '( || x )

1

Vmin 1 || x
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3.2 Example for Validation
The trend of the sigmoid function is consistent with that of

the derivative of the de-trough function. Therefore, the sig‑
moid function can be applied as the origin of the derivative of
objective function, which can be expressed as
f '(| x |) = 1

a + e-s ⋅ || x - d + b. (6)
Then, its indefinite integral, which is also the objective en‑

velope design, is
f (| x |) = ( 1a + b) ⋅ | x | + 1

a ⋅ s ⋅ ln (a + e-s ⋅ || x - d) + c . (7)
There are five degrees of freedom in Eq. (7), but only four

equations in Eq. (3). Thus, a unique envelope design f (|x|) can
be derived for different values of s that controls the curvature
of f '(|x|). In the rest of this paper, Eq. (7) will be mentioned as
the S function. It should be noted that the S function equals
the de-trough function when s=∞.
Although the normalized Vmin differs from the performanceof the supply modulator, it is generally less than 0.5 in order

to maintain high efficiency. In order to verify the proposed en‑
velope design, we apply it to map the envelope of an LTE sig‑
nal with 20 MHz bandwidth to 12–28 V.
Figs. 2(a) and 2(b) show the S function and its derivative for

s=3 and s=10 when the envelope swings from 12 V to 28 V, re‑
spectively. Figs. 2(c) and 2(d) present the time domain wave‑

form and normalized power spectral density (PSD) of the pro‑
posed envelope while s=3 and s=10. In this paper, the effec‑
tive bandwidth is defined as the frequency where the PSD
falls below −50 dBc from the main lobe. Table 1 presents the
bandwidth and normalized mean square error (NMSE) of the
proposed envelope for different values of s and traditional en‑
velopes. It can be seen that the S function can make a good
trade-off between bandwidth and tracking accuracy when the
bandwidth is greater than 1.6×BRF. Compared with Wilson,second-order PET and N6 envelopes, the S envelope can
reach similar tracking accuracy under the same envelope
bandwidth. According to Eq. (5), if s<3, the bandwidth of the
proposed envelope will be further reduced, but the tracking ac‑
curacy will be degraded a lot because f (0)>Vmin.

4 Digital Predistortion
The proposed envelope design contains the information of

the original envelope and does not introduce additional infor‑
mation. Therefore, this envelope tracking power amplifier can
be described by a single-input single-output (SISO) behavioral
model. To compensate the nonlinearity, the generalized memo‑
ry polynomial (GMP)[14] is applied in this paper, which can be
written as
yGMP(n ) = ∑

k = 0

Ka - 1∑
l = 0

La - 1
akl x (n - 1) || (n - 1) k +

∑
k = 1

Kb ∑
l = 0

Lb - 1∑
m = 1

Mb

bklm x (n - 1) || (n - l - m ) k +

∑
k = 1

Kc ∑
l = 0

Lc - 1∑
m = 1

Mc

cklm x (n - 1) || (n - l + m ) k, (8)
where x(n) represents the input signal; Ka and La are the non‑linearity order and memory depth for aligned signals and enve‑
lope; Kb and Lb are the nonlinearity order, memory depth forsignal and lagging envelopes; Kc and Lc are the nonlinearity or‑der, memory depth for signals and leading envelopes; Mb and
Mc are the maximum depth of the lagging and leading cross-terms, respectively.

5 Experimental Results

5.1 Test Bench
The proposed shaping functions and corresponding digital

predistortion were demonstrated in the test bench, as shown in
▼Table 1. Bandwidth and NMSE of the S envelope and traditional en‑
velopes

Parameter
BW

NMSE/dB

S Envelope
s=3
1.6×
-6.8

s=5
2.1×
-7.0

s=10
2.6×
-7.7

s=16
3.0×
-7.9

Traditional Envelopes
Wilson
1.6×
-6.6

2.ord.PET
1.6×
-6.7

N6
3.0×
-7.9

BW: bandwidth NMSE: normalized mean square error

(a) (b)

(c) (d)

▲Figure 2. Example of the proposed envelope design: (a) envelope de‑
sign; (b) derivative of the S function for s=3 and s=10; (c) time domain
waveforms; (d) normalized power spectral density of the S envelope

PSD: power spectral density
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Fig. 3. Restricted by the bandwidth and swing range of the
supply modulator, the test signal is a 20 MHz LTE signal, and
the envelope swings from 12 V to 28 V. The average PA out‑
put is at 37.2 dBm in this experiment. Firstly, a 20 MHz LTE
signal with the PAPR of 7.6 dB and its shaped envelope were
generated by the MATLAB in PC, then downloaded into the
baseband digital processing module. This baseband digital
signal was converted to an analog signal and up-converted to
3.5 GHz, and then fed into the input port of ET PA. Mean‑
while, the envelope signal went through the digital-to-analog
converter (DAC), linearly amplified by the supply modulator,
and then fed into the drain of PA. The output of PA was down-
converted to baseband and converted to a digital signal, and
then used to model PA in PC. In this experiment, the S func‑
tion with s=10 was applied to map the envelope to 12–28 V,
which will be mentioned as S10 function.
5.2 Validation for Proposed Method
Because the envelope swing rang is 12–28 V, the normal‑

ized Vmin is 12/28. It can be deduced from Eqs. (3) and (7) that
a, b, c and d of the S function are 0.98, −0.01, 0 and −4.21
when s=10. In this experiment, the S10 function is compared
with the Wilson function. As shown from Figs. 4(a) and 4(b),
the S10 envelope tracks more closely than the Wilson enve‑
lope, while it has wider bandwidth. Figs. 5(a) and 5(b) present
the amplitude-modulation to amplitude-modulation (AM/AM)
curve, amplitude-modulation to phase-modulation (AM/PM)

curve and the measured normalized output power spectra den‑
sity without and with digital predistortion (DPD) for the S10.
While Figs. 5(c) and 5(d) show these for the Wilson. It can al‑
so be seen from Table 2 that the ET system with the S10 has
higher efficiency and stronger nonlinearity than the Wilson,
and the GMP model can effectively compensate for its nonlin‑
earity. For the S10, the adjacent channel leakage ratios
(ACLRs) and NMSE can be reduced to −51.2/−51.8 dBc and
−38.5 dB, respectively. For Wilson, these values can be re‑
duced to −54.0/−54.3 dBc and −40.5 dB.

6 Conclusions
In this paper, a novel envelope design based on the deriva‑

tives is theoretically analyzed and validated. The analysis
shows that the envelope design with monotonous derivatives is
valid within a wide range of envelope bandwidth. This method
provides more flexibility for the choice of envelope designs un‑
der different requirements of the supply modulator. The corre‑
sponding digital predistortion is also validated to compensate
for the PA nonlinearity. In the era of 5G and beyond, the pro‑

ADC: analog-to-digital ConverterDAC: digital-to-analog ConverterLO: local oscillator
MATLAB: matrix laboratoryPA: power amplifier

▲Figure 3. Test bench setup

▲Figure 4. Experiment for validation: (a) plot of samples of the S10
and Wilson envelopes versus the original envelope; (b) normalized pow‑
er spectrum density of the S10 and Wilson envelopes

(a) (b)
PSD: power spectrum density

▲Figure 5. Comparison experiment: (a) amplitude-modulation to am‑
plitude-modulation (AM/AM) and amplitude-modulation to phase-mod‑
ulation (AM/PM) curves; (b) normalized PSD without and with DPD
under S10 function; (c) AM/AM and AM/PM curves; (d) normalized
PSD without and with DPD under Wilson function

DPD: digital predistortion PSD: power spectrum density

▼Table 2. Efficiency and nonlinearity performance of the measured ET
system

Shaping
Func‑
tion
S10
Wilson

Efficiency/%

43.8
42

Without DPD
ACLRs/dBc
(±20 MHz)
-31.3/-31.6
-33.3/-33.5

NMSE/dB
-21.2
-23.6

With DPD
ACLRs/dBc
(±20 MHz)
-51.2/-51.8
-54.0/-54.3

NMSE/dB
-38.5
-40.5

ACLR: adjacent channel leakage ratio
DPD: digital predistortion

ET: envelope tracking
NMSE: normalized mean square error
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posed approach provides a promising solution for wideband
ET applications.
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Abstract: Traditional named entity recognition methods need professional domain knowl‑
edge and a large amount of human participation to extract features, as well as the Chinese
named entity recognition method based on a neural network model, which brings the prob‑
lem that vector representation is too singular in the process of character vector representa‑
tion. To solve the above problem, we propose a Chinese named entity recognition method
based on the BERT-BiLSTM-ATT-CRF model. Firstly, we use the bidirectional encoder
representations from transformers (BERT) pre-training language model to obtain the se‑
mantic vector of the word according to the context information of the word; Secondly, the
word vectors trained by BERT are input into the bidirectional long-term and short-term
memory network embedded with attention mechanism (BiLSTM-ATT) to capture the most
important semantic information in the sentence; Finally, the conditional random field
(CRF) is used to learn the dependence between adjacent tags to obtain the global optimal
sentence level tag sequence. The experimental results show that the proposed model
achieves state-of-the-art performance on both Microsoft Research Asia (MSRA) corpus
and people’s daily corpus, with F1 values of 94.77% and 95.97% respectively.
Keywords: named entity recognition (NER); feature extraction; BERT model; BiLSTM; at‑
tention mechanism; CRF

Citation (IEEE Format): D. Y. Li, Y. F. Tu, X. S. Zhou, et al.,“End-to-end chinese entity recognition based on BERT-BiLSTM-ATT-CRF,”
ZTE Communications, vol. 20, no. S1, pp. 27–35, Jan. 2022. doi: 10.12142/ZTECOM.2022S1005.

1 Introduction

Named entity recognition (NER) is one of the key tech‑nologies in natural language text data processing. Its
main function is to identify specific types of entities
from unstructured text data, such as person names,

place names, organization names and domain-specific words.
At present, NER is widely used in information extraction,
knowledge graph construction, machine translation and intelli‑
gent question answering. The best performance of traditional
methods is based on statistical models, such as hidden Mar‑
kov models (HMM), support vector machines (SVM) and con‑
ditional random fields (CRF). However, these methods need
professional domain knowledge and a large number of human
participations to extract features, which increases the difficul‑
ty of named entity recognition in a specific domain. In recent

years, the state-of-the-art English NER models are mainly con‑
structed by combining deep learning and CRF. For example,
the method of combining long short-term memory (LSTM) with
CRF performs well in NER tasks[1–5].
Compared with English NER, the difficulties of Chinese

NER mainly include the following aspects: 1) Chinese words
have stronger polysemy, and the same words may have different
meanings in different contexts; 2) English text contains space,
initial letter upper and other identifiers to determine the entity
boundary, while Chinese text does not have similar entity
boundary identifiers, which increases the difficulty of entity
boundary identification; 3) Chinese NER tasks usually need to
be combined with Chinese word segmentation and shallow pars‑
ing, and the accuracy of these methods directly affects the effec‑
tiveness and stability of the entity recognition model. In view of
the above problems, many researchers have applied the deep
learning method to the research of Chinese NER, because the
feature extraction of text data through deep learning not only
avoids the tedious manual feature extraction, but also increases
the generalization ability of the model. HAMMERTON et al. [6]
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constructed the basic framework of LSTM-CRF entity recogni‑
tion model. On this basis, CHIU et al. [7] added a convolutional
neural network (CNN) data preprocessing layer to the front end
of the LSTM model, and obtained the F1 value of 88.83% on
comll-2003 corpus; LI et al.[8] constructed the CNN-bidirection‑
al long-term and short-term memory network (BiLSTM) -CRF
named entity recognition model, and achieved significant re‑
sults on the Biocreative II GM and JNLPBA2004 corpora;
LUO et al.[9] embedded the attention mechanism (ATT) on the
basis of the BiLSTM-CRF model, and obtained the F1 value of
91.14% on the Biocreative IV corpus; WU et al. [10] jointly
trained the word segmentation and the CNN-BiLSTM-CRF
model to enhance the recognition ability of the model for enti‑
ty boundary, thereby improving the performance of the model’
s entity recognition; QIN et al.[11] constructed a CNN-BiLSTM-
CRF named entity recognition model combined with feature
templates, and used artificial feature templates to extract local
features of text, which achieved good results on large-scale
network security data; ZHANG et al. [12] proposed an LSTM
model based on a lattice structure, which makes full use of
word and word sequence information to improve the perfor‑
mance of the entity recognition model; WANG et al. [13] used
segmental neural network structure to extract text features and
obtained the F1 value of 92.05% on the Microsoft Research
Asia (MSRA) corpus; LIU et al. [14] embedded the attention
mechanism on the basis of the dense connection (DC) -BiL‑
STM-CRF model, and obtained the F1 value of 92.05% on the
MSRA corpus; LIU et al. [15] constructed a word-character
(WC) -BiLSTM-CRF model, which added word information to
the beginning or end of the whole character to enhance seman‑
tic information, and obtained the F1 value of 93.74% on the
MSRA corpus.
However, there are differences between Chinese characters

and words. The above methods focus on the feature extraction
of characters and words, but ignore the polysemy problem in
Chinese. In order to solve this problem, DEVLIN et al.[16] con‑
structed encoder representations from transformers (BERT)
pre-training language model to obtain the semantic vector of
words, which enhanced the generalization ability of the word
vector model, enriched the syntax and grammatical informa‑
tion in the sentence, and effectively solved the problem of pol‑
ysemy representation of a word. For example, in the sentence

“道可道，非常道 (The Dao/way that can be told is not the
usual Dao/way),” the two“Dao”characters have different
meanings, but in Word2vec[17] and Glove[18], the vector repre‑
sentations of the two“Dao”characters are the same, which is
inconsistent with the objective facts. The BERT model can ob‑
tain the semantic vector of words according to context informa‑
tion, represent the polysemy of words, and enhance the seman‑
tic representation of sentences. In order to automatically ex‑
tract the depth features of Chinese text and solve the problem
of characterizing the polysemy representation, this paper con‑
structs a Chinese NER model based on the BERT-BiLSTM-

ATT-CRF network structure. The model uses the BERT model
to train the word vector based on the context information of a
word, and then inputs the trained word vector sequence into
the BiLSTM-ATT model for further training, to capture the
most important semantic information in the sentence, and fi‑
nally the entity recognition result is marked by the CRF layer.
The experimental results show that the proposed model
achieves state-of-the-art performance on both the MSRA cor‑
pus and people’s daily corpus, with the F1 values of 94.77%
and 95.97% respectively.
The innovations of this paper are mainly as follows:
1) This paper applies the BERT pre-training language mod‑

el to Chinese NER, which can obtain the semantic information
of Chinese words in different contexts according to the context
information of words, which effectively solves the problem of
oversimplification of word vector representation. The BERT
model is obtained by replacing the feature extractor in the EL‑
MO model with a transformer. The experimental results show
that the performance of the entity recognition model is im‑
proved effectively by introducing the BERT model.
2) The attention mechanism is embedded into the BiLSTM

model and construct a BiLSTM-ATT module, which can selec‑
tively give different weights to different words in the text, and
then the context-based semantic association information is
used to effectively make up for the lack of deep neural net‑
work in obtaining local features, so as to highlight the impor‑
tance of specific words to the whole text.
3) In the BERT-BiLSTM-ATT-CRF model proposed in this

paper, the BERT model is only used to obtain the vector repre‑
sentation of the words in the text. The parameters of the model
remain unchanged in the whole training process. The word
vectors trained by the BERT are classified and recognized
through the BiLSTM-ATT-CRF model, which can maintain
the polysemy of words and reduce the training practice param‑
eters.

2 Proposed BERT-BiLSTM-ATT-CRF Model
In recent years, converting traditional named entity recogni‑

tion problems into sequence labeling tasks is the basic idea of
the deep learning model for Chinese NER. The overall struc‑
ture of the proposed BERT-BiLSTM-ATT-CRF model is
shown in Fig. 1. The whole model is divided into three layers:
the BERT layer, BiLSTM-ATT layer and CRF layer. Firstly,
the annotated corpus is represented by the word vector based
on context information through the BERT layer, and then the
word vector is input into the BiLSTM-ATT layer for further
training to obtain the important semantic features in the sen‑
tence. Finally, the output result of the BiLSTM-ATT layer is
decoded by CRF to obtain the tag sequence of the optimal sen‑
tence level, and then extracting and classifying each entity in
the sequence is conducted and classified to complete the task
of Chinese entity recognition.
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Algorithm 1 is the algorithm flow of the BERT-BiLSTM-
ATT-CRF model.
Algorithm 1. The algorithm flow of BERT-BiLSTM-ATT-CRF model
Input: A sentence sequence S, a radical information matrix A.
Output: The entity list Y.
1: Preprocessing the dataset. The output embedding of each
word in the sequence consists of three parts: token embedding
(Et), segment embedding (Es) and position embedding (Ep);
2: The generated sequence vector X = Et⊕Es⊕Ep is input in‑
to bidirectional transformer encoder for feature extraction, and
the sequence vector with rich semantic preferential energy is
obtained;
3: The word vectors generated by BERT training are input into
the BiLSTM-ATT module to obtain the sequence depth fea‑
tures. H = BiLSTM (X ), H' = Attention (H );
4: The probability and loss score of tag sequence y were calcu‑
lated by CRF model;
5: if not converge then

Repeat lines 2–4;
6: end if
7: return the label sequence Y by using the Viterbi algorithm.
2.1 BERT Module
In the field of natural language processing (NLP), word em‑

bedding is used to map a word into a low dimensional space,
which can effectively solve the problem of text feature sparse‑
ness, so that similar words in the semantic space have a closer
distance. Traditional word vector generation methods, such as
one hot, word2vec and Elmo[19], and other pre-trained lan‑
guage models are mostly independent of the context informa‑

tion of words, so it is difficult to accurately represent the poly‑
semy of words. However, the BERT model proposed by JA‑
COB et al. can be used to represent words according to their
context information in an unsupervised way, which can effec‑
tively solve the problem of polysemy representation.
The structure of the BERT model is shown in Fig. 2. The

multi-layer bidirectional transformer[20] is used as the encoder
in BERT model, and each unit is composed of feed-forward
neural network (Feed Forward) and multi-head attention mech‑
anism, so that the representation of each word can integrate
the information of its left and right sides.
As shown in Fig. 2, the key part of the BERT model is the

self-attention mechanism module in the transformer encoder.
The function of the attention mechanism is to calculate every
word in an input sentence to obtain the degree of correlation

▲Figure 1. Overall architecture of BERT-BiLSTM-ATT-CRF model

BERT: bidirectional encoder representations from transformers BiLSTM: bidirectional long-term and short-term memory network CRF: conditional random field

▲ Figure 2. Structure of bidirectional encoder representations from
transformers (BERT) model
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between words in the sentence and then adjust the weight coef‑
ficient matrix to obtain the representation of words. The calcu‑
lation is as follows:
Attention (Q,K,V ) = Softmax ( QKT

dk
)V,

(1)
where (Q,K,V ) is the input word vector matrix, dk is the di‑mension of the input vector, and QKT is the relationship be‑
tween input word vectors.
The calculation of the transformer adopts the multi-head at‑

tention mechanism[20] to project though multiple linear trans‑
formation pairs for enhancing the model ability of focusing on
different positions. The calculation is shown in Eqs. (2)
and (3):
MultiHead(Q,K,V ) = Concat (head1,head2,...,headk )W 0, (2)

head i = Attention (QW Q
i ,KW K

i , VW V
i ), (3)

where W 0 is the additional weight matrix of the model to ob‑
tain different spatial position information. At the same time, in
order to deal with the degradation problem in deep learning,
the residual network and normalization layer are added into
the transformer coding unit. The calculation is as follows:
LN ( xi ) = α × xi - ui

σ2L + ε
+ β
, (4)

FFN (Z ) = max (0,ZW1 + b1 )w2 + b2, (5)
where α and β are learning parameters, and μ and σ are the
mean and variance of the input layer. The representation of
fully connected feedforward network (FFN) is shown in Eq.
(5), where the output of the multi-head attention mechanism is
denoted as Z and b is the bias vector.
2.2 BiLSTM-ATT Module
LSTM[21–22] is a variant of recurrent neural network (RNN).

It can effectively solve the gradient explosion or gradient dis‑
appearance during RNN training. Since the LSTM model can‑
not process context information at the same time, GRAVES et
al. [23] proposed the BiLSTM model, whose basic idea is to ob‑
tain the context information of input sequence through two hid‑
den layers of LSTM. The specific operation is to connect the
output vectors of the two hidden layers of LSTM to generate
the context vector. The structure of LSTM unit is shown in Fig.
3, which consists of input gate, forgetting gate and output gate.
The vector representation of the output of the hidden layer

of LSTM model is defined as follows:
ft = σ (W fxx t + W fhht - 1 + b f ), (6)

it = σ (W ix xt + W ihht - 1 + b i ), (7)

ĉ t = tanh (wcxx t + wchht - 1 + bc ), (8)

ct = ft∗ct - 1 + it∗ĉt, (9)

ot = σ (Wox xt + Wohht - 1 + bo ), (10)

ht = ot∗ tanh (ct ), (11)
where W and b respectively represent the weight matrix and
bias auto vector connecting the two hidden layers; σ is sig‑
moid activation function; x t represents the input vector at thetime t; ft, it and ot represent the input gate, forgetting gate andoutput gate at the time t respectively; ∗ represents the point
multiplication operation, and ht represents the output of LSTMunit at the time t.
The core idea of attention mechanism is to focus on impor‑

tant information at a specific time, while ignoring other non-
important information[24–25]. The integration of attention mech‑
anism and BiLSTM model (Fig. 4) can effectively highlight the

▲Figure 3. Long short-term memory (LSTM) unit structure

▲ Figure 4. Embedding attention mechanism into bidirectional long-
term and short-term memory network (BiLSTM) model
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role of keywords. The purpose of embedding attention mecha‑
nism in the BiLSTM neural network is to selectively give dif‑
ferent weights to different words in the text, and then using
context based semantic association information can effectively
make up for the deficiency of deep neural network in obtain‑
ing local features.
In this paper, the calculation of the attention mechanism

constructed can be summarized as follows:
1) Suppose h i represents the feature vector output from thehidden layer of the BiLSTM model containing the context in‑

formation of word wi; then hi is transformed into ui through thefull connection layer, where ui is defined as follows:
ui = tanh (Whi + b ), (12)

where W and b represent the weight matrix and bias auto vec‑
tor of attention mechanism respectively.
2) The similarity between ui and the context vector u t is cal‑culated, and the normalized weight αi,t is obtained by the Soft‑max function, where αi,t is defined as follows:
αi,t = exp (uTi u t )∑i

exp (uTi u t ), (13)
where αi,t represents the importance of the corresponding wordin the whole sentence; ut represents the contribution of the cor‑responding word to the sentence, which is mainly obtained
through random initialization and training.
3) The hi obtained by each word is multiplied by the corre‑sponding attention weight αi,t to obtain the global vector C ofthe sentence, where C is defined as follows:
C =∑

j = 1

T

ai,th j. (14)
The sentence-level global vector C and the BiLSTM layer

output ht of the target word are combined into a vector [C ; ht ],which is fed to a tanh function as the output of attention layer.
The output zt of the attention layer is defined as follows:
zt = tanh (W [C ; h t ]). (15)

2.3 CRF Module
In the task of entity recognition, the BiLSTM model only ob‑

tains the word vector containing context information, but can‑
not deal with the interdependence between adjacent tags.
Therefore, we use the CRF model[26–27] to obtain an optimal
prediction sequence through the relationship of adjacent tags,
which is used to make up for the shortcomings of the BiLSTM
model. The main operations of the CRF layer are as follows:
1) The parameter of the CRF layer is a (k + 2) × (k + 2)

matrix A. The Aij represents the transfer score from the i-th tagto the j-th tag, and then the previously labeled tags can be
used when labeling a position. The reason for adding 2 is to

add a start state for the beginning of a sentence and a termina‑
tion state for the end of the sentence. If you remember a tag se‑
quence y = ( y1,y2,...,yn ) whose length is equal to the length ofthe sentence, the model scores the tag of sentence x, which is
equal to y. The specific calculation is shown in Eq. (16).
Score( x,y ) =∑

i = 1

n

P i,yi +∑
i = 1

n + 1
Ayi - 1,yi. (16)

Among them, P is the score matrix output by the BiLSTM-
ATT module, and the size of P is n × k, where n is the number
of words and k is the number of tags; Pij is the score of the i-thtag corresponding to the j-th word; A ij is the transfer score ma‑trix, A is the score of tag i transferred to tag j, and the size of A
is k + 2.
2) Obviously, the score of the whole sequence is equal to

the sum of the scores of each position. The score of each posi‑
tion is divided into two parts: one part is determined by the
score matrix P output by the LSTM model and the other is de‑
termined by the transfer matrix A of the CRF model. There‑
fore, the normalized probability can be obtained by the Soft‑
max function as
P ( y|x ) = exp (Score( x,y ) )

∑
y' ∈ Yx

exp (Score( x,y')) , (17)
where x is the true label value, y' is the predicted label value,
and Yx is the set of all possible labels. During the training pro‑cess, the maximum likelihood probability of the correct label
sequence is as follows:
log ( p ( y|x ) ) = S ( x,y ) - ∑

y' ∈ Yx
n

S ( x,y'). (18)
3) Finally, the Viterbi algorithm[28] is used to obtain the se‑

quence with the highest total score of prediction on all se‑
quences, which is taken as the annotation result of the final
entity recognition. The sequence with the highest score is as
follows:
Y * = arg max ( x,y'),( y' ∈ Yx ). (19)

3 Experiments
Our experiments on different datasets show that the pro‑

posed BERT-BiLSTM-ATT-CRF entity recognition model is
effective in different fields. In addition, we compare the exist‑
ing NER models with state-of-the-art performance, and further
verify that our entity recognition model is effective and stable.
3.1 Datasets
In this paper, we mainly use the Chinese annotated the Peo‑

ple’s Daily corpus[29] and MSRA corpus[30] as the experimental
data sets. These two data sets are Chinese evaluation data sets
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in the domestic public news field. They mainly include three
types of entities: person names, place names and organiza‑
tions. In order to ensure the fairness of the comparison, we use
the same data segmentation method as CHEN et al. used[31],
and divide the data into three parts: the training set, verifica‑
tion set and test set. The specific scales of the corpora are
shown in Table 1.
3.2 Data Annotation and Evaluation Metrics
The commonly used labeling modes of NER include BIO (B-

begin, I-inside, O-outside), BIOE (B-begin, I-inside, O-out‑
side, E-end), BIOES (B-begin, I-inside, O-outside, E-end, S-
single), etc. In this experiment, we choose to use the BIO la‑
beling mode, and there are seven prediction labels, which are

“O”,“B-PER”,“I-PER”,“B-ORG”,“I-ORG”,“B-LOC”and
“I-LOC”. In order to evaluate the performance of the proposed
model, the precision (P), recall (R) and F-measure (F) are
used as the evaluation criteria. The definitions of P, R and F
are shown as follows:
P = TP

TP + FP . R =
TP

TP + FN ,

Fβ = ( )β2 + 1 PR
β2P + R ( β2 ∈ [ 0, + ∞ ]) . (20)

Among them, TP is the number of positive samples correct‑
ly predicted; TN is the number of negative samples predicted
correctly; FP is the number of negative samples predicted in‑
correctly; FN is the number of positive samples predicted in‑
correctly. P is the precision rate and R is the recall rate.
3.3 Hyper-Parameter Settings
We select the optimal hyper-parameter values of the model

through model training and consideration of previous work in
the literature. There are two kinds of pre-training language
models: BERT-Base and BERT-Large. Some parameters of
these two models are different. In this experiment, we choose
to use the pre-training language model of BERT-Base. The
model has a total of 12 layers and 768 dimensions of the hid‑
den layer; it adopts a 12-head mode, including 110 million pa‑
rameters. During the training, the maximum sequence length
is set to 128, the size of batch size is 64, the number of hidden
layers of BiLSTM is 200, and the Adam optimizer[32] is used to
select the appropriate learning rate to 0.001 5. In order to pre‑
vent over-fitting of the model, the dropout technology[33] is in‑
troduced into the model and its value is set to 0.5. The specif‑
ic parameter settings are shown in Table 2.
3.4 Experimental Results and Analysis

3.4.1 Compared with Traditional Neural Network
In order to make a more objective evaluation on the perfor‑

mance of the proposed BERT-BiLSTM-ATT-CRF model, we
use the People’s Daily corpus and MSRA corpus to evaluate
the performance of different models, and use the values of P,
R and F1 to evaluate the performance of model entity recogni‑
tion. The specific experimental results are shown in Tables 3
and 4.
As shown in Tables 3 and 4, we compare the proposed

BERT-BiLSTM-ATT-CRF model with the traditional classical
neural network model. Firstly, the experimental results of
LSTM-CRF and BiLSTM-CRF show that the F1 value of the
latter is higher than that of the former on the People’s Daily
corpora and MSRA corpora. The main reason is that LSTM on‑
ly considers the above information, while BiLSTM can obtain
context sequence information by using bidirectional structure
and extract more effective features. Secondly, the experimen‑
tal results of BiLSTM and BiLSTM-CRF show that the F1 val‑
ue of BiLSTM-CRF model increases by 5.04% and 7.99% re‑
spectively on the two corpora after adding the CRF module.
The main reason is that the CRF module can make full use of
the interdependence between adjacent tags while considering
▼Table 3. Test results on People’s Daily corpus

Model
LSTM-CRF
BiLSTM

BiLSTM-CRF
BERT-BiLSTM-CRF

BERT-BiLSTM-ATT-CRF

P/%
84.20
81.08
87.21
96.04
96.28

R/%
80.20
79.21
83.21
95.30
95.67

F1/%
82.00
80.05
85.09
95.67
95.97

ATT: attention mechanism
BERT: bidirectional encoder representations from transformers
BiLSTM: bidirectional long-term and short-term memory network
CRF: conditional random field
LSTM: long short-term memory

▼Table 1. Statistics of datasets
Dataset

People’s Daily
MSRA

Type
Sentence
Sentence

Train
17.6k
46.4k

Dev
0.9k
Null

Test
1.7k
4.4k

MSRA: Microsoft Research Asia corpus
▼ Table 2. Optimal hyper-parameter values of BERT-BiLSTM-ATT-
CRF model

Layer

BERT

BiLSTM

Parameter
Transformer layer number
Hidden layer dimension

Head number
Optimizer
Batch size
Dropout rate
Learning rate

Hidden layer number

Value
12
768
12
Adam
32
0.5

0.001 5
200

ATT: attention mechanism
BERT: bidirectional encoder representations from transformers
BiLSTM: bidirectional long-term and short-term memory network
CRF: conditional random field
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the context information, so as to obtain the global optimal tag
sequence.
At the same time, the results in Tables 3 and 4 show that

the performance of the entity recognition model is improved
when the attention mechanism is added to the BERT-BiLSTM-
CRF model. The main reason is that the attention mechanism
is embedded in the BiLSTM neural network, so that the model
can selectively give different weights to different words in the
text, and then use the context based semantic association in‑
formation to effectively make up for the lack of deep neural
network in obtaining local features.
In order to improve the performance of the Chinese entity

recognition model, some researchers have introduced the
BERT model to preprocess the word vector on the basis of the
BiLSTM-CRF model. The experimental results show that the
F1 values of the BERT-BiLSTM-CRF model on the two corpo‑
ra are 94.74% and 94.21% respectively, which is much higher
than that of the BiLSTM-CRF model on the same corpus. The
main reason is the addition of the BERT model, which can ob‑
tain the semantic vector of the word according to the context
information of the word to represent the polysemy of the word,
so that the generated word vectors can better represent the se‑
mantic information in different contexts, thus enhancing the
generalization ability of the model and improving the perfor‑
mance of the model entity recognition. In this paper, the atten‑
tion mechanism is introduced on the basis of the BERT-BiL‑
STM-CRF model, which effectively highlights the role of key‑
words in sentences, thereby improving the entity recognition
ability of the model. The comparison of the experimental re‑
sults of BERT-BiLSTM-CRF and BERT-BiLSTM-ATT-CRF
shows that after adding attention, the F1 value of the model
obtained by BERT-BiLSTM-ATT-CRF is higher than that of
the former in both corpora, which proves the effectiveness of
the model proposed in this paper.
3.4.2 Comparison with Previous Works
In order to further verify the effectiveness and stability of

the proposed BERT-BiLSTM-ATT-CRF model, we compare it
with the existing advanced models. The results are shown in
Table 5.
As shown in Table 5, the MSRA corpus is used as the data

set to evaluate the performance of the entity recognition mod‑
el. CHEN et al. [31–34] constructed a statistical model using
manual features and character embedding features. The Radi‑
cal-BiLSTM-CRF[35] model uses bidirectional LSTM to extract
the feature vector of the root sequence and then joins it with
the character vector to form the model input, which improves
the performance of model entity recognition. The Lattice-
LSTM-CRF model[12] improves the traditional LSTM unit to
grid LSTM, and then makes full use of the information be‑
tween words and the word order, effectively avoiding the error
of word segmentation and obtaining better results of entity rec‑
ognition. The CNN-BiLSTM-CRF model[10] extracts glyph em‑
bedding with morphological features from each Chinese char‑
acter by CNN, and connects it with the word embedding of se‑
mantic feature information to form the input of the model,
which obtains good results. The WC-LSTM-CRF[15] model uses
word information to strengthen semantic information and re‑
duce the influence of word segmentation errors. The F1 value
reaches 93.74%.
The above-mentioned entity recognition models greatly im‑

prove the value of F1, but the improved models always focus
on the extraction of character and word features and ignore the
problem of polysemy in Chinese. LI et al. [36] and XIE et al. [37]
used the BERT pre-training language model to represent the
vector, which enhanced the generalization ability of the word
vector model and enriched the syntactic and grammatical in‑
formation in the sentence. This model effectively solved the
representation problem of polysemy of a word. In order to fur‑
ther improve the performance of entity recognition model, we
construct the BERT-BiLSTM-ATT-CRF model based on the

▼Table 4. Test results on MSRA corpus
Model
LSTM-CRF
BiLSTM

BiLSTM-CRF
BERT-BiLSTM-CRF

BERT-BiLSTM-ATT-CRF

P/%
83.45
78.72
86.79
94.38
94.52

R/%
80.20
79.21
83.21
94.92
95.02

F1/%
82.00
80.05
85.09
94.65
94.77

ATT: attention mechanism
BERT: bidirectional encoder representations from transformers
BiLSTM: bidirectional long-term and short-term memory network
CRF: conditional random field
LSTM: long short-term memory

▼Table 5 Different models compared on MSRA corpus
Model

CHEN et al. (2006)[31]
ZHANG et al. (2006)[32]
ZHOU et al. (2013)[33]
LU et al. (2016)[34]

Radical-BiLSTM-CRF (2016)[35]
IDCNN-CRF (2017)[36]

Lattice-LSTM-CRF (2018)[12]
CNN-BiLSTM-CRF(2019)[10]
WC-LSTM-pertain (2019)[15]
BERT-IDCNN-CRF (2020)[36]
BERT-BiLSTM-CRF (2020)[37]

HanLP (BERT)[38]
BERT-BiLSTM-ATT-CRF

P/%
91.22
92.20
91.86
NULL
91.28
89.39
93.57
91.63
Null
94.86
94.38
94.79
94.52

R/%
81.71
90.18
88.75
NULL
90.62
84.64
92.79
90.56
Null
93.97
94.92
95.65
95.02

F1/%
86.20
91.18
90.28
87.94
90.95
86.95
93.18
91.09
93.74
94.41
94.65
95.22
94.77

BERT: bidirectional encoder representations from transformers
BiLSTM: bidirectional long-term and short-term memory network
CNN: convolutional neural network
CRF: conditional random field
HanLP: Han Language Processing
IDCNN: Iterated Dilated Convolutional Neural Network
LSTM: long short-term memory
WC: word-character
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research in Ref. [33]. The model can effectively capture the
most important semantic information in the sentence while en‑
suring the polysemy representation of a word. Although the
model proposed in this paper is not different from the model of
BERT-BiLSTM-CRF and BERT-IDCNN-CRF, the F1 value of
the model on the MSRA corpus reaches 94.77%. The experi‑
mental results show that the proposed model achieves state-of-
the-art performance on both the MSRA corpus and People’s
Daily corpus.

4 Conclusions
Traditional named entity recognition methods require pro‑

fessional domain knowledge and a large amount of human par‑
ticipation to extract features. Meanwhile, there are some prob‑
lems in Chinese entity recognition tasks, such as polysemy
and Chinese sentences without entity boundary identifiers.
Firstly, we use the BERT pre-training language model to ob‑
tain the semantic features containing the contextual informa‑
tion of the word, which effectively solves the problem of poly‑
semy representation of a word; Secondly, the classic neural
network model BiLSTM is embedded with the attention mecha‑
nism, which can extract the most important semantics in the
sentence features; Finally, we use the CRF model to obtain an
optimal prediction sequence through the relationship of adja‑
cent tags, which is used to make up for the shortcomings of the
BiLSTM model. In order to verify the effectiveness of the pro‑
posed BERT-BiLSTM-Att-CRF model, the People’s Daily cor‑
pus and MSRA corpus are used as the data sets for model per‑
formance evaluation. Compared with other models, the BERT-
BiLSTM-ATT-CRF model shows the best results on both the
corpora.
The biggest advantage of the BERT-BiLSTM-ATT-CRF

model is that it can conduct pre-training according to the se‑
mantic information of the word context and obtain the word
level features, syntactic structure features and semantic infor‑
mation features of context, which makes the model have better
performance than the other models. At the same time, the at‑
tention mechanism is embedded into the BiLSTM model to en‑
hance the extraction of key information features in sentences.
Combined with CRF, it can take advantage of the interdepen‑
dence between adjacent tags to further improve the ability of
Chinese entity recognition. Our next work plan is to study the
construction method of domain specific NER, and test the per‑
formance and generalization ability of the proposed model in
multi-domain NER tasks.

References
[1] GRIDACH M. Character-level neural network for biomedical named entity rec‑
ognition [J]. Journal of biomedical informatics, 2017, 70: 85–91. DOI: 10.1016/

j.jbi.2017.05.002
[2] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architec‑
tures for named entity recognition [C]//Conference of the North American Chap‑
ter of the Association for Computational Linguistics: Human Language Technol‑
ogies. Association for Computational Linguistics, 2016. DOI: 10.18653/v1/n16-
1030

[3] MA X Z, HOVY E. End-to-end sequence labeling via Bi-directional LSTM-
CNNs-CRF [C]//54th Annual Meeting of the Association for Computational Lin‑
guistics. Association for Computational Linguistics, 2016: 1064–1074

[4] SHIN Y, LEE S G. Learning context using segment-level LSTM for neural se‑
quence labeling [J]. IEEE/ACM transactions on audio, speech, and language
processing, 2020, 28: 105–115. DOI: 10.1109/TASLP.2019.2948773

[5] DONG D Z, OUYANG S. Optimization Techniques of Network Communication
in Distributed Deep Learning Systems [J]. ZTE technology journal, 2020, 26(5):
2-8. DOI：10.12142/ZTETJ.202005002

[6] HAMMERTON J. Named entity recognition with long short-term memory [C]//
Proceedings of the seventh conference on natural language learning at HLT-
NAACL. Association for Computational Linguistics, 2003: 172– 175. DOI:
10.3115/1119176.1119202

[7] CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-
CNNs [J]. Transactions of the association for computational linguistics, 2016, 4:
357–370. DOI: 10.1162/tacl_a_00104

[8] LI L S, GUO Y K. Biomedical named entity recognition based on CNN-BLSTM-
CRF model [J]. Journal of Chinese information processing, 2018, 32(1): 116–
122. DOI: 10.3969/j.issn.1003-0077.2018.01.015

[9] LUO L, YANG Z H, YANG P, et al. An attention-based BiLSTM-CRF approach
to document-level chemical named entity recognition [J]. Bioinformatics, 2017,
34(8): 1381–1388. DOI: 10.1093/bioinformatics/btx761

[10] WU F Z, LIU J X, WU C H, et al. Neural Chinese named entity recognition via
CNN-LSTM-CRF and joint training with word segmentation [C]//The World
Wide Web Conference. ACM, 2019: 3342 – 3348. DOI: 10.1145/
3308558.3313743

[11] QIN Y, SHEN G W, ZHAO W B, et al. Network security entity recognition
method based on deep neural network [J]. Journal of Nanjing university (natu‑
ral science), 2019, 55 (1): 29–40

[12] ZHANG Y, YANG J. Chinese NER using lattice LSTM [EB/OL]. (2018-07-05)
[2020-05-01]. https://arxiv.org/abs/1805.02023

[13] WANG L, XIE Y, ZHOU J S, et al. Fragment level Chinese named entity rec‑
ognition based on neural network [J]. Journal of Chinese information process‑
ing, 2018, 32 (3): 84– 90, 100. DOI: 10. 3969/j.issn.1003-0077.2018.03.012

[14] LIU X J, GU L C, SHI X Z. Named entity recognition based on BiLSTM and at‑
tention mechanism [J]. Journal of luoyang institute of technology, 2019, 29 (1):
65– 70

[15] LIU W, XU T G, XU Q H, et al. An encoding strategy based word-character
LSTM for Chinese NER [C]//Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. As‑
sociation for Computational Linguistics, 2019: 2379–2389

[16] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirec‑
tional transformers for language understanding [EB/OL]. (2018-10-11) [2020-
05-01]. https://arxiv.org/abs/1810.04805

[17] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word rep‑
resentations in vector space [EB/OL]. (2013-09-07)[2021-05-01]. https://arxiv.
org/abs/1301.3781

[18] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word
representation [C]//Conference on Empirical Methods in Natural Language Pro‑
cessing (EMNLP). Association for Computational Linguistics, 2014. DOI:
10.3115/v1/d14-1162

[19] PETERS M E, NEUMANN M, IYYER M, et al. Deep Contextualized Word
Representations [C]//Conference of the North American Chapter of the Associ‑
ation for Computational Linguistics: Human Language Technologies. Associa‑
tion for Computational Linguistics, 2018: 2227– 2237. DOI: 10.18653/v1/
N18-1202

[20] VASWANI A, SHAZEER N, PARMAR N. et al. Attention is all you need [C]//
Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems. NIPS, 2017: 5998–6008

[21] JOZEFOWICZ R, ZAREMBA W, SUTSKEVER I. An empirical exploration of
recurrent network architectures [C]//32nd International Conference on Ma‑

34



End-to-End Chinese Entity Recognition Based on BERT-BiLSTM-ATT-CRF Research Paper

LI Daiyi, TU Yaofeng, ZHOU Xiangsheng, ZHANG Yangming, MA Zongmin

ZTE COMMUNICATIONS
January 2022 Vol. 20 No. S1

chine Learning. JMLR, 2015: 2342–2350
[22] GUO D, ZHENG Q F, PENG X J, et al. Face detection detection, alignment

alignment, quality assessment and attribute analysis with multi-task hybrid
convolutional neural networks [J]. ZTE Communications, 2019, 17(3): 15–22.
DOI: 10.12142/ZTECOM.201903004

[23] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidi‑
rectional LSTM and other neural network architectures [J]. Neural networks,
2005, 18(5/6): 602–610. DOI: 10.1016/j.neunet.2005.06.042

[24] TAN Z X, WANG M X, XIE J, et al. Deep semantic role labeling with self-at‑
tention [EB/OL]. (2017-12-05)[2020-05-01]. https://arxiv.org/abs/1712.01586

[25] SHEN T, ZHOU T Y, LONG G D, et al. DiSAN: directional self-attention net‑
work for RNN/CNN-free language understanding [EB/OL]. (2017-11-20)[2020-
05-01]. https://arxiv.org/abs/1709.04696

[26] LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: proba‑
bilistic models for segmenting and labeling sequence data [C]//18th Internation‑
al Conference on Machine Learning 2001 (ICML 2001). ACM, 2001: 282–289

[27] ZHU Y Y, WANG G X, KARLSSON B F. CAN-NER: Convolutional attention
network for Chinese named entity recognition [EB/OL]. (2019-04-30)[2020-05-
01]. https://arxiv.org/abs/1904.02141

[28] VITERBI A. Error bounds for convolutional codes and an asymptotically opti‑
mum decoding algorithm [J]. IEEE transactions on information theory, 1967,
13(2): 260–269. DOI: 10.1109/TIT.1967.1054010

[29] SI N W, WANG H J, LI W, et al. Chinese part of speech tagging model based
on attentional long-term memory network [J]. Computer science, 2018, 45 (4):
66–70

[30] LEVOW G A. The third international Chinese language processing bakeoff:
word segmentation and named entity recognition [C]//Fifth SIGHAN Workshop
on Chinese Language Processing. Association for Computational Linguistics,
2006: 108–117

[31] CHEN A T, PENG F C, SHAN R, et al. Chinese named entity recognition with
conditional probabilistic models [C]//Fifth SIGHAN Workshop on Chinese Lan‑
guage Processing. Association for Computational Linguistics, 2006: 173–176

[32] ZHANG S X, QIN Y, WEN J, et al. Word segmentation and named entity rec‑
ognition for sighan bakeoff3 [C]//Fifth SIGHAN Workshop on Chinese Lan‑
guage Processing. Association for Computational Linguistics, 2013: 158–161

[33] ZHOU J S, QU W G, ZHANG F. Chinese named entity recognition via joint
identification and categorization [J]. Chinese journal of electronics, 2013, 22
(2): 225–230

[34] LU Y N, ZHANG Y, JI D H. Multiprototype Chinese character embedding [C]//
Tenth International Conference on Language Resources and Evaluation. Asso‑
ciation for Computational Linguistics, 2016: 855-859

[35] DONG C H, ZHANG J J, ZONG C Q, et al. Character-based LSTM-CRF with
radical-level features for Chinese named entity recognition [M]//Natural Lan‑
guage Understanding and Intelligent Applications. Cham, witzerland: Springer

International Publishing, 2016: 239– 250. DOI: 10.1007/978-3-319-50496-
4_20

[36] LI N, GUAN H M, YANG P, et al. Chinese named entity recognition method
based on BERT-IDCNN-CRF [J]. Journal of shandong university (science edi‑
tion), 2020, 55 (1): 102–109

[37] XIE T, YANG J N, LIU H. Chinese entity recognition based on BERT-BiL‑
STM-CRF model [J]. Computer systems & applications, 2020(7): 48–55

[38] HE H. HanLP: Han language processing [EB/OL]. (2020-04-30)[2020-07-01].
https://github.com/hankcs/HanLP

Biographies
LI Daiyi (lidaiyi@nuaa.edu.cn) received his master’s degree from School of com‑
puter and Communication Engineering, Zhengzhou University of Light Industry,
China in 2018. He is studying for a doctor’s degree in the School of Computer
Science and Technology, Nanjing University of Aeronautics and Astronautics,
China. His main research interests are knowledge graphs and big data.

TU Yaofeng received his Ph.D. degree from Nanjing University of Aeronautics
and Astronautics, China. He is a researcher at ZTE Corporation. His research
interests include big data, database and machine learning.

ZHOU Xiangsheng is an expert and senior R&D manager in the AI field of
ZTE Corporation. His research fields mainly include NLP, NAS, training accel‑
eration, etc.

ZHANG Yangming is a software engineer at ZTE Corporation. His research
interests mainly focus on natural language processing, knowledge engineering
and acoustic signal processing.

MA Zongmin received his Ph. D. degree from the City University of Hong
Kong, China and is a full professor with Nanjing University of Aeronautics and
Astronautics, China. His research interests mainly include big data and knowl‑
edge engineering. He has published more than 100 papers in highly cited inter‑
national journals and authored five monographs published by Springer. He is
the Fellow of IFSA and Fellow of IET.

35



ZTE COMMUNICATIONS
January 2022 Vol. 20 No. S1

Research Paper Intelligent Antenna Attitude Parameters Measurement based on Deep Learning SSD Model

FAN Guotian, WANG Zhibin

Intelligent Antenna Attitude ParametersIntelligent Antenna Attitude Parameters
Measurement Based on Deep Learning SSD ModelMeasurement Based on Deep Learning SSD Model

Abstract: Due to the consideration of safety, non-contact measurement methods are be‑
coming more acceptable. However, massive measurement will bring high labor-cost and
low working efficiency. To address these limitations, this paper introduces a deep learning
model for the antenna attitude parameter measurement, which can be divided into an an‑
tenna location phase and a calculation phase of the attitude parameter. In the first phase,
a single shot multibox detector (SSD) is applied to automatically recognize and discover
the antenna from pictures taken by drones. In the second phase, the located antennas’fea‑
ture lines are extracted and their attitude parameters are then calculated mathematically.
Experiments show that the proposed algorithms outperform existing related works in effi‑
ciency and accuracy, and therefore can be effectively used in engineering applications.
Keywords: deep learning; drone; object detection; SSD algorithm; visual measurement;
antenna attitude parameters
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1 Introduction

With the rapid development of communication tech‑nologies, an increasing number of base stations
are built around the world. Antennas work as an
interface between radio waves propagating through

space and electric currents moving in metal conductors. For
providing subscribers with high-quality communication servic‑
es, it is critical to guarantee the speed and stability of network
signals. According to radiation direction, antennas in base sta‑
tions can be roughly divided into three categories: 1) omnidi‑
rectional antennas which have uniform radiation power in the
horizontal direction; 2) directional antennas that have uneven
radiation power in both horizontal and vertical directions; 3)
special antennas which have variable radiation direction de‑
pending on their usages. Among these categories, the direc‑
tional antennas’radiation direction and power are most sus‑
ceptible to the attitude.
To ensure that each base station antenna works properly,

the antenna attitude parameters which determine the electro‑
magnetic coverage of the directional antenna need to be set

appropriately. Sector-shaped antennas are one of the most
common directional antennas, and their attitude parameters
mainly include the pitch angle, the azimuth angle, and the
height position. Among them, the antennas’ suspension
height is fixed. However, the pitch angle and the azimuth an‑
gle of the antennas can be easily changed by external factors
such as wind and sunlight, which further changes the electro‑
magnetic coverage and weakens the stability of signals.
Thus, it is urgent to regularly and efficiently measure the
pitch angle and the azimuth angle of sector-shaped antennas
on the base station.
Existing antenna attitude parameter measurement methods

can be roughly divided into the following two categories.
1) Contact measurement methods. In these methods, engi‑

neering surveyors apply physical tools such as inclinometers
and goniometers to measure the antennas’relevant posture pa‑
rameters and then read the measurements manually. However,
these methods suffer from the following limitations. First,
since antennas are usually installed on high places such as
roofs, hillsides, and the top of telephone poles, these methods
put the engineering surveyors’life at risk; Second, since the
engineering surveyors’wages are high and the measuring
tools are expensive, the cost is high; Last but not the least, the
time to perform these methods is usually relatively long. Actu‑
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ally, nowadays, most countries do not apply these contact
methods anymore.
2) Non-contact measurement using drones. Most base station

antennas are built on high places which usually cannot be
reached easily. With drones being more and more frequently ap‑
plied in complete high-altitude tasks such as shooting, transpor‑
tation, and reconnaissance, they are also applied to assist the
measurement process of the elevation angle and the azimuth an‑
gle of sector-shaped antennas on the base station. Usually,
drones are controlled by smartphones to take pictures of the an‑
tennas, which can be previewed by the operators in real-time[1].
Then, for obtaining the required antennas’attitude parameters,
techniques such as image analysis and three-dimensional recon‑
struction are applied to analyze collected antenna pictures.
Compared with traditional methods, the non-contact measure‑
ment methods have advantages of high efficiency, safety, and
convenience. Thus, they are becoming more and more popular
in both research and industrial communities. However, they al‑
so suffer from shortcomings of relatively low efficiency and the
requirement of manual intervention.

2 Related Work
To address the above disadvantages of existing non-contact

measurement methods, we propose a novel antenna attitude
parameter measurement algorithm, which can be divided into
an antenna localizing phase and an attitude parameter calcula‑
tion phase. In the first phase, a deep learning algorithm called
the single shot multibox detector (SSD) is applied to automati‑
cally identify and localize the antenna from pictures taken by
drones. For locating the antennas in real-time, a lightweight
MobileNet is applied in the SSD for feature extraction and the
ratio of antennas’length to width is used as prior information,
which greatly improves the efficiency. In the attitude parame‑
ter calculation phase, a straight line detection process is per‑
formed on the localized image by applying the line segment
detector (LSD), and the longest straight line is selected as a
feature line. The attitude parameters are then calculated ac‑
cording to extracted feature lines mathematically.
The remaining of this paper is organized as follows. In Sec‑

tion 2, we demonstrate how the proposed antenna attitude pa‑
rameter measurement algorithm works. In Section 3, we report
the experimental results. The paper is concluded in Section 4.

3 Proposed SSD Algorithm
In this part, we will introduce the related work and techni‑

cal details of the two phases of the proposed algorithm.
3.1 First Phase
The first phase of the algorithm is to locate the antenna au‑

tomatically. We propose a deep learning algorithm based on
an SSD network, which can locate the position of the antenna

accurately.
3.1.1 SSD Network
The regression-based object detection algorithm is called

the one-stage detection algorithm. The input image uses a con‑
volutional neural network (CNN) to directly return to the target
category and position. It does not need to go through the te‑
dious process of extracting candidate regions like region-
based convolution neural networks (R-CNN). It is a kind of an
end-to-end efficient object detection algorithm model that
mainly includes You Only Look Once (YOLO) [2] and SSD[3].
The SSD algorithm is an important representative network

model based on regression algorithms. It improves the YOLO
algorithm and also combines related ideas of anchor boxes in
the candidate region algorithm Faster R-CNN. The SSD algo‑
rithm is a great breakthrough in the application of deep learn‑
ing to solve object detection problems. While the SSD algo‑
rithm has greatly improved the detection efficiency, it can bet‑
ter detect small objects and has a certain degree of accuracy.
In essence, the SSD network is a CNN that can directly get

the position, category, and confidence of the detected object
using forward propagation. The basic feature extraction net‑
work that the conventional SSD network uses is c-16[4]. It
mainly extracts feature maps of different scales and uses a se‑
ries of fixed-size candidate bounding boxes to predict the loca‑
tion of the object and the classification confidence of each
bounding box which probably contains the object, and finally
performs a non-maximum suppression (NMS) method to get
the final result.
3.1.2 Mobile-SSD Object Detection Network Model
To fulfill the requirement of automatic intelligent detection,

we optimize the SSD network based on the characteristics of
the antenna object aiming at improving training efficiency and
computing speed of the network. The optimized network can
be better adapted to real-time work. We call the improved net‑
work model in this paper the Mobile-SSD model.
While retaining the overall detection process and end-to-

end characteristics of the SSD network, we improve the net‑
work by using the following strategy: 1) Modify the feature ex‑
traction network; 2) Reduce the network structure’s redundan‑
cy; 3) Add prior information.
The overall processing flow of the improved model is shown

in Fig. 1. The final predicted output of the network is basically
composed of two parts: one is the confidence level of the tar‑
get’s category, and the other is the position coordinates of the
detected target’s bounding box. According to the former, we
can obtain the category of each antenna object detected in the
image. According to the latter, we can obtain the antenna’s
position.
The following improvements and optimizations have been

made to the SSD network structure.
1) Modify the output categories of the network. Objects

37



Research Paper Intelligent Antenna Attitude Parameters Measurement based on Deep Learning SSD Model

FAN Guotian, WANG Zhibin

ZTE COMMUNICATIONS
January 2022 Vol. 20 No. S1

used for antenna attitude measurement are organized into two
categories: antenna side and antenna top. Thus, we only need
to obtain the category and location of these two types of anten‑
na objects from the network’s output. However, the number of
the categories of the original SSD network’s output layer is
21, which is unnecessary for our work. Thus, we modify the
number of the categories to 3 (background, antenna side, and
antenna top). In this way, we can reduce redundancy and im‑
prove detection efficiency.
2) Replace the basic convolutional neural network for fea‑

ture extraction. The original SSD network uses VGG16 as the
basic feature extraction network. Most of its structure is com‑
posed of standard convolutional layers, so it takes a long time
to extract features through convolution operation, and the over‑
all detection efficiency cannot meet the requirement of mobile
object detection which needs high efficiency. Therefore, it is a
key problem to reducing the convolution complexity of the net‑
work and improve the efficiency of the network.
In order to improve the efficiency of feature extraction, we

replace the feature extraction network in the original SSD mod‑
el with a lightweight CNN MobileNet[5], which can complete
image feature extraction through a more efficient convolution
operation. The lightweight CNN network model with deep sep‑
arable convolution is more suitable for mobile or embedded
devices. As shown in Fig. 2, the image detection process of
the MobileNet network model is different from the traditional
deep CNN.
In normal circumstances, the MobileNet model will use a

3×3 convolution kernel for convolution operation. The calcu‑
lation of the convolution in MobileNet can be reduced by
about 8 times compared with the traditional standard convo‑
lution. At the same time, the parameter number of the overall
network is also reduced, so that the complexity of the net‑
work model during the training is reduced. And after com‑
pleting the convolution, MobileNet will convert the convolu‑
tion results into normal distribution by regularization, which
can better avoid the overfitting phenomenon that always oc‑

curs during the training. In this way, the network perfor‑
mance has been greatly improved.
3) Set the aspect ratio of the default box according to the

prior information of the antennas. According to the character‑
istics of the SSD algorithm model, different types of objects
should be accurately detected, which is completed by using
several default boxes with different aspect ratios on the fea‑
ture map. The basic size and shape of the default box are all
subjectively set based on experience. The default aspect ra‑
tios of the original SSD network are 1: 2, 1: 3, and 1, 2, 3.
However, most of the sector antennas are produced with a
unified standard, so the aspect ratio of the side and top of an‑
tennas has been basically determined. Adding the aspect ra‑
tio of antennas as prior information can reduce the detection
interference obviously. Therefore, by collecting antenna pic‑
tures for calculation and statistics, we obtain that the aspect
ratio of the antenna side is 1:4, and the aspect ratio of the an‑
tenna top is 3:1. Then by removing the useless default aspect
ratio and adding the specified aspect ratio of antenna ob‑
jects, we can reduce the interference of useless information
and make the network more targeted and efficient.
3.2 Second Phase
After completing the automatic detection of the location of

the antenna objects by the Mobile-SSD algorithm, the second
phase is the measurement of antenna attitude parameters. The
main process of the measurement algorithm is as follows. First‑
ly, use the LSD straight line detection algorithm to detect and
extract the image straight line from the selected area. And
then according to the length of the straight lines that exist in
the feature detection images, sort the sequence of straight
lines and take the longest straight line as the antenna feature
line. At last, combine the drone’s own parameters to calculate
the azimuth angle and pitch angle. In the following parts, we
will introduce the details of the algorithm for antenna attitude
parameters calculation.

▲Figure 1. Mobile-single shot multibox detector (SSD) object detection
network model

BN: batch normalizationCNN: convolutional neural network ReLU: rectified linear unit

▲Figure 2. Difference between MobileNet and traditional network
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3.2.1 LSD Line Detection Algorithm
In the field of image process, in 1962 the Hough transform[6]

laid the foundation for the detection of line segments and
shapes in images. Subsequently, RAFAEL et al. proposed a
linear detection algorithm LSD[7] based on the Hough trans‑
form, and the accuracy of detection can achieve sub-pixel pre‑
cision. The main difference between the LSD algorithm and
the Hough transform is that the former uses the concept of the
gradient to determine the straight line. The gradient in the se‑
lected area is calculated, and the area which has the same gra‑
dient is regarded as a straight-line segment. The direction of
the line segment is also the same as the gradient average direc‑
tion. Detecting the straight line in the image is implied by
looking for the pixel area in the image with large gradient
changes. The efficiency and effect of the LSD algorithm are
much better than those of the Hough transform, therefore we
use the LSD algorithm to complete extracting the characteris‑
tic line of the antenna object in the determined area.
The specific process of the LSD line detection algorithm

can be summarized as follows[7]:
Algorithm 1. Algorithm of the specific process of the LSD

line detection
Input: the image to be detected I
Output: the line detection result set L
a) Do Gaussian down-sampling on the input image I at a

certain scale, usually scale=0.8.
b) Calculate the gradient of each pixel in the down-sampled

image and the corresponding level-line direction.
c) Pseudo-sort all pixels according to the obtained gradient,

establish the corresponding state sequence table, initially set
all pixels to NOT USED.
d) Traverse all the gradient, change the state in the state se‑

quence table to USED for the points whose value is less than
the threshold ρ, and record it in the table for an update.
e) Take the pixel with the largest gradient in the state table

as the seed point, and set the state to USED.
do:
1. Starting from the seed point, change the state of NOT

USED points that meet the condition of the direction in [k,−k]
around the pixel points to USED.
2. Use the circumscribed rectangle R to enclose all the sat‑

isfying points.
3. Determine whether the density of the homogeneous same-

sex point meets the set threshold. If not, cut the circumscribed
rectangle R into a new circumscribed rectangle, until the den‑
sity reaches the requirement.
4. Calculate the corresponding nondeterministic finite au‑

tomaton (NFA) of the final circumscribed rectangle R.
5. By changing the NFA of R, when NFA(R)≤ε, the rectan‑

gle is considered to be the output line l, and it should be add‑
ed to the line detection result set L. Repeat the algorithm until
the state of all pixels is USED.

3.2.2 Antenna Feature Line Extraction
After the detection by the Mobile-SSD network, in an image

with an antenna object, we will get the coordinate position of
the antenna object, and mark it with a rectangular box. We
call this area the region of interest (ROI). By using the LSD al‑
gorithm introduced in Section 2.2.1, we can detect all straight
lines in the ROI area. In the actual scene of antenna attitude
parameter measurement, the one that can generally represent
the two parameters of the antenna is the longest line segment
on the antenna’s side and top, so we need to select the longest
straight line in the ROI area. We sort by the support domain
line sequence in the region and connect the longest line group
in the same gradient direction to the longest line, and then
mark it in the image as the feature line.
As shown in Fig. 3, the longest red line is the feature line

extracted from the side of the antenna. We use this longest
straight line to represent the antenna’s feature. The subse‑
quent calculation of antenna attitude parameters is based on
the feature line.
3.2.3 Calculate Antenna Attitude Parameters
For the sector antenna, we find that its hanging height, ori‑

entation, and other parameters are basically fixed, and the
main parameters that affect the normal operation of the anten‑
na are the pitch angle and the azimuth angle, which are the pa‑
rameters we need to calculate. The pitch angle is physically
the angle between the object and the horizontal plane; the azi‑
muth angle is the angle between the direction parallel to the
horizontal ground and the true north of the earth.
The schematic diagram of the pitch angle and the azimuth angle

defined in the main three-dimensional space is shown in Fig. 4.
1) The pitch angle of the antenna. In space, the pitch angle α

can be converted to the angle formed by the side rectangle of
the antenna and the horizontal plane in the image taken by the
drone from its front view, which is usually defined as the pitch
angle of the sector antenna. From the plane view, it can be re‑
garded as the angle obtained by rotating the side rectangle of
the antenna object counterclockwise along the horizontal plane.
As shown in Fig. 5, the image plane taken by the drone is

▲Figure 3. Feature line extracted
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G. The projection of the feature line l on the image plane G is
l'. h is a horizontal line, and the projection on the image
plane G is h'. The antenna pitch angle is the angle α between
l and h, and it can be converted into the angle α' between l'
and h'. Suppose l' and h' intersect at point A( x1,y1 ), take apoint B( x2,y2 ) on l' and take a point C( x3,y3 ) on h', and thenthe antenna pitch angle α can be calculated by the following
formula:
α = cos-1

 
AB∙ AC
|| AB × || AC

. (1)
2) The azimuth angle of the antenna. In space, the azimuth

angle β can be converted to the angle between the top rectan‑
gle and the direction of the north pole of the magnetic field in
the image taken by the drone from its top view, which is usual‑
ly defined as the azimuth angle of the sector antenna. From
the plane view, it can be regarded as the angle obtained by ro‑
tating the top rectangle of the antenna target clockwise along
the vertical direction indicated by true north.
According to the drone’s related sensors and GPS position,

we can obtain the drone’s heading angle as θ, and the antenna
azimuth angle β can be calculated by the following formula.
β = (θ + 180)%360 . (2)
The value range of θ and β is [0, 360), where 0 means fac‑

ing true north, 90 means facing true east, 180 means facing
true south, and 270 means facing true west.
To sum up, when we use the SSD algorithm to complete the

antenna object intelligent detection in the image, we will ob‑
tain the classification of the antenna image while locating the
object. When the object is classified as an antenna side, the
corresponding pitch angle parameter is calculated; when the
object is classified as an antenna top, the corresponding azi‑
muth angle parameter is calculated. In this way, we can
achieve an intelligent and automated calculation method that
can reduce the cost of manual measurement.

4 Experiments
In this part, we will present details of the experiment on the

two phases of our algorithm.
4.1 Experiments on First Phase

4.1.1 Standard of Evaluation
The output of an object detection task usually includes the

classification results, the confidence of each classification, the
coordinates of the prediction frame, etc. According to the char‑
acteristics of the output results, precision P and recall R are
selected as the main standards of evaluation.
The precision rate refers to the ratio of the true positive sam‑

ples in the correctly identified samples; the recall rate refers
to the ratio of the correct identification in all positive samples.
It can be calculated mainly through the confusion matrix of
the classification results, as shown in Table 1.
In the process of object detection, judging positive samples

and negative samples is not as simple as the classification
problem, and it needs to be judged according to the classifica‑
tion confidence and threshold of the prediction result. The re‑

▲Figure 4. Pitch angle and azimuth angle

▲Figure 5. Calculation of angles
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sults that indicate that the detection is correct mainly include
the following samples. True positive (TP) is a positive sample,
and the intersection over union (IoU) is greater than the set
threshold; True negative (TN) is a negative sample and the
IoU is greater than the set threshold. On the contrary, false
positive (FP) and false negative (FN) are the corresponding
cases of detection errors. During the experiment in this paper,
the IoU threshold is set to 0.5.
Therefore, the calculation formulas for precision and recall

are defined as follows:
Precision = TP

TP + FP ,
Recall = TP

TP + FN . (3)
In fact, when conducting large-scale experiments, in order

to evaluate the performance of the algorithm more comprehen‑
sively, the average precision (AP) is usually used for measure‑
ment, and the average of all APs of the detection classification
is calculated to get the mean average precision mAP, which is
most commonly used as the standard of evaluation. The mAP
can better prevent some classifications from being too extreme
to weaken others. Therefore, we choose the mAP as our object
detection model.
4.1.2 Experiment Results and Analysis
In the experiment, we use the Mobile-SSD model proposed

in Section 2 and YOLO and SSD models to train and test on
the antenna data set under the same hardware conditions. The
detection objects include the antenna side and the antenna
top.
In the training phase, we collect a total of 1 832 original an‑

tenna images including antennas under different backgrounds
and lighting conditions. What’s more, through data augmenta‑
tion, the total number of images that can be used for training
reaches 3 856. The training epoch of each network model
reached 1×105 times. The convergence speed of the Mobile-
SSD model is fast and stable, which proves the model has
strong adaptability to datasets and has great stability.
In the testing phase, 500 images were selected as the test

dataset. The trained model was applied to detect the antenna
side and the antenna top surface respectively. Table 2 mainly
shows the accuracy of each model. The AP value and the over‑
all mAP value of several algorithms are shown in Table 2 and
Fig. 6.
The experiment results show that the model proposed in the

paper is more accurate compared with the two models of the
YOLO series. This is mainly due to the improvement of the de‑
tection details of the SSD network’s anchor mechanism and
the high efficiency of the candidate frame mechanism. Com‑
pared with the original SSD network, the addition of prior in‑
formation about antennas makes Mobile-SSD more accurate.
In conclusion, the results prove that the improvement strate‑

gy proposed in this paper is feasible and accurate. However,
we find in the experiments that the detection accuracy of the
network decreases when there exist obstacles. The current an‑
tenna object detection network implemented has a good effect
only in identifying unobstructed and intact antennas.
4.2 Experiments on Second Phase

4.2.1 Pitch Angle Measurement Experiment
The main goal of the experiment in this section is to verify

the feasibility and correctness of the proposed scheme for mea‑
suring the pitch angle of the sector antenna. In the experi‑
ment, the sector antenna model is used for indoor measure‑
ment experiments. First, manually adjust the antenna attitude
to obtain different elevation angles and use the inclinometer to
manually read and record them as the reference value of each
group of experiments, and then use the measurement system
to perform measurement calculations through the drone. A to‑
tal of 5 sets of experiments with different pitch angles are per‑
formed. Each group of experiments performed 10 measure‑

▼Table 1. Confusion matrix of the results

Real positive samples
Real negative samples

Predicted Positive Sam‑
ples
TP
FP

Predicted Negative Sam‑
ples
FN
TN

FN: false negative FP: false positive TN: true negative TP: true positive

▼Table 2. Comparison of results of the accurary of each model
Network Structure

YOLO
YOLOV3
original SSD
Mobile-SSD

Antenna Side
78.62%
80.34%
84.34%
87.42%

Antenna Top
74.21%
77.85%
80.52%
84.78 %

MAP
76.42%
79.10%
82.58%
86.18%

mAP: mean average precision SSD: single shot multibox detector
YOLO: You Only Look Once

▲Figure 6. Comparison of results
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ments, and the difference between the obtained measurement
value and the reference value was used as the error value for
analysis.
The experiment results and the error values obtained from

each group of experiments are shown in Fig. 7.
4.2.2 Azimuth Angle Measurement Experiment
The main goal of the experiment in this section is to verify

the feasibility and correctness of the proposed scheme for mea‑
suring the azimuth angle of the sector antenna. In the experi‑
ment, the sector antenna model is used for indoor measure‑
ment experiments. First, manually adjust the antenna attitude
to obtain different azimuth angles, read the parameters using
the mechanical compass and record them as the reference val‑
ue of each experiment. And then use the measurement system
to perform measurement calculations through the drone. A to‑
tal of 5 sets of experiments with different azimuth angles are
performed. Each group of experiments performed 10 times,
and the difference between the obtained measurement value
and the reference value is used as the error value for analysis.
The experiment results and the error values obtained from

each group of experiments are shown in Fig. 8.
4.2.3 Comparison to Existing Schemes
The experiment in this section is to compare the algorithm

proposed in the paper (Algorithm 1) with the existing anten‑

na attitude measurement algorithm, including a non-contact
antenna attitude measurement scheme based on the 3D re‑
construction and rendezvous measurement proposed by
WANG[8] (we refer it as Algorithm 2) and an image antenna
attitude measurement scheme based on the drone’s aerial
photography proposed by ZHOU[9] (we refer it as Algorithm
3). The main experimental method is to manually adjust the
attitude angle of the fixed antenna model and measure the
pitch angle and the azimuth angle using different schemes.
The results are compared and analyzed. The results are
drawn as a line graph for a more intuitive comparative analy‑
sis, which is shown in Figs. 9 and 10.
From the experiment results, the pitch angle error in the mea‑

surement of the scheme in the paper is basically within the
range of 1°, and the azimuth angle error is basically within the
range of 5°. Compared with other methods in the pitch angle ex‑
periment, the difference of the detection error is not large, and
it can meet the standards required by the industry. The perfor‑
mance in the azimuth experiment is much better than Algo‑
rithm 2 which proves the effectiveness of our method. Algo‑
rithm 3 has relatively good measurement accuracy in two exper‑
iments and has a similar error value with Algorithm 1. Howev‑
er, manual intervention is required for antenna location using
Algorithm 3 while Algorithm 1 automatically locates the anten‑
na position through the SSD network. When the hardware can
be guaranteed, Algorithm 1 may have better performance.

▲Figure 7. Result of the pitch angle measurement experiment

▲Figure 8. Result of the azimuth angle measurement experiment

▲Figure 9. Pitch angle measurement comparison

▲Figure 10. Azimuth angle measurement comparison
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5 Conclusions
In this paper, we propose a novel antenna attitude parame‑

ters measurement algorithm, which can be divided into an an‑
tenna location phase and an attitude parameter calculation
phase. Compared with traditional methods, we apply deep
learning algorithms to the measurement, which achieves the
function of automatic positioning of the antenna and reduces
manual intervention in the measurement process. Experiment
results show that the accuracy and efficiency of the proposed
algorithm outperform those of existing methods. In addition,
the measurement accuracy reaches the industry standard,
which shows that the proposed algorithm can be applied in re‑
al applications.
In the future, we will conduct our studies from the following

aspects: 1) optimizing the deep learning detection model to
make it more efficient and accurate; 2) investigating the auto‑
matic cruise of drones based on deep learning; 3) automatical‑
ly identifying whether antennas are affected by external fac‑
tors such as obstruction, damage and bad weather.
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Abstract: Open-set recognition (OSR) is a realistic problem in wireless signal recogni‑
tion, which means that during the inference phase there may appear unknown classes not
seen in the training phase. The method of intra-class splitting (ICS) that splits samples of
known classes to imitate unknown classes has achieved great performance. However, this
approach relies too much on the predefined splitting ratio and may face huge performance
degradation in new environment. In this paper, we train a multi-task learning (MTL) net‑
work based on the characteristics of wireless signals to improve the performance in new
scenes. Besides, we provide a dynamic method to decide the splitting ratio per class to get
more precise outer samples. To be specific, we make perturbations to the sample from the
center of one class toward its adversarial direction and the change point of confidence
scores during this process is used as the splitting threshold. We conduct several experi‑
ments on one wireless signal dataset collected at 2.4 GHz ISM band by LimeSDR and one
open modulation recognition dataset, and the analytical results demonstrate the effective‑
ness of the proposed method.
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1 Introduction

With the rapid development of wireless communica‑tion technology, the wireless spectrum is getting
crowded, especially in the Industrial, Scientific
and Medical (ISM) band which is open to the pub‑

lic and takes no authorization. A large number of wireless
communication signals share the ISM band, such as Wi-Fi,
Bluetooth and ZigBee. These coexisting signals interfere with
each other and may cause performance reduction to the com‑
munication system[1]. The technology of wireless signal recog‑
nition (WSR) is a foundational work to deal with this problem.
The WSR technology can be used to identify the wireless sig‑
nal and hence help to improve the communication system by
choosing a better channel or other strategies.
Traditional algorithms of WSR could mainly be separated

into two groups: likelihood-based and feature-based meth‑
ods[2]. Likelihood-based methods obtain the optimal decision
based on hypothesis testing theory but suffer high computation
complexity[3–4]. Feature-based methods usually extract several
features and employed classifiers to realize signal recognition.
These features are normally chosen using expert’s knowledge.
Although feature-based methods may not be optimal, they are
usually simple to implement, with near-optimal performance,
when designed properly. Feature-based methods heavily rely
on expert’s knowledge, which may perform well on special‑
ized solutions but poor in generality[5–6]. With the increasing
number of wireless signals in the ISM band, communication
systems tend to be complex and diverse. As a result, tradition‑
al feature-based methods used to detect and recognize the
complex signals are confronted with a new dilemma.
In recent years, the method of deep learning has emerged

and achieved great success in the fields of image, speech, text
and so on. Deep learning is an end-to-end approach that can
automatically learn signal representation directly from the
original wireless data without the need for designing expert
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features such as high-order cyclic moments. Inspired by the
advantages of deep learning compared to conventional feature-
based approaches, more and more researchers use deep learn‑
ing methods to solve the problem of WSR. Generally, these
deep learning methods utilize raw data obtained from devices
such as channel state information (CSI) [7–8] and In-phase/
Quadrature (I/Q) data[9–10] as the input of a deep neural net‑
work. However, most of these methods are under a close-set
assumption that the classes in the inference phase all appear
in the training phase, which is unpractical. When facing a real
scene, we have to deal with classes not seen in the training
phase (also known as unknown unknown classes (UUCs) while
KKCs means known known classes[11]). As shown in Fig. 1, six
classes from the modulation recognition dataset[12] are selected
as KKCs during the training phase and all eleven classes are
served as testing samples during the inference phase. It chal‑
lenges the traditional classifiers that they have to predict the
unknown classes as one of the known class. In fact, the UUCs
will be labeled as one of the KKCs with high probability, gen‑
erally. Therefore, the purpose of open-set recognition (OSR) is
to identify unknown classes while correctly classify known
classes[13].
The difficulty of OSR is that there is no knowledge of UUCs

during the training stage. Current OSR methods mainly fall in‑
to two main categories: discriminative methods and generative
methods. The discriminative methods choose an empirical
threshold based on samples of KKCs to determine whether
testing samples belong to KKCs or UUCs[14]. To take full ad‑
vantage of the knowledge of KKCs, a few studies use Extreme
Value Theory (EVT) to model the tail of evaluation scores so
as to determine a better threshold[15–17]. The discriminative

methods are sensitive to thresholds but there is no principle of
how to choose thresholds. Furthermore, the generative meth‑
ods utilize a generative model to generate fake data as
UUCs[18–20]. The fake data is used in the training phase togeth‑
er with the known data, thus the OSR problem is turned into
an N+1 classification problem. In addition, the intra-class
splitting (ICS) method selects a certain percentage of samples
from known data as atypical samples to imitate UUCs. This
method is simple and efficient but also has some drawbacks.
For instance, it is very sensitive to the predefined splitting ra‑
tio and the method of directly using splitting samples as UUCs
is coarse. Besides, the performance of the ICS method de‑
grades significantly in a new environment. We intend to ad‑
dress these drawbacks in this article.
Multi-task learning trains multiple tasks at the same time

and uses shared representations to learn the common ideas be‑
tween a collection of related tasks[21]. There are few literatures
studying multi-task learning (MTL) in OSR[22–24]. Most of
these studies use discriminative methods applied in the image
field and thresholds are calculated based on KKCs. Specifical‑
ly, some researchers train two tasks simultaneously, one for
the traditional close-set classification task and the other for
evaluating testing samples. The evaluation score of the second
task is compared with the threshold to determine whether it
belongs to KKCs or UUCs. Besides, the auxiliary task is used
to force the network to learn more informative features to im‑
prove separation of classes from each other and from KKCs.
Different from the above works, we propose an MTL network
based on the characteristics of communication signals on a
generative method to improve the performance of open-set
classifier.
In this paper, we propose an MTL network with a dynamic

method to determine the splitting ratio for the OSR problem.
The splitting ratio will be used to split known data into two
subsets: inner samples and outer samples, which are applied
to imitate UUCs[25]. The contributions of the proposed method
are described as follow: Firstly, we propose an MTL network
based on the characteristic of wireless signal to improve the
OSR performance in new environment. Secondly, we provide a
dynamic method to automatically select the splitting ratio. Spe‑
cifically, we perturb a sample from the center of one class to‑
ward its adversarial direction and the change point of confi‑
dence scores during this process is used as the splitting
threshold. Thirdly, we perform numerical experiments to dem‑
onstrate the effectiveness of the proposed method.

2 Related Work
This paper studies the OSR problem of wireless signals by

using an MTL network with the dynamic splitting method.
Some studies are related to this work. We will review these
studies in three subsections that present the research of WSR,
OSR, MTL, respectively.▲Figure 1. An example of known known classes (KKCs) and UUCs us‑

ing t-SNE (t-distributed stochastic neighbor embedding)
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2.1 Wireless Signal Recognition
WSR is a fundamental task to enable any form of cross-tech‑

nology ISM band signals’coexistence mechanism. Traditional
feature based algorithms extract features for preprocessing
and then employ them to realize classification. PALICOT et
al. used channel bandwidth and its shape as reference fea‑
tures, which was found to be the most discriminating parame‑
ter among others[5]. KIM et al. used cyclostationary features
that was caused by the periodicity in the signal or in its statis‑
tics like mean and autocorrelation or they can be intentionally
induced to assist spectrum sensing[6]. However, these algo‑
rithms rely heavily on expert’s knowledge to extract features
and are poor in generality.
On the other hand, deep learning based approaches have

shown great advantages in terms of performance and no need
for expert’s knowledge. These approaches utilize different in‑
formation to train deep neural networks. YI et al. used Re‑
ceived Signal Strength Indication (RSSI) values as input data
to train a Convolutional Neural Network (CNN) classifier[26].
The proposed model can achieve an accuracy of over 93% for
detecting the different classes of interference with minimal
computational resources. KIM et al. used k-nearest neighbor
(kNN) and neural networks to train models with CSI values as
the input[7]. The proposed model can classify tens of signal
sources with over 90% accuracy. CROCE et al. adopted the ar‑
tificial neural network, with which a Wi-Fi device could de‑
tect the presence of an LTE-U signal by examining the error
pattern of a received Wi-Fi signal[27]. The proposed method
reached an average accuracy of over 95% in recognizing Zig‑
Bee, microwave, and LTE (in unlicensed spectrum) interfer‑
ence. In Ref. [9], a CNN classifier trained on In-phase/Quadra‑
ture (IQ) vectors and amplitude/phase vectors can recognize
ZigBee, Wi-Fi, and Bluetooth signals and achieve an average
accuracy of more than 98% in a high signal-to-noise ratio
(SNR) scenario. Thus we choose IQ data as the input of deep
neural network considering its rich information. However,
open-set recognition of WSR is rarely studied, which is very
common in real world.
2.2 Open-Set Recognition
The discriminative methods usually identify unknown sam‑

ples based on an empirical threshold. MENDES et al.[14] intro‑
duced an open set version of Nearest Neighbor classifier (OS‑
NN) to deal with the OSR problem based on the traditional
Nearest Neighbor classifier. Some studies used the extreme
value theory (EVT) to model the tail of data so as to determine
a better threshold. BENDALE and BOULT[15] proposed the
OpenMax model by replacing the SoftMax layer with an Open‑
Max layer. Specifically, the training samples’distances from
their corresponding class mean activation vectors (MAV) are
calculated and used to fit the separate Weibull distribution for
each class. SCHEIRER et al. [16] proposed a Weibull-Calibrat‑
ed SVM (W-SVM) model, which combined the statistical

eEVT for score calibration with two separated SVMs. YOSHI‑
HASHI et al. [17] presented the classification-reconstruction
learning algorithm for open set recognition (CROSR), which
utilized latent representations for reconstruction and enabled
robust UUCs’detection without harming the KKCs’classifi‑
cation accuracy. However, these EVT-based methods provide
no principled means of selecting the size of tail for fitting.
The generative methods usually use generative neural net‑

works to generate fake data imitating UUCs. Although such
methods suffer from the difference between the fake data gen‑
erated by generative models and the real data of UUCs, they
are still highly promising to turn an OSR problem into an N+1
classification problem. Counterfactual image generation (OS‑
RCI)[18] adopts an encoder-decoder GAN architecture to gener‑
ate the synthetic open set examples that are close to KKCs,
yet do not belong to any KKCs. JO et al. [19] adopted the GAN
technique to generate fake data as the UUCs’data to further
enhance the robustness of the classifiers for UUCs. The ICS
method[28] used a pretrained close-set network to score known
samples and select atypical samples as samples of UUCs. In
the meantime, a closed regular term was proposed in order to
ensure the accuracy of close-set classification. Although the
ICS method is simple and effective, the selection of atypical
samples is very sensitive to the predefined splitting ratio and
pretrained network. SCHLACHTER et al. [29] proposed a one-
stage method based on alternating between ICS and the train‑
ing of a deep neural network, which removed the need for the
pretrained network but still relied on the predefined splitting
ratio. MIYATO et al.[30] provided a fast way to calculate the ad‑
versarial direction of the current network. Here, the adversari‑
al direction for a given datum is the direction to which the
probabilities of each class change most and it is toward the de‑
cision boundary[31]. Inspired by the DICS method and adversar‑
ial direction, we propose a novel dynamic method to automati‑
cally select the splitting ratio.
2.3 Multi-Task Learning
In recent years, some researchers have tried to use multi-

tasking learning to solve the open-set recognition problem.
PERERA et al.[22] proposed a multi-task network to learn more
descriptive features where an auxiliary classifier performed
self-supervision. The self-supervision task had to determine
which transformation was applied and thus the network need‑
ed to learn structural properties of image content such as
shape and orientation. OZA et al.[23] combined a classifier net‑
work and a decoder network with a shared feature extractor
network within a multi-task learning framework. Reconstruc‑
tion errors from the decoder network were utilized for open-set
rejection and the tail of the reconstruction error distribution
from KKCs was modeled by the EVT to improve the overall
performance. YU et al. [24] proposed a multi-task curriculum
learning framework to perform the task of detecting out-of-dis‑
tribution samples and semi-supervised learning. The in-distri‑
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bution samples in unlabeled data having small out-of-distribu‑
tion scores were selected and used with labeled data for train‑
ing the deep neural networks in a semi-supervised manner.
SONG et al. [32] proposed a framework incorporating GAN with
a multi-task discriminator, which simultaneously discriminat‑
ed category, reality, and client identity of input samples. In
this paper, based on the characteristics of communication sig‑
nals, we propose an MTL network on a dynamic generative
method.

3 Proposed Method
In this section, we first describe the MTL network architec‑

ture of our method, and then we present the dynamic method
to automatically select the splitting ratio. Finally, we demon‑
strate the procedure of the proposed scheme.
3.1 MTL Network
To deal with the OSR problem of WSR, we propose an MTL

network architecture (Fig. 2). Inspired by the idea of ICS, we
use dynamically split samples to imitate unknown classes, and
thus turn the OSR problem into an (N+1)-class signal recogni‑
tion task. However, the split samples are actually from known
classes and their new labels differ from the ground truth.
Hence, a naive neural network with (N+1)-class output will re‑
sult in low closed-set accuracy, because the split samples are
incorrectly predicted. To prevent this situation, we take the
same strategy as that proposed in Ref. [28] of training a closed-
set regularization subnetwork simultaneously which forces the
split samples to be correctly classified. Meanwhile, in order to
mitigate the decline of identification accuracy of a trained net‑

work applied in new scenes, we introduce an auxiliary task of
modulation recognition to learning more generalized expres‑
sion. The MTL network consists of one shared deep neural net‑
work and three individual task-specific layers. The purpose of
the (N+1)-class signal recognition task is to classify all testing
samples, including KKCs and UUCs, where the (N+1)-th class
represents UUCs and is trained with dynamically split sam‑
ples with data augmentation. The modulation recognition task
is designed as an auxiliary task to help learn more generalized
expression. Besides, we keep the N-class signal recognition
task of classifying known classes to guarantee a high closed-
set classification performance. The shared deep neural net‑
work is composed of four residual blocks and two dense lay‑
ers. Each residual block includes two convolutional layers
(Conv), an activation layer with a leaky rectified linear unit
(LReLU), an average pooling (AvgPool) and a batch normaliza‑
tion layer. Each of three individual task-specific layers con‑
tains one output layer. The MTL network takes IQ data sam‑
ples as the input and maps them to a specific category. The di‑
mensions of one sample are 4 096×2. In the inference phase,
only the (N+1)-class signal recognition task is used as an end-
to-end classifier for open-set recognition.
Formally, given a training set of samples xi, where i indi‑cates one of the known N classes, we divide xi into two sub‑sets: inner samples xi, inner and outer samples xi, outer using thedynamic splitting method. The number of outer samples is too

small to learn knowledge about UUCs at the beginning of train‑
ing. To keep the network training in a good direction, we em‑
ploy data augmentation on the outer samples. The augmented
outer samples xi, aug are served as samples of unknown classes

▲Figure 2. Multi-task learning (MTL) network architecture of the proposed method
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with a new label yN + 1 while the inner samples xi, inner are alsoused to train the (N+1) -class signal recognition task. In the
meantime, all xi are used as the input of the N-class signal rec‑
ognition task and modulation recognition task with the original
label yi . The cross entropy loss functions of three tasks are de‑noted as:
LOS = - 1B∑b = 1

B ∑
j = 1

N + 1
y (b)OS ( j )log ( ŷ (b)OS ( j ) ), (1)

LCS = - 1B∑b = 1
B∑

j = 1

N

y (b)CS ( j )log ( ŷ (b)CS ( j ) ), (2)

LMR = - 1B∑b = 1
B∑

j = 1

N'
y (b)MR ( j )log ( ŷ (b)MR ( j ) ), (3)

where B indicates the batch size of one epoch. y (b)OS ( j ) and
ŷ (b)OS ( j ) present the j-th element of a true one-hot type OSR la‑bel and the predicted one of the b-th sample, by which the
augmented outer samples are assigned with UUCs label. Mean‑
while, yCS and yMR are the true signal category label and modu‑lation category label of known classes. Therefore, the loss
function of the shared deep neural network is given as:
L total = αLOS + βLCS + λLMR + ηL2, (4)

where L2 represents the L2-norm regularization term. The totalloss L total is a linear combination of the loss of each task andregularization term. α, β, λ and η indicate the weight of each
item. By training with shared weights, the deep neural network
can learn generalized expression between multiple related
tasks. Consequently, minimizing the first term forces the net‑
work to classify between the inner and outer samples, i. e.,
completing the task of open-set recognition. On the other
hand, minimizing the second and third terms corresponds to
reducing the empirical risk on the known classes. Hence, the
classifier learns to identify unknown classes while correctly
classifying known classes.
3.2 Dynamic Splitting Method
The original ICS method[28] is restricted to the predefined

splitting ratio and pretrained network. The improved version[29]
removes the restriction on the pretrained network but still re‑
lies on the predefined splitting ratio. In this subsection, we
propose a dynamic method to automatically select the splitting
ratio by continuously perturbing samples toward the adversari‑
al direction of current network. An approximate curve of confi‑
dence score and deviation during this process is constructed
and the change point of this curve is acquired and used to de‑
termine the splitting ratio.
First, we select some candidate samples of the class center

by ranking the evaluation confidence score of known samples.

Formally, let f ( x ) represent the predicted probability of a
trained classifier on sample x, which is one-dimensional vec‑
tor after softmax. The confidence score represents the degree
to which the sample belongs to the category. The higher the
score, the more centralized the sample is. It is denoted as:
score = max (f ( x ) ) ⋅ I (foh ( x ) = y) , (5)

where y is the label, foh ( x ) is the predicted result in one-hotand I ( ⋅ ) is an indicator function that returns 1 if the predict‑
ed class is the same as the true label and otherwise returns 0.
We choose several samples per class with the highest score as
candidate samples of the class center. Then we continuously
disturb these samples toward adversarial direction to generate
adversarial samples. Here, the adversarial direction for a giv‑
en datum is the direction to which the probabilities of each
class change most and it is toward the decision boundary[31].
The adversarial direction radvr ( x, ε ) for given ε is calculated by
radvr ( x, ε ) = arg max

r ;  r ≤ ε
DKL (f ( x )  f ( x + r )) , (6)

where DKL indicates Kullback-Leibler divergence and r indi‑
cates slight perturbation constrained by parameter ε; f ( x ) and
f ( x + r ) represent the predicted probabilities of the samples
before and after perturbation. Generally, it is hard to obtain a
closed form for the exact adversarial direction radvr, so we use afast approximation method to compute it the same as in Ref.
[30]. Thereby, the adversarial samples are formulated as
xadv ( δ ) = x + δradvr ( x,ε ) /  radvr ( x,ε ) , (7)

where δ is a parameter that denotes the degree of disturbance
toward the adversarial direction. We continuously vary this pa‑
rameter to generate adversarial samples from the center of a
class to the decision boundary. The scores of adversarial sam‑
ples will be calculated and used to approximate a curve.
As shown in Fig. 3, the horizontal axis shows the degree to

which the sample deviates from the center of one class, and
the vertical axis shows the corresponding confidence score.
When the sample of class is moved away from the center, the
confidence score begins to plummet at some points. Similar to
Ref. [33], the point with the furthest distance from the straight
line connected by two points of the maximum and minimum
confidence scores, is selected as the change point. Thereby,
the sample whose confidence score is lower than the change
point is selected as the outer sample. The change point is im‑
proper and the candidate sample should be discarded if the
confidence score is almost constant within a certain range of
disturbance or the confidence score of change point is less
than 0.9. The former means this sample is hard to achieve the
decision boundary toward current approximate adversarial di‑
rection. For convenience, we abandon this kind of candidate
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samples. The latter usually indicates this sample is not in the
center of class while the confidence scores of the most known
samples are normally higher than 0.9, which will lead to too
many outer samples. To prevent this situation, we also aban‑
don this kind of candidate samples. When the candidate sam‑
ples of one class drop more than a certain number, which
means that the current network may not be trained well, the
samples of this class will not be spilt and all used as inner
samples to retrain the network. After a certain period of train‑
ing, the splitting ratio of the neural network is adjusted by the
method above until the stable performance is achieved.
It may happen that the outer samples are too many or too

few so that the neural network becomes worse and worse or re‑
mains unchanged during the training process. To avoid such a
situation, we choose to set a maximum splitting ratio and per‑
form data augmentation for the segmented samples. In our ex‑
periment, the maximum splitting ratio was set to 0.2 and the
automatically calculated splitting ratio exceeding the thresh‑
old will be limited to 0.2. In Ref. [34], three augmentation
methods based on the characteristics of modulated signals are
considered, i.e., rotation, flip, and Gaussian noise, and remark‑
able results are achieved. We choose to use a combination of
these methods to enhance the outer samples. The enhanced
outer samples are randomly chosen at an appropriate amount.
3.3 Training Procedure
The proposed scheme enhances the generalization ability of

the network by using multi-task learning and dynamically se‑
lects the splitting ratio. The training procedure of the proposed
scheme is summarized in Algorithm 1. The input of this
scheme are samples of known classes including data and multi‑
ple labels. At first, we pretrain the (N+1)-class classifier fOS ( ⋅ )with N-class data x since there is no samples of unknown
classes in the training data. Then we utilize the pretained clas‑
sifier fOS ( ⋅ ) to evaluate all samples as Eq. (5) and a few sam‑

ples with the highest score of each class are selected as candi‑
date samples. We continuously disturb the candidate sample
toward its adversarial direction of the current network and re‑
cord the confidence score to approximate a curve. The change
point of this curve is modified as splitting ratio ρ if it is appro‑
priate. The samples with confidence scores less than ρ are se‑
lected as xouter and the rest are x inner. The data xouter are en‑hanced to xouter, aug using the method of rotation, flip, and Gauss‑ian noise. The fOS ( ⋅ ) is retrained with x inner served as KKCs and
xouter, aug served as UUCs. At the same time, the fCS ( ⋅ ) and fMR ( ⋅ )with x, yCS and yMR are trained to learn a generalized expres‑sion. The loss functions are shown as Eqs. (2), (3) and (4). The
fOS ( ⋅ ) is then used to calculate the splitting ratio ρ again untilthe performance of the open-set classifier is stable. Finally, on‑
ly the (N+1)-class network is used as the open-set classifier.
Algorithm 1. Proposed scheme
Inputs:
x: Data of KKCs
yCS: Signal type label of KKCs
yMR: Modulation type label of KKCs

Output:
fOS ( ⋅ ): Open-Set Classifier

1: Pretrain the (N+1) -class classifier fOS ( ⋅ ) with x and yCS,where all KKCs are used as inner samples
2: Calculate the splitting ratio ρ of each class using the pro‑
posed dynamic method based on fOS ( ⋅ )3: Modify the splitting ratio and spilt x into two subsets: x innerand xouter. Enhance the data xouter to xaug4: Train fOS ( ⋅ ) with x inner and xaug that assigned with new la‑bels. Meanwhile, train fCS ( ⋅ ) and fMR ( ⋅ ) with x, yCS and yMR tolearn a generalized expression.
5: Return to 2 until the stable performance is achieved.

4 Experiment
In the section, we will firstly introduce the two wireless sig‑

nal datasets used in our experiment. The evaluation criteria of
the proposed method are shown next. Then we describe six
baseline methods including four state-of-the-art methods from
the literature and two variations with different configurations
for comparison. Finally, a number of experimental results and
analysis are presented.
4.1 Datasets
A wireless signal dataset collected at 2.4 GHz ISM band by

LimeSDR and a publicly available modulation dataset, which
are used for evaluating the performance of the proposed mod‑
el, are detailed in this section. For convenience, we use WS to
represent the wireless signal dataset and RML to represent the
radio modulation dataset.
The dataset of WS contains 10 kinds of signals that mainly

work on the 2.4 GHz unlicensed frequency band, namely Wi-

▲Figure 3. An example of confidence score approximate curve
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Fi, ZigBee, Bluetooth, microwave oven, analog video monitor,
narrowband digital signal, wideband OFDM signal, game con‑
trol signal, cordless phone signal and wideband FM signals.
We collect the IQ orthogonal data of all classes except for nar‑
rowband digital signals and wideband OFDM signals by using
a LimeSDR receiver to receive wireless signals from different
transmitters. The seven main transmitters are shown in Fig. 4.
From top to bottom and left to right, they are microwave oven,
ZigBee, smartphone, game controller, analog video monitor,
cordless phone and camera. The smartphone is used for trans‑
mitting Bluetooth and Wi-Fi signals. The analog video monitor
together with the camera is used for creating wideband FM sig‑
nals. Besides, the narrowband digital and wideband OFDM
signal are both generated by MATLAB R2019a, where non-
ideal power amplifiers are considered therein. The nonlineari‑
ty of the power amplifier is modeled in a memoryless polyno‑
mial form. Each class is collected at six scenes including line-

of-sight (LOS) and non-line-of-sight (NOS) conditions with dif‑
ferent communication distances between the transmitter and
the LimeSDR receiver. The synthetic signal is added noise
with corresponding degree to simulate six collecting scenes.
Table 1 shows the specific dataset collection settings of differ‑
ent signals including the center frequency, bandwidth and
communication distance between the transmitter and receiver.
Furthermore, each class has 7 500 samples of which there are
1 250 samples for each scenes and the dimensions of each
sample are 4 096×2.
To further verify the performance of the proposed method, we

also test it on one public modulation signal dataset. O’SHEA et
al. [12] provide two different types of the datasets, both of which
are synthetically generated datasets using GNU Radio with
commercially used modulation parameters. Some realistic chan‑
nel imperfections are included in the datasets, including chan‑
nel frequency offset, sample rate offset, and additive white
Gaussian noise along with multipath fading. The“Normal”da‑
taset consists of 11 classes that are all with relatively low infor‑
mation density and are commonly seen in impaired environ‑
ments. These 11 signals can be used for classification tasks at a
high SNR. The“Difficult”dataset contains 24 modulations.
These include a number of high order modulations (QAM256
and APSK256), which are used in the real world in very high
SNR and low-fading channel environments. Detailed specifica‑
tions and generation details of the datasets can be found in Ref.
[12]. The specific modulations along with the parameter list can
be found in Table 2. The dimensions of one sample are 1 024×
2. In this paper, we use 4 096 samples each class of one high
SNR scene in the Normal dataset to train the proposed network
and use samples of different SNR scenes to test the perfor‑
mance of the trained network. We design a related task of dis‑
tinguishing the modulation type of phase modulation, frequency
modulation and amplitude modulation to help the task of modu‑
lation recognition learn richer knowledge.

▼Table 1. WS dataset parameters
Signal Types

Wi-Fi, Bluetooth, cordless phone, wide-band FM,
ZigBee, microwave oven, analog video monitor,
narrow-band digital signal, wide-band OFDM

signal, game control signal

Scenes

Line-of-sight (1, 3, 5, 7 m);
Non-line-of-sight (1, 3 m)

Frequency

2.442 GHz

Bandwidth

20 MHz

Samples per Classes

7 500

OFDM: orthogonal frequency-division multiplexing WS: the wireless signal dataset

▼Table 2. RML dataset parameters

Normal Classes

OOK, 4ASK, BPSK, QPSK, 8PSK,
16QAM,AM-SSB-SC, AM-DSB-SC,

FM, GMSK, OQPSK

Difficult Classes

OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK,
16PSK, 32PSK, 16APSK, 32APSK, 64APSK,

128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC,AM-DSB-WC, AM-
DSB-SC, FM, GMSK, OQPSK

Sample
Length

1 024

SNR Range

-20 dB to
30 dB

Samples
per
Classes

106 496

AM: amplitude modulation
APSK: amplitude phase shift keying
ASK: amplitude shift keying
BPSK: binary phase shift keying

DSB: double sideband
FM: frequency modulation
GMSK: Gaussian filtered minimum shift keying
OOK: on-off keying

OQPSK: offset- quadrature phase shift keying
PSK: phase shift keying
QAM: quadrature amplitude modulation
QPSK: quadrature phase shift keying

RML: the radio modulation dataset
SC: suppressed carrier
SSB: single side band
WC: with carrier

▲Figure 4. Pictures of main transmitters used in WS dataset collection
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4.2 Evaluation
In the field of open-set recognition, there are N known class‑

es and K unknown classes. The concept of openness is to de‑
fine how open the problem is[13]. Larger openness corresponds
to more open problems, while the problem is completely
closed when the openness equals 0. We changed the number
of N and K to get different openness in the following experi‑
ments. The openness is denoted by O, and its definition is the
same as that in Ref. [13] and can be simplified to:
O = 1 - 2N

2N + K . (8)
The close-set accuracy P is used to evaluate the perfor‑

mance of an close-set recognizer and denoted as
P = 1

m∑j = 1
m

I ( )f ( xj ) = yj , (9)
where m is the total number of known samples. xj and yj repre‑
sent the j-th sample of known classes and the corresponding
label. The balanced accuracy (T) is used to evaluate the perfor‑
mance of an open-set recognizer. T balances the accuracy of
unknown classes and unknown classes with the same weights.
Accordingly, it is defined as
T = 12 (P + 1n∑k = 1

n

I ( )f ( xk ) = yk ) , (10)
where n is the total number of unknown samples. xk and yk rep‑
resent the k-th sample of unknown classes and the correspond‑
ing label. In the end, the area under curve (A) is taken into
consideration for keeping consistent with prior studies.
4.3 Baseline Methods
We selected five baseline methods including three state-of-

the-art methods from the literature and two variations with dif‑
ferent configurations for comparison. In the baseline methods,
six categories of both datasets are selected as KKCs during
the training phase and all categories are used in the inference
phase. The networks are basically the same as that in Fig. 2
but with different tasks. The Adam optimizer is adopted
among these methods and the batch size is set to 32. The ratio
of training set to testing set is set to 4:1.
1) Intra-class splitting (ICS): The ICS method was imple‑

mented in Ref. [28]. The pretrained network is similar to the
proposed network but only has the N-class classifier. The net‑
work with the best performance was saved during 50 pretrain‑
ing epochs. The splitting ratio was set to 0.2 for both datasets
and the training epochs of open-set network was set to 100.
2) Dynamic intra-class splitting (DICS): The DICS method

was implemented in Ref. [29]. The hyper-parameters were set
the same as those for ICS.
3) Open-set interference signal recognition using boundary

samples (OSISR): The OSISR method was implemented in
Ref. [25]. The hyperparameter ε used in adversarial-sample
generation was equal to 10-6 and the corresponding learning
rate η and the number of iteration epochs were set to 0.01 and
100. The splitting ratio μ of adversarial samples was selected
as 80 for both datasets.
4) Deep CNN-based multi-task learning for open-set recog‑

nition (MLOSR): The MLOSR method was implemented ac‑
cording to Ref. [23]. We modified the network structure to fit
the sample shape of WS and RML datasets. The hyperparame‑
ters were kept as those in Ref. [23]. The MLOSR method is a
discriminative method and does not have an open-set classifi‑
er. So we just evaluated T and P of this method.
5) ICS with data augmentation (ICS-aug): In order to ex‑

plore the difference between the proposed dynamic splitting
method and the predefined method, we consider ICS-aug the
same as the proposed method to get rid of the impact of data
augmentation. The method of data augmentation consists of ro‑
tation, flip, and Gaussian noise. The hyperparameters were
kept the same as those in Ref. [34].
6) The proposed method without MTL (P-w/o MTL): In or‑

der to explore the importance of using MTL, we considered to
train a network without MTL as a baseline. The difference be‑
tween using or not using MTL is whether modulation recogni‑
tion task is employed. Specifically, the loss function of the pro‑
posed method without MTL is given as:
L total = αLOS + βLCS + ηL2, (11)

where the symbol meanings are the same as those in the pro‑
posed method. The performance of the trained network with
and without MTL was measured in new scenes.
4.4 Basic Experiment
Firstly, the proposed method and the other baselines were

compared on both the datasets. In each experiment on one da‑
taset, we selected six classes as the known classes used in the
training phase and all classes were used in the testing phase
to evaluate the capabilities of network. Each experiment was
repeated three times and the means and standard deviations
(STD) of evaluation were reported.
The results with performance metrics (STD) on both datas‑

ets are shown in Table 3. The proposed method outperforms
four baseline methods and achieves comparable performance
to the proposed method without MTL. Specifically, the pro‑
posed method achieved an improvement of T by more than 4%
on the WS dataset and by more than 7% on the RML dataset
compared with the state-of-the-art method OSISR. The method
of ICS-aug has an increase of T by about 2% than OSISR on
the WS dataset, which indicates that the operation of data aug‑
mentation effectively expands the simulated samples of un‑
known classes. Meanwhile, the proposed method has better
performance of T by about 2% on the RML dataset compared
with ICS-aug, which means that the dynamic method of select‑
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ing the splitting ratio is superior to the predefined method by
automatically selecting the suitable splitting ratio of each
class. Thereby, we argue that the proposed method can auto‑
matically select the appropriate splitting ratio per training pe‑
riod. This means that more precise outer samples are selected
for imitating unknown classes, which leads to better perfor‑
mance of the open-set recognizer on more complex datasets.
P is a measurement of the ability of an open-set recognizer

to correctly classify a sample from known classes while A is a
measurement of the effect of the open-set classifier. As shown
in Table 3, P and A show a similar trend as T and the pro‑
posed method outperforms the other baseline methods except
the method of not using MTL. The values of A are generally
larger than those of P and the proposed method seems to be
more superior for the RML dataset. Besides, the MLOSR meth‑
od achieves the best performance of P, due to its use of a
close-set classifier to classify known classes.
4.5 MTL Experiment
We also compared the performance of the proposed method

using MTL and that not using MTL in new scenes. We used
part of the WS dataset collected in the scene of LOS condition
with 1 m communication distance to train the networks and
the samples of the other five scenes were used to test the per‑
formance. Different kinds of signals in the training set have
different SNRs and the total SNR of the training set ranges
from 20 dB to 50 dB. As for the RML dataset, we use the sam‑
ples with an SNR equal to 8 dB to train the two kinds of net‑
works and test them with other 25 scenes with various SNRs
from −20 dB to 30 dB.
The results of the proposed methods with and without MTL

trained on one scene and tested on other collecting scenes on
two datasets are shown in Figs. 5 and 6. Firstly, on the RML
dataset, the networks trained in the 8 dB SNR scene main‑
tained their performance in higher SNR scenes. Secondly,
the performance declined rapidly with the decrease of SNR
from 4 dB to −4 dB and then tended to be stable on the RML
dataset. While on the WS dataset, T also decreased with the
increase of communication distance and complexity. Thirdly,
the MTL method had a comparable performance with the
method not using it in higher SNR scenes but outperforms in

low SNR scenes on both datasets. Specifically, the proposed
method achieved an improvement of T by about 10% on the
scene“7 m”of the WS dataset and by more than 10% on the
scene“−2 dB”of the RML dataset. Thereby, we argue that
the proposed method can benefit from learning shared ex‑

▼Table 3. Results with performance metrics (STD)
Metrics
T

P

A

Dataset
WS
RML
WS
RML
WS
RML

ICS/%
91.2(±1.1)
88.7(±3.0)
92.3(±0.9)
88.3(±2.9)
95.6(±1.3)
94.1(±3.1)

DICS/%
91.5(±0.7)
88.6(±2.3)
91.6(±0.6)
87.8(±2.1)
96.0(±1.0)
94.0(±2.9)

OSISR/%
93.1(±0.5)
90.3(±2.1)
93.2(±0.4)
91.4(±2.0)
97.2(±0.5)
91.3(±3.4)

MLOSR/%
81.6(±0.3)
80.3(±0.5)
98.8(±0.3)
98.6(±0.4)

-

-

ICS-aug/%
95.0(±0.6)
96.3(±2.1)
95.3(±0.5)
97.5(±2.1)
98.5(±0.9)
98.8(±2.3)

P-w/o MTL/%
97.1(±1.3)
98.0(±2.1)
97.2(±1.4)
98.3(±1.9)
99.3(±1.1)
99.8(±2.2)

Proposed/%
97.2(±0.9)
97.9(±2.3)
97.3(±1.0)
98.2(±2.4)
99.4(±0.8)
99.8(±2.4)

DICS: dynamic intra-class splitting
ICS: intra-class splitting
ICS-aug: ICS with data augmentation

MLOSR: deep CNN-based multi-task learning for open-set recognition
OSISR: open-set interference signal recognition using boundary samples
P-w/o MTL: the proposed method without multi-task learning

RML: the radio modulation dataset
STD: standard deviation
STWS: the wireless signal dataset

▲Figure 5. T of proposed methods with and without MTL on the radio
modulation dataset (RML) dataset

MTL: multi-task learning SNR: signal-to-noise ratio

▲Figure 6. T of proposed methods with and without MTL on the wire‑
less signal dataset (WS) dataset
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pression of a collection of related tasks and improve the per‑
formance in new scenes.
4.6 Openness Experiment
Openness is an important parameter in the problem of OSR,

which describes how open an OSR problem is. The definition
of openness is denoted as in Eq. (8). On the RML dataset, we
used six classes from the Normal dataset to train the network
and used different numbers of unknown classes from the Diffi‑
cult dataset to test. Specifically, the number of KKCs were set
from 1 to 18. In this case, a larger number of UUCs means
larger openness. While on the WS dataset, we used different
numbers of classes as KKCs to train the network and the rest
were served as UUCs on the WS dataset. The number of KKCs
was chosen from 3 to 9 and the corresponding openness was
from 0.32 to 0.03.
The results of the proposed method and two baseline meth‑

ods under different openness on each dataset are shown in
Figs. 7 and 8, respectively. It can be seen that the perfor‑
mance of three methods decreases with the increase of open‑
ness. This is because that the proportion of KKCs and all
classes becomes small so that it is difficult to learn enough
knowledge from KKCs. The accuracy of KKCs stays high but
the accuracy of recognizing UUCs gets lower and T declines.
Besides, the performance of the proposed method outperforms
the other two baseline methods regarding T. As discussed be‑
fore, this improvement is brought by the efficient data augmen‑
tation and better robustness of the proposed method that is
achieved by dynamic splitting ratio determining.
4.7 Data Augmentation Experiment
In order to solve the problem that there are too few outer

samples at the beginning of the training process and to make
the experiment in a good direction, we used the method of da‑
ta augmentation to enhance the split outer samples. The spe‑
cific methods are basically the same as those in Ref. [34]. In
this work, we evaluate the effects of different data augmenta‑
tion methods on the proposed method under different scenes.
Formally, let (I,Q) represent the original IQ orthogonal sig‑

nal, which has a length of 1 024 in the RML dataset, and
( Î, Q̂) represent the augmented signal. According to the rota‑
tion formula in two dimensional planes, the rotated signal is
defined as:
Î = I cosθ - Q sinθ, Q̂ = I sinθ + Q cosθ, (12)

where θ is the angle of rotation, which was set to π/2, π, and
3π/2. The flip of a signal is given as:
Î = ±I, Q̂ = ∓Q. (13)
The two types of flips were both used in this study. We also

augmented signal samples by adding a Gaussian noise. The

standard deviation of the Gaussian noise was set to 0.000 1,
0.000 5 and 0.001. Besides, we also considered a combination
of three methods and only part of the augmented samples were
randomly selected to keep the data balanced.
Figs. 9 and 10 show the T of the proposed method using four

data augmentation methods trained on different scenes of two da‑
tasets. It can be seen that the performance declined under low-
SNR or complex scenes. On both datasets, the hybrid method
achieves the greatest performance at a higher SNR (≥ − 8 dB).
The rotation and flip data augmentation methods achieve sec‑
ondary performance and the noise data augmentation method
performs the worst. Intuitively, adding Gaussian noise reduces
the SNR of the original data sample, which in turn generates
more signal samples with low SNRs. However, the improvement
of the noise method is trivial because the resulting classifica‑
tion accuracy in a low SNR is small. Therefore, the hybrid ap‑
proach was selected for our experiments.

▲Figure 7. T of the proposed, OSISR and ICS methods under different
O on the radio modulation dataset (RML) dataset

▲Figure 8. T of the proposed, OSISR and ICS methods under different
O on the wireless signal dataset (WS) dataset
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5 Conclusions
In this paper, we propose an MTL network with dynamical

splitting ratio determining for wireless signal open-set recogni‑
tion. Specifically, the dynamic method automatically selects
the splitting ratio per class by continuously perturbing class
center samples toward the adversarial direction of the current
network. The change point of a sample’s confidence score dur‑
ing this process is acquired and used to determine the splitting
threshold. After adjusting improper splitting thresholds, the
original samples of KKCs with higher scores than the thresh‑
old are selected as inner samples while the rest are served as
outer samples. We use a hybrid data augmentation method to
enhance the outer samples, which are used to imitate UUCs
later. The network will keep training using the latest splitting
data until the performance is stable. Besides, we simultaneous‑
ly train the original signal classification task and the auxiliary
modulation classification task using the MTL method. By
learning a shared expression of the related tasks, the network
extracts generalized feature and improves the performance
loss when applied in a new environment. We conducted our ex‑

periments on one wireless signal dataset collected at 2.4 GHz
ISM band by LimeSDR and one open modulation recognition
dataset. The results of different experiments show the superior‑
ity of the proposed method over state-of-the-art methods re‑
garding a compromise of closed set accuracy and rejection ca‑
pability. The experiments indicate that the proposed method
still has poor performance in high openness, although it is bet‑
ter than baseline methods. Therefore, future work could focus
on improving the identification accuracy under high openness.
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1 Introduction

In 5G and Internet of Things (IoT) networks, the numberand density of users have increased dramatically and
data transmission has shown explosive growth, leading
to an urgent need for greater capacity and higher spec‑

trum efficiency (SE) [1–3], especially in the uplink transmis‑
sion. For the uplink transmission, a cell user may suffer un‑
acceptably high interference from other users in neighboring
cells, who transmit signals over the same frequency band
with it.
To pursue high SE and mitigate the inter-user interfer‑

ence, the orthogonal frequency division multiple access
(OFDMA) protocol was proposed[4]. OFDMA divides the

whole available channel frequency band into several sub-
channels, so that multiple users can access over different
sub-channels for data transmission simultaneously[5–7]. In
OFDMA-based cellular systems, when the number of sub-
channels is greater than or equal to the total number of users
in all cells, the intra-cell interference can be ignored, since
the sub-channels are orthogonal to each other[8].
However, in wireless cellular networks, due to the limited

spectrum resource, different cells have to share the same
spectrum resource. That is the users in different cells may
transmit signals over the same sub-channel in an OFDMA-
based cellular system so that the inter-cell interference (ICI)
cannot be neglected, especially in the ultra-dense cellular
system, where the radius of the cell is much smaller than tra‑
ditional ones and the distance between the users from differ‑
ent cells is also smaller than traditional ones. Thus, in the
ultra-dense cellular system, the inter-cell interference be‑
comes the major factor of limiting the network capacity and
users’achievable-information rates[9–10]. More importantly,
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as the demand for spectrum resource utilization continues to
increase, the ICI issue is getting much worse[11].
As a matter of fact, the ICI is related to many factors in‑

cluding network topology, frequency reuse methods, multi‑
ple access schemes, and transmit power of users, among
which the power control is shown to be the most significant
way to migrate the ICI.
Moreover, in practical multi-cell networks, it is impossi‑

ble to deploy a centralized power control algorithm due to
the huge signaling overhead on collecting global network in‑
formation from all users, so a lot of related work on multi-
cell ICI suppression by designing distributed power control
can be found in the literature[12–18]. In Ref. [12], an efficient
power allocation approach in OFDMA cellular networks was
proposed, which was based on the non-cooperative game the‑
ory. In Ref. [13], the distributed power control and subcarri‑
er allocation problems in the multi-cell OFDMA system
were studied, and the convergence rule and steady state
characterization were analyzed with the potential game. In
Ref. [14], a power control scheme was proposed to manage
the LTE uplink interference, which was designed based on
data-driven machine learning paradigms. In Ref. [15], two
power control schemes were proposed by adjusting the maxi‑
mum transmit power of femtocell users to suppress the cross-
tier interference at a macro-cell base station (BS). In Ref.
[16], a new interference cancellation scheme was presented
for the uplink multi-channel environment to reduce error
propagation with low backhaul use, and the scheme shares
one real value scaler and hard symbols through backhaul to
minimize residual interference variance. In Ref. [17], the us‑
er’s unique interference-aware open-loop power control (IA-
OPC) scheme was proposed, in which the incoming and out‑
going line interference in the cell were taken into account.
In Ref. [18], the energy efficiency maximization problem
was investigated under uncertain channels, for which an op‑
timal mobile relay selection algorithm and a robust distribut‑
ed power control algorithm were proposed.
However, the aforementioned works on the distributed

power control did not take into account information interac‑
tion, so the achieved performance is limited. As is known,
more efficient strategies can be designed based on more in‑
formation interacted among cells. This paper aims to design
a new distributed power control method for OFDMA-based
multi-cell networks by introducing proper inter-cell interac‑
tion. Note that proper inter-cell interaction means that the
less interaction amount, the better. The contributions of this
paper are summarized as follows.
1) An optimization problem is formulated to maximize the

user supporting ratio for the uplink multi-cell systems by op‑
timizing the transmit power, where the OFDM protocol is
considered for mitigating the intra-cell interference. Differ‑
ent from existing works[12, 17], the goal of which was to im‑
prove the network throughput, this paper adopts the user

supporting ratio as the main performance metric, which is
described as the ratio between the number of users meeting
the quality of service (QoS) threshold and the total number
of users in the cell. If more users are supported, more profits
can be gained by the communication network operators. Dif‑
ferent from the existing work[19]，which examined the exact
downlink average capacity of multi-cell MIMO cellular net‑
work with co-channel interference, this paper aims to design
a simple and low-complexity multi-cell uplink interference
management method.
2) Since the formulated optimization problem is non-con‑

vex and we aim to design a distributed method with low com‑
plexity and a small amount of multi-cell interaction, the
problem cannot be solved by using traditional convex-based
optimization methods. Thus, an interactive power control
scheme is proposed based on the non-cooperative game. In
the presented scheme, a power control scheme based on a
non-cooperative game is introduced, and the predicted trans‑
mit power obtained by the non-cooperative game is shared.
Hence, it has low complexity and a small amount of multi-
cell interaction. Numerical results show that a notable per‑
formance gain is achieved by our proposed scheme com‑
pared with the traditional one without inter-cell interaction.
In our simulation, it shows that the user supporting ratio ob‑
tained by the interactive scheme based on the non-coopera‑
tive game is higher than that obtained by the non-interactive
scheme.
The rest of the paper is organized as follows. In Section 2,

we present the system model and formulate the optimization
problem. In Section 3, we present a distributed interactive
uplink power control algorithm based on non-cooperative
games. Section 4 proves the effectiveness of the proposed
scheme via simulations. Section 5 summarizes the paper.

2 System Model

2.1 Network Model
We consider a multi-cell uplink transmission network,

consisting of M cells/BSs, as shown in Fig. 1. In each cell,
the number of users is N. Each BS in M cells performs up‑
link resource allocation to serve N randomly distributed us‑
ers, with m ∈ {1,2,...,M }, and n ∈ {1,2,...,N }, where the OFD‑
MA is used to avoid interference between users in the cell.
In addition, due to limited spectrum resources, full spec‑
trum multiplexing is used among multiple cells. Due to full
frequency reuse among M cells, users in each cell suffer
from co-channel interference imposed by frequency multi‑
plexing users in other surrounding cells, where the radius of
each cell is R, and the distance between adjacent base sta‑
tions is D.
Assume that the total carrier number is C, and for fair‑

ness, carrier resources are evenly divided, so that N re‑
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source blocks (RBs) with the same number of sub-carriers
are obtained. The size of each RB is L = C/N. Each user is
randomly assigned with an RB, and each sub-carrier could
only be exclusively allocated to one user in each cell. Let B
denote the total bandwidth of the system. Then, the band‑
width of per sub-carrier is Bs = B/C.Let Pm,n denote the transmit power of the n‑th user in the
m‑th cell. It is assumed that the BS can measure the channel
quality from users in the cell to the BS in the uplink trans‑
mission. Therefore, the signal to interference plus noise ra‑
tio (SINR) of the n‑th user’s l‑th subcarrier in the m‑th cell is
γm,n,l = Pm,nhm,n,l

Im,n,l + N0 , (1)
where hm,n,l is the channel power gain of the n‑th user’s l‑thsubcarrier in the m‑th cell, N0 is the power spectral densityof additive white Gaussian noise (AWGN) on the subcarrier,
and Im,n,l is the total interference received by the n‑th user’s
l‑th subcarrier in the m‑th cell.
The expression of Im,n,l is given by
Im,n,l = ∑

i = 1,i ≠ m

M ∑
n = 1

N

αi,n,lPi,nhmi,n,l, (2)

where αi,n,l is a binary variable, and
αi,n,l = 1 if the n‑th user’s l‑th subcarrier inthe i‑th cell interferes with the l‑th subcarri‑
er in the m‑th cell. Otherwise, αi,n,l = 0.
hmi,n,l represents the power gain from n‑th us‑er’s l‑th subcarrier in the i‑th cell to m‑th
BS.
Let Rm,n denote the achievable rate of the

n‑th user in the n‑th cell. Therefore, the
achievable rate of the n‑th user over the al‑
located RB in the m‑th cell is given by
Rm,n =∑

l = 1
Bs log (1 + γm,n,l ). (3)

2.2 Problem Formation
Assume that each user has an expected

minimum rate requirement R thm,n. If Rm,n ≥
R thm,n, the user can get the desired QoS. Oth‑erwise, user’s QoS requirement cannot be
satisfied. In the following, R thm,n is definedas a QoS threshold to measure the QoS of
the user. The goal is to maximize the user
supporting ratio of each cell, which is de‑
fined as the ratio between the number of us‑
ers meeting the QoS threshold and the total
number of users in cell, i.e.,
pm = N

sat
m

N , (4)
where N sat

m denotes the number of users whose achievable
rate meet Rm,n ≥ R thm,n in the m‑th cell.Therefore, the user supporting ratio maximization can be
mathematically expressed by
P1: maxPm,n

pm

s.t. Pmin ≤ Pm,n ≤ Pmax,
∀m ∈ M, ∀n ∈ N, (5)

where Pmax denotes the maximum transmit power of each user,and Pmin denotes the minimum transmit power of each user.The notations used in this paper are summarized in Table 1.

3 Proposed Solution
In this section, a distributed interference suppression

method with low complexity and a small amount of multi-
cell interaction is proposed to maximize the user supporting
ratio of each cell. To reach the goal, the problem is defined
as a non-cooperative game problem, and then a power inter‑
action policy is proposed based on the power update formula
obtained by the non-cooperative game.

▲Figure 1. An illustration of a multi-cell uplink system
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3.1 Formulation as Non-Cooperative Game
Let G = { P,Am,Um (·) } represent the power control gamemodel of multi-cell non-cooperative game, where

P ∈ {1,2,...,M } represents the set of users (i.e., participants)
with co-frequency interference in each cell on the same sub‑
carrier. That is, the cell index m is used to represent the us‑
er m within the cell. Am represents the policy set of user m,
Am = { Pm|Pmin ≤ Pm ≤ Pmax}, and Um (·) denotes the utilityfunction for user m. Each user maximizes its utility value by
adjusting the power. In order to achieve the goal, there may
be malicious competition. Therefore, it is necessary to en‑
sure that the system can obtain a steady-state solution, that
is, the Nash equilibrium solution.
According to Ref. [20], the utility function based on the

non-cooperative game model is defined as
Um (P ) = am γm - γ thm - cmPm, (6)

where γ thm is the SINR threshold of user m on a subcarrier. InEq. (6), the first term considers the minimum SINR require‑
ment of the user, and the second term represents the interfer‑
ence caused by the user to other users. Besides, am and cmare system parameters.
3.2 Nash Equilibrium Solution
The second term of the utility function can be understood

as the price paid by each user to improve SINR. In other
words, users are not only restricted by power. In order to ob‑

tain the optimal solution, first of all, for convenience we
have the following equation:
Im = Im,n,l + N0. (7)
Then, the gradient of the utility function Um (P ) is calcu‑lated according to Eqs. (6) and (7), and we have
∂Um

∂Pm =
1
2 am (γm - γ thm )-

12
hm
Im
- cm. (8)

Let ∂Um

∂Pm = 0, we have

γm = γ thm + ( amhm2cm Im )
2

. (9)
According to Eq. (1), we can obtain that
Pm = Imhm γ

th
m + βm hmIm , (10)

where βm = ( am2cm )
2
.

According to Newton’s iterative formula, we can obtain
the following optimal power iterative formula:
Pm (k + 1) = Pm (k )γm (k ) γ

th
m + βm γm (k )Pm (k ) , (11)

where k denotes the iterative number. According to Ref.
[20], ∀P ≥ P', and then Im ≥ I'm. When I'm ≥ βm /γ thm , the it‑
erative expression Eq. (11) converges to a unique point.
3.3 Distributed Power Control Method
According to Eq. (11), the power of user n in cell m is cal‑

culated, denoted as Pgamem,n ，namely, predictive power. BS in
each cell calculates a ratio rm,n for each user, with rm,n > 0 asfollows.
rm,n = Rm,nR thm,n

, ∀m,n. (12)
The predicted power of users interacts between BSs. That

is, the BS in cell m transmits a power Pgamem,n to all BSs in oth‑er neighboring cells. The predicted power received by user n
in cell m is stored in set Sp.We define F as a binary variable. If half of the predicted
power in set Sp is increased compared with the last time,
F = 1; otherwise, F = 0. Then the current power of user n in
cell m is set as follows，
Case 1: When 0 < rm,n < v1, then Pm,n = Pmin;

▼Table 1. Summary of notations
Notation
M

N

C

B

Bs
L

Pm,n
Pmax
Pmin
Rm,n
R thm,n
γm,n,l
hm,n,l

hmi,n,l

Im,n,l

N0
αi,n,l
pm

Description
Number of BSs or cells
Number of users per cell
Total number of subcarriers

Total bandwidth
Bandwidth of per subcarrier
Number of subcarriers per user

Transmit power of the n‑th user in the m‑th cell
Maximum transmit power of each user
Minimum transmit power of each user

Achievable rate of the n‑th user in the m‑th cell
QoS threshold of the n‑th user in the m‑th cell

SINR of the n‑th user’s l‑th subcarrier in the m‑th cell
Power gain of the n‑th user’s l‑th subcarrier in the m‑th cell

Power gain from n‑th user’s l‑th subcarrier in the i‑th co-frequency
cell to m‑th BS

Total interference received by the n‑th user’s l‑th subcarrier in the
m‑th cell

Power spectral density of AWGN on the subcarrier
A binary number

User supporting ratio of cell m
AWGN: additive white Gaussian noise
BS: base station

QoS: quality of service
SINR: signal to interference plus noise ratio
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Case 2: When v1 ≤ rm,n < v2 and F = 1, then Pm,n =min { Pgamem,n ,P'm,n ), where P'm,n = Pm,n - (Pm,n - Pmin ) ⋅ (1 - rm,n ).Moreover, when v1 ≤ rm,n < v2 and F = 0, then Pm,n = Pgamem,n ;
Case 3: When v2 ≤ rm,n < 1, then Pm,n = min { Pmin,P'm,n ),where P'm,n = Pm,n + (Pmax - Pm,n ) ⋅ (1 - rm,n ); where v1 and v2is two constants, and 0 < v1 < v2 < 1.The problem of maximizing the number of users meeting

the QoS threshold is actually non-convex, and the solution is
very complicated, which means that it is difficult to con‑
verge to the global optimal solution. Therefore, the condition
for ending the algorithm is set to converge or reach the maxi‑
mum scheduling times.

4 Simulation Results
In this section, some simulation results are presented to

verify the performance of our proposed scheduling scheme.
The network scenario shown in Fig. 2 is simulated, where
the number of cells/BSs is 7. The radius of each cell is R =
570 m, and the distance between the BSs is D = 950 m. For
multi-cell OFDM systems, there is no intra-cell interference
within each cell but the inter-cell interference cannot be ne‑
glected since different users from different cells may trans‑
mit signals over the same frequency band[22–23]. The more
cell-edge users, the stronger the inter-cell interference. To
explore the system power control scheme in severe inter-cell
interference scenarios, in this paper, most users
are densely distributed at the edge of each cell in
the simulations. It is assumed that the edge area
of the cell is from 380 to 570 m. Each cell has
190 users randomly and evenly distributed in the
edge area and 10 users randomly and evenly dis‑
tributed in the central area1. According to Ref.
[21], the channel power gain is given by
hm,n,i = -(-55.9 + 38 ⋅ log10 (dm,n,i ) + (24.5 +

1.5 ⋅ fc/925) ⋅ log10 ( fc ) ), (13)
where dm,n,i denotes the distance between the n‑thuser in the m‑th cell and the base station in the
i‑th cell, and fc is the center frequency point and
is set as fc= 2 300 MHz.
The initial power of each user is 17 dBm. The

total bandwidth of the system is 10 MHz, and the
total number of subcarriers is 1 600. The band‑
width of a subcarrier is B = 1/160 MHz, and the
number of carriers allocated to each user is
L = 8. The noise power is N0 = -174 dBm/Hz,

and the maximum and minimum transmit power of the user
is Pmax = 23 dBm and Pmin = 14 dBm. For the m‑th cell, wedefine rm = ( rm,1,rm,2,...,rm,N ). rm is sorted in ascending orderand then r'm is obtained, where r'm = ( r'm,1,r'm,2,...,r'm,N ). v1 is setas r'm,80, and v2 is set as r'm,140. That is, the rate for 40% of us‑ers is less than v1 and 70% of users is less than v2. TheSINR threshold and the QoS threshold of each user are de‑
termined by the distance from the user to the BS and the ini‑
tial power.
In this paper, it is assumed that if a cell user works on the

same frequency band as the neighbor cell user and the dis‑
tance between the neighbor cell user and the BS of the cur‑
rent cell is less than 1.5 R, it causes interference to the user
of the current cell. In addition, since the central user is rela‑
tively far from the BS of the other cell, it is assumed that
there is no interference from the central user.
The user supporting ratio of cell m after using our present‑

ed policy is referred to as cell m-After, with m ∈ {1,2,...,M }.
In order to verify the effectiveness of the proposed policy,
the user supporting ratio of cell m without using our present‑
ed policy (called cell m-Before) is simulated as the bench‑
mark method, with m ∈ {1,2,...,M }.
Fig. 3 depicts the user supporting ratio of each cell versus

scheduling times under a non-cooperative game scheme. It
can be observed that the user supporting ratio of each cell
gradually increases with the scheduling times and finally

1. When the numbers of users in the cells are different, the proposed algorithm can still work well, because the three cases in Section 3.3 can increase the number of users meeting the
QoS requirement on each carrier, which means that the total number of users meeting the QoS requirement will also increase. When the numbers of users in the cells are different, inter-
cell interference received on the same frequency band may change, because the values of v1 and v2 are adaptive and can be adjusted according to specific interference situations, the algo‑rithm is still valid. Without loss of generality, the numbers of users in all cells are assumed to be the same in simulations.

▲Figure 2. Simulation scene
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tends to be flat. Taking the first cell as an example, com‑
pared with no scheduling policy, the user supporting ratio of
the cell increases by 52.8%.
Fig. 4 plots the user supporting ratio of each cell versus

scheduling times under an interactive scheme based on non-
cooperative game. It can be observed that the user support‑
ing ratio of each cell gradually increases with the scheduling
times and finally tends to be flat. Taking the first cell as an
example, the user supporting ratio of the cell is improved by
82.8% compared with the situation when no policy is used.
In addition, the interaction scheme is improved by 30% com‑
pared with the non-interaction scheme. This is because
when an interactive policy is adopted, some interfering users
may choose to reduce transmit power, so that other interfer‑

ing users may increase the communication rate.
Fig. 5 shows the average user supporting ratio of all cells

versus scheduling times under the non-cooperative game
scheme. One can see that the average user supporting ratio
of all cells gradually increases with scheduling times and fi‑
nally tends to be flat. The results with the non-cooperative
game scheduling method are improved by 26.7% compared
with those without the scheduling policy.
Fig. 6 shows the average user supporting ratio of all cells

versus scheduling times under the interactive scheme based
on the non-cooperative game. The average user supporting
ratio under the proposed scheduling method based on non-
cooperative game interaction is improved by 49.7% com‑
pared with the results without the scheduling policy. Be‑

▲ Figure 3. User supporting ratio of each cell under an interactive
scheme based on non-cooperative game
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▲ Figure 4. User supporting ratio of each cell under an interactive
scheme based on non-cooperative game

▲Figure 5. Average user supporting ratio of all cells under the non-co‑
operative game scheme
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sides, the interaction scheme is improved by 23% compared
with the non-interaction scheme.

5 Conclusions
A distributed power control method with low complexity

and a small amount of multi-cell interaction is presented in
this paper. Different from the traditional work, our goal is to
improve the user supporting ratio of each cell. For this pur‑
pose, first, a non-cooperative power control scheme is pro‑
posed, and then, an interactive power control scheme based
on non-cooperative games is proposed. The simulation re‑
sults show that our proposed scheme achieves a notable per‑
formance gain compared with the traditional method without
inter-cell interaction.
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Abstract: Nonlinearity impairments and distortions have been bothering the bandwidth
constrained passive optical network (PON) system for a long time and limiting the develop‑
ment of capacity in the PON system. Unlike other works concentrating on the exploration
of the complex equalization algorithm, we investigate the potential of constellation shap‑
ing joint support vector machine (SVM) classification scheme. At the transmitter side, the
8 quadrature amplitude modulation (8QAM) constellation is shaped into three designs to
mitigate the influence of noise and distortions in the PON channel. On the receiver side,
simple multi-class linear SVM classifiers are utilized to replace complex equalization
methods. Simulation results show that with the bandwidth of 25 GHz and overall bitrate of
50 Gbit/s, at 10 dBm input optical power of a 20 km standard single mode fiber (SSMF),
and under a hard-decision forward error correction (FEC) threshold, transmission can be
realized by employing Circular (4, 4) shaped 8QAM joint SVM classifier at the maximal
power budget of 37.5 dB.
Keywords: passive optical networks; support vector machine; geometrically shaping; con‑
stellation classification; digital signal processing
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1 Introduction

T
he newly emerged application scenarios of access net‑works such as high-definition video streaming servic‑
es, virtual reality and cloud computing are all driving
capacity upgradation for next-generation (NG) pas‑

sive optical networks (PONs), which is highly recognized for
their low cost and flexible advantages. In the meantime, orga‑
nizations like IEEE 802.3ca and ITU-T are working on the
standardization of their 50 Gbit/s/λ−1 PON[1], and feasible
100 Gbit/s solutions are under investigation[2–3]. Low-cost in‑
tensity modulation and direct detection (IM/DD) transmis‑
sion schemes have been demonstrated using 10 Gbit/s trans‑
mitters[3–5]. To achieve high-speed PONs with bandwidth lim‑
ited optics components, advanced modulation formats and ef‑
fective digital signal processing (DSP) are the central re‑
search topics[6]. Electrical/optical duo-binary[3], pulse ampli‑
tude modulation (PAM) [7], and carrierless amplitude and
phase (CAP) modulation[8] have been widely investigated for
a potential low-cost solution for medium- and long reach-

PON systems. Related works suggest that compared with non-
return zero (NRZ), PAM, or orthogonal frequency division
multiplexing (OFDM), the IM/DD based CAP modulation
scheme has great potential in the optical transmission system
for its advantages of low power consumption, high spectrum
efficiency, and low cost[9]. But limited works have been devot‑
ed to researching the applicability of CAP modulation in the
PON system. In this work, we transmit single band CAP mod‑
ulated 8QAM signals in the PON system and provide the per‑
formance analysis.
In fiber-optic communication systems, higher-order QAM

modulation leads to higher spectral efficiency, but at the same
time, inter-symbol interference (ISI) increases, which de‑
mands higher signal-to-noise ratios (SNRs) to ensure reliable
system transmission. However, for legacy optics based high ca‑
pacity PON systems, the bandwidth limitation and fiber dis‑
persion would induce severe distortion to signals and lead to
lower SNR. To overcome impairments, several DSP methods
are introduced including feed forward equalization (FFE), de‑
cision feed-back equalization (DFE)[10], Volterra (VOT) nonlin‑
ear equalization, least-mean-square (LMS) equalization[6], and
digital pre-equalization. Such schemes bring great costs on
computational complexity and are impractical in real deploy‑
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ments. In Refs. [11–12] support vector machines (SVMs) are
used for QAM classification, which is an unusual way to miti‑
gate signal distortions. Moreover, a geometrically shaping tech‑
nology is applied to QAM signals in Ref. [12] to further im‑
prove its resistance to noise. However, the related research is
carried out in a 50 m fiber and visible light system, of which
channel characteristics, such as the bandwidth, dispersion, at‑
tenuation, and origins of nonlinearity, are quite different from
the PON systems. The idea of separating computational pres‑
sures onto transmitter and receiver sides is novel but needs to
be assessed and optimized in the cost-sensitive PON system.
Thus, it is still a challenge to develop a reliable and low-cost
solution to dealing with the linear and nonlinear distortions in
the bandwidth limited high speed PON system.
To cope with this problem, we adopt a cheap scheme em‑

ploying the constellation shaping technique and the linear
SVM. In the data coding phase, constellations are shaped to
decrease possible noise and inter-symbol interference (ISI),
which shares the equalization pressure at the receiver side.
And we choose three kinds of shaped 8QAM constellations to
evaluate their performances in the PON system. On the receiv‑
er side, we propose to utilize an SVM for signal recovering af‑
ter a simple LMS equalization. The signal recovering process
is converted to a classification problem of the constellation
points and SVM can precisely generate decision boundary
though the nonlinear distortion of the constellation is serious.
Simulation results indicate that at the bandwidth of 25 GHz
and an overall bitrate of 50 Gbit/s, system performance can be
significantly improved by the proposed constellation shaping
joint SVM scheme. Over 37 dB link loss budget is achieved.

2 Principle

2.1 SVM for Modified 8QAM Constellation
By redesigning the distribution of the transmitted signal

constellation, geometrically shaping (GS) can improve the min‑
imum Euclidean distance (ED) between constellation points
representing different QAM symbols, thus reducing the effects
of noise. In this section, we evaluate three special-shaped
8QAM constellations among the GS-8QAM signals. Fig. 1
shows the redesigned constellations. The most commonly used
is Circular (4, 4) which divides 8 constellation points into 4
points in the outer ring and 4 points in the inner ring; in addi‑

tion, we also discuss the rectangular distribution and triangu‑
lar distribution.
The ratio of the radius of the outer ring to the radius of the

inner ring (second outer) is 1.932, 1.414 and 1.414 for Circu‑
lar (4, 4), Rectangular and Triangular respectively, which re‑
fers to the amplitude difference between the symbol points in
the three constellations. Apparently, the high amplitude signal
induces severer nonlinear impairments to low amplitude sig‑
nals. Therefore, distortion and compression appear in the con‑
stellation points near the outer ring, which destroys the origi‑
nal separable margin and changes the ED between different
symbols. This phenomenon is harmful to the ED based signal
detection method. We consider the 8QAM constellation set as
M and one received symbol as yi,j, and then the ED based sig‑nal detection result of yi,j can be obtained as:
x̌i,j = arg min

x ∈M | yi,j - x | . (1)
Once the position of yi,j deviates a considerable distancefrom the correct x due to the nonlinear distortion and compres‑

sion, the detection result of Eq. (1) will go wrong in high prob‑
ability. However, by searching suitable received symbols in
different groups as the support vectors, SVM can effectively
find the optimal decision boundaries during groups without
the restriction of constellation setM. In the binary classifica‑
tion case, two groups are supposed to be separable if there ex‑
ists one function which can be expressed as:
f (x ) = wTx + b , (2)

where w and b denote the weight and bias. Given the training
data xi, and yi ∈ {±1} is the associated label, the functionshould satisfy that f(x) > 0, if yi = 1; f(x) < 0, if yi =−1. f(x) = 0acting as a decision boundary toward two regions is called a
hyperplane. Those points satisfying f(x) = ±1 are called sup‑
port vectors and the distance between f(x) = ±1 is called mar‑
gin which equals to 2/||w||. The goal of SVM is to find the opti‑
mal support vector such that the margin is maximized. In other
words, this is an optimization problem.
minimize{w,b }

1
2 ∥ w ∥ 2

subject to yi (wTx i + b) ≥ 1, with i = 1,2,...,n . (3)
For those cases that the data cannot support perfectly linear

separating, slack variable ξi > 0 is introduced:
minimize{w,b }

1
2 ∥ w ∥ 2 + C∑i = 1

n ξi

subject to yp (wTx i + b) ≥ 1 - ξi
ξi ≥ 0,i = 1,2,...,n . (4)

If the training data set is assumed to be linearly insepara‑▲Figure 1. Constellations of shaped 8 quadrature amplitude modula‑
tion (8QAM): (a) Circular (4, 4), (b) rectangular and (c) triangular
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ble, the kernel function can be used to map the origin input
vectors into a linearly separable space. In this paper, shaped
8QAM constellation classifications are treated as linear sepa‑
rable problems. Therefore, the detailed derivation for SVM
classifiers using kernel function is not discussed here and can
be found in Refs. [13–14].
Detection of the shaped 8QAM constellation is an eight-

class classification problem. However, we can build a binary
SVM classifier between each one class and the rest seven
classes, so the results of eight binary SVM classifiers can
solve the eight-class classification problem[15–16]. This prob‑
lem can be trained in many efficient ways[17–18]. After training,
the workflow of an SVM classifier is shown in Fig. 2(a). At
first, the input feature vector is normalized by a linear kernel
function. Then the normalized feature that joints a few support
vectors is fed into the sign(·) function for decision. Finally,
the decision output vector is decoded to get the final classifica‑
tion result.
In fact, the training process of SVM is to find the optimal

support vectors which decide w and the hyperplane. So,
when the shaped 8QAM constellation suffers from distortions
and compression after the transmission in the PON channel,
the position changes of the support vectors will rearrange the
hyperplane. Figs. 2(a) and 2(b) show the influence of nonlin‑
earity on the constellation points and the hyperplanes. In
Figs. 2(a) and 2(b), the blue ball denotes the constellation
points of the outer ring and the red ball denotes the constella‑
tion points of the inner ring. Owing to the nonlinear response
of the channel, the outer ring will be compressed more se‑
verely than the inner ring, which results in the approaching
of the blue ball and the red ball. And then from Fig. 2(a) to
Fig. 2(b), the support vectors picked from the colored balls

will direct the hyperplanes to new positions, while the ED de‑
cision method still holds its eight decision areas on the three
kinds of shaped 8QAM constellations. Points in the com‑
pressed 8-QAM constellation are easy to fall on the wrong
ED decision areas due to annoying noise but the SVM can
figure out the compression and reflect on the changes of deci‑
sion boundaries. As a result, the SVM classifier appears
more stable and accurate than the ED decision method.
2.2 Adaptive Volterra Filter
Volterra filters are commonly used to model nonlinear re‑

sponses and compensate for nonlinear effects in IM/DD sys‑
tems[17]. An n-th order Volterra filter can be expressed as:
y (n ) =∑n = 1

N é
ë∑k1 = 0

M - 1 ...∑kn = kn - 1
M - 1 an (k1,...,kn) x (n -

k1) ...x (n - kn)ùû , (5)
where M represents the memory length and an is the n-th order
Volterra kernels.
The coefficients of the second-order Volterra filter can be

searched by using the LMS adaptive structure in Ref. [18],
and the algorithm is described as
a1 (k + 1) = a1 (k) + μek
[ a2 (k + 1) ] = [ a1 (k) ] + μekxxT
ek = dk - yk , (6)

where μ controls the magnitude of the weight adjustment, x is
the M×1 input vector, [a2] is a coefficients matrix containingthe second-order kernel factors, and ek represents the error. In

▲Figure 2. (a) Flow chart of SVM classifier, (b) nonlinear distortions of the three constellations and (c) their influences on hyperplanes of the SVM
classifier

ED: euclidean distance SVM: support vector machine
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this work, the second-order LMS-based Volterra filter (LMS-
VOT) is implemented to equalize distortions in the received
signal and compare the performance with the SVM based
scheme.

3 Simulation Setup
The PON system simulation is carried out in the VPItrans‑

missionMaker ™ . In the simulation setup shown in Fig. 3(a),
bandwidth limitations, dispersion, and nonlinearity of the fiber
link are considered. At the transmitter (Tx) side, to simulate a
bandwidth-constrained system, the electrical signal generated
from Tx DSP is passed through a 25 GHz low-pass fourth-or‑
der Bessel filter before being input into the electro-absorption
modulator (EAM). On the other branch, the laser generates a
228.33 THz continuous wave (CW) and also inputs it into the
EAM. The transmission characteristic of EAM is determined
by the manual defined nonlinear transfer curve in Fig. 3(b).
From the curve we can find as the input voltage increases, the
modulated output of EAM suffers from saturation influence
and severe nonlinear distortions occur. Then the modulated
optical signal is fed into a bandpass optical filter to generate a
single sideband (SSB) signal. This operation can reduce the
power decay caused by dispersion. For flexible control of the
transmit power, the output signal from the filter is passed
through an optical amplifier. And then the signal is transmit‑
ted to the optical distribution network (ODN) through a 20 km

long standard single mode fiber (SSMF) with an attenuation of
0.32E-3 dB/m. The output signal of the fiber is connected to
two 1×8 splitters to simulate the multi-user network. And the
followed attenuator (ATT) controls the link loss, together with
the budget for other losses in the link, resulting in a total at‑
tenuation of 32 dB from the Tx to the receiver side (Rx). The
current signal from the avalanche photodiode (APD) is con‑
verted into the voltage signal by a transimpedance amplifier
(TIA). Afterward, the voltage signal is analyzed by off-line Rx
DSP. Except for the above-mentioned parameters, the rest sim‑
ulation parameters are summarized in Table 1.
In the Tx DSP, constellation shaped 8QAM symbols are

generated and then oversampled to 4 samples per symbol. The
orthogonal square-root-raised cosine (SRRC) shaping filter
▼Table 1. Simulation parameters

Parameter
Data rate

Signal format
Sample rate
Filter type

Tx signal wavelength
Length of SSMF

Attenuation of SSMF
Dispersion of SSMF

Value
50 Gbit/s

shaped 8QAM CAP
200/3 GHz

Fourth-order Bessel
1 310 nm
20 km

0.32E-3 dB/m
0.35E-5 s/m2

Parameter
Dispersion slope of SSMF
Nonlinear index of SSMF
Responsivity of APD

Dark current multiplied of APD
Avalanche multiplication of APD
Ionization coefficient of APD
Transimpedance of TIA

Input equivalent noise of TIA

Value
0.086E3 s/m3
2.6E-20 m2/W
0.8 A/W
300E-9 A

8
0.4

1 000 Ω
1.1E-6 A

APD: avalanche photodiodeCAP: carrierless amplitude and phaseSSMF: standard single mode fiber
TIA: transimpedance amplifierTx: transmitter

▲Figure 3. (a) Simulation setup of constellation shaped 8QAM PON system, (b) spectrum of the transmitted signal and (c) electro-absorption modula‑
tor (EAM) transmission characteristic
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pairs containing I/Q channels with a variable roll-off are ap‑
plied to get the carrierless amplitude and phase (CAP) modu‑
lated signal. Fig. 3(c) shows the electric spectrum of the modu‑
lated Tx signal. The Rx DSP consists of a synchronization
module, matched SRRC filter pairs to extract the in-band sig‑
nal, a down-sampler that generates one symbol for every four
samples, a simple LMS equalizer, a multi-class SVM classifi‑
er, and a QAM decoder to convert the SVM output symbols in‑
to bitstreams for calculating the bit error ratio (BER) of the re‑
covered signal.
Before launching the performance evaluation, the optimal op‑

erating state of the Tx signal is investigated by measuring the
BER of Circular (4, 4) based 8QAM PON system under differ‑
ent roll-off of the shaping filter, bias of the laser, and linewidth
of the laser. From results shown in Figs. 4(a) and 4(d), as the
roll-off and bias increase, we can see the BER reaches the mini‑
mum and then rises. The maximal BER difference between
LMS and LMS+SVM is 5.4E-3 in Fig. 4(d). Similar results also
can be observed in Fig. 4(b), where the trend suggests that the
PON channel generates different degrees of fiber dispersions ac‑
cording to different wavelengths. To minimize the dispersion ef‑
fect, we fix the wavelength of the laser at 1 310 nm. Although
the linewidth of the laser needs to be as lower as possible, prac‑
tical low-cost applications cannot promise the narrowest line‑
width. So taking the real condition and the above results into ac‑
count, we set the appropriate roll-off, linewidth and bias as 0.7,
1E6 and −1.4. With these fixed parameters we conduct the rest
evaluation work.

4 Results and Analysis
To present the nonlinearity distortion in the simulated sys‑

tem, we investigate the performance of BER versus amplitude
of the Tx signal, as shown in Fig. 5. We fix the bias of the la‑
ser and then adjust the amplitude of the laser driver. As the
amplitude increases, a turning point appears at the bottom of
the performance curves of all the three shaped 8QAM constel‑
lations, showing that larger amplitude not only brings higher
SNR but also induces more severe nonlinearity. From the
three constellations shown in Fig. 5, corresponding to circled-

out optimal points, we can observe nonlinear influences of the
points group at the outer ring is diffuse and their envelopes
are elliptical but not circular. Fig. 6 shows the difference be‑
tween strong nonlinearity and weak nonlinearity in three kinds
of constellations. The warm color area is the place where plen‑
ty of points are converged while the cool color means the
points have diverged. And by comparing the color of the outer
ring with the inner ring, it is clear that those constellations un‑
der strong nonlinearity suffer more distortions. When the non‑

▲Figure 4. BER of Circular (4, 4) versus (a) roll off of shaping filter, (b) wavelength of LD, (c) line width of LD and (d) bias of laser

BER: bit error ratio LMS: least-mean-square SVM: support vector machine

▲Figure 5. BER performance versus amplitude of the Tx signal (a) Cir‑
cular (4, 4), (b) Rectangular and (c) Triangular

BER: bit error ratioLMS: least-mean-square SVM: support vector machine

▲Figure 6. Distortions under different levels of nonlinearity
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linear impairments overcome the SNR gains, the system BER
stops decreasing. By training the LMS equalizer with 2 000
samples of the waveform sequence, the equalized BER perfor‑
mance can be well below the 0.02 FEC threshold. However, as
is shown in Fig. 7, when the constellation distortions occur,
because the ED decision method will not change the decision
boundaries which has been already decided as the GS coding
completes, the performance can be further improved by using
the SVM classifiers to redistribute the hyperplanes between
distorted groups of constellation points. Moreover, the bound‑
ary changes between the SVM classifier and ED decision
method are more obvious in the Circular (4, 4) constellation
than the Rectangular and Triangular constellations. This phe‑
nomenon can be explained by the difference in the ratios men‑
tioned in Section 2, the larger radius ratio of Circular (4, 4) re‑
sults in a larger amplitude difference between the symbols on
the outer ring and the inner ring. Taking the amplitude as the
input of the function in Fig. 3(b), the nonlinear output differs
as the input changes. Thus, if the amplitude difference is
large, the nonlinear response is more apparent. As a result,
Circular (4, 4) suffers more distortions and the hyperplanes ap‑
pear more different from the ED decision boundaries than the
other two constellations.
The results above mainly display the nonlinear influence on

three kinds of constellations. The following part will discuss
the performance of three equalization schemes on the BER,
power budget, and complexity. First, we research the perfor‑
mance of BER versus bandwidth. In Fig. 8, as the bandwidth
limitation increases, three shaped 8QAM signals all demon‑
strate better performance. The BER improvement after using
SVM is remarkable in Circular (4, 4), indicating that it bene‑
fits more from the SVM classifier because of its stronger non‑
linear distortions. The rectangular constellation has the worst
performance in that the BER of the recovered signal is still
greater than the 0.02 FEC threshold, when no equalization is
applied. And the performance ranking of the three equalizers
is LMS-SVM the first, LMS-VOT the second, and LMS the
last. When the bandwidth reaches 25 GHz, the performance of
three kinds of constellations is still unsatisfactory for they do
not reach the hard-decision FEC (HD-FEC) threshold (3.8E-
3). Therefore, we continue to study the BER performance ver‑
sus the receiver sensitivity. Fig. 9 shows that the BER im‑
proves significantly as the received power increases. As the re‑
ceived power reaches −21 dBm, all kinds of constellations sat‑
isfy the HD-FEC threshold. The Triangular appears more suit‑
able for transmitting in the PON channel for it meets the 3.8E-
3 threshold even without the assistance of the SVM classifier.
But the SVM classifier helps Circular (4, 4) reach the lowest
BER among all results at present, which suggests the superior‑
ity of the SVM classifier in the nonlinear circumstance. From
Fig. 9 we can also get the receiver sensitivity as approximately
−21.5 dBm because the BERs approach 3.8E-3 with all three
kinds of constellations at −21.5 dBm Rx power. Therefore, the

received power is fixed to − 21.5 dBm to analyze the power
budget of the PON system in Fig. 10. The curve suggests that
Circular (4, 4) achieves the lowest transmitting power require‑
ments of 3.98 dBm. The BER performance gap between LMS-
SVM and the other three methods is very significant in Circu‑
lar (4, 4), which is explained by the larger radius ratio and
thus more severe distortions. For Rectangular and Triangular,
the transmitting power should increase to 10.79 dBm and 8.75
dBm separately so that the BERs can meet the HD-FEC
threshold. It is meaningful that the Circular (4, 4) joint LMS-

▲Figure 7. The classification results of SVM and ED decision: (a) Cir‑
cular (4, 4), (b) Rectangular and (c) Triangular

ED: Euclidean distance SVM: support vector machine

▲Figure 8. BER performance versus bandwidth limitation of fiber sys‑
tem: (a) Circular (4, 4), (b) Rectangular and (c) Triangular

BER: bit error ratioBW: BandwidthLMS: least-mean-square
SVM: support vector machineVOT: Volterra

▲Figure 9. BER performance versus received power: (a) Circular (4,
4), (b) Rectangular and (c) Triangular

BER: bit error ratioLMS: least-mean-square Rx: receiverSVM: support vector machine
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SVM solution has saved at least 4.77 dB of input power com‑
pared with the solutions transmitting the other two constella‑
tions. Due to fiber nonlinearity impairments, as the fiber input
power increases, the BER performance of all of the three solu‑
tions is getting worse. The same maximum power budget of
37.52 dB is achieved after 20 km SSMF in all three solutions.
In Figs. 9 and 10 we can also find that the Triangular constel‑
lation performs the best if all three constellations are just
equalized by LMS, which may draw interest if the extremely
low complexity in PON system is required.
Furthermore, we make a comprehensive complexity compar‑

ison of the three equalization methods and the computational
costs are listed in Table 2 in terms of the multiplications and
additions. The computational complexity differs at the training
stage and the prediction stage because the training processes
contain extra weights updating procedure. The LMS and the
LMS-VOT equalizers process the waveform of the Rx signal
while the SVM classifier deals with the signal constellations.
So, the complexity of SVM depends on different parameters
with the LMS and LMS-VOT algorithms. In Table 2, T1 is thelength of the training waveform sequence for LMS and LMS-
VOT, T2 is the number of the training symbols for SVM, Ns isthe number of support vectors, d is the dimension of classifi‑
cation results, and M1 and M2 refer to the tap numbers of thefirst order and the second order adaptive filter. In this simula‑

tion, T1 = 2 000, T2 = 800, d = 8, M1 = M2 = 15, and Ns is avariable that varies as the hyperplanes adjust. Since in 8QAM
constellations only a few points satisfy f(x) = ±1 in Eq. (2) and
most of the constellation points locate far from the hyperplane,
the typical value of Ns is much smaller than T2, approximately10% of T2. Taking a specific value Ns = 80 into account, thecomputational complexity of SVM is O (512 640) while the
LMS-VOT algorithm contains 754 000 additions and 994 000
multiplications at the training stage. It needs to be addressed
that the LMS-VOT just uses the first and the second order
Volterra kernels. Further increasing the order of kernels will
bring unacceptable computational costs for the PON system.
After training every time in the prediction procedure, the com‑
plexity of the proposed SVM is O (640), the same level as the
LMS-VOT algorithm that makes 136 additions and 255 multi‑
plications. The above analysis suggests that by limiting the
number of the training symbols, the computational cost of the
proposed linear SVM, together with the LMS equalizer, is well
controlled at both stages compared with the classic LMS-VOT
adaptive filter. Above all, the proposed LMS-SVM scheme
promises better BER performance at a well-controlled compu‑
tational complexity for the PON system.

5 Conclusions
Nonlinearity impairments and distortions have been bother‑

ing the bandwidth constrained PON system for a long time and
limit the development of capacity in the PON system. To miti‑
gate impairments accumulated in optical components and
PON channels, we propose a low computational complexity
and efficient constellation shaped 8QAM joint SVM scheme.
On the transmitter side, three kinds of shaped 8QAM constel‑
lations are generated to resist the influence of noise and distor‑
tions. On the receiver side, simple multi-class linear SVM
classifiers are utilized to replace complex equalization meth‑
ods. The hyperplane generation process of SVM and the non‑
linear influence on hyperplane are discussed to explain why
SVM is superior to the Euclidean distance decision method.
Simulation results show that with the bandwidth of 25 GHz,
overall bitrate of 50 Gbit/s, and under hard-decision FEC
threshold, transmission can be realized by employing Circular
(4, 4) shaped 8QAM joint SVM classifier at the maximum pow‑

▼Table 2. Computational complexity

Methods
LMS

LMS-VOT

SVM [19]

Training
Additions

(M1 + M1 + 1)T1
(2M1 +

M2 ( )M2 + 1
2+M2 2 + 2)T1

O (Ns 2 + NsdT2 )

Multiplications
(M1 + M1 + 1)T1
(2M1 + M2 (M2 + 1)
+M2 2 + 2)T1

Prediction
Additions
M1

M1 +
M2 ( )M2 + 1

2 + 1
O (Nsd )

Multiplications
M1

M1 + M2 (M2 + 1)

M1 is the tap number of the linear part, M2 is the tap number of the nonlinear part, T1 is the length of the training sequence, T2 is the number of the training symbols, Ns is the number ofsupport vectors and d is the dimension of classification.
LMS: least-mean-square SVM: support vector machine VOT: Volterra

▲Figure 10. BER performance versus fiber input power: (a) Circular
(4, 4), (b) Rectangular and (c) Triangular

BER: bit error ratioLMS: least-mean-square SVM: support vector machineVOT: Volterra
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er budget of 37.5 dB. And at least 4.77 dB input power differ‑
ence occurs between Circular (4, 4) and the other two constel‑
lations by using SVM, which indicates the Circular (4, 4)
shaped 8QAM joint SVM classifier is more suitable to be
transmitted in the PON system with lower input power and
less nonlinear distortions.
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Abstract: In the new radio (NR) access technology, non-terrestrial networks (NTN) are intro‑
duced to meet the requirement of anywhere and anytime connections from the world market.
With the introduction of NTN, the NR system is able to offer the wide-area coverage and en‑
sure the service availability for users. In this paper, the general aspects of NTN are intro‑
duced, including the NTN architecture overview, the impact of NTN on next-generation radio
access network (NG-RAN) interface functions, mobility scenarios and other NTN related is‑
sues. The current progress in 3GPP Release 17 is also provided.
Keywords: NR; NTN; satellite; payload
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1 Introduction

In a non-terrestrial network (NTN), the satellite or airbornevehicle is able to perform as either a relay node or a base
station in the wireless communication system. The NTN
can provide much larger area coverage than a traditional

terrestrial network; in addition, the NTN is able to ensure the
connectivity in regions where current terrestrial networks are
difficult or costly to cover, such as airplanes, vessels and re‑
mote rural areas[1–2]. Therefore, the NTN could be an appro‑
priate solution to complementing the current terrestrial net‑
work to provide the service for users in the specific regions. In
January 2020, the 3rd Generation Partnership Group (3GPP)
completed a study project for this purpose named“Solutions
for NR to support non-terrestrial networks (NTN) ”. In addi‑
tion, a new working project with the same name has started
from August 2020. In this paper, we provide a review of NTN,
NTN based next-generation radio access network (NG-RAN)
architecture, the impact of NTN on NG-RAN interface proto‑
col, and the current progress of the 3GPP Release 17 phase.
At the end of the paper, conclusions are proposed.

2 NTN Overview and Scenarios
An NTN refers to a network or segment of a network using

Radio Frequency (RF) resources on board a satellite or an un‑
manned artificial system (UAS) platform. In detail, the NTN
architecture can be divided into two cases with transparent
payload and regenerative payload respectively. And the NTN

reference scenarios can be classified into six cases[3].
2.1 NTN Architecture
Typically, the NTN architecture comprises of the following

elements:
• One or several satellite gateways that connect the NTN to

a public data network;
• A feeder link or radio link between a satellite gateway

and the satellite or the UAS platform;
• A service link or radio link between the user equipment

(UE) and the satellite or the UAS platform;
• A satellite or a UAS platform which may implement either

a transparent or a regenerative (with on board processing) pay‑
load. The satellite or the UAS platform typically generates sev‑
eral beams over a given service area bounded by its field of
view. The footprints of the beams are typically of an elliptic
shape. The field of view of the satellite or the UAS platform de‑
pends on the on board antenna diagram and the minimum ele‑
vation angle.
• Inter-satellite links (ISL) that optionally exist in a constel‑

lation of satellites. This will require regenerative payloads on
board the satellites. The ISL may operate in RF or optical
bands.
• UE is served by the satellite or the UAS platform within

the targeted service area.
As shown in Fig. 1, a transparent payload is the payload

that changes the frequency carrier of the uplink RF signal, fil‑
ters and amplifies it before transmitting it on the downlink.
Therefore, the waveform of the signal repeated by the transpar‑
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ent payload is not changed; in other words, the NTN with the
transparent payload can be regarded as a relaying node at the
network side.
As shown in Fig. 2, a regenerative payload is the payload

that transforms and amplifies an uplink RF signal before trans‑
mitting it on the downlink. Further, the signal transformation
is the digital processing of the signal, such as demodulation,
decoding, re-encoding, re-modulation and filtering. With all
these equivalent or similar functions as the base station, the
NTN with the regenerative payload can be regarded as a base
station at the network side.
In the NTN, there are several platforms with different attri‑

butes, and the different NTN platforms can provide different
services based on their own attributes. Table 1 shows the de‑
tails of these NTN platform types.
The geostationary earth orbit (GEO) satellite and UAS plat‑

form are used to provide continental, regional or local service
because of the relatively fixed position with respect to a given
earth point. While, the low-earth orbit (LEO) and medium-

earth orbit (MEO) satellites are in the relatively moving posi‑
tions with respect to a given earth point; hence, the constella‑
tion of the LEO and MEO satellites is used to provide services
in both Northern and Southern hemispheres. In some cases,
with appropriate allocation and planning, such as optimized or‑
bit inclination, beams and ISL, the constellation is able to pro‑
vide global coverage including the Polar Regions. However,
the coverage of the high elliptical orbit (HEO) satellite is limit‑
ed, so the HEO satellite system is not considered in this paper.
In addition, as the GEO satellite is served by the satellite

gateway that is located across the fixed regional area covered
by the GEO satellite, it can be assumed that the UE in a cell
is served by only one satellite gateway, just as the normal case
in the traditional terrestrial network. However, for the non-
GEO satellite, it is served successively by one or several satel‑
lite gateways at a time. In this case, the system should ensure
the continuity of service links and feeder links between the
successive serving satellite gateways within the time duration.
2.2 NTN Reference Scenarios
According to different criteria, the NTN system supporting

UE access can be classified into six reference scenarios,
which are shown in Table 2.
In short, considering the criteria, the first one is whether

the satellite is a circular orbiting platform or a notional station
keeping platform, i.e., the satellite could be LEO or GEO sat‑
ellite. The second one is whether the satellite is with transpar‑
ent payload or regenerative payload. The third one is whether
the satellite beam is fixed or steerable, which results in mov‑
ing or fixed beam foot print on the ground respectively.

3 NTN Based NG-RAN Architecture
The NG-RAN logical architecture described in TS 38.401

is used as baseline for NTN scenarios[4]. The NTN based NG-
RAN architecture can be divided into the transparent satellite
based NG-RAN architecture and regenerative satellite based
NG-RAN architecture.
3.1 Transparent Satellite Based NG-RAN Architecture
In this architecture, the satellite payload performs the func‑

tion of frequency conversion and RF amplification in both
downlink and uplink, which means that the satellite plays a
role of a relay node in the network.
As shown in Fig. 3, the satellite repeats the NR-Uu radio in‑

▼Table 1. Types of NTN platforms
Platform

LEO satellite
MEO satellite
GEO satellite

UAS platform (including HAPS)
HEO satellite

Altitude Range/km
300–1 500
7 000–25 000

35 786
8–50 (20 for HAPS)

400–50 000

Orbit
Circular around the earth

Notional station keeping position fixed in terms of elevation/azimuth with respect
to a given earth point

Elliptical around the earth

Typical Beam Footprint Size/km
100–1 000
100–1 000
200–3 500
5–200

200–3 500
GEO: geostationary earth orbit HAPS: High Altitude Platform Station HEO: high elliptical orbit LEO: low-earth orbit MEO: medium-earth orbit UAS: unmanned artificial system

UAS: unmanned artificial system
▲ Figure 1. Typical scenario of non-terrestrial networks based on
transparent payload

▲Figure 2. Typical scenario of non-terrestrial networks based on re‑
generative payload

ISL: inter-satellite links UAS: unmanned artificial system

Satellite(or UAS platform)

Feederlink

Gateway

Datanetwork
Servicelink

Beam footprint
Userequipment

Field of view of the satellite (or UAS platform)

Field of view of the satellite (or UAS platform)

Servicelink
Feeder link(mandatory if no ISL) Datanetwork

Feeder link
Gateway

Satellite(or UAS platform)
ISL

Satellite(or UAS platform)

Beam footprint
Userequipment
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terface from the feeder link to the service link in the downlink
communication and repeats the NR-Uu radio interface from
the service link to the feeder link in the uplink communica‑
tion. Thus, the satellite does not terminate the NR-Uu radio in‑
terface. The Satellite Radio Interface (SRI) on the feeder link
is also the NR-Uu interface.
Furthermore, the NTN gateway receives the signal via NR-

Uu from the satellite and transmits the signal to the“on
ground”gNB in the uplink communication and vice versa.
Hence, the function of the NTN gateway is just to forward the
NR-Uu signal. Generally, different transparent satellites could
be connected to the same gNB on the ground.
For the LEO satellite with transparent payload, the“on

ground”gNB transceives the NR-Uu signal to/from the earth
fixed NTN gateways in a planned and delicate way, e.g. via op‑
erations, administration, and maintenance (OAM) provision,
and then the NTN gateway further transcevies the NR-Uu sig‑
nal to/from the target LEO satellites according to Ephemeris

information in a planned way. To be more specific, the Ephem‑
eris information describes the orbital trajectory information or
coordinates for the NTN vehicles, and such information is pro‑
vided on a regular basis or upon demand to the gNB.
3.2 Regenerative Satellite Based NG-RAN Architecture
In this architecture, the satellite payload performs the function

of regeneration of the signals from the earth, which means that
the satellite plays a role of the whole or part of a base station.
In detail, the regenerative satellites can be divided into the

regenerative satellite with gNB on board and that with gNB-
DU on board. Further, the regenerative satellite with gNB on
board can be divided into the regenerative satellite with and
without ISL.
3.2.1 Regenerative Satellite with gNB on Board
As shown in Fig. 4(a), the satellite performs the function of

a gNB, and the SRI on the feeder link is the NG interface.
And the NTN gateway is a Transport Network Layer (TNL)
node.
As shown in Fig. 4(b), in addition to the features in Fig. 4(a),

the satellite payload provides ISL between the satellites, and
the ISL could be a radio interface, such as the Xn interface.
The UE served by a gNB on the satellite could access the

5G core network (CN) via ISL, which means the gNBs on the
different satellites could be connected to the same 5GCN on
the ground. If the satellite hosts more than one gNB, the same
SRI will transport all the corresponding NG interface instances.

▼Table 2. Reference scenarios

Non--Terrestrial Access Network

GEO based non-terrestrial access network
LEO based non-terrestrial access network:

steerable beams
LEO based non-terrestrial access network:

beams moving with the satellite

Transparent Sat⁃
ellite

Scenario A
Scenario C1

Scenario C2

Regenerative Sat⁃
ellite

Scenario B
Scenario D1

Scenario D2
GEO: geostationary earth orbit LEO: low-earth orbit

▲Figure 3. Transparent satellite, without gNB on board

AMF: access and mobility management functionCN: core networkgNB: next-generation NodeBNG: next-generation (interface)NR: new radio

NTN: non-terrestrial networkRAN: radio access networkUE: user equipmentUPF: user plane function
▲Figure 4. Regenerative satellite with gNB on board: (a) without ISL;
(b) with ISL

(a)

(b)
CN: core networkgNB: next-generation NodeBISL: inter-satellite linksNG: next-generation (interface)

NG-RAN: next-generation radio access networkNTN: non-terrestrial networkSRI: satellite radio interfaceUE: user equipment

AMF/UPF
NG

gNB NTNgateway

Feeder link
NTN payload

NR Uu Service link

gNB
NG-RAN

NG 5G CN N6NR Uu
NTNGateway

Datanetwork

NG-RAN

gNBNR UuUE

NG over SRI NTNgateway

NG 5G CN N6 Datanetwork

UE

5G CN N6 Datanetwork

Datanetwork

NG-RAN

gNBUE
NR Uu NG

5G CN N6
UENR Uu

Xn(over ISL)
NG over SRI

NG over SRIgNB NTNgateway

NTNgateway

Remote radio unit
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As the Xn could exist over the ISL, the interface manage‑
ment functions over Xn in the Terrestrial Network should also
be applied on board, e. g. Xn setup, Xn reset, cell configura‑
tion information exchange.
3.2.2 Regenerative Satellite with gNB-DU on Board
For the regenerative satellite with gNB-DU on board as

shown in Fig. 5, the difference with the case in Fig. 4(a) is that
the gNB-CU is located on the ground and the SRI is the F1 in‑
terface.
Similar with the case in Fig. 4(b), the gNB-DU on different

satellites could be connected to the same gNB-CU on the
ground. If the satellite hosts more than one gNB-DU, the same
SRI will transport all the corresponding F1 interface instances.
3.3 Multiple Connectivity with NTN Based NG-RAN
In this paper, we focus on the dual connectivity involving the

terrestrial network based NG-RAN and the non-terrestrial net‑
works based NG-RAN for UE. For the NTN based NG-RAN,
the transparent and regenerative satellites with gNB or gNB-
DU on board are considered. The combination of the two net‑
work access modes is able to meet the requirement of many
communication scenarios (e.g. users in the highway, high speed
train or the airplane) and improve the service performance[5].
The UE could be served by one NTN based NG-RAN and

one terrestrial network based NG-RAN at the same time (Ac‑
cess Mode 1). Meanwhile, the UE could also be connected by
two NTN based NG-RANs at the same time (Access Mode 2).
To be more specific, Access Mode 1 can be further divided in‑

to the transparent satellite scenario and the regenerative satellite
scenario, which are shown in Figs. 6(a) and 6(b) respectively.
In Fig. 6(a), for the transparent satellite, the same gNB

could serve the NR cells by both the terrestrial access network
and the non-terrestrial access work. In Fig. 6(b), the regenera‑
tive satellite could be gNB or gNB-DU on board.
Access Mode 2 can also be further divided into the transpar‑

ent satellite scenario and the regenerative satellite scenario,
which are shown in Figs. 7(a) and 7 (b) respectively.
The case of the combination of two transparent satellites

with either GEO or LEO is beneficial to provide services to
the UE in rural areas. The LEO satellite can be used to pro‑

vide the delay sensitive traffic, while the GEO satellite can be
used to provide the additional bandwidth to meet the through‑
put requirements from users. The combination of the two re‑
generative satellites could bring similar benefits.

4 Impact of NTN on NG-RAN Architecture
and Interface Protocol

4.1 Tracking Area Management
The concepts of registration and tracking areas of NTN are▲Figure 5. Regenerative satellite with gNB-DU on board

CN: core networkCU: central unitDU: distributed unitgNB: next-generation NodeBNG: next-generation (interface)

NG-RAN: next-generation radio access networkNTN: non-terrestrial networkSRI: satellite radio interfaceUE: user equipment

▲ Figure 6. Dual connectivity involving (a) transparent NTN-based
NG-RAN and cellular NG-RAN and (b) regenerative NTN-based NG-
RAN (gNB-DU) and cellular NG-RAN

CN: core networkCU: central unitDU: distributed unitgNB: next-generation NodeB

NTN: non-terrestrial networkSRI: satellite radio interfaceUE: user equipment

(a)

(b)

▲Figure 7. Multi-connectivity between (a) two transparent NTN-based
NG-RANs and (b) two regenerative NTN-based NG-RANs (gNB on
board)

CN: core networkgNB: next-generation NodeB NTN: non-terrestrial networkSRI: satellite radio interface UE: user equipment

(a)

(b)
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similar to those in the NR terrestrial network. To be more spe‑
cific, a tracking area (TA) corresponds to a fixed geographical
area, which is used for UE access control, location registra‑
tion, paging and mobility management. A registration area can
comprise of one or several TAs.
As discussed in Section 2.2, for the NTN scenarios A, B, C1

and D1, the NTN cells are relatively fixed on the ground.
Therefore, a TA could correspond to one or several NTN cells,
and it can be applied in tracking area management and paging
procedures. For the scenarios C1 and D1, the beam footprints
of the LEO satellites are temporarily earth fixed, and the beam
footprints over a given NTN cell on the ground are stationary
within a time period before the satellites switch to another
NTN cell. In this case, a TA could be assigned to each NTN
cell, and the satellites should change the broadcast Tracking
Area Code (TAC) between two successive NTN cells. For the
NTN scenarios C2 and D2, the NTN cells are relatively mov‑
ing on the ground, and some adaptations are needed in track‑
ing area management and paging procedures. Two options can
be considered as follows.
Option 1 is TA defined on the satellite. In this option, an

NTN cell only has one Tracking Area Identity (TAI) per Pub‑
lic Land Mobile Network (PLMN) ID, which is the same as the
terrestrial cell. However, for the NTN scenarios C2 and D2, as
the LEO satellite moves around the orbit, the coverage of the
TAI also changes. In this case, from the prospective of a sta‑
tionary UE, the TAI changes accordingly.
Option 2 is TA defined on the ground. In this option, the

TAI corresponds to a specific geographical area. In this case,
an NTN cell may need to broadcast multiple TAIs per PLMN
ID, which is not aligned with the common principle in the ter‑
restrial network that one cell only has one TAI per PLMN ID.
As the details of this topic are still under study, the choice

of the option should be further decided with the progress of
the NTN work item in 3GPP.
4.2 Mobility Scenarios in Connected Mode
In an NTN, some mobility scenarios in a connected mode

can be considered, including the intra-satellite handover, the
inter-satellite handover and the inter-access handover. In de‑
tail, the intra-satellite handover is the case between cells
served by the same satellite, the inter-satellite handover is the
case between cells served by different satellites, and the inter-
access handover is the case between the cellular access and

the satellite access. Based on the types of the serving satellites
(i. e., with transparent or regenerative payload), the different
types of the NTN handover are able to correspond with the ap‑
plicable NG-RAN handover procedures in 3GPP, and the de‑
tails are shown in Table 3.
4.3 Network Identities
As GEO satellites are relatively fixed with respect to a cer‑

tain point on the ground, the current network identities in the
terrestrial RAN, such as gNB IDs, cell IDs and TAC, could be
reused.
While for the non-GEO satellites including LEO and MEO,

as the satellites move across the geographical area of interest,
their satellite beams also cover different parts of the area.
Hence, the association between the logical cells and the physi‑
cal satellite beams should be clarified.
If the association between the logical cells and the physi‑

cal satellite beams is continuously reconfigured, the same
network identities are also associated with the same geo‑
graphical area. This scenario can be identified as“stationary
identifiers on ground”. In this case, stationary UE on the
ground will always be covered by the same cell identifier in
the same position.
If the association between the logical cells and the physi‑

cal satellite beams is fixed, the network identities will sweep
across the coverage area with the satellite beams. This sce‑
nario can be identified as“moving identifiers on ground”. In
this case, stationary UE on the ground will be covered by dif‑
ferent cell identifiers in the same position. The multiple
cells within one moving satellite will move together. Hence,
the neighbor relations will keep unchanged with the satellite
motion.
For both the cases, once a satellite moves out of the cover‑

age, the corresponding cell network identifier will become un‑
available in the coverage area, which could trigger the RAN
interface (e.g. NG or Xn interface) setup and configuration up‑
date procedures. The Ephemeris information could help the
RAN side to make the decision for the procedures.
Considering the impact on the interface protocol over NG

and Xn, the access restriction for all types of NR RATs based
on satellite constellations should be explicitly introduced, i.e.,
the NR for LEO, MEO, GEO and other SAT should be used as
3GPP access in 5G system. If supported, the access restriction
should apply on initial access, i. e. the access and mobility

▼Table 3. NG-RAN procedures versus NTN handover scenarios
NTN Handover Scenario
Intra-satellite handover

Inter-satellite handover

Inter-access handover

Transparent Satellite
Intra-gNB handover procedure
or inter-gNB handover procedure

Inter-gNB handover procedure or intra-
gNB handover procedure

Regenerative Satellite (gNB on Board)
Intra-gNB handover procedure

Inter-gNB handover procedure
Inter AMF/UPF handover procedure or intra AMF/UPF

handover procedure (out of RAN scope)

Regenerative Satellite (gNB-DU on Board)
Intra-gNB-CU mobility/intra-gNB-DU handover or

inter-gNB-CU handover
Intra-gNB-CU mobility/inter-gNB-DU mobility or

inter-gNB-CU handover
Intra-gNB handover procedure or inter-gNB ha‑

nover procedure
AMF: access and mobility management function CU: central unit DU: distributed unit gNB: next-generation NodeB RAN: radio access network UPF: user plane function
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management function (AMF) should be aware of the satellite
access type; and the access restriction should also apply on
the RAN mobility in a connected mode, i. e., the RAN node
should be aware of the access restrictions.
From the aspect of RAN, only the serving NTN Uu cell ID

(broadcast cell ID of the serving cell) and the broadcast TAC(s)
would be available at initial access. As a consequence, it as‑
sumes that at initial access the gNB is typically not able to pro‑
vide a Cell Global Identity (CGI) with location granularity to the
User Location Information (ULI) similar to the ULI provided in
terrestrial network; also at initial access, the CGI provided in the
ULI may represent a geographical area spanning multiple TACs.
After Access Stratum (AS) security is setup, it assumes that

the NG-RAN will be able to obtain UE’s location information
(e. g. Global Navigation Satellite System (GNSS) information),
and thereby construct a CGI for the ULI, satisfying accuracy
requirements comparable to those for terrestrial networks.
4.4 Feeder Link Switch-Over
During the satellite movement in the NTN, the switch-over

of the feeder link between the different NTN gateways could
not be avoided, especially for non-GEO satellites. The switch-
over could happen when the satellite moves out of the vision of
the current NTN gateway[6]. In a nutshell, a feeder link switch-
over is the procedure where the feeder link is changed from a
source NTN Gateway to a target NTN Gateway for a specific
NTN payload. The feeder link switch-over happens at the
transport network layer.
A feeder link switch-over may result in transferring the es‑

tablished connection for the affected UE between two gNBs.
For soft feeder link switch-over, an NTN payload is able to
connect to more than one NTN gateway during a given period,
i.e., a temporary overlap can be ensured during the transition
between the feeder links. For hard feeder link switch-over, an
NTN payload only connects to one NTN gateway at any given
time, i.e., a radio link interruption may occur during the transi‑
tion between the feeder links. Figs. 8 and 9 show two kinds of
feeder link switch-over.
In soft feeder link switch-over (Fig. 8), at time T1, the satel‑

lite is approaching the geographical location where the transi‑
tion served by next gateway (GW) will happen. At time T1.5,
the satellite is served by two GWs and at time T2, the transi‑
tion to next GW is finished.
With the switch-over of a feeder link, the handling of the ar‑

ea covered by the satellite through this gateway (GW1) will
move to another gateway (GW2). The UE served in this area
that is connected through this GW will have to be handed over
to the new GW. During the switch-over, the satellite will estab‑
lish a connection with the new GW while maintaining the con‑
nection with the current GW within a short time period. It will
setup new cells through the new GW to cover the area, allow‑
ing the UE located in the concerned area to be moved to the
new cells before disconnecting the feeder link with the old

GW, without service interruption for the UE[7].
In hard feeder link switch-over (Fig. 9), at time T1, the sat‑

ellite stops to transfer the signaling from the serving GW1. At
time T2, the satellite starts to transfer the signaling from the
target GW2.
In case the satellite does not have two feeder links estab‑

lished at the same time, a hard switch-over must be performed
to change the gateway. In this case there is no overlapping
time between GW1 and GW2. For the switch-over, the gNB1
connected with GW1 will delete the old cell while the GW1 re‑
leases the feeder link and then the GW2 will establish a new
feeder link, which will allow the gNB2 connected with GW2 to
establish a new cell with the same coverage as the old cell.
The UE served by the old cell should be moved to the new cell.
A potential non-UE-associated procedure could be intro‑

duced over Xn. With this procedure, the new gNB is able to
get the information of the satellite it should be connected to
and the served cell information from the old gNB. In this pro‑
cedure, the satellite needs to connect two NTN gateways at the
same time within a certain time period, which means that only
the soft switch-over could be applied. To achieve a unified
feeder link switch-over procedure for both the soft and hard
switch-over, this procedure could be reused with some en‑
hancements, e.g., introducing the ephemeris data and accurate
time information as the assistance information to prepare and
execute the hard switch-over. With the information, the new
gNB on the ground could be aware of which LEO satellite it is
connecting to via its NTN gateway at certain a time period. It
is feasible for the new gNB to predict the LEO satellite which
will connect to the NTN-GW in the future time. Thus, the new
gNB could be aware of the scheduling of switch-over events to
minimize the radio link interruption delay.

5 Current Progress in 3GPP Release 17
After August 2020, the 3GPP has started the work item of

▲Figure 8. Soft feeder link switch-over

▲Figure 9. Hard feeder link switch-over
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the NTN, and it is agreed that only the transparent satellite is
studied in Release 17[8–9].
For network identities, the current NG-RAN identities are

reused for NTN, including AMF name, NR Cell Global Identi‑
fier (NCGI), gNB ID, global gNB ID, TAI and Single Network
Slice Selection Assistance Information (S-NSSAI). There is no
need to identify the LEO satellite and NTN gateway. In addi‑
tion, a cell ID provided to the 5GCN within the user location
information corresponds to a fixed geographical area.
For the feeder link switch-over, the existing per-UE Xn and

NG handover functions are used to support the switch-over. It
is assumed that the information exchanged in existing hando‑
ver procedures can be used for NTN purposes. 3GPP supports
NTN with central coordination of switch-overs. In case of cen‑
trally coordinated switch-over, no signaling is needed on Xn/
NG to coordinate the actual switch-over.
In addition, the existing paging mechanism in the terrestrial

network can be reused for NTN and there is no need for en‑
hancement on paging. The current Automatic Neighbor Rela‑
tion (ANR) mechanisms are applicable for NTN. There is no
need of enhancements for solving the Physical Cell Identity
(PCI) conflict with satellites in Release 17.

6 Conclusions
In this paper, we introduce the NTN, including the NTN ba‑

sic architecture and reference scenarios. The NTN based NG-
RAN architectures with transparent satellite and regenerative
satellite are also presented. In addition, we discuss the impact
of NTN on NG-RAN architecture and interface protocol, and
propose some solutions to different related issues. In the end,
the current progress of 3GPP Release 17 is provided.

References
[1] RINALDI F, H-LMAATTANEN, TORSNER J, et al. Non-terrestrial networks in
5G & beyond: a survey [J]. IEEE access, 2020, 8: 165178– 1652008. DOI:
10.1109/ACCESS.2020.3022981

[2] TIAN K B, YANG Z, ZHANG N.Prospects for the air-space-ground integrated
network technology [J]. ZTE technology journal, 2021, 27(5): 2-6. DOI：
10.12142/ZTETJ.202105002

[3] 3GPP. Solutions for NR to support non-terrestrial networks (release 16): 3GPP
TR38.821 [S]. 2020

[4] 3GPP. NG-RAN, architecture description (release 16): 3GPP TS 38.401 [S].
2020

[5] 3GPP. Study on new radio (NR) to support non-terrestrial networks (release 15):
3GPP TR38.811 [S]. 2020

[6] Thales. On NTN feeder link switch over: 3GPP R3-205173 [R]. 2020
[7] ZTE. Initial thoughts on NTN LEO feeder link switch-over: 3GPP R3-204666
[R]. 2020.

[8] 3GPP. RAN3 chairman notes [C]//3GPP RAN3#111-eMeeting. 3GPP, 2021
[9] 3GPP. Support non-terrestrial networks: R2-2100229, Stg 2 Running CR_
38.300_NR-NTN-solutions [R]. 2021

Biographies
HAN Jiren (han.jiren@zte.com.cn) received the master degree in wireless com‑
munication systems from University of Sheffield, UK in 2016. He is a technolo‑
gy pre-research engineer at the Algorithm Department, ZTE Corporation. His re‑
search focuses on next generation radio access network.

GAO Yin received the master degree in circuit and system from Xidian Univer‑
sity, China in 2005. Since 2005, she has been with the research center of ZTE
Corporation and is engaged in the study of 4G/5G technology. She has authored
about hundreds of proposals for 3GPP meetings and journal papers in wireless
communications. From June 2021, she has been elected as the 3GPP RAN3
Chairman.

78



ZTE Communications Guidelines for Authors

Remit of Journal
ZTE Communications  publishes original theoretical papers, research findings, and surveys on a broad range of communications 
topics, including communications and information system design, optical fiber and electro⁃optical engineering, microwave 
technology, radio wave propagation, antenna engineering, electromagnetics, signal and image processing, and power engineering. 
The journal is designed to be an integrated forum for university academics and industry researchers from around the world.

Manuscript Preparation
Manuscripts must be typed in English and submitted electronically in MS Word (or compatible) format. The word length is 
approximately 3 000 to 8 000, and no more than 8 figures or tables should be included. Authors are requested to submit mathematical 
material and graphics in an editable format.

Abstract and Keywords
Each manuscript must include an abstract of approximately 150 words written as a single paragraph. The abstract should not include 
mathematics or references and should not be repeated verbatim in the introduction. The abstract should be a self⁃contained overview 
of the aims, methods, experimental results, and significance of research outlined in the paper. Five carefully chosen keywords must 
be provided with the abstract.

References
Manuscripts must be referenced at a level that conforms to international academic standards. All references must be numbered 
sequentially intext and listed in corresponding order at the end of the paper. References that are not cited in⁃text should not be 
included in the reference list. References must be complete and formatted according to ZTE Communications Editorial Style. A 
minimum of 10 references should be provided. Footnotes should be avoided or kept to a minimum.

Copyright and Declaration
Authors are responsible for obtaining permission to reproduce any material for which they do not hold copyright. Permission 
to reproduce any part of this publication for commercial use must be obtained in advance from the editorial office of ZTE 
Communications . Authors agree that a) the manuscript is a product of research conducted by themselves and the stated co⁃authors; 
b) the manuscript has not been published elsewhere in its submitted form; c) the manuscript is not currently being considered for 
publication elsewhere. If the paper is an adaptation of a speech or presentation, acknowledgement of this is required within the paper. 
The number of co⁃authors should not exceed five.

Content and Structure
ZTE Communications  seeks to publish original content that may build on existing literature in any field of communications. Authors 
should not dedicate a disproportionate amount of a paper to fundamental background, historical overviews, or chronologies that may 
be sufficiently dealt with by references. Authors are also requested to avoid the overuse of bullet points when structuring papers. 
The conclusion should include a commentary on the significance/future implications of the research as well as an overview of the 
material presented.

Peer Review and Editing
All manuscripts will be subject to a two⁃stage anonymous peer review as well as copyediting, and formatting. Authors may be asked 
to revise parts of a manuscript prior to publication.

Biographical Information
All authors are requested to provide a brief biography (approx. 100 words) that includes email address, educational background, 
career experience, research interests, awards, and publications.

Acknowledgements and Funding
A manuscript based on funded research must clearly state the program name, funding body, and grant number. Individuals who 
contributed to the manuscript should be acknowledged in a brief statement.

Address for Submission
http://mc03.manuscriptcentral.com/ztecom



ZTE Communications has been indexed in the following databases:

ZTE COMMUNICATIONS
Vol. 20 Supplement 1  (Issue 77)
Quarterly
First English Issue Published in 2003

Supervised by:
Anhui Publishing Group

Sponsored by:
Time Publishing and Media Co., Ltd.
Shenzhen Guangyu Aerospace Industry Co., Ltd.

Published by:
Anhui Science & Technology Publishing House

Edited and Circulated (Home and Abroad) by:
Magazine House of ZTE Communications

Staff Members:
General Editor: WANG Xiyu
Editor-in-Chief: JIANG Xianjun
Executive Editor-in-Chief: HUANG Xinming
Editorial Director: LU Dan
Editor-in-Charge: ZHU Li
Editors: REN Xixi, LU Dan, XU Ye, YANG Guangxi
Producer: XU Ying
Circulation Executive: WANG Pingping
Assistant: WANG Kun

Editorial Correspondence:
Add: 12F Kaixuan Building, 329 Jinzhai Road,
         Hefei 230061, P. R. China
Tel: +86-551-65533356
Email: magazine@zte.com.cn
Website: http://zte.magtechjournal.com
Annual Subscription: RMB 80

• Abstract Journal
• Cambridge Scientific Abstracts (CSA)
• China Science and Technology Journal Database
• Chinese Journal Fulltext Databases
• Index of Copurnicus
• Ulrich’s Periodicals Directory
• Wanfang Data
• WJCI 2021

Industry Consultants:

DUAN Xiangyang, GAO Yin, HU Liujun, LIU Xinyang,
LU Ping, SHI Weiqiang, WANG Huitao, XIONG Xiankui,
ZHU Fang, ZHU Xiaoguang

Printed by:
Hefei Tiancai Color Printing Company
Publication Date: January 30, 2022

China Standard Serial Number: -

Publication Approval Number: 341294202201


	目次
	Column
	An Improved Parasitic Parameter Extraction Method for InP HEMT
	Auxiliary Fault Location on Commercial  Equipment Based on Supervised Machine  Learning
	Design of Raptor-Like Rate Compatible SC-LDPC Codes
	Derivative-Based Envelope Design Technique for Wideband Envelope Tracking Power Amplifier with Digital Predistortion
	End-to-End Chinese Entity Recognition Based on BERT-BiLSTM-ATT-CRF
	Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model
	Multi-Task Learning with Dynamic Splitting for Open-Set Wireless Signal Recognition
	Multi-Cell Uplink Interference Management:  A Distributed Power Control Method
	SVM for Constellation Shaped 8QAM PON System
	General Introduction of Non-Terrestrial Networks for New Radio


	Contents
	Column


