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hannel characterization and modeling are funda-

mental to communication system design, develop-
ment, testing, and deployment. As the innate digital
twins of wireless channels, channel models repli-
cate real-world channel behaviors, e.g., large-scale/
small-scale fading, spatio-temporal-frequency non-stationarity,
through mathematical and data-driven methods. This enables
simulation-based validation across system development stages
—from protocol design to mnetwork optimization—without
costly physical testing.

In 6G/B6G, new frequency bands (e. g., centimeter wave
and millimeter wave) and new scenarios (e.g., integrated sens-
ing and communication (ISAC), unmanned aerial vehicle
(UAV) communications) have introduced highly dynamic,
complex channel characteristics. The critical task is to con-
duct channel measurements and modeling for diverse bands/
scenarios, challenged by technological advancements: Larger
antenna arrays and higher resolution have driven transitions
from traditional static measurements to dynamic ones, generat-
ing massive datasets. In such cases, Al has become an essen-
tial method to process big data, improve model accuracy, and
enable real-time channel adaptation, overcoming bottlenecks
in high-frequency and dynamic scenario analysis.

In this special issue, a series of articles are presented to ad-
dress the challenges in channel measurement and modeling
for next-generation wireless networks, offering innovative solu-
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tions to advancing the field. These articles cover a diverse
range of topics, including novel measurement methodologies
for complex scenarios, machine learning-enhanced channel
data processing technologies, digital twin-enabled modeling
frameworks, and applications in emerging 6G use cases such
as ISAC and UAV communications. The call for papers of this
special issue has received many high-quality submissions, re-
flecting strong academic and industrial interest in overcoming
the technical bottlenecks of channel characterization across
frequency bands and scenarios. After two rounds of rigorous
peer review, six excellent papers have been selected for publi-
cation in this special issue, which are presented as follows.

The first paper, titled “Channel Measurement and Analysis
of Human Body Radar Cross Section in 26 GHz ISAC Sys-
tems”, proposes a systematic approach to characterizing elec-
tromagnetic scattering from human bodies in ISAC systems, le-
veraging multi-angle measurements and ray-tracing analysis
to optimize joint communication-sensing performance in ur-
ban micro-cellular environments.

The second paper, titled “Space Network Emulation System
Based on a User-Space Network Stack”, presents a novel user-
space network stack (Nos)-based framework to realistically
emulate satellite and aerial network channels, enabling valida-
tion of space-air-ground integrated communication systems un-
der dynamic propagation conditions and reducing develop-
ment complexity through technologies like Open vSwitch
(OVS) and traffic control (TC).

The third paper, titled “A Machine Learning-Based Chan-
nel Data Enhancement Platform for Digital Twin Channels”,
introduces a generative adversarial network (GAN) -driven
platform to address channel data scarcity, demonstrating how
Al can generate statistically realistic channel samples from
sparse measurements to accelerate digital twin channel devel-

ZTE COMMUNICATIONS | 01
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opment for 6G networks.

The fourth paper, titled “6G Digital Twin Enabled Channel
Modeling for Beijing Central Business District”, proposes a
scenario-specific digital twin framework that integrates light
detection and ranging (LiDAR) point clouds, RGB images,
and crowdsourced data to characterize ultra-dense urban
channels, providing insights for network deployment in high-
rise commercial zones by mimicking channel non-stationarity
and consistency.

The fifth paper, titled “Channel Knowledge Maps for 6G
Wireless Networks: Construction, Applications, and Future
Challenges”, establishes a knowledge graph based architec-
ture to systematically organize channel data, models, and engi-
neering experiences, facilitating intelligent decision-making
in multi-band and multi-scenario communication systems
through the concept of channel knowledge maps (CKMs).

The sixth paper, titled “Air-to-Ground Channel Measure-
ment and Modeling for Low-Altitude UAVs: A Survey”, syn-
thesizes recent advancements in low-altitude UAV air-to-
ground channel research, providing a comprehensive overview
of measurement campaigns, modeling approaches, and future
directions critical to 6G aerial network design, with a focus on
millimeter-wave scenarios beyond suburban environments.

In conclusion, we hope this special issue serves as a valu-
able resource for researchers, practitioners, and students en-
gaged in 6G/B6G channel measurements and modeling. It
aims to inspire innovative solutions for dynamic channel chal-
lenges and drive advancements in Al-integrated channel mod-
eling. We sincerely thank all authors, reviewers, and editorial
staff for their contributions, which are crucial to curating this
collection. We trust these articles will offer insightful guid-
ance and foster new perspectives in wireless channel charac-
terization for next-generation networks.
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Abstract: Radar cross section (RCS) plays a critical role in modeling target scattering characteristics and enhancing the precision of target detec-
tion and localization in integrated sensing and communication (ISAC) systems. This paper investigates the human body RCS at 26 GHz via multi-
angle channel measurements under different clothing conditions. Based on calibrated electromagnetic (EM) parameters, the RCS characteristics
of the human body in far-field conditions are analyzed using ray-tracing (RT) simulations. Some suggestions for the design of ISAC systems are
also discussed. The results provide a solid theoretical foundation and practical reference for the modeling of target scattering characteristics for

ISAC channels.
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1 Introduction
G technology drives the evolution of integrated sensing
and communication (ISAC) systems. With its large band-
width advantage, a 6G system allows perception functions
to be upgraded from basic positioning to high-precision
tracking, target recognition, and classification. Accurately per-
ceiving key targets in ISAC channels is essential for achieving
high-accuracy positioning and tracking!"!.

In the research field of ISAC, the scattering characteristics of
the human body as a typical target have attracted significant re-
search attention. As a critical metric for evaluating the reflec-
tion characteristics of targets, the radar cross section (RCS) pro-
vides a critical reference basis for ISAC systems. With the

rapid development of autonomous driving, healthcare, security

This work was supported by the National Natural Science Foundation of
China under Grant No. 62271043, Ministry of Education of China under
Grant No. 8091B032123, and Beijing Natural Science Foundation under
Grant No. L212029.

monitoring, and other fields, the demand for high-precision ob-
ject detection and recognition technology has surged? *. In
healthcare, the detected data can facilitate remote monitoring of
vital signs and early detection of health issues, leveraging the
advanced communication-sensing capabilities of 6G networks'*!,
Furthermore, in search and rescue operations for survivors bur-
ied under avalanches, landslides, or collapsed buildings, RCS
analysis of the human body can be promptly conducted to as-
sess the situation and locate the trapped individuals. This capa-
bility enables precise localization and monitoring, facilitating ef-
ficient rescue operations and optimal resource allocation'.
Other significant applications lie in the field of security, where
this technology enables the identification and distinction of po-
tentially dangerous individuals based on anomalous breath pat-
terns or heartbeat patterns®. Human body RCS analysis further
expands new applications for advanced technologies, such as
multiple-input multiple-output (MIMO)"®!, reconfigurable intelli-
gent surface (RIS)” ¥, and micro-Doppler signature'”. While
there are ample application prospects and advantages, human
body RCS analysis faces significant challenges. The radar simu-

ZTE COMMUNICATIONS | 03
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lation technique for human motion must be as close to the real
radar data as possible; however, it must be easily imple-
mentable and computationally efficient at the same time'.
Currently, most existing human detection radar systems oper-
ate in X-band, ultra-high frequency (UHF), and even lower fre-
quency bands"”. Ref. [11] discusses the findings of an RCS and
specific absorption rate (SAR) study of the human head at 0.9 -
2.45 GHz based on full-wave numerical model simulations. The
effective RCS of human cardiopulmonary activity is studied for
a male subject in supine and prone positions at 2.4 GHz"?. An
experimental setup for complex channel measurement in a non-
anechoic environment in the 6 - 10 GHz frequency range is
validated in Ref. [13]. With the advancement of wireless com-
munication towards higher frequency bands, such as
millimeter-wave (mmWave), terahertz (THz), and visible light
bands, an increasing overlap with traditional sensing fre-
quency bands will occur™. Specifically, mmWave frequency
bands are essential for 6G communication-sensing integration
due to their remarkable capabilities, encompassing fine spa-
tial resolution that enables high-precision target localization,

speed measurement, and imaging!"”,

Among mmWave fre-
quencies, the 26 GHz band is particularly advantageous. It of-
fers an effective balance between propagation characteristics
suitable for long-range communications and the wide band-
width essential for high-resolution sensing. Furthermore, the
short wavelength of 26 GHz signals helps reduce interference
from other cellular data, thereby enhancing spectrum efficiency.

Despite the recent execution of numerous ISAC channel mea-
surements with human targets, a notable lack of data supporting
human body RCS characteristics within the mmWave frequency
bands poses a significant challenge for ISAC. Building on the
limited existing literature, Ref. [16] presents detailed evalua-
tions of human RCS characteristics. As an extension to prior
analyses, it addresses open issues including the influence of dif-
ferent limb postures and clothing types on the 23 - 28 GHz fre-
quency bands. However, precise data regarding the human
body within the ISAC frequency band remains severely lacking,
and various influential factors have not been comprehensively
considered. Firstly, owing to its non-rigid nature, the human
body undergoes numerous dynamic motions, leading to signifi-
cant variations in the RCS depending on individual posture and
radar orientation. Secondly, the human body is composed of
multiple dielectric layers, which further complicates the RCS
analysis. The roughness of skin and clothing surfaces intro-
duces substantial variability in these analyses!'”. Additionally,
existing studies often fail to provide direct electromagnetic
(EM) material parameters for the human body during the RCS
data analysis, thereby limiting the generalizability of research
findings to other deterministic studies. Achieving far-field con-
ditions for antenna and target channel measurements poses sig-
nificant physical challenges. Ray-tracing (RT) techniques can
effectively overcome these limitations, enabling precise calcula-
tion of RCS. However, current research still lacks RCS model-

04 | ZTE COMMUNICATIONS
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ing in the multi-polarization mode under far-field conditions!®.

To address the above-mentioned demands and challenges,
this paper conducts measurements and analyses of the human
body within communication channels to provide a reference
for implementing sensing functions through the communica-
tion systems. The main contributions and novelties of this pa-
per are as follows.

* Channel measurements of the human body at 26 GHz are
conducted on individuals wearing different clothing, capturing
data from different angles in static situations. Based on these
measurements, a comprehensive dataset of the human body is
established.

* The EM material parameters related to the human body are
calibrated. These parameters can be utilized for generalization
simulations, providing a reference for deterministic modeling
endeavors.

* The RCS at different azimuth and elevation angles is calcu-
lated and analyzed for different multi-polarization combina-
tions. Based on these findings, suggestions for the future design
of the ISAC system are discussed.

The rest of this paper is organized as follows. Section 2 de-
scribes the measurement system and campaign. Section 3 intro-
duces the RT simulation and calibration of EM parameters. Sec-
tion 4 presents a detailed RCS calculation and analysis, and
Section 5 concludes the paper.

2 Measurement

2.1 Measurement System

In this work, the measurement system comprises a Keysight
N5247A vector network analyzer (VNA), a personal computer
(PC) control terminal, and two standard gain horn antennas, as
depicted in Fig. 1. The VNA, connected to the PC and con-
trolled by specialized programs, generates signals with a band-
width of 1 GHz and acquires 201 frequency samples. The an-

Rotary table Rotary table

Port 1

Keysight N5247A

PC: personal computer ~ RX: receiver  TX: transmitter

Figure 1. Measurement system
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tennas, serving as the transmitter (TX) and receiver (RX), are
fixed on separate rotary tables and connected to Port 1 and
Port 2 of the VNA, respectively. The system is set up in a semi-
dark room with the antennas positioned at +34° angles toward
the human body, maintained at a distance of 1.6 m and a height
of 1.01 m above the ground. This configuration ensures that the
main lobe of the TX illuminates the human body, while the RX
receives the corresponding echo. The configuration parameters
of the measurement system are summarized in Table 1.

2.2 Measurement Campaign

The channel measurement of the human body at multiple
angles is carried out in a semi-dark room built with absorbing
materials. The subject is an adult male (1.78 m in height, 78 kg
in weight) wearing two kinds of clothing (short and long
clothes), as shown in Fig. 2. The point cloud of the subject’ s
body is obtained by laser scanning. After processing the point
cloud and importing it into SketchUp to give the corresponding
materials to the human body surface, the human body model
used in RT simulation is established.

To obtain the scattering characteristics of the human body at
different angles, five rotational positions of the human body
relative to the measurement system are set up. The subject
stands on a rotary table to control the rotation angle by the
scale. The 0° position corresponds to the human body directly
facing the measurement system, and the other four positions are

Table 1. Configuration parameters of the measurement system

Measurement Parameter Value
Center frequency 26 GHz
Bandwidth 1 GHz
Delay resolution I ns
Frequency samples 201
TX and RX heights from the ground 1.0l m
Distance between TX and RX 1.6 m
Antenna rotation angle towards the human body +34°

Polarization mode Vertical polarization

22.4 dBi

Antenna gain

RX: receiver  TX: transmitter

Short clothes

Figure 2. Human body in different types of clothes

set at 457, 90°, 135°, and 180° in the clockwise direction. The
measurement results under different clothing conditions are
shown in Figs. 3 and 4. The absorbing material effectively
shields the echoes from many environmental objects, and the
multipath component (MPC) of the human body is marked.

The results show that the power of MPC of the human body is
the strongest when facing the measurement system and facing
away from it, which are rotating at 0° and 180°. In these two
cases, the reflection and scattering area of the human body is
larger, so the reflected echo energy is larger. The human back
approximates a convex surface, resulting in the strongest reflec-
tion power. This is because the convex surface concentrates the
reflected waves into a smaller area, thereby increasing the
power density of the reflected signal in the direction of reflec-
tion. Meanwhile, the power of MPC under short clothes is
higher than that under long clothes, which can be explained by
the fact that human skin is smoother than clothing, and its echo
power of reflection and scattering is stronger. However, in the
case of rotating at 180°, the back in long clothes is flatter than
that in short clothes, so the reflected power is stronger than that
under short clothes. Additionally, the body posture observed in
this study often has the limbs close to the body, making it chal-
lenging to accurately identify different body parts using only the
power delay profile (PDP).

3 RT Simulation and Calibration of EM Pa-
rameters

3.1 RT Simulation

In this work, the high-performance RT simulation platform
developed by the State Key Laboratory of Advanced Rail Au-
tonomous Operation of Beijing Jiaotong University is ad-
opted[wfzo]. In ISAC channels, the scattering characteristics of
targets are crucial for accurate channel modeling, which is af-
fected by the dominant propagation mechanisms of reflection
and scattering. Fresnel reflection and directional scattering'!
are applied in RT.

3.1.1 Reflection

When an object whose volume is much larger than the wave-
length of the EM wave is in the
path of propagation, the wave can-
not diffract through the object and
will be reflected at the junction of
different media. The wireless signal
reflected by the ground or other ob-
stacles reaches the receiver, called
the reflected wave. The electric
field strength of the reflected wave
and transmitted wave depends on
the Fresnel reflection coefficient of
the incident wave in the medium.

The coefficients r,., and r, ., are
Ili, % Lk
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Figure 3. Measurement results of the subject in short clothes
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Figure 4. Measurement results of the subject in long clothes

the reflection (scattering) coefficients of the vertical and hori-
zontal components of the k-th multipath component at the i-th
reflection (scattering) surface, respectively. For transversal mag-
netic (TM) polarization, the reflection coefficient is:

P’ - COs 51mns‘v,_
Tyip =Ry, = (1).
&
=2 cos$,, + cosd
»
&

inc;

trans,;

For transversal electric (TE) polarization, the reflection coef-

&
Z2
cos 61110,»,‘ e cos Slransh,‘
1
Tiik= RTE,_A =
&
£2
cosBy 4 |2 cosd,,,.
1

For the TM case, the magnetic field component is parallel to
the reflection (scattering) surface. However, for the TE case, the
electric field component is parallel to the reflection (scattering)
surface. The angles 6, . and &

nc,, trans,

ficient is:

are the incidence and trans-

mission angles, respectively, with respect to the normal vector
of the surface where reflection (scattering) occurs.

3.1.2 Scattering

There are two kinds of scattering models in wireless commu-
nication: the directional scattering and RCS scattering. The for-
mer includes the directional single-beam model and the direc-
tional double-beam model. The directional single-beam model
is mainly introduced here. This model assumes that the scat-

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

06|

tered lobes reflect in the direction of the mirror surface, and the
expression is as follows:

B = |Eq = 1,2, N 3),

20

2(1 + cosf |\
( 2 )’“R

where ¢ denotes the angle formed between the scattering and
reflection directions; aj represents the scattering equivalent
roughness, an integer that dictates the width of the scattering
lobe, with increasing values resulting in narrower beams; E sig-
nifies the scattered electric field, measured at an angle ¢ from
the reflection direction; K signifies the maximum scattered
electric field value. When the EM wave is incident on the sur-
face of the material at the incident angle 6,, E is expressed as

follows:

2
2 SK | dScos 6,
- (dtdr ) F (4)

g

‘ S

Extending the unit area of the material surface dS (the length
of the scatterer is [ and the width is unit length), we get the final
expression of the DS model as follows:

= e 5]

SK)2lcos Oi( 1+ cosg’)a” (5).

( dd, | F, 2

where [ represents the length of the scatterer, K is a constant
that depends on the incident power P, and antenna gain G, K =
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/60P,G,, and F, is the proportionality factor.

3.2 Calibration of EM Parameters

EM parameters of materials are the foundation of RT, en-
abling effective representation of the interactions between tar-
gets and surroundings. Accurate EM parameters not only en-
hance the generalization capability of RT across different ap-
plication scenarios but also improve its predictive accuracy in
complex environments. Before calibration of EM parameters,
the system and cable losses are measured to ensure accuracy.

Multiple key EM parameters of the human body are cali-
the

loss tangent J, the scattering gain S, and the effective smooth-

brated, including the real part of relative permittivity €,
ness . The EM parameters can also describe the body’ s ab-
sorption of radio waves to a certain extent. As shown in Fig. 5,
the EM parameters are calibrated based on the power of MPC.
The EM parameters of the relevant materials are continuously
updated until the error between the simulation power and the
measurement power converges. The initialized and calibrated
EM parameters are summarized in Table 2.

Table 3 shows the errors between the power of calibrated
simulation and measurement, including cases at multiple rotat-
ing angles. The calibrated RT can accurately describe the
scattering characteristics of the human body at multiple
angles with a mean absolute error of 0.82 dB and a standard

deviation of 0.89 dB.

4 Analysis of RCS

4.1 Calculation of RCS

RCS plays a key role in target sensing and recognition in
ISAC channels, as it directly impacts the reflection and scatter-
ing characteristics. The RCS o can be calculated based on the
receiving power P, of the multipath, as shown in:

P (4m) R
7" é(cqz;))ﬁ (©)

where P, is the transmitting power, A is the wavelength, and R
is the range between the target and the measurement system.
The gains G, and G, represent the transmitting and receiving an-
tenna gains.

Near-field effects arise near the radiating element, where the
EM field is incomplete, causing significant inductive and ca-
pacitive coupling. Conversely, far-field effects, observed at dis-
tances where waves have propagated as plane waves, minimize
coupling impacts. However, due to the physical limitations of
the measurement systems and environments, it is often difficult
to ensure that both the antenna and the target are in the far-
field region®™. When the target and the antenna are in the far
field, the EM waves can be approximated as plane waves. This
facilitates the calculation and prediction of scattering character-
istics, ensuring the stability and consistency of measurement re-

Simulation configurations with initialized EM parameters

Start @

RT simulation

!

Simulation results

l

Update EM parameters <

Measurement results

l

Loss function

Terminated

Yes @

Return the best EM parameter set

EM: electromagnetic ~ RT: ray-tracing
Figure 5. Working flow of calibration of EM parameters

Table 2. Comparison of initialized and calibrated EM parameters.

A Initialized Calibrated
€.l 13 S ag €.l I3 S ap
Skin 1 0.1 1 1 17.7 0.953 1 0.88 16.5
Polyester 1 0.1 1 1 2.1 0.750 0 0.85 15.3
Cotton 1 0.1 1 1 2.8 0.700 0 0.83 14.2
Table 3. Error statistics
Outfit Angle/(o) M;:\::rr/e(;r];‘;l Simula(lli;r:nPower/ AbsnlL:il]; Error/
0 -45.20 -45.34 0.14
45 -47.37 -47.70 0.36
Short 90 -49.85 -48.40 1.45
135 -49.01 -50.45 1.44
180 -41.36 -41.52 0.16
0 -48.05 -47.93 0.12
45 -50.05 -51.30 1.25
Long 90 —-48.71 -48.85 0.14
135 -51.30 =51.11 0.19
180 -39.51 -42.44 2.93

sults. If not, near-field effects may significantly degrade mea-
surement accuracy, leading to erroneous analysis outcomes. In
such cases, RT, with its flexibility, breaks scenario constraints,
making it an effective tool for calculating RCS.

The distance between the human body and RX is 1.80 m.
The maximum size of the human body is 1.78 m. According to

the equation:
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d, = 2D%/\ (7).

where d, is the distance of the Fraunhofer region, D is the maxi-
mum linear dimension of the antenna, and A is the wavelength.
The far-field distance of the human body is 561.6 m. In the
simulation of this work, the distance between the human body
and the measurement system is set to 580 m to ensure that both
the human body and antennas are in the far field.

In ISAC systems, the variation of RCS at different azimuth
angles is essential for describing a target s scattering character-
istics. Since RCS represents how a target reflects EM waves, its
variation with angle directly influences sensing accuracy and
communication channel performance. On the other hand, the re-
search of RCS at different zenith angles is also very important
for the deployment of ISAC systems. The TX-RX polarization
combinations include horizontal-horizontal (H-H), horizontal-
vertical (H-V), vertical-horizontal (V-H), and vertical-vertical
(V-V) polarizations. As shown in Figs. 6 and 7, the RCSes of
the human body at different horizontal and elevation angles un-
der different clothing are calculated by RT. Table 4 shows the
statistics of RCS under different polarization modes.

The findings reveal that the RCS is typically greater when
the TX and RX antennas are aligned in the same polarization
mode. Furthermore, the RCS for short clothing tends to be
slightly higher than that for long clothing in the same polariza-
tion mode. Notably, the mean azimuth RCS, when subjected to
different polarization modes, experiences a decrease of ap-
proximately 16 dBsm compared to that in the same polariza-
tion mode. The mean elevation RCS sees a reduction of

Plane of horizontal

H-H polarization

H-V polarization

120° 60° 120° 60°

60

240° 300° 240° 300°
270 270

Mean RCS: -2.78 dBsm Mean RCS: —19.30 dBsm

V-H polarization V-V polarization
i -
120 o

-80 o
180° 360°

Back Front
a30°

2100 330

240° 300°
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H-H: horizontal-horizontal ~ H-V: horizontal-vertical

150 w 50
° 180° 360°
Front Back Front  Back W Front Back
. 210° 330"
180° 180°
-5 =10 =15

Front

RCS: radar cross section

around 14 dBsm under similar circumstances.

4.2 System Design Discussion

The calculation of RCS indicates that the RCS values are
higher when using co-polarized transmit and receive antennas,
which can be attributed to the EM scattering characteristics of
co-polarization. In a co-polarization configuration, the polariza-
tion of the TX and RX antennas is aligned, allowing for more ef-
ficient capture of the reflected signals from the target. This
alignment enables better matching between the incident wave
and the target’s scattering properties, particularly for surfaces
with geometric regularity or dimensions comparable to the wave-
length, resulting in stronger energy coupling and consequently
higher RCS values. From an EM theory perspective, the target’s

Table 4. Statistics of RCS under different polarization modes

Mean Azimuth Mean
Outfit Polarization t;élg/;;mu Polarization Elevation
s RCS/dBsm

H-H -2.78 H-H -7.83

H-V -19.3 H-V -22.21
Short

V-H -19.3 V-H -22.21

V-V -2.52 V-v -7.45

H-H -3.91 H-H -8.17

H-V -18.82 H-V -21.91
Long

V-H -18.82 V-H -21.91

V-V -3.59 V-V -7.54

H-H: horizontal-horizontal RCS: radar cross section V-V: vertical-vertical

H-V: horizontal-vertical V-H: vertical-horizontal

Plane of elevation

H-V polarization

a
W Front
=25 ~30

Mean RCS: =22.21 dBsm
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-20
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Figure 6. RCS under short clothing
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Figure 7. RCS under long clothing

surface induces scattering, reflection, and absorption of the EM
waves. Under co-polarized conditions, the reflection coefficient
is relatively high. For complex targets such as the human body,
various factors, including the surface roughness, material com-
position, EM parameters, and clothing conditions, can signifi-
cantly influence RCS. The co-polarization setup enhances the
coherence of reflected signals, thereby increasing the strength
of the scattered signals. Furthermore, as EM waves undergo
multiple reflections on the target ’ s surface, co-polarization
tends to facilitate phase addition, further amplifying the magni-
tude of the received signal.

The research content of this paper aims to analyze the char-
acteristics of the target in the communication channel to realize
the sensing function. Therefore, in the design of this kind of
ISAC systems, opting for co-polarized TX and RX configura-
tions can effectively enhance the echo signal from the target,
improving detection sensitivity. It also enhances the system’s re-
silience to interference and reduces the impact of background
noise, thereby improving sensing accuracy and robustness.
Such a design is particularly suitable for scenarios requiring
high sensitivity and precise sensing, such as long-range target
detection and weak scattering characteristic capture.

However, interference may distort the reflected signal, lead-
ing to fluctuations or attenuation of the RCS. The movement of
a target in a dynamic environment alters its reflective character-
istics, causing the RCS to vary with the incident angle. Mul-
tipath effects may further exacerbate the impact. In the future,
we need to consider measuring in more element-rich scenarios

to fully account for these influencing factors.

5 Conclusions

This paper presents multi-angle channel measurements of
the human body at 26 GHz under different clothing condi-
tions. Based on the measurement data, the EM parameters of
human body materials are calibrated with a mean absolute er-
ror of 0.82 dB and a standard deviation of 0.89 dB. The RT
simulator is deployed to comprehensively calculate and ana-
lyze the RCS of the human body under various polarization
configurations, azimuth angles, and elevation angles. The re-
sults indicate that co-polarized antennas exhibit higher RCS
values across a range of angles compared to cross-polarized
configurations. Finally, some suggestions on the design of
ISAC systems are given. This work not only highlights the sig-
nificant impact of polarization on target scattering characteris-
tics but also provides critical insights for target identification
and environmental sensing. The data and results presented in
this work offer theoretical support and practical guidance for
the design of ISAC systems.
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lation verifies the dynamic routing function of the protocol stack. The proposed system uses technologies like Open vSwitch (OVS) and traffic
control (TC) to emulate the space network’s highly dynamic topology and time-varying link characteristics. The emulation results demonstrate
the system’s high reliability, and the user-space network stack reduces development complexity and debugging difficulty, providing conve-
nience for the development of space network protocols and network functions.
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1 Introduction

1.1 Development of Space Network and Its Emulation
Methods
n recent years, with the continuous iteration of communi-
cation technologies and the growing demands for informa-
tion perception, satellite telemetry, and global network in-
tegration, the traditional terrestrial Internet based on the
Open Systems Interconnection (OSI) protocol stack can no lon-
ger meet the increasingly diverse and expanding network ser-
vice needs. As a new network service model, the space Inter-
net offers a broader service coverage while ensuring transmis-
sion bandwidth. It effectively overcomes challenges such as
user access limitations due to terrestrial factors.

Satellite networks have become indispensable in various
fields, including military security, aerospace, civilian net-
works, and remote sensing exploration. However, a series of
emerging and evolving network algorithms, protocol systems,
and network management models have also surfaced alongside
its rapid development. Implementing a new technology, from
theoretical development to practical deployment, requires a se-

This work was supported by the National Natural Science Foundation of
China under Grant No. 62131012 and ZTE Industry-University-Institute
Cooperation Funds under Grant No. IA20230712005.

ries of complex validation processes, such as performance
evaluations and network throughput tests. As a communication
network deployed in unique environments, the satellite net-
work particularly requires systematic network emulation meth-
ods and verification platforms to support technological valida-
tion. Network emulation methods are generally categorized into
four types: network theoretical model construction, physical
platform setup, network simulation, and network emulation'".

* Network theoretical model construction: This method in-
volves network research through modeling, theoretical analy-
sis, and algorithm design. It provides a theoretical foundation
for the design and implementation of network technology.

* Physical platform setup: This approach aims to replicate
the network scenario to the greatest extent, offering high au-
thenticity. However, it is challenging to deploy, needs more
scalability and reconfigurability, and has high hardware re-
quirements for network equipment, limiting its use for large-
scale deployments.

* Network simulation: This software-based method simu-
lates existing network scenarios, protocols, and services, offer-
ing relatively simple, cost-effective and easily extendable ex-
perimental environment. However, it does not support real traf-
fic loads transmission, leading to less accurate results.

* Network emulation: Combining the advantages of physical
platforms and network simulation, network emulation supports
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real protocols and data flow transmission. It thus offers high fi-
delity, flexibility, easy deployability, and scalability.

A network emulation platform is generally constructed
through virtualization technology. Virtualization reallocates
and isolates physical hardware resources on real physical de-
vices, abstracting resources from computer hardware to the
network operating system and network applications, to create
an emulation environment. Traditional virtualization technol-
ogy builds virtual machine managers on the host system,
where each virtual unit requires its own operating system. In
large-scale satellite network scenarios, where the network ap-
plications between nodes are similar, traditional virtualization
solutions result in considerable resource redundancy, leading
to inefficiency. Therefore, container-based network solutions
have been proposed. Based on the host server’s operating sys-
tem, containerized networking implements process-level virtu-
alization, which minimizes emulation node overhead and maxi-
mizes the use of the host server’s physical resources.

Given the unique structure of the space network, it differs
significantly from traditional terrestrial networks in terms of
transmission conditions, node deployment, and information
compatibility. For instance, network signals are significantly
impacted by factors such as cosmic electromagnetic interfer-
ence and terrestrial atmospheric activity during transmission.
This results in high bit error rates or temporary link interrup-
tions. Additionally, due to the large distances between satel-
lite nodes, network signal transmission experiences high la-
tency and time jitter. The high-speed movement of satellites
further leads to highly dynamic network topologies, causing
periodic changes in link relationships between nodes'”. These
factors restrict satellite network service to some extent. When
constructing an emulation system for space network, these
characteristics must be considered and incorporated into the
design to best replicate the space network environment.

Existing studies have led to the design and implementation
of several mature and stable network emulation systems, in-
cluding NS3, OMNeT++5. STK™, and EmuStack™. While
these tools provide valuable insights into space network behav-
ior, they have notable limitations:

* Limited real-time protocol testing: Many tools focus on
theoretical simulations, which limits their ability to validate
real-world protocol implementations.

¢ Inefficiency in handling dynamic topologies: The frequent
changes in space network topologies, such as those seen in
low Earth orbit (LEO), are not well supported by traditional
simulation platforms.

* High computational overhead: Some platforms require sig-
nificant computational resources, making them less scalable
for large-scale emulations.

* Dependence on kernel-based network stacks: These sys-
tems often rely on kernel-level networking, leading to inefficien-
cies due to context-switching and limited real-time performance.
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1.2 User-Space Network Stack

The network interface subsystem, as the most complex mod-
ule in the Linux operating system kernel, has undergone de-
cades of development and evolution, achieving a high level of
reliability and stability. However, while the kernel network
stack is widely used, it has also faced criticism for its high de-
bugging and development costs, as well as its relatively low
packet forwarding speeds!®. To improve the performance and
scalability of the network stack, developers have been looking
for ways to abandon the kernel network stack solution and mi-
grate the entire functionality of the network stack to user
space. With the continuous development and iteration of high-
performance network 1/0 technologies such as Data Plane De-
velopment Kit (DPDK) and Netmap, the user-space network
stack can bypass the operating system kernel, thereby directly
delivering the received packets from the network interface
card to the user space. This avoids the significant overhead
caused by frequent context switching, memory copying, and
other factors, thus improving the performance of the network
stack”. Moreover, for network development personnel, a net-
work stack located in user space is more straightforward to de-
bug and maintain, which is beneficial for the development of
space network technologies that require extensive validation
work. Therefore, the kernel network stack is not well-suited
for real-world space network environments.

Building upon existing user-space network stacks (e. g.,
mTCP®, IXP) and Arrakis”), this paper introduces a non-
open-source, high-performance commercial solution specifi-
cally designed for next-generation space network routing tech-
nologies. Unlike other user-space network stacks, Nos not
only offers exceptional data processing efficiency but also
demonstrates excellent topological adaptability. Furthermore,
it can be integrated with Docker container technology to oper-
ate in lightweight virtual environments. Designing and imple-
menting an emulation system based on Nos allows for more ef-
fective debugging and development, thereby providing en-
hanced space network routing services.

This paper proposes an emulation system based on the user-
space network stack Nos. The system overcomes most of the
limitations by providing high-performance data processing,
better topology adaptability, and scalability in lightweight vir-
tual environments. This approach offers a more efficient plat-
form for validating space network protocols.

2 Design of Space Network Emulation System
2.1 Design of General Emulation System

2.1.1 Node Emulation Solution

As a virtual system, the space network emulation system is
built on the virtualization and reallocation of emulation server
hardware resources. These resources are then abstracted into
independent emulation units. Among these components, the
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emulation node serves as the core element of the scenario. In
emulation experiments, Docker container technology is com-
monly used to abstract hardware resources and manage the
emulation nodes in a unified manner.

Docker is an open-source application container engine that
provides a unified runtime environment for applications. It
packages applications and their runtime environments into
lightweight, portable container images, which can be deployed
on any Linux machine. Meanwhile, Docker containers share
the host system’ s operating system and hardware resources,
managed by the Docker engine. This allows for fast startup
and execution speeds, as well as high hardware resource utili-
zation, making Docker container technology ideal for the uni-
fied orchestration of emulation nodes. It offers potent portabil-
ity, quick startup, and high resource utilization'""".

The underlying principle of Docker networking is Linux
“namespaces”, a core mechanism enabling container network-
ing. Namespaces can isolate various resources of a container,
such as process IDs (PIDs), filesystem mount points, host-
names, and other system resources. The network namespace, in
particular, logically provides independent network functional-
ities for different containers, including network devices, routing
tables, Address Resolution Protocol (ARP) tables, iptables, fire-
walls, and sockets. Additionally, virtual devices such as veth, a
virtual Ethernet device pair, can be used to interconnect con-
tainers. Emulation nodes can support different network proto-
cols by deploying and running the corresponding network appli-
cations in Docker containers.

2.1.2 Link Emulation Solution

Connection between emulation containers is established
through Linux’s veth and Open vSwitch (OVS). Specifically, a
veth network interface is created between the container and
the OVS bridge, with OVS managing the link connectivity be-
tween nodes.

The emulation system provides an interface to control the
link status. Users can upload a configuration file that stores
the link connectivity information, and the main control pro-
gram will import the relevant data into the MySQL database.
Once the emulation experiment starts, the main control pro-
gram continuously polls the database and, at time points
where link events such as link up or down occur, calls the
OVS processing function. It adds or deletes the corresponding
flow entries in the bridge to represent the occurrence of the
link event.

At the start of the emulation experiment, custom network ap-
plications run in the containers, while a set of threads are sub-
mitted by the main control service. When link characteristics
such as delay, packet loss rate, and bandwidth change, these
threads read the corresponding link configurations from the da-
tabase and forward them to the network application in the con-
tainer. The application then configures the appropriate traffic
control (TC) queuing discipline for the container’s veth inter-
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face to represent the occurrence of this particular link event.
Thus, in the emulation experiment, dynamic topology and link
characteristics control are abstracted as adding or deleting spe-
cific network flow entries in the OVS bridge and configuring TC
queuing discipline in the container’s virtual network interfaces.

The network applications running in the container can ei-
ther be custom network programs that perform specific net-
work configuration functions or open-source network pro-
grams. For example, after configuring the network topology in
the main control program, a Quagga process can be run in the
container to calculate the routing rules for the emulation sce-
nario dynamically.

2.1.3 Emulation Architecture Design

The emulation system architecture, as shown in Fig. 1, is
designed and implemented. The system can be abstracted
from three dimensions: service call, emulation logic, and emu-
lation scenarios.

Service call refers to how developers call the functions of
the emulation system. At the engineering implementation
level, the emulation system is built as a Maven project inte-
grated with Spring Boot. The frontend page provides a corre-
sponding web graphical user interface (GUI), allowing devel-
opers to invoke the system’s backend through the relevant in-
terfaces. The frontend program is deployed on an Nginx
server, and its GUI provides rich functional interfaces. It also
visually displays the topological relationships of the emulation
scenarios, supporting complex scenarios consisting of ground
stations, LEO satellites, deep space satellites, and lunar explo-
ration probes. The backend server (Center Server) of the sys-
tem performs operations such as scenario construction, link
configuration, and service processing according to specific
web requests. The data interaction between the frontend and
backend is typically achieved through HTTP requests and re-
sponses. The frontend sends requests using JavaScript, and
the backend receives and processes these requests and re-
turns JSON data to the frontend. The backend’s request pro-
cessing often involves significant database access, as the data-
base stores all experiment-related information, including ex-
periment status, node configurations, and link details. The da-
tabase and backend program are deployed on the same server,
enabling local and high-speed database access operations.
The backend main control program uniformly orchestrates the
container nodes and builds a star-shaped topology with an
OVS bridge at the center, as defined in the “Emulation Logic”
module. As a virtual switch supporting the OpenFlow protocol
and flow entry distribution, OVS provides support for dynamic
topology control in the emulation system.

From a general perspective, the service call module serves
as the interface through which the emulation system directly
interacts with the user. User actions are transmitted via fron-
tend requests to the backend, where they undergo a series of
processing steps and database interactions. This process ulti-
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Figure 1. Emulation system architecture

mately constructs the container network as depicted in the
Emulation Logic module. The elements in this container net-
work are directly mapped to the corresponding elements in the
Emulation Scenario. The Emulation Logic and Emulation Sce-
nario represent two topological frameworks for the emulation
experiment: the former reflects the actual network configura-
tion, while the latter serves as an abstract model of the former.
These three core modules effectively demonstrate the struc-
ture of a general emulation system.

In designing the general network emulation system, it is cru-
cial to consider the platform that best supports the performance
and scalability requirements of space network emulation. The
system performance is influenced by multiple factors, including
network topology dynamics, packet processing efficiency, re-
source allocation, and system scalability. These factors collec-
tively determine the overall effectiveness of the emulation.

The system is deployed on a general-purpose x86, 64-bit
server and utilizes a combination of Nos and Docker container-
ization to achieve high performance and flexibility. Nos en-
ables efficient packet processing and supports dynamic topol-
ogy adaptation, while Docker containers provide a lightweight,

-|4 | ZTE COMMUNICATIONS
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scalable environment for running emulation nodes.

The use of Docker as the platform ensures efficient resource
utilization, minimizing computational overhead and allowing for
the emulation of large-scale satellite constellations with high fi-
delity. This choice of platform addresses the limitations of tradi-
tional kernel-based approaches, such as high computational
costs and reduced scalability, making it an ideal solution to
emulating space networks in a real-time, dynamic environment.

2.2 Integration of Nos

The space network emulation platform described above is
designed to integrate Nos. In this design, two Docker contain-
ers run in a single emulation node, as shown in Fig. 2. The net-
work control plane functions are consolidated in the routing
processor (RP) container, which is responsible for processing
routing packets and dynamically calculating routing rules
based on the real-time network topology. The network data
plane functions are consolidated in the line processor (LP)
container, which performs high-performance forwarding based
on the routing information table of Nos. The two containers are
connected through a veth pair and communicate with each
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Figure 2. Emulation system architecture with integrated Nos

other directly, collectively forming an emulation node.

Each emulation node’s LP container is connected to the
OVS bridge “ovsbr0” via a southbound veth interface, with all
emulation traffic being exchanged through the ovsbhrO bridge.
The RP container of the emulation node is connected to the
OVS bridge “mng” via a northbound veth interface. The mng
bridge, as a management bridge, ensures communication be-
tween the main control server and the emulation node. Devel-
opers can log into the RP container’s reserved port 22 via this
management bridge and access the user management interface
of the network stack.

2.3 Soft Forwarding Interface Configuration and Link
Mapping

Unlike terrestrial networks, the space network often experi-
ences link interruptions and handovers. For example, in a po-
lar orbit constellation scenario, when a satellite enters the po-
lar region, the link between satellites of adjacent orbits within
the same latitude range will be temporarily interrupted and re-
sume once the satellite exits the polar region'"”. Additionally,
the satellite connected to a given ground station will change
over time. In such high dynamic topologies, a unified emula-
tion strategy is adopted. That is, all possible link resources are
reserved during the scenario construction. When a link tempo-
rarily fails, the corresponding flow entries are added to the
ovsbr0Q bridge, matching all packets from the two end nodes of

the link and discarding them, thus emulating link up/down
and handover events.

However, the apparent disadvantage of this emulation strat-
egy is that reserving resources for all possible links in ad-
vance can result in substantial waste, especially in scenarios
where link handovers occur frequently, as shown in Fig. 3.

A ground station may only be connected to several satellites
at any given time, while the links with all the other potential

satellites are temporarily interrupted. These interrupted links,

Link up
—— Link down

Figure 3. Link handovers occur frequently
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however, could take significant system resources. In large-
scale constellation scenarios, such scale of resource waste is
unacceptable. Nos uses a virtual network interface called
“fei” for software forwarding. This interface is implemented in
software within the network stack and does not incur addi-
tional system resource overhead. All packets forwarded
through the fei interface are first handed to the southbound
veth interface of the LP container and then forwarded by the
ovsbr0 bridge.

The LP container has only one southbound veth interface, and
all emulation nodes are connected to the OVS bridge through a
single veth interface. All traffic from the emulation node is trans-
mitted through this interface. As shown in Fig. 4, in any given
emulation node, the fei interface in the forwarding plane LP con-
tainer is a virtual interface created in software, existing within
the user-space network stack. An IP address needs to be as-
signed to it for end-to-end forwarding in the emulation experi-
ment. The TP address configured on the veth interface connect-
ing all LP containers to OVS is specified within a particular sub-
net (such as the subnet 192.170.10.0/24 in Fig. 4). That is, all
LP container veth interfaces are in the same subnet.

To ensure that all packets passing through the veth inter-
face are correctly matched with the software forwarding fei in-
terface, a User Datagram Protocol (UDP) port number (uport)
is introduced, and a mapping relationship from “veth IP + up-
ort” to “fei IP” is established. Within any given emulation
node, the fei IP address maps to the veth IP + uport of the LP
container. For all neighboring nodes of a particular node, the
link endpoints’ fei IP can be mapped as a four-tuple: “IP lo-

cal, uport local, TP remote, uport remote” .

Before the experiment starts, the link mapping relationships
between any node and its neighbors are saved in the network
stack’ s startup configuration file “soft_forward. xml”. Upon
starting, the network stack reads this configuration file to es-
tablish local link mappings with all neighbors. On the emula-
tion layer, any packet is forwarded through the fei interface of
the LP container after the network stack finishes encapsulat-
ing it. However, at the implementation level, when the fei in-
terface receives a packet, it cannot forward it directly. Instead,
it must first use the local link mapping information and encap-
sulate an additional layer, combining the local veth TP address
and local UDP port with the corresponding remote veth IP and
remote UDP port. The packet is then handed to the south-
bound veth interface of the LP container and forwarded by the
OVS bridge (Fig. 5). When an emulation node receives a
packet, the same process occurs: the outer IP and UDP port
numbers are decapsulated first, and then the packet is passed
to the fei interface for processing.

In the emulation architecture mentioned above, the emula-
tion of link characteristics also requires a corresponding de-
sign. First, for the OVS bridge ovsbr0, which is responsible for
forwarding all traffic generated by the emulation nodes, flow
entries can be added in it to match specific packets and take
corresponding actions. For example, when emulating a node
failure, a flow entry can be added to match the source or desti-
nation IP address of the node’s southbound veth interface and
drop the packet. This effectively emulates the temporary isola-
tion of that node in the emulation scenario. Simply deleting
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192.170.10.10 10002 192.170.10.20 20001
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B e
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[ Port 0 -+ Veth 0 | 192.170.10.20 Rl — | | <id>fei0<id> .
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Figure 4. Virtual fei interface configuration for soft forward and its link-mapping rules
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by satellite motion, orbital perturbations,
and environmental factors, ensuring that

the emulation results accurately represent

the dynamic nature of space networks.
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Figure 5. Additional packet encapsulation

the flow entry will suffice to restore the node’ s state. Simi-

larly, when emulating the failure of a link, a flow entry can be

added to match the source IP + UDP port number or the desti-

nation IP + UDP port number, and take the “drop” action.
Secondly, link characteristics such as delay and packet

loss rate can be emulated by constructing a TC queue disci-

pline tree (Fig. 6) on the southbound veth

interface of the LP container. This will

enable traffic flowing through the inter-

face to be split. Packets enter the filter

from the root queue, and the filter will

match the destination IP address and

calculates the routing relationships for

the nodes. After a certain period, the

routing converges, and all nodes obtain

routing entries for all subnets in the emu-
lation scenario.

The threads submitted by the emulation system access the
link up/down information in real time and synchronize the con-
trol of the emulated links. For example, when a satellite enters
the polar region, communication between adjacent-orbital sat-

Veth ip_local
192.170.10.10

UDP port number of the packets, direct-

Filter 1:
Match ip dport 40002 Oxfff flowid 2:10

Filter 2:
Match ip dport 20001 Oxfff flowid 2:10

ing them into different leaf classes!’. By
configuring the appropriate queue set-
tings under the leaf classes, these link
characteristics can be emulated.

3 Low Earth Orbit Constella-

tion Emulation

A small LEO constellation scenario, as
shown in Fig. 7, is constructed in the emu-
lation system. The scenario consists of
two polar satellite orbital planes, each
with four satellites, along with two ground
station terminals. All ten emulation nodes
are created through the frontend GUI in-
terface, and all link configurations are im-
ported.

The satellite motion model used in this experiment is based
on real-world orbital dynamics, with satellite positions and
movements derived from real-world data exported via Satellite
Toolkit (STK). The orbital parameters, such as satellite speed,
orbital inclination, and orbital altitude, are extracted from
STK’ s high-fidelity models, ensuring accurate representation
of the satellite” s behavior in LEO over time. These orbital pa-
rameters directly affect link availability and inter-satellite
communication.

The link quality is computed based on various factors, in-
cluding propagation delay, signal strength, and bit error rate.
These factors are influenced by the relative distance between
satellites, atmospheric conditions, and the satellite’s position.
The link quality model reflects the real-time variations caused
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Figure 6. Traffic control (TC) queuing discipline tree
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Figure 7. A small low Earth orbit constellation scenario
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ellites in the same latitude zone will be temporarily inter-
rupted until the satellite exits this region. When the control
plane of Nos detects such network topology changes, it recal-
culates and updates the routing. The TC thread accesses the
database to obtain real-time inter-satellite distances. Using
these measurements, it calculates the inter-satellite propaga-
tion delay for the current time slice with a fixed duration and
subsequently updates the TC queue discipline tree to propa-
gate the delay information.

Fig. 8 shows the changes in delay and packet loss rates be-
tween two adjacent-orbital satellites in the same latitude zone.
The delay exhibits a certain periodicity over time. When the
two satellites move from high-latitude regions to low-latitude
regions, the inter-satellite delay gradually increases; when
moving from low-latitude regions to high-latitude regions, the
inter-satellite delay gradually decreases. When the satellite’ s
latitude becomes too high and it enters the polar region, the
inter-satellite link is disconnected. In this case, communica-
tion between the two satellites must rely on inter-satellite
links with satellites in their respective lower-latitude orbits, re-
sulting in significantly higher delays.

The delay and packet loss rate variations between the two
ground station terminals are shown in Fig. 9. At the same
time, throughput and bandwidth utilization tests were con-
ducted on a ground station terminal, and the results are
shown in Fig. 10. The end-to-end delay remains generally
stable, with minor fluctuations caused by satellite movement.
Due to the impact of bottleneck links in the satellite net-
work, the throughput of the ground station ranges approxi-
mately from 450 kbit/s to 700 kbit/s, with bandwidth utiliza-
tion reaching over 75%. However, when a link is interrupted
or involves a satellite-ground link switch, there is a certain
waiting time for the routing information in Nos to converge
again. During this time, the two terminals are temporarily un-
able to communicate.

4 Conclusions

The construction of a space network emulation system is
more complex than that of a ground network. We propose a
space network emulation system based on Nos, a high-
performance user-space network stack, in this paper. This
emulation system facilitates the development and debugging
of protocol systems and network functions. The separation of
control and forwarding in the Nos architecture improves the
overall stability of the emulation system. By constructing an
LEO satellite constellation scenario, the routing and forward-
ing functions of Nos are validated, and the dynamic topology
and time-varying link characteristics of the satellite network
are realistically and reliably emulated. Nos has a rich set of
functionalities. Therefore, this emulation system provides a re-
liable means for applying many network concepts and tech-
nologies to space communication.

There are still some areas in the space network emulation
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that need to be fully considered. For example, inter-satellite or
satellite-ground link delays are determined not only by dis-
tance, but also by many other factors such as atmospheric
cloud cover. Moreover, the protocol model provided by Nos is
primarily designed for the terrestrial network, and when emu-
lating deep-space communication scenarios, protocols like
Delay-Tolerant Network (DTN) are not supported. Future itera-
tions and optimizations of the emulation platform should focus
on enhancing system realism, stability, and network function-
ality completeness.
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Abstract: Reliable channel data helps characterize the limitations and performance boundaries of communication technologies accurately.
However, channel measurement is highly costly and time-consuming, and taking actual measurement as the only channel data source may re-
duce efficiency because of the constraints of high testing difficulty and limited data volume. Although existing standard channel models can
generate channel data, their authenticity and diversity cannot be guaranteed. To address this, we use deep learning methods to learn the attri-
butes of limited measured data and propose a generative model based on generative adversarial networks to rapidly synthesize data. A soft-
ware simulation platform is also established to verify that the proposed model can generate data that are statistically similar to the measured
data while maintaining necessary randomness. The proposed algorithm and platform can be applied to channel data enhancement and serve
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1 Introduction
n recent years, the 6G wireless communication technol-
ogy has attracted widespread attention, and many insti-
tutes have officially started the 6G research™. With the
expansion of 6G to full-scenario, multi-frequency, and
wide-coverage applications, the demands for 6G mobile com-
munications are becoming more diversified and complicated.
As a signal transmission medium, wireless channels are an in-
dispensable part of communication links, and their character-
istics determine the upper limit of communication system per-
formance. A channel model is a mathematical description of
the key channel characteristics, so channel modeling is a ba-
sis for the design, simulation, and planning of wireless com-
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munication systems.

The goal of channel research is to provide a model that can
generate channel parameters according to the input parameter
set. This model can be a mathematical model based on statisti-
cal fitting, such as the common empirical statistical model™
and the geometric stochastic model®™. For example, Ref. [4]
conducted statistical modeling of features such as arrival time
and power of multipath components, ensuring they conform to
distributions. Ref. [5]
multiple-input multiple-output (MIMO) channel model for

specific introduced a geometric
millimeter-wave (mmWave) mobile-to-mobile (M2M) applica-
tions, using a few clusters placed on two rings centered on the
transmitter and receiver. In addition, the deterministic model
based on numerical analysis and simulation is another chan-
nel modeling idea'®. For example, the classic Longly-Rice
model” uses a two-ray interference approach from geometric
optics to predict radio wave propagation characteristics within
the line-of-sight region. Ref. [8] investigated the channel char-
acteristics of massive MIMO systems in the 26 GHz mmWave
band for indoor scenarios using ray-tracing (RT). The simula-
tion results are consistent with the measured results. With the
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expansion and application of artificial intelligence (AI) meth-
ods such as deep learning, researchers have proposed some
Al-based channel models that use neural networks instead of
traditional mathematical formulas and numerical simulations
to generate channel parameters. Typical examples are found
in Refs. [9 - 11]. Specifically, Ref. [9] used the convolutional
autoencoder to extract 3D-building information to assist path
loss prediction in street canyon scenarios. Ref. [10] employed
convolutional neural networks to predict channel path loss us-
ing receiver-centric satellite maps as environmental features.
Ref. [11] used a multilayer perceptron and long short-term
memory (LSTM) to estimate real-time channel attenuation at
Q-band. For a further overview of the existing classical model-
ing methods, please refer to Refs. [12 - 14].

No matter what the specific modeling method is, a consen-
sus is that the channel model is essentially a mapping relation-
ship. Although the model input attributes can be heteroge-
neous data such as scene category labels, antenna heights,
three-dimensional models, and satellite images, the mapping
relationship is generally between the environment and the cor-
responding channel parameters. The question worth consider-
ing here is whether these channel models, which we can col-
lectively call environment-driven models, are the only solu-
tions to channel research, in other words, whether these mod-
els can solve all the demands for channel data at present. For
most application requirements, such as network deployment
and coverage prediction, it is meaningful to input the neces-
sary environmental characteristics to get the channel param-
eters of the corresponding input scene. However, it should not
be forgotten that channel data are not only applied to
environment-related applications. In other words, the exis-
tence of environment input should not be a prerequisite for
generating channel data. For example, after obtaining some
measured channel data through expensive and time-
consuming actual measurement, researchers want to get more
data under the same conditions conveniently. Another similar
situation is that an algorithm needs to use a lot of real channel
data to evaluate its performance, but the existing data are in-
sufficient. The above two hypothetical situations are real cases
in research and engineering practice. At the moment, the clas-
sic environment-driven model cannot meet all the require-
ments. Faced with these situations, researchers may need a so-
called data-driven channel model, which can learn the charac-
teristics of a small number of existing data and output a large
number of similar data. Alternatively, it can be interpreted as
a digital twin model, which constructs a virtual copy of the
real physical channel, and this “copy” has the same statistical
characteristics as the original data. In a word, this data-based
modeling process, which does not depend on environmental in-
put, can be called Channel Data Enhancement. It has signifi-
cant practical value in some application scenarios.

At present, there have been several studies on data-driven
channel models. As the groundbreaking work, Ref. [15] intro-

duced the use of generative adversarial networks (GAN) to ad-
dress autonomous channel modeling. Building on this, the
GAN model was utilized to learn the distribution of additive
white Gaussian noise channels. Ref. [16] developed a link-
level MIMO channel generation method named Channel GAN
to support deep learning-based channel state information
(CSI) feedback research. For different scenarios, Ref. [17] pro-
posed a GAN-based channel data augmentation algorithm for
communication systems in industrial Internet of Things (IloT)
scenarios to address the issue of insufficient data. Ref. [18]
performed the GAN model to generate channel responses to
address the issue of inadequate channel estimation perfor-
mance in high-speed train scenarios. However, despite these
efforts, some shortcomings still exist. Most studies rely on ide-
alized simulated channel data, whereas measured data can
more accurately capture various interference factors presented
in real-world environments. Developing channel models based
on measurement can enhance their credibility. Additionally,
whether the channel characteristics described by these models
are consistent with real data has not yet been comprehensively
validated. Therefore, this paper proposes a channel data en-
hancement platform, the core capability of which is to quickly
generate a large number of simulation data with similar char-
acteristics based on a small number of data. Specifically, the
platform consists of three subsystems: the channel measure-
ment subsystem, which is used to collect the measured data
and construct the basic data set; the data enhancement algo-
rithm, which provides a model that can learn the characteris-
tics of the data set and output the simulation data; the applica-
tion software, which integrates the algorithm and necessary
control functions to provide a convenient interface for users.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed channel data enhancement platform de-
sign and architecture. Section 3 is about the subsystems re-
lated to channel measurement and the data set in the platform.
Following that, we explain the proposed data enhancement al-
gorithm in Section 4. The algorithm verification and applica-
tion software are described in Section 5. Finally, Section 6
concludes the paper.

2 Platform Design and Architecture

In this paper, a channel data enhancement platform is
implemented, which can complete channel measurement in a
high dynamic scene and then use the proposed algorithm to
learn and measure channel characteristics, greatly expanding
the number of channel data. The overall design and architec-
ture of the proposed platform are shown in Fig. 1.

The platform is divided into three subsystems:

1) Channel measurement subsystem

Based on the software-defined radio instrument, this subsys-
tem realizes broadband channel sounding. The subsystem can
be applied to dynamic scenarios covering the sub-6 GHz fre-
quency band. The measurement subsystem contains a sepa-
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Figure 1. Proposed channel data enhancement platform architecture

rate transmitter and a receiver, which can process and display
the collected signals in real time. In the dynamic scene, the
back-to-back calibration can eliminate the influence of system
response errors of cables and transceivers.

Due to the diversity of measurement scenarios, the core
functional indicators of the measurement subsystem need to be
defined by software. This can be scalable enough to meet the
needs of different measurement environments. Specifically,
the subsystem transmitter needs to complete baseband signal
generation, power amplification, signal processing, and visual
display. The receiver needs to complete signal reception, base-
band signal processing, channel coefficient extraction, chan-
nel parameter analysis, visual display, and others. The overall
structural design is complex and needs to be adapted to the co-
operation on different hardware devices. Therefore, the soft-
ware and hardware design and development of the measure-
ment subsystem is one of the main difficulties in the whole
platform implementation process. The measurement system
program is flexible and can be migrated to different SDR hard-
ware. The hardware configuration can be flexibly combined ac-
cording to the requirements of the actual environment.

2) Data enhancement algorithm

The data enhancement algorithm needs to use the measured
channel impulse response (CIR) obtained by the measurement
subsystem. Then, the channel simulator based on GAN is
trained to learn the intrinsic characteristics of measured data.

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

22|

The proposed method reduces the complexity of channel simula-
tion and can quickly generate channel data by using the trained
model. In addition, the accuracy of generated channel data is
verified by channel high-order statistical characteristics, such
as power delay profile, shadow fading, and delay spread.

The key point of subsystem algorithm design is to learn the
characteristics of measured data. However, with the increase
of measurement bandwidth, the time delay resolution of data
becomes higher. In addition, CIRs are composed of multiple
ray clusters, which contain a lot of noise signals. Therefore,
the prime difficulty in data preprocessing is to denoise and re-
duce the dimension of the CIR matrix while retaining effective
information as much as possible. Furthermore, the model net-
work structure includes the number and types of networks, the
logical relationship between networks, and others. These ar-
chitectures directly affect the complexity and, more impor-
tantly, the accuracy. In addition, the appropriate training algo-
rithm should be carefully selected for the specific network
structure. Architecture and training are the key control factors
of model performance.

3) Application software

After verifying the channel simulation ability of the model
through experiments, the focus shifts to building a convenient
software platform. This paper designs an easy-to-operate simu-
lation application program based on MATLAB, which can
complete the functions of model loading, simulation data gen-
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eration, real-time verification, display, and data storage. In ad-
dition, a visual interface is designed.

3 Channel Measurement and Datasets

The broadband wireless channel measurement subsystem
includes a separate transmitter and a separate receiver. The
transmitter consists of a baseband signal source, a local oscil-
lator, an up-converter, a power amplifier, a filter, a signal pro-
cessing unit, and an antenna. The receiver is composed of a
baseband signal source, a local oscillator, a down-converter, a
low noise amplifier, an electronic switch, a data storage unit,
and an antenna''”. The transmitter sends a signal at a specific
carrier frequency to act as a sounding signal, and the receiver
can identify and detect the signal after channel attenuation
and distortion.

The channel measurement subsystem uses multi-carrier sig-
nals as sounding signals, as shown in Eq. (1).

L1 N
s, = zdiexp(ﬂfk) (0<k<L-1) (1),

i=0

where L represents the number of subcarriers and d; repre-
sents the symbol of each subcarrier. The out-of-band power is
reduced by rectangular window function filtering. At the re-
ceiver, the received signal is shown in Eq. (2).

Y(f) = X(f)HlX(f)H(f)HRX(f) (2)7

where X( ) and Y ( f) represent the transmitted and received
signals in the frequency domain respectively. H( f') represents
the channel transfer function, and Hyy (f) and Hyy(f) are
the transfer functions of equipment and cables at the transmit-
ter and receiver respectively. The transmitter and receiver are
directly connected by cables for back-to-back calibration, so
the influence of equipment and cables on the measurement re-
sults can be eliminated.

The measurement subsystem takes the signal transceiver
based on software-defined radio (SDR) as core hardware. The
transmitter implements the loading and generation of base-
band sounding signals and the up-conversion of the baseband
signals through secondary frequency conversion (baseband to
intermediate frequency and intermediate frequency to radio
frequency). The receiver samples and down-converts the sig-
nals captured by the antennas to obtain the baseband signals
and stores them in the local disk. This subsystem realizes
hardware device driving and signal processing, and finally ob-
tains key channel parameters and displays them visually. The
receiver and transmitter of this subsystem use a rubidium
atomic clock calibrated by the global navigation satellite sys-
tem (GNSS) as the reference clock source to ensure the consis-

tency of the 10 MHz reference clock®

. Main parameters of
the subsystem are shown in Table 1, and the equipment is

shown in Fig. 2.

Table 1. Parameters of measurement subsystem

Parameter Value
Carrier frequency 5.9 GHz
Bandwidth Max to 160 MHz
Transmit power Max to 55 dBm

Transmit signal type Multi-carrier signals
Transmit signal samples 1024

Snapshot interval 6.4 ps
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Figure 2. Vector signal transceiver equipment

The software of the channel measurement subsystem is de-
veloped based on LabVIEW. LabVIEW is a program develop-
ment environment developed by National Instruments (NI),
which is well compatible with SDR-based signal transceivers
used in subsystems and can also easily establish a visual inter-
face. The main purpose of subsystem software is to drive and
control the hardware. The software design should be able to
call the hardware equipment, configure the measurement pa-
rameters such as frequency, bandwidth, clock, and sampling
rate of the equipment, and ensure that the received signal data
can be stored'!

The subsystem also provides a visual user interface for tes-
ters, as shown in Fig. 3. The interface includes the configura-
tion of various parameters, system running state detection,
and error reporting. To observe the channel state in real time
during the measurement process, the subsystem also pro-
cesses some collected data in real time and gets typical chan-
nel parameters. In Fig. 3, the receiver interface shows the CIR
at the current time. Besides CIR, the current time domain
waveform chart and frequency spectrum chart can be dis-
played in real time.

The original response obtained by the subsystem includes
the channel response, the inherent response of the measure-
ment system, and the antenna radiation characteristics. There-
fore, system calibration verification is needed to eliminate the
errors caused by these factors. As shown in Fig. 2, the calibra-
tion verification of the subsystem is divided into three parts:
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Figure 3. Visual interface of channel measurement subsystem

instrument self-calibration, back-to-back measurement cali-
bration, and antenna system calibration.

The purpose of instrument self-calibration is to make the
performance and output of the instrument conform to the nomi-
nal value. The transmitter used in this paper has a self-
calibration function, and subsequent measurements can only
be started after the self-calibration has passed before each
measurement. Back-to-back measurement can eliminate the
errors caused by cables and adapters. The specific method
can be summarized as follows. The reference measurement is
conducted when the channel response is known by connecting
the attenuator directly between the transmitter and the re-
ceiver. Thus, the system’s inherent response is obtained. Dur-
ing the actual measurement data processing, the collected
data are processed using these reference measurement results
to eliminate the inherent response of the system and then get
the accurate channel response. Antenna calibration refers to
the measurement of antenna gain in all propagation directions
in an anechoic chamber, which is an important prerequisite to
ensure the accuracy of test results. The measurement error
from antenna radiation can be eliminated when processing the
received data.

The experimental study on channel measurement in this pa-
per was carried out in Beijing, China. During the field mea-
surements, the transmitter and receiver vehicles moved in the
same direction and kept an interval of 20 = 40 m. During the
measurement period, the maximum vehicle speed was no
more than 70 km/h, and the system acquired 16-channel
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snapshots per second. To reduce the influence of random
backscatters, measurement routes were restricted to empty
road sections. Both the transmitting and receiving antennas
were installed on the roof, and the antenna heights were about
1.8 m. The total number of measured channel snapshots was
about 7 000 groups.

4 Proposed Data Enhancement Algorithm

4.1 GAN-Based Algorithm

GAN is a kind of deep generation model, which can implic-
itly learn the probability distribution of input images to gener-
ate identically distributed images. Initially developed for im-
age generation, GAN is not a simple method for copying or
imitating reality, nor does it merely blend or average multiple
real samples. Instead, it uses two game-theoretic neural net-
works, namely the generator (G-network) and the discrimina-
tor (D-network), to learn intrinsic statistical patterns of real
data, without direct objective functions.

G-network is used to learn the distribution of real data to
generate identically distributed data, and D-network judges
the probability whether its input data comes from reality or
generation. Through training, the purpose of the generator is to
gradually generate realistic data to deceive the discriminator.
Discriminators want to always be able to distinguish between
real and generated data. Therefore, the essence of GAN is to
make the generator learn the approximate value of real data
distribution through antagonistic learning.

GAN usually has some problems in training, such as mode
collapse, unstable optimization, gradient disappearance, and
non-convergence. To avoid the above problems, this paper
uses Wasserstein GAN with gradient penalty (WGAN-GP) as
the network framework, which is an improved version of GAN.
Wasserstein distance, also known as the Earth-Mover (EM)
distance, is used to evaluate the similarity between two distri-
butions, which can provide a relatively stable gradient relative
to Jensen-Shannon (JS) divergence. GP can avoid the problem
of gradient disappearance caused by large model weights.
Therefore, WGAN-GP is more stable and converges faster in
training and can significantly improve the training speed and
address the slow convergence issue in original WGAN.

4.2 Algorithm-Based Model Design

4.2.1 Generator Design

Fig. 4 illustrates the network architecture and detailed pa-
rameters of the generator in this algorithm. The model takes
noise vector as input and generates CIR through the generator
that uses one-dimensional convolution to extract features. The
convolution layer can create a convolution kernel, and the in-
put of this layer is rolled up in a single space (or time) dimen-
sion to produce the output. The convolution kernel size in the
generator is set to 3. Subsequently, the batch normalization
layer is added behind each convolution layer, which acceler-
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Layer Type Output Shape

Input layer (128, 1)

Dense & batche normalization & LeakyReLU (8192, 1)
Reshape (128, 64)
Conv ID & batche normalization & LeakyReLLU (128,512)
Conv ID & batche normalization & LeakyReL.U (128, 256)
Conv ID & batche normalization & LeakyReLLU (128,128)
Conv ID & batche normalization & LeakyReLU (128, 64)
Conv ID & batche normalization & LeakyReLLU (128, 32)
Conv ID & batche normalization & LeakyRel.U (128, 16)
Flatten (2048, 1)

Dense (200, 1)

Reshape (100, 2)

LeakyReLU: Leaky Rectified Linear Unit

Figure 4. Generator network design and detailed parameters

ates the convergence speed of model training. It also makes
the model training process more stable to avoid gradient explo-
sion or gradient disappearance. In addition, this paper
chooses Leaky Rectified Linear Unit (LeakyReLU) as the acti-
vation function to alleviate the problem of gradient disappear-
ance. The expression of LeakyReLU is shown in Eq. (3).

x, x 20

LeakyReLU(x) = .
a - x, otherwise

(3).
where x is the input of LeakyReLLU. When x < 0, LeakyReL.U
gives x a slope a. Parameter « is an adjustable superparam-
eter, and the value set in this paper is 0.2. Because Tanh can
limit the output to [—1, 1], the generated CIR better matches
with the real CIR amplitude. Therefore, Tanh is selected as
the activation function after the last convolution layer, and its
expression is shown in Eq. (4).
e —e"

Tanh(x) = —— (4),

e +e”

where x is the input of Tanh. When the input noise passes
through six convolution layers, it will pass through the Flatten
layer, and the result will be mapped into a separable space in
combination with the fully connected layer. The fully con-
nected layer maps the learned features to the sample label
space. Since the generator finally outputs the CIR, it is neces-
sary to reshape the samples passing through the fully con-
nected layer.

4.2.2 Discriminator Design

Fig. 5 shows the network architecture and detailed configu-
ration of the discriminator. The input of the discriminator is
the CIR sample generated by the generator or the real CIR
sample. The input channel samples are first zero-padded to fa-
cilitate the subsequent convolution process. Similar to the gen-
erator, the discriminator mainly uses one-dimensional convolu-
tion and LeakyReLU activation function. The convolution ker-
nel size of the one-dimensional convolution is 5. Finally, it is
output through the Flatten and fully connected layers. The out-
put of the discriminator is the probability while the input is a

Layer Type Output Shape
Input layer (100, 2)
Zero padding ID (128, 2)
Conv ID & LeakyReLU (128, 32)
Conv ID & LeakyReLLU (128, 64)
Conv ID & LeakyReLU (64,128)
Conv ID & LeakyReLU (32, 256)
Conv ID & LeakyRelLU (16, 512)
Conv ID & LeakyReLU (8,1024)
Flatten 8192
Dense 1

LeakyReLU: Leaky Rectified Linear Unit

Figure 5. Discriminator network design and detailed parameters

ZTE COMMUNICATIONS | 2 5
June 2025 Vol. 23 No. 2



Special Topic | A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels

Al Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge

real channel sample or a generated channel sample.

5 Algorithm Verification and Application
Software

5.1 Algorithm Verification

Algorithm implementation consists of model design, model
training, and CIR sample generation. The training process fol-
lows an alternating scheme, where the discriminator is up-
dated multiple times per generator update to ensure stable
convergence. The Adam optimization algorithm is employed to
update the parameters of the GAN network with a learning
rate of 0.000 05. Upon completing 2 500 training epochs, the
trained model is saved. Then, in the generation process, the
saved model is used to generate CIR by inputting the desired
number of CIR samples along with a 128-dimensional random
noise vector.

In this section, the similarity between the real and gener-
ated channels is demonstrated by comparing the distribution
performance of the power delay profile (PDP), path loss, and
root mean square (RMS) delay spread between the measure-
ment and generated data. To facilitate accurate evaluation
against real channels, this paper generates channel samples
equal in number to the real ones.

Figs. 6a and 6b illustrate the channel PDP obtained
through actual measurements and GAN generation, respec-
tively. It can be seen that GAN-generated PDP closely
matches the measured data in terms of morphology, especially
aligning with the peak positions in the delay domain observed
in the measurements. Additionally, the generated channels
preserve the diversity, randomness, and noise-affected charac-
teristics of real channels, demonstrating high fidelity. Fig. 6¢
presents a comparison of the averaged PDP. Specifically,
when calculating the PDP, the samples are averaged accord-
ing to the number of samples, as shown in Eq. (5).

1 2
PDP = N;|h(n,r)| (5),

where N is the total number of channel samples, h represents
the measured or generated CIR, n is the sample index corre-
sponding to the number of delay points, and 7 refers to the
delay points.

For the real channel, the average PDP is depicted by the
black curve in Fig. 6¢. The average PDP of the channels gen-
erated by the Al model after 2 500 training iterations is shown
by the blue dashed line with square markers. For comparison,
channels generated by the model after training for 20 epochs
are included, with PDP illustrated by the purple solid line

-60
o Generated PDP (20 epochs)
----- Generated PDP (2 500 epochs
E‘: E‘: =70 Measur[emem PDP "
K K m 80
£ 00|y,
2 100® 3 ew%:f&:%%%:?J%%“’ag:wﬁm%mﬁ
"0 100 -110
Channel Channel 1000
; 40 ; 40 ~120
index o, 20 Delay/ns index 0 0 20 Delav/ 0 20 40 60 80 100
clayins Delay/ns
(a) (b) (c)
300 450 10°
[ Measurement [ Measurement === Generated channel
[JGenerated channel 400 [JGenerated channel
250
350
200 - 300
= =
Z 150 £ 250 =
© o 200 =
100 150
. i
0 " o 107! :
55 60 65 70 75 80 20 30 40 50 60 70 80 90 5 10 15 20 25
Path loss/dB RMS delay spread/ns SNR/dB
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BER: bit error rate  PDP: power delay profile ~ RMS: root mean square ~ SNR: signal-to-noise ratio
Figure 6. Algorithm verification results: (a) measured PDP; (b) generated PDP; (¢c) PDP comparison; (d) path loss;
(e) RMS delay spread; (f) BER performance
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with diamond markers in Fig. 6¢. It can be observed that the
channel power distribution generated by the model trained for
20 epochs ranges in [-100 dB, —60 dB], whereas the power
distribution of both the real channel and the channel gener-
ated by the model trained for 2 500 epochs spans from —120
dB to =60 dB. This discrepancy arises from insufficient train-
ing, which prevents the model from fully capturing channel
characteristics and distribution. As a result, the generated
channel data lack multipath details and exhibit higher noise
power. Channels generated by a high-performing GAN model
closely resemble the real channels, including the transition of
the PDP from peak values to a gradual stabilization.

Further validating the distribution of channel parameters is
crucial for evaluating model performance. Path loss is used to
characterize the power loss that occurs during signal transmis-
sion, which is an important parameter for evaluating signal
coverage area and quality in wireless communication systems.
It can be calculated using PDP, as shown in Eq. (6).

(6),

1 2
PL = M(/\Z‘h(n,rﬂ

where N_ denotes the number of delay points, and h represents
the measured or generated channel. Fig. 6d illustrates the
path loss distributions for both the measured and generated
data. Tt is evident that the generated data (blue histogram) ex-
hibits a high degree of overlap with the measurement (red his-
togram) in terms of path loss. Meanwhile the mean path loss
values for the measured and generated channels are 64.80 dB
and 64.47 dB, further demonstrating the high similarity be-
tween the generated and real channels.

RMS delay spread is used to describe the degree of delay
dispersion in a channel, which reflects the impact of the delay
distribution of each propagation path on the received signal in
a multipath propagation environment. RMS delay spread can

350 ; : - - )
0 Measurement |
] Generated channel by GAN

i

\I|
5 60 65 70 75
Path loss/dB
(a)

FID: Frechet Inception Distance

30 40

0
20

50 60

(b)

7] Measurement
[ Generated channel by GAN

70
RMS delay spread/ns

GAN: generative adversarial network  RMS: root mean square

be calculated as follows:

S e(n)?PDP(n, 7)
\ > PDP(n,7)

-7 (n)? (7).

Tpus () =

where 7, represents the delay component of the N-th channel
sample, 7 (n) refers to the average delay. 7 (n) is calculated as:

> z(n)PDP(n,7)
NEPDP(n,r)

7(n)= (8).

Comparing the histograms displaying the RMS delay spread
distributions of the measured and GAN-generated channels,
Fig. 6e shows that both channels exhibit a high degree of con-
sistency in their distribution shapes and ranges. Additionally,
the mean RMS delay spreads for the measured and the gener-
ated channels are 30.65 ns and 30.74 ns, further validating
the similarity between the two channel distributions. This also
confirms the strong performance of the GAN model in captur-
ing the channel delay characteristics.

Furthermore, the generation performance of the standard
GAN model is further compared and evaluated. Figs. 7a and
7b present the statistical distributions of path loss and RMS
delay spread from the generated channel by the GAN model.
By comparing these results with the WGAN-GP performance
in Fig. 6, it is evident that WGAN-GP achieves better align-
ment between the statistical characteristics of the generated
channel data and those of the measured channel. Fig. 7¢ pro-
vides a quantitative assessment of the fidelity of the generated
channel data using the Frechet Inception Distance (FID) met-
ric. The results indicate that the WGAN-GP model achieves
significantly lower FID scores (0.114 3 for path loss and 0.106
for RMS delay spread) compared to the standard GAN model

FID score/FID value
O = N W kR NN

FID (Path loss)

FID (RMS delay spread)
HWGAN-GP 0.1143 0.106
80 90 HGAN 7.8116 0.882 9

(c)

WGAN-GP: Wasserstein GAN with gradient penalty

Figure 7. Standard GAN model generation performance: (a) path loss; (b) RMS delay spread; (c) FID comparison
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(7.811 6 and 0.882 9, respectively). This demonstrates that
WGAN-GP is capable of generating channel data with higher
fidelity, ensuring a closer match to the statistical characteris-
tics of measurements.

To validate the effectiveness of GAN-generated channels, a
simplified link-level simulation was conducted for evaluation,
which employed phase shift keying (PSK) modulation with
100 transmitted bits and a modulation order set to 16. Fig. 6f
compares the bit error rate (BER) of the real channel with that
of the GAN-generated channel, where the BER curves of the
real and GAN-generated channel are highly consistent, exhib-
iting similar BER trends under different signal-to-noise ratio
(SNR) conditions. This high level of similarity indicates that
the GAN-generated channel can effectively simulate the real
channel in terms of error performance.

5.2 Application Software

The main function of the application software is to generate
channels by using the previous algorithm, and the visual inter-
face is shown in Fig. 8. The software can be divided into two

sub-functions: one-time channel generation and uninterrupted
real-time channel generation. The former can generate a speci-
fied number of channel data at one time. In addition, the soft-
ware can track the duration record generated by the channel.
When generating channels in real time, the function of select-
ing generation batches is added. If the generation batch is se-
lected, the channel can be generated in real time according to
the batch size, and the dynamic generation process of the
channel and the dynamic distribution of the channel param-
eters can also be seen on the visualization panel. After the dy-
namic generation of the channel is completed, the software
will detect the end of the generation and turn the indicator
light green as a prompt.

Fig. 9 shows the operation flow of the software. First, the
path needs to be set, including selecting measurement data
and generating models. The path to store the generated chan-
nel data should also be configured. Next, the options of link
simulation are configured. The modulation mode can be PSK
or quadrature amplitude modulation (QAM), and the modula-
tion order can be 4 or 16. In link simulation, we can choose

Channel Data Enhancement Software

Data Storage Path
[FaPlanA+CIR_new | [E]
Measured Data Path
| FAPlanA+ CIR newtest dota_th 7252.mat | [E]
Model1 Path
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Model2 Path
[ DA1-paper\GANICode\Planas CIR\moden | | £ |
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Figure 8. Channel data enhancement application software interface
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Figure 9. Operation flow chart of channel enhancement software

whether to perform channel estimation or not. Then, we should
choose whether to generate channels in real time in the basic
settings. If not, the software will generate all the channel data
with the set number of channels at one time. If it is real-time
generation, we need to further set the generation batch; the
software will subsequently generate channel data according to
the set generation batch, and the display window will dynami-
cally display the whole channel generation process. Finally, af-
ter clicking the Start button, the software will initiate the gen-
eration of channel data based on the specified configuration.
Clicking the Clear button will then clear the contents of the
display window, allowing the settings to be reset for generating
channel data under the new configuration.

6 Conclusions

Channel characteristics and models are the basis of commu-
nication system design and evaluation. Meanwhile, it has been
a consensus that channel data is the support of channel re-
search and modeling. To address the current issue of challeng-
ing channel data acquisition, this paper proposes a channel
data enhancement platform based on the idea of a digital twin
channel. The platform includes three key subsystems: channel
measurement, enhancement algorithm, and application soft-
ware. The measurement subsystem is a broadband dynamic
channel measurement system based on the SDR architecture,
which can complete channel data acquisition in the sub-6 GHz
frequency. The channel enhancement algorithm, the core of
the proposed platform, is a neural network based on the GAN
architecture. It can learn the intrinsic characteristics of real
channel data and quickly generate a large number of highly
similar simulation channels. We verify and evaluate the gener-
ated channel under the high-order characteristics of power de-

lay profile, path loss, shadow fading, and root mean square de-
lay spread. The results show that the generated channel is
similar to the original channel in statistical characteristics and
has sufficient randomness. Finally, the platform includes inte-
grated software for engineers and researchers, which can call
the above algorithm and generate channel data in real time.
The result of this paper is a potential channel modeling and
simulation methodology.
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Abstract: A novel digital twin (DT) enabled channel model for 6G vehicular communications in Beijing Central Business District (Beijing
CBD) is proposed, which can support the design of intelligent transportation systems (ITSs). A DT space for Beijing CBD is constructed,
and two typical transportation periods, i.e., peak and off-peak hours, are considered to characterize the vehicular communication channel
better. Based on the constructed DT space, a DT-enabled vehicular communication dataset is developed, including light detection and
ranging (LiDAR) point clouds, RGB images, and channel information. With the assistance of LiDAR point clouds and RGB images, the
scatterer parameters, including number, distance, angle, power, and velocity, are analyzed under different transportation periods. The
channel non-stationarity and consistency are mimicked in the proposed model. The key channel statistical properties are derived and simu-

lated. Compared to ray-tracing (RT) results, the accuracy of the proposed model is verified.
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1 Introduction
ith the development of 6G wireless networks, the
demands for high-performance communications
are increasing, particularly in densely populated
and built-up areas such as central business dis-
tricts (CBDs). As the core business hub of China’s capital,
Beijing CBD faces exceptionally high wireless communica-
tion demands. The unique architecture and dense traffic flow
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in this area have a significant impact on wireless channel
characteristics. 6G networks are expected to meet these chal-
lenges by providing wider coverage, higher data rates, and
lower latency. Intelligent transportation systems (ITSs), as a
key technology to enhance traffic management and transpor-
tation efficiency, promote traffic safety and efficiency
through the application of information technology, communi-
cation equipment, computing technology, and artificial intel-
ligence (AI). Vehicular communication is an important part
of ITS, which significantly improves road safety via real-time
communications between vehicles!". However, in high-
density and high-traffic urban environments like Beijing
CBD, vehicular communications are challenged by complex
and dynamic wireless channel conditions. Accurate channel
modeling is essential to ensure the reliability and efficiency
of vehicular communications. Furthermore, traffic density dif-
fers significantly between peak and off-peak hours. As a re-
sult, more accurate channel models are essentially required

to depict the wireless communication environment and to
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guide a more precise design of the communication system.

Digital twin (DT) is a digital reconstruction of physical en-
tities and can be utilized as an efficient method to character-
ize, simulate, and visualize physical entities’®. DT has advan-
tages in representing physical entities that are difficult to
model and replicate. DT enables the creation of a virtual rep-
lica of the real-world environment, which allows the dynam-
ics of the channel to be accurately modeled.

Recent studies have integrated DT with wireless communi-
cation systems. DT is utilized to construct virtual models that
simulate the real world and facilitate data acquisition based
on the constructed models. A platform for DT was proposed
in Ref. [3], along with a synthetic dataset combining the data
obtained through the real world and those obtained through
virtual copies. This approach reduces the burden of collect-
ing real-world channel data and significantly decreases the
system overhead. DT can also reduce the data acquisition
overhead of the communication system and improve the sys-
tem accuracy. In Ref. [4], the authors introduced a ray-
tracing (RT) oriented approach for DT demonstration of radio
propagation in multiple frequency bands from microwave to
visible light. Furthermore, a super-resolution modeling
method was developed by fusing RT and AT algorithms to im-
prove the stability and accuracy of communications. The au-
thors in Ref. [3] utilized site-specific DT models to train
deep learning (DL) models. The proposed DT-based method
generates site-specific synthetic channel state information
(CSI) data through 3D modeling and RT methods, enabling
effective training of DL models while reducing the overhead
of real-world data collection. To further improve model per-
formance, an online data selection approach is used to refine
the DL model training with a small real-world CSI dataset.
Since DT can contribute to balancing the overhead and the
accuracy of communication systems, it has been widely ad-
opted in various communication scenarios, such as UAV and
vehicular communication systems. A framework for DT-
based UAV applications was proposed in Ref. [6], where a
task manager orchestrated interactions between the DT sys-
tem and physical UAVs. DT can assist UAVs to achieve
more efficient flight paths and reduce energy consumption,
which improves the efficiency of UAV communication sys-
tems. For vehicular communication systems, a city-model-
aware DL algorithm for dynamic channel estimation in urban
vehicular environments was proposed in Ref. [7]. The pro-
posed model gained a balance between accuracy and timeli-
ness. In summary, DT effectively reduces the overhead of
data acquisition and significantly improves system accuracy
by reflecting the dynamic changes of the environment in real
time. DTs have been applied to a variety of typical communi-
cation scenarios. However, accurate comprehension and mod-
eling of the environment are essential to further enhance sys-
tem security and reliability.

To accurately depict the communication environment, the
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channel characteristics between the transmitter (TX) and the
receiver (RX) need to be precisely characterized. Therefore,
channel modeling is the cornerstone of communication sys-
tems, and more accurate channel models are essential to fur-
ther improve the efficiency of communication systems. Con-
ventional channel modeling approaches, including stochastic
and deterministic models, have significantly contributed to
wireless communication systems. However, the methods have
limitations when applied to complex and dynamic urban envi-
ronments. For example, stochastic models depend on pre-
defined assumptions, which may not accurately capture varia-
tions in specific scenarios®. Deterministic models, such as
RT methods, provide better accuracy with high computa-
tional overhead and the difficulty of real-time adjustment®).

DT provides a new paradigm for channel modeling as it en-
ables accurate physical-virtual world mapping. By precisely
modeling and dynamically updating the virtual environment,
DT can capture the changing characteristics in the environ-
ment in real time. When integrated with machine learning
(ML) algorithms, DT can also extract key characteristics from
complex scenarios and realize high-precision modeling of di-
verse channel characteristics. In Ref. [10], the authors pro-
posed a channel modeling approach based on generative ad-
versarial networks for DT environments, which can generate
channel data with a statistical distribution that closely
matches the measured channel. A data-driven continuous tra-
jectory modeling method for a user equipment with a DT
channel was proposed in Ref. [11]. This method generates
channel models whose spatial and temporal characteristics
match the real-world wireless channels. Nevertheless, cur-
rent studies on DT-based channel modeling are still at the
preliminary stage, particularly on high-precision modeling in
dynamic environments. Most existing DT-based channel mod-
els cannot handle high-mobility vehicular communication
scenarios. Therefore, there is an urgent need to explore DT-
based methods for improving the accuracy of vehicular com-
munication channel modeling.

To fill this gap, we explore the application of DT to chan-
nel modeling and select a typical urban communication sce-
nario, i.e., vehicular communications within Beijing CBD.
We propose a new method of channel modeling based on DT
for complex urban environments. The main contributions and
novelties of this paper are summarized as follows.

1) A new reliable DT space for Beijing CBD is con-
structed, where the physical and electromagnetic spaces are
precisely aligned by AirSim and Wireless InSite. It provides
a highly accurate virtual environment for channel modeling.

2) A DT-based dataset is constructed for Beijing CBD
for the first time, which includes sensory data, i.e., light
detection and ranging (LiDAR) point clouds, RGB images,
and channel data. The dataset is constructed in complex
and dynamic scenarios and comprehensively captures the
unique characteristics of vehicular communications in ur-
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ban environments.

3) A DT-enabled vehicular communication channel model
for Beijing CBD is developed, which models and analyzes the
channel characteristics of peak and off-peak hours in Beijing
CBD for the first time. Furthermore, the channel parameters,
e.g., number, distance, angle, and power of scatterers with
different velocities, are developed under different transporta-
tion periods.

4) Based on the proposed channel model for Beijing CBD,
key channel statistical properties, i.e., time-frequency corre-
lation function (TF-CF) and Doppler power spectral density
(DPSD), are derived and simulated. According to the simula-
tion results, the effect of different transportation periods on
the channel statistical properties is investigated. Simulation
results are consistent with the experimental results based on
RT, which verifies the accuracy and practicability of the
channel model based on DT.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the DT space for Beijing CBD. Section 3 pro-
poses a novel DT-enabled vehicular communication channel
model for Beijing CBD. Section 4 presents the statistical
properties of the vehicular communication channel and com-
pares the simulation results with those based on RT. Finally,
Section 5 concludes the paper.

2 DT Space for Beijing CBD

Beijing CBD provides a unique scenario for ITS applica-
tions with its high-density buildings, complex transportation
networks, and diverse communication requirements. How-
ever, conventional channel modeling methods face several
challenges in complex urban scenarios, particularly in model-
ing multipath propagation and dynamic changes. DT technol-
ogy enables the construction of digital spaces that match the
real world to accurately reflect real-time environmental
changes. Therefore, a DT space for Beijing CBD is con-
structed to achieve accurate modeling of the physical envi-
ronment and dynamic traffic characteristics of the area. This
DT space provides a robust platform for channel modeling,
which can support the research of high-precision vehicular
communication systems.

2.1 Construction of DT Space for Beijing CBD

In Beijing CBD, the diversity of building distribution and
types has a significant impact on the signal propagation char-
acteristics. The CBD, as the core business district of the capi-
tal, features high building density with numerous high-rise
and modern office buildings. The different heights, shapes,
layouts, and building materials of these buildings signifi-
cantly influence wireless signal propagation. As for transpor-
tation, the traffic volume in Beijing CBD peaks during rush
hours, and vehicle quantity and density directly affect wire-
less signal transmission.

To construct a DT space that can match the real environ-

ment well, we first use Blender, a 3D modeling tool, to estab-
lish a scenario identical to Beijing CBD, leveraging satellite
maps and 3D models of the buildings. To ensure the accu-
racy of the constructed scenario, the heights, sizes, and inter-
building distances are strictly consistent with the real world.
Then we utilize Wireless InSite in Ref. [12] to build the elec-
tromagnetic space. The process involves importing the con-
structed 3D model into Wireless InSite. Then the propaga-
tion parameters are set with a frequency of 5.9 GHz, a band-
width of 20 MHz, and an omnidirectional antenna for trans-
ceivers. Parameters related to electromagnetic phenomena,
such as reflections and dispersions, are configured in Wire-
less InSite to simulate channel characteristics in specific fre-
quency bands. Meanwhile, the influence of buildings, ve-
hicles, and other obstacles in radio propagation is ensured to
be effectively reflected. Two scenarios are constructed for in-
vestigating the effect of peak and off-peak traffic conditions
on channel characteristics. The objects in the two scenarios
remain identical except for the number of vehicles. Vehicles
are 57 during peak hours and 34 during off-peak hours. After
establishing the electromagnetic environment model, the
model exported from Wireless InSite is imported into the Air-
Sim platform for detailed visualization, which provides a
simulation of the visual and dynamic environment similar to
Ref. [13]. Each vehicle in AirSim is equipped with sensory
devices, i.e., RGB cameras and LiDAR devices. The dy-
namic vehicular trajectories simulated in AirSim remains
identical to those in Wireless InSite. With the precisely
aligned scenarios in Wireless InSite and AirSim, the real-
world physical environment is accurately replicated in the
virtual space. The environment consistency across different
platforms is maintained and dynamically updated, facilitat-
ing the construction of a highly reproducible DT space.

2.2 Data Collection and Processing in DT Space

Beijing CBD scenarios in Wireless InSite and AirSim are
presented in Fig. 1. To construct the DT-based Beijing CBD
vehicular communication dataset, a simulation setup in
Wireless InSite and AirSim is required. The number of simu-
lation snapshots is set to 300 with a time interval of 0.01 s.
The batch generation of the scenarios is set up through
MATLAB scripts in Wireless InSite, and the position of the
vehicles is simulated through Python scripts set up by frame
in AirSim. The vehicular trajectories during off-peak hours
are shown in Fig. 2. Sensory data (LiDAR point clouds and
RGB images) and communication data are collected. Simulta-
neously, the moving vehicles establish the Beijing CBD ve-
hicle communication dataset based on DT. The communica-
tion links simulated in both transportation periods are identi-
cal, as shown in Fig. 2. The constructed dataset consists of
10 800 LiDAR point clouds, 10 800 RGB images, and 9 000
communication link data.

The high mobility of multiple transceivers and scatterers
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Figure 1. DT space for Beijing CBD vehicular communication scenarios

results in complex characterization. Therefore, the detection
of the velocity properties of scatterers is extremely signifi-
cant. With the support of sensing data (LiDAR point clouds
and RGB data), zero velocity scatterers (ZVSes) and non-zero
velocity scatterers (NVSes) can be detected and matched to
static objects and dynamic vehicles. The LiDAR point
clouds, combined with the clustering algorithm and RGB im-
ages, can effectively distinguish between the ZVS and those
with non-zero velocity. The point cloud data are prepro-
cessed and then clustered using the density-based spatial
clustering of applications with noise (DBSCAN) clustering al-
gorithm in Ref. [14], a typical ML algorithm for grouping the
point clouds. ZVS sets usually correspond to static objects
such as buildings, which remain stable over multiple time
frames, while NVS sets correspond to dynamic objects (ve-
hicles), whose positions change over time. The two types of
scatterers can be accurately distinguished by matching point
cloud clusters in different time frames and combining them
with velocity estimation methods. Some scatterers cannot cor-
respond to any object due to exceeding the detection range of
the LiDAR sensor. Since unknown scatterers are usually far
away from the transceiver and the received power via them is
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very small, they can be ignored in the channel realization.
Fig. 1 characterizes the scatterers extracted from the RT-

based wireless channel data.

3 DT Enabled Channel Modeling

Based on the constructed DT space, a DT-enabled vehicu-
lar communication channel model for the Beijing CBD area
is proposed, which considers the impact of different traffic
densities for peak and off-peak hour periods. Moreover, to pa-
rameterize the proposed model more accurately, the scatterer
properties, i.e., number, distance, angle, and power of scat-
terers with different velocities, are modeled and analyzed.
Furthermore, the channel non-stationarity and consistency in

the time domains are studied.

3.1 Framework of DT-Enabled Channel Model for Bei-
jing CBD
The channel impulse response (CIR) of the vehicular com-
munication channel h(t,7), i.e., the CIR of the transmission
link from the i-th vehicle to the j-th vehicle, can be repre-

sented as:



6G Digital Twin Enabled Channel Modeling for Beijing Central Business District | Special Topic

Vehicle 31
-

Vehicle 10

Vehicle 11

.
-
le 28 .

LU Mengyuan, BAI Lu, HAN Zengrui, HUANG Ziwei, LU Shiliang, CHENG Xiang

Communication

links

Vehicle 5 Vehicle 9
Vehicle 5 Vehicle 10
Vehicle 8 Vehicle 12
Vehicle 8 Vehicle 15
Vehicle 8 Vehicle 32
Vehicle 17 Vehicle 16
Vehicle 17 Vehicle 19
Vehicle 24 Vehicle 15

Vehicle 24 Vehicle 17
ehicle 10

. Vehicle 30 Vehicle 11

pes
- Vehicle 30 Vehicle 14

v Vehicle 33 Vehicle 9
Vehicle 33 Vehicle 23
Vehicle 33 Vehicle 27

Vehicle 33 Vehicle 28

Figure 2. Vehicular trajectories and communication links under off-peak DT-enabled Beijing CBD scenarios
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3.1.1 Ground Reflection Component
The ground reflection component complex channel gain of
the transmission link from the i-th vehicle to the j-th vehicle

can be represented as

RE® (1) = Q(1) /PR (1) x exp{jZTr‘:J: S () de +

f fGR’”(t)dt} +jqo‘“*<z>} (2).

where Q(t) is a rectangular window function'"" it equals 1

when t,<t<T, (where T\, means the observation time interval),
otherwise equals 0. PGR(I),fGR’V‘/V’(t), 0™ (), and 7% (¢) de-
note power, Doppler frequency at the i/j-th vehicle, phase,
and delay of the ground reflection component from the i-th
vehicle to the j-th vehicle, respectively. The Doppler fre-

quency £V (1) is expressed as

:i<DGR,I/"/V/(t),vl’,/V/(t)>

GR.V,1Y,
f (t) A H D(;R,V,/V,(l) "

(3),

where D% () is the distance vector from the i/j-th vehicle
to the reflection point on the ground. The phase of the ground
reflection component from the i-th vehicle to the j-th vehicle

can be computed as

—
~

=

3

et (1) = @, + %\l(” D) ” + ” DGR,V}(t) u)

where @, is the initial phase shift.
The delay of the ground reflection component from the i-th

vehicle to the j-th vehicle, 7% (1), can be computed as

[o @+ [ o™ o]

c

TGR(L‘) —

(5).

The calculation of distance vectors D™ (¢) and D(;R’vr’(t)
is expressed below. The azimuth distance between the TX
(the i-th vehicle) and the ground reflection point is dm(t)v

D"V (1) hy, ()
which is derived from d, (1) = hV’(z) h, (L) 3 hy (t)and

hy (t) are the ground clearances of the i-th vehicle and the j-

th vehicle. With the geometrical relationship, the distance

between the i/j-th vehicle and ground reflection point can be

Wsan :m and
HDmW”H;ADWw”W+hww+h;—Wﬂ”ﬂﬂ[Tm

corresponding distance vectors can be expressed as

computed as
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cos ™™ (1) COSIB(;R,V;N; (1)
GRVI, (1 COSEGR.V,/V/ (1) (6)

SinBGR,VL/VJ (l)

DERVY = H D(;R.V,/V,|

X | sina

GRVY, GRVIV, . .
where o7 and B are the azimuth and elevation

UV As the azimuth angle of

angles of the distance vector D
the ground reflection path matches that of the line-of-sight
(LoS) path and the combined power of the LoS and ground re-
flection paths remains constant, only the elevation angle of
the ground reflection path needs to be taken into account
similar to Ref [16]. B“™"" is computed as B"%"" =

hy

i

dv(l).

i

arctan

3.1.2 LoS Component
The LoS complex channel gain of the transmission link
from the i-th vehicle to the j-th vehicle can be represented as

Hﬂw=wa%ﬂwﬁﬂ$M&+mmuﬂ (7).

The Doppler frequency, phase shift, and delay of the LoS
component of the transmission link from the i-th vehicle to
the j-th vehicle are obtained by

_ 1D 0,0 (1) - 0" (1))

fLoS(t)

A [ )]
0" (1) = gy + 2T D) 9),
5 (1) = DM:(’) (10),

where (-,-), @,, and A are the inner product, initial phase
shift, and carrier wavelength; v" (1) and vv/(t) are the veloc-
ity vectors of the i-th vehicle and the j-th vehicle. Mean-
while, the distance vector for the i-th vehicle and the j-th ve-

hicle D" () is obtained by

DR = D)+ [ o (- [ o (o (1),

0 to

3.1.3 Non-LoS Component

Vehicular communication’s high mobility causes real-time
changes in the communication environment. To characterize
the non-line-of-sight (NLoS) component of the channel gain,
it is essential to separately model the characteristics of scat-
terers according to their velocities. To compute the NLoS
component’ s complex channel gain, we separately calculate
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the complex channel gains of clusters with zero and non-zero
velocities. Using LiDAR point clouds and RGB images, the
scatterers are classified by velocity (zero/non-zero). Mean-
while, the scatterer parameters with different velocities will
be analyzed and utilized for channel modeling, detailed in
the next subsection. To depict the NLoS complex channel
gain more clearly, we define clusters with centroids closer to
TX/RX as TX/RX clusters, which are then randomly shuffled
and paired to create twin clusters. The p-th TX/RX cluster
with zero velocity and the g-th TX/RX cluster with non-zero
velocity are represented as Ciipx and Crifhx. The velocity
vector vy 1s utilized to depict the g-th TX/RX cluster with
non-zero velocity.

The NLoS component’s complex channel gain from the i-th
vehicle and the j-th vehicle via the n -th scatterer in the p-th

twin cluster with zero velocity, i.e., hNLOS (), is calculated by

pn,

hs’bzﬁ(t) — Q( ) P;:Jio\( ) X BXP{]Z'H':J' f;}l\iLLnS (L‘)dt +

J NLos:X } +J§D}>EOS( )} (12),

where P,]ii‘js (t) is the normalized power of ZVS, fN=wS-TVEX ()

pn,
is the Doppler frequency of the clusters with zero velocity at
TX/RX, and qogi"s(t) is the phase shift. ﬁ},\iL’“S:’TX/RX is com-

puted by

L (DS (). 0™ (1))

f;,]leOS:’TX (t) - X NLoS", TX (13)’
Dy |
) Dl:lins’,lix (t), va (t)
ANOEE (o ) (14)

Yol

where DMSYRX (1) pepresents the distance between the TX/

pn,
RX and the n -th scatterer in the p-th twin cluster €75 zy. The

distance DM"S TRX (1) 1s given by

p-n,

[I:I’I:S",TX/RX(t) —

NLnS lX/RX(t) \JLnS lX/RX(t)

p n,

CcOoS O{

NLoS*, TX/RX NLoS*, TX/RX
p-n, ( )(’O"B ( ) (15)

Sll’lB\” 087 TX/RX(t)

pan,

DNI()S TX/RX(t

s )| sina

The phase shift is computed by

2m oS
e (=g DY 0] +
[y @]+ ez (16)
where 77 (1) represents the delay of the virtual link between

the twin clusters C3{x, which obeys the Exponential distri-
bution. Moreover, the delay via clusters with zero velocity at
TX/RX is computed by

NLoS",TX NLoS . RX
o]

H + 777 (¢) (17).

TNLOS’ (Z) - ”

pn,

Similarly, the NLoS complex channel gain from the i-th ve-
hicle and the j-th vehicle via the n -th scatterer in the g-th

A5 (1), is caleu-

twin cluster with non-zero velocity, i.e., h,,
,

lated by

() = 0(0) [P (1) % exp{ﬂ“ U S 1)+

@
0

f Jonl™ ]wqoi,“%“‘()} (18),

PN (1) is the

q.n,

where normalized power of NVS,

quL"SM‘TX/HX( t) is the Doppler frequency of the clusters with

.

non-zero velocity at TX/RX, and gDNL"S (¢) is the phase shift.

f NLoS™,TX/RX
qs

n,

is computed by

L (DY ()™ (1)

/. quII’:)S“iTX (t) = X NLoS™,TX (19),
Dm0
NLoS™ RX R

f;(l’\illjnS’“,l{X )l\ <D‘7" (t)> (20),

e

where D:;IL”S TR (1) represents the distance between the TX/

RX and the n -th scatterer in the g-th twin cluster Cygy. The

DNI ob T‘(/RX( )

distance D "

is given by

;l::nS lX/RX( ¢ )

cos a;{l:sm‘wmx( t)cos B

Dzi:»s”‘.TX/RX( t) sin a{l]‘lyj:‘nS“,’l‘X/KX( ¢ ) COSB

(II\IIILOS TX/RX( t)

NLoS™ lX/RX(t) (21)

q.n,

Sll’quNVI:OS TX/RX(t)

The phase shift is computed by
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905&05 (1) =@, + l[” Dib?s ™ (,

= [Jozenio ]« [z o]

(22),

where 7 (t) represents the delay of the virtual link between
the twin clusters Ci{%ic, which also obeys the Exponential
distribution. Moreover, the delay via clusters with non-zero
velocity at TX/RX is computed by

NLS™TX ( H H PSR

NLoS™ _ “ q.n, q.n,
Tqﬂj (t) = .

2] DS

The power parameter P}:I,I:f (¢), distance parameter

NLoS™  TX/RX
Plan,, ( t )’
B NLoS™,TX/RX
plg.n,,

, NLoS™ TX/RX
and angle parameters a, " (t) and

(¢) obey different statistical distributions, which

are analyzed in the following subsection.

3.2 Parameters for Channel Realization

Based on the constructed DT-based Beijing CBD vehicular
communication dataset, we use statistical approaches to com-
pute the distribution of parameters related to scatterers with
different velocities.

Accurately characterizing and modeling the number of

07 How-

scatterers and clusters is crucial for channel models
ever, the statistical properties of the corresponding scatterers/
clusters are not depicted in the current standardized models

for scatterers with different velocities!'® '”!

. To comprehen-
sively characterize vehicular communication channels in Bei-
jing CBD, the quantities of scatterers/clusters with zero/non-
zero velocities are explored. The numbers of ZVS and NVS
in the transmission link from the i-th vehicle (TX) to the j-th

vehicle (RX) are denoted as N;(t) and N:’j(t) Since the dis-

tance between the transceivers affects the evaluation of the
scatterer number, the parameters controlling scatterer num-

bers are defined as Y;'; and Y/, which can be represented as

O S — (24)
ST @ - RO ’
Y% (1) = L() (25)
ST - R0 ’

where T’ (t)and R, (1) are the locations of the i-th and j-th ve-
hicles. Moreover, based on the constructed DT-based Beijing
CBD vehicular communication dataset, the number ratios of
ZVS and NVS for each communication link per snapshot
across peak and off-peak traffic periods are calculated and
analyzed. Fig. 4 presents the cumulative distribution func-
tions (CDFs) of the velocity-based ratio related to the scat-
terer number during peak and off-peak hours. These CDFs fit
well with the Gaussian mixture model (GMM), which can be
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represented as

an z 7_l_d/nz z/nz (26),

k=1

where F¢(x) and 7] are the CDF and weight of the k-th
Gaussian distribution, respectively. .7:1/"’( ) can be given by

z/nz
X My
zlnz

Yk

.7:1/"‘( )= szy/'}f , where (PZY/:Z is the CDF of the stan-

zlnz z/ nz

dard normal distribution; uyy and o}/ are the mean and stan-
dard deviations of the k-th Gdusswn distribution. The ratios
related to scatterer numbers can be obtained from the simula-
tions using the constructed DT-based Beijing CBD vehicular
communication dataset. The number of Gaussian distribu-
tions k is 3. During off-peak hours, the simulation param-
eters for the ZVS are 7, =[0.3952; 0.466 6 ; 0.138 2], My
[0.1565;0.0263;0.6179], and o}, =[0.0082; 3.63
10*;0.1912], while those for the NVS are ) =
[0.1148;0.3175; 0.567 7], i, =10.1164;0.0492;
0.010 7 Jand oy, =[0.0016;5.14 x 107*; 3.21 x 107].
Meanwhile, during peak hours, the simulation parameters for
the ZVS are = [0.3504; 0.2819; 0.367 7] My =
[1.1673;0.4263; 0.072 3], and 0y,=10.2542;
0.0222; 0.0029], while those for the NVS are m}° =
[0.6034;0.3784;0.0182], my, =[0.0115;0.0558;
0.2735], and oY, =[2.94 x 107;3.86 x 107*; 0.008 9 1.

Fig. 4 shows that both the mean and variance of the number-

X

related parameters for the NVS are greater during peak
hours than during off-peak hours. This is because there are
more dynamic vehicles around the transceiver during peak
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Figure 4. GMM-fitted CDFs of velocity-based ratios related to scatterer
numbers during peak and off-peak hours
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hours, which increases the number of NVS. For the ZVS, the
mean and variance are also greater during peak hours than
during off-peak hours. This is due to the fact that the envi-
ronment tends to be rich scattering during peak hours, result-
ing in more propagation paths.

To investigate vehicular channel characteristics in Beijing
CBD in detail, the scatterers are clustered to analyze cluster
population statistics. Therefore, the parameters of zero-
velocity and non-zero-velocity clusters in the transmission
link from the i-th vehicle (TX) to the j-th vehicle (RX) are de-
noted as U;; and U}". For each communication link per snap-
shot, we denote the velocity-based cluster-number param-
eters across peak and off-peak hours. The CDFs of velocity-
based ratios related to cluster numbers follow GMM distribu-
tions, which can be expressed as

K
2inz 2z oy
Fi™(x) = m, Fii(x) (27),

=

where fff}f(x), the CDF of the k-th Gaussian distribution,

z/nz
X My
zlnz

Uk

can be given by 7 (x) = @7 , where @7} is the

z/nz

CDF of the standard normal distribution, while 1} and o}
are the mean and standard deviations of the k-th Gaussian
distribution. The number of Gaussian distributions £ is also
3. For the clusters with zero velocity during off-peak hours,
the simulation parameters are m, =
[0.2543;0.6315;0.1142], iy, =[0.0409:0.0103;
0.1017], and o, =[2.97 x 107*; 4.76 x 107; 0.002]. As
for the clusters with non-zero velocity during off-peak hours,
the parameters are 7" = [0.298 4; 0.606 8 ; 0.094 8], u}’, =
[0.5515;0.0117;0.1097], and o, =[2.36 x 10™*; 3.05 x
107°; 0.001 7 |. Meanwhile, for the clusters with zero velocity
during peak hours, the simulation parameters are 7, =
[0.3406; 0.4019; 0.257 5], Wi, =10.0852;0.0200;
0.2120] and o7, =[6.96 x 107*; 1.17 x 107*; 0.005 5]. For
the clusters with non-zero velocity during peak hours, the pa-
rameters are ) =[0.1952;0.7785;0.026 3], uj, =
[0.0333;0.0109; 0.0656], and o, =[2.01 x 107; 3.01 x
107°; 1.07 x 107°]. Fig. 5 presents the CDFs of the velocity-
based ratios related to cluster numbers during peak and off-
peak hours. The parameters related to the cluster number
show similar trends to those related to the scatterer number
with different velocities during peak and off-peak hours.
Distance distribution of scatterers is important for stochas-
tic channel modeling. The distance parameters of scatterers
are assumed to follow the Exponential distribution in Ref.
[20]. However, scatterer velocity variations and traffic den-
sity differences during peak and off-peak hours are ignored.
Based on the constructed DT-based Beijing CBD vehicular
communication dataset, distance characteristics of the scat-
terers with different velocities are explored. The distance pa-

rameters for the m-th scatterer with zero velocity and the n-th
scatterer with non-zero velocity from the transceiver, i.e., the
i-th vehicle and the j-th vehicle, are represented as

1T, (e) = Si (ol + I R,(2) = S (o)l -

o I'7,(¢) = R, (¢)l
D= 17,0 - R (0 (28).
1T, (e) = S ()l + IR (1) = S (o)l -
nen _ H Ti(t) - Rj(t)”
D (1) = I 7,(1) - R (1)l (29),

where S;7 (1) and S?%" (1) are the locations of the m-th scat-
terer with zero velocity and the n-th scatterer with non-zero
velocity in the transmission link between the i-th vehicle and
the j-th vehicle;
norm. We compute the distance parameters of scatterers with

. || denotes the calculation of the Frobenius

different velocities during peak and off-peak hours for each
communication link per snapshot. The CDFs of distance pa-
rameters with different velocities also fit well with the GMM

distribution, which is represented as

Ko
F;)/”Z (.96) — z Wz/nzfg{;z (x) (30)’
k=1

where ]:D/Zz(x), the CDF of the k-th Gaussian distribution,

zlnz
X My
z/nz

Dk

can be given by Fi (x) = @7 , where @77 is the

zlnz zlnz

CDF of the standard normal distribution, and uj} and o}
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Figure 5. GMM-fitted CDFs of velocity-based ratios related to cluster
numbers during peak and off-peak hours
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are the mean and standard deviations of the k-th Gaussian
distribution. The number of Gaussian distributions £ is still
3. During off-peak hours, the simulation parameters for ZVS
are m, =[0.3129;0.5474;0.139 7], Wy =
[7.7240; 0.6530; 20.991 6], and T s =
[9.628 3;0.3164; 102.07], while the parameters for the
NVS  are 7 =[0.6742;0.2392;0.0688], puj, =
[0.7105; 6.8795;20.943 5], and oh =
[0.5127;10.7507; 93.2294]. On the other hand, during
peak hours, the simulation parameters for the ZVS are 7, =
[0.6231;0.1267; 0.2502], Wi, =10.6898;27.9952;
7.3956], and o3, =[0.4437;110.2286; 6.673 4], while
the parameters for the NVS are my =
[0.7360; 0.0125; 0.251 5], wi, =10.5199;4.9894;
-0.0932] and o5, =[0.0373;0.0030; 0.0015]. Fig. 6
shows the CDF's of all distance parameters of the scatterers
with different velocities during peak and off-peak hours. The
distance parameter of ZVS is larger than that of NVS during
peak and off-peak hours, as ZVSes are mainly tall buildings
and trees, while NVSes are dynamic vehicles. Dynamic ve-
hicles are generally closer to the TX and RX, which leads to
a shorter distance. The variance of the distance parameter is
smaller at peak hours than that at off-peak hours since the
scatterer distribution is more centered as vehicles around
the transceiver increase.

The angle parameters related to scatterers are also crucial
for analyzing and constructing channel models for DT-
enabled vehicular communication within Beijing CBD. These
parameters, including azimuth angle of departure (AAoD),
azimuth angle of arrival (AAoA), elevation angle of departure
(EAoD), and elevation angle of arrival (EAoA), are analyzed

CDF
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Figure 6. GMM-fitted CDFs of distance parameters during peak and
off-peak hours

40 | ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

for the scatterers with different velocities under different traf-
fic densities during peak and off-peak hours. AAoA ratios for
the m-th scatterer with zero velocity and the n-th scatterer
with non-zero velocity from the transceiver, i.e., the i-th ve-
hicle and the j-th vehicle, are expressed as

o i (1)
O - R GL).
az (1) =~ (32)

T IT(0) - R0

where ;"' (t) and 7" (1) represent the AAoAs of the m-th
scatterer with zero velocity and the n-th scatterer with non-
zero velocity from the transceiver. Furthermore, based on the
DT-based Beijing CBD vehicular communication dataset, the
AAoAs of scatterers with different velocities in each commu-
nication link per snapshot are analyzed. Fig. 7 shows the
CDFs of all AAoAs of the scatterers with different velocities
under different traffic densities during peak and off-peak
hours, which fit well with the Gaussian distribution. The
CDF of the Gaussian distribution for AAoAs related to scat-
terers with different velocities can be represented by

1 X - W@
Fiya(x) == |1 + erf [ 284 (33)
2 L U'ZI\/\O,\“/E
] —_ nz
Fiio(x) = 3 1 + erf xﬂiﬂAAoA G34)
L O'AAOM/E |
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Figure 7. Gaussian-fitted CDFs of azimuth angle of departure (AAoD)
during peak and off-peak hours
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zInz

where % | and 0%, denote the mean value and standard
deviation of the Gaussian distribution for AAoAs related to
scatterers with different velocities; erf (-) is the error func-
tion. Similarly, AAoD 67" (1), EAoA B77*"" (1), and EAoD
d)f/j"z ""(t) are calculated and also obey the Gaussian distribu-
tion. The distance parameters of the simulation during off-
peak hours are u¥Y, =-0.5769/-0.3852, ol%, =
1.065/0.433 5; Wi =-0.146 4/0.296 8, ol =
1.297 4/0.900 8; i =-0.129 4/ - 0.029 3, o=
0.1539/0.036 7; i =-0.1579/ - 0.052 3, ol =
0.289 0/0.066 4, while the distance parameters during peak
hours are Wi =-0.5481/-0.122 1, ol =
1.081 1/0.434 9; wle =-0.1640/0.212 6, ol =
1.237 2/0.891 0; wie  =-0.146 8/ — 0.069 8, o=
0.165 5/0.103 8; i =-0.2267/-0.190 1, o=
0.481 0/0.630 1. As shown in Fig. 7 and according to the angle
parameters of the statistical distributions above, NVS have a
smaller azimuth angle variance than those with zero velocity.
This is because the NVS mainly come from dynamic vehicles,
which have less variation in heights. Moreover, the angle pa-
rameter variance is larger during peak hours than during off-
peak hours. This is due to the more complex and variable en-
vironment during peak hours, causing greater angle variations.

In addition, path power and delay characteristics are sig-
nificant in channel realization. The path power is an expo-
nential function of the path delay®'". Using the DT-based Bei-
jing CBD vehicular communication dataset, we separate the
path power into power via ZVS and that via NVS. The path
power from the i-th vehicle to the j-th vehicle via the m-th
scatterer with zero velocity and the n-th scatterer with non-
zero velocity is expressed by

P (1) = expl - &7 (1) - o) 1010 (35),

P (1) = exp( = €72 (1) = 91070 (36),

z/nz

where & and ™™ are the delay-related parameters of scat-
is the delay of the path

via the m-th scatterer with zero velocity and the n-th scat-

zlnz,min

terers with different velocities; 7

terer with non-zero velocity; Z* follows the Gaussian distri-
2
bution N(O,(a’?{""’) ) For accurate linear fitting, Eqs. (35)

and (36) are transformed as

P (1) = £ (1) 4 0 7 (37),
_lnPnz,n(t) - fnz,z_m.n(t) + nnz + lnl(l)o an (38)

The power and delay of each path via each scatterer with
different velocities per snapshot are calculated. Fig. 8 pres-

ents the fitting results under different traffic densities during
peak and off-peak hours. The parameters related to power
and delay during off-peak hours are & =3.7264 x
10°/2.763 6 x 10°,  =u”* = 28.065 8/28.8769, and oi" =
7.9716/7.0059, while those during peak hours are & =
4.0294 x 10°/2.613 3 x 10°, n™™ = 27.443 8/29.404 1, and
ol = 8.482 8/7.514 2. Fig. 8 shows that the power of NVS is
more sensitive to delay changes than that of ZVS. Therefore,
an increase in the delay of NVS notably reduces their power.

Consequently, the parameters related to scatterers with dif-
ferent velocities can be generated by the statistical distribu-
tion obtained from the aforementioned analysis.

3.3 Capturing of DT-Enabled Channel Non-Stationarity
and Consistency

We depict channel non-stationarity and consistency based
on the proposed DT-enabled Beijing CBD vehicular commu-
nication channel model. The environment is constantly
changing with the continuous movement of the vehicle,
which leads to continuous changes in LiDAR point clouds
and RGB images captured by sensors. Meanwhile, the scat-
terers in communication links are not effective as they move
away from the transceiver. In the transmission links related
to different vehicles, the sets of effective clusters are differ-
ent as well, which leads to the non-stationarity of clusters in
the time domain in the DT-enabled Beijing CBD vehicular
communication channel. In addition, given the temporal con-
tinuity of the communication environment, scatterers exhibit
smooth transitions in appearance and disappearance across
time and space. This maintains the scatterer consistency in
both time and space domains of the DT-enabled Beijing CBD
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Figure 8. Scatterer power-delay CDFs with Exponential fit during peak
and off-peak hours
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vehicular communication channel.

To accurately and simultaneously model the channel non-
stationarity and consistency in the time domain, a new vis-
ibility region (VR)-based method is proposed, which consid-
ers the generation of scatterers with different velocities. In
the VR methods in Ref. [22], clusters located within the VR
range have an impact on the channel realization. As the VR
and cluster positions move, the set of visible clusters evolves
smoothly, which reflects the channel non-stationarity and
consistency in the time domain. To depict smooth cluster
time evolution in channels for DT-enabled Beijing CBD ve-
hicular communication, a VR-based method is proposed
based on the statistical parameter distribution for different
traffic densities during peak and off-peak hours. The scatter-
ers in the environment are initialized, and their parameters,
including velocities for peak and off-peak hours, are gener-
ated according to the distribution obtained in Section 3.2.
The number of scatterers with different velocities between
the i-th vehicle and the j-th vehicle at the initial time ¢, and
the distances are both generated according to the GMM dis-
tribution. The departure and arrival angles (AAoDs, AAoAs,
EAoDs, and EAoAs) are generated following the Gaussian
distribution. Based on the generated distances and angles for
each scatterer, the initial positions of these scatterers at time
t, are determined. Moreover, the generated scatterers with
different velocities are clustered using the K-means algo-
rithm. Each vehicle’s VR is modeled as a semi-sphere cen-
tered at the vehicle. The VR radius R;/R; of the i/j-th vehicle
is the maximum distance between the vehicle and initially
generated velocity-varying clusters at the initial time. The
clusters within R;/R; at time ¢ are defined as visible clusters.
Since the distance between the cluster and TX/RX at time
to + At is still shorter than the radii of VRs, the cluster is
still in the VRs and affects the channel. The number of sur-
viving clusters with different velocities between the i-th and
J-th  vehicles at time ¢, + At is Uz (1, +
At)/Ui’fj'S“r(zO + At). In addition to the surviving clusters,
there are some newly generated clusters with different veloci-

given as

ties at time ¢, + Az. For a certain distance between the i-th
and j-th vehicles at time ¢, + Az, the number parameter
UL."':I(.;M“(t0 + At)/U,fj’CMM(tO + At) related to clusters with dif-
ferent velocities is randomly generated according to the
GMM distribution. The number of newly generated clusters
is computed by

Uf//"z new (Z) — Uf//nz GMM (t) _ Uz/jm,sur (t) (39)7
where Ui/flz’(;hdM(t) is greater than Uif/]?'z’su"(t) and there are
UZ/’”( ) = UZ/":’GMM( ) clusters with different velocities that
contribute to channel realization. However, if U‘/'” MM (1) is
less than UZ/]"Z (1), the number of newly generated clusters
is Ufﬁ”’ "v(t) = 0. In  this  case, there are

U://'.”(t) = U,i/j'-’z"s“'(l) clusters with different velocities that
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contribute to channel realization.

4 Channel Statistical Properties
In this section, the key statistical properties for the pro-

posed DT-enabled Beijing CBD vehicular communication

channel are derived, including the TF-CF and DPSD.

4.1 TF-CF
The TF-CF of the transmission from the i-th vehicle to the
J-th vehicle can be calculated as

(e, f; A, Af) = EB[R" (1, f)h (t + A, f + Af) ] (40),

where E[-] and (-)'represent the expectation operation and
complex conjugate operation similar to Ref. [23]. As the TF-
CF's of the LoS component, ground reflection component, and
NLoS component can be assumed as independent, the TF-CF
can be obtained by

(e, f; At AF) = T (1,3 Aty AF) + T (1,5 At, AF) +
Y (1,5 At AF) + TS (1, Ar, Af) (41).

The TF-CFs of the LoS component, ground reflection com-
ponent, and NLoS component can be computed by

(1, f; Ar, AF) =
/ Q)Q(t + At)

Q0+ Qs Ags T OR s

At)exp[jZWfTL"s(t) -(f+ Af)TLOS(I + AZ):| (42),

HGR(z,f; As, Af) =

"t ()0 (¢t + Ar) L
Q)+ D(Q(t+ At) + 1)

)
exp[ 2afe (1) = (f + AT (e + Ar) ] (43),

R (R (¢ +

" (0" e+ M)
)+ 1D)(Q> + At) + 1)

IINS" (1, f3 At, AF) = / o

(1 + Ar)

NP ()N (0 + At) N (1) N
E{ > o> 2 2 hije, (Ohg, (6 + Ar) X

plg=1 p'lg'=1 n,, =1 n =1

exp( jZWT;/,’;f"W () f-(f+Af )7';/,7;,%,’/” (t+ At))j'

(44).
Therefore, the time auto-correlation function (TACF) and

the frequency correlation function (FCF) can be obtained by
setting Af = 0 and At = 0, respectively.
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4.2 DPSD
The DPSD can be obtained by the Fourier transform of the
TACF, which is computed by

(s fy)= [ TG Aeraan) (45).

where f;, and I1(z ; At) are the Doppler frequency and TACF.
The time-varying DPSD depicts the time-varying characteris-
tic of the proposed DT-enabled Beijing CBD vehicular com-

munication channel model.

4.3 Simulation Results and Analysis

The computational complexity of channel modeling mainly
focuses on the generation of the CIR matrix. The primary
source of computational complexity comes from the calcula-
tion of physical environment parameters. Specifically, the
time complexity of generating the CIR matrix is O(N, - N,),
where N, and N, represent the numbers of TXes and RXes,
respectively. The time complexity of processing the LiDAR
point cloud is O(P), where P is the number of points in the
point clouds. The time complexity of RGB can be considered
to be constants in a snapshot of data processing, i.e., O(1).
Therefore, the overall complexity is O(N, - N, + P). The
time consumption of the computation mainly depends on the
simulation setting.

Key statistical channel properties are simulated and com-
pared with the accurate RT-based results. The parameters
remain unchanged unless otherwise stated. The carrier fre-
quency is f, = 5.9 GHz with 20 MHz communication band-
width. Delays of virtual links 7,(¢) and 7;(¢) obey the Expo-
nential distribution with the mean and variance of 80 ns
and 15 ns to imitate the complex transmission between
twin clusters.

Fig. 9 shows the absolute normalized TACFs during peak
and off-peak hours att = 0 s and ¢ = 5 s. The TACFs depend
on time instants and time separations. Moreover, time non-
stationarity is depicted. The TACF decreases as the traffic
density increases, demonstrating that the TACF is lower dur-
ing peak hours than that during off-peak hours. This is be-
cause, as the number of vehicles increases, the channel be-
comes more variable and the temporal correlation decreases.

The RT-based CIRs are collected in Wireless InSite
within the DT space shown in Fig. 1. DPSD is derived based
on the CIR data compared with the simulated DPSD during
peak and off-peak hours. As shown in Fig. 10, the RT-based
DPSD is much closer to the simulated DPSD during peak
and off-peak hours, which demonstrates the validity of the
proposed model. The DPSD is flatter during peak hours
than during off-peak hours, because vehicles are denser dur-
ing peak hours and the vehicular communication channels
are more complex. Therefore, the comparison of different
traffic densities during peak and off-peak hours is signifi-

cant for the proposed DT-enabled vehicular communication
channel model.

The effectiveness of the proposed DT-enabled vehicular
communication channel model is demonstrated by comparing
the TACF and DPSD of the proposed model with the RT-
based TACF and DPSD. In the future, we can analyze more
channel characteristics, e. g., angular/delay power spectral
densities (PSDs) and root mean square (RMS) angular/Dop-
pler/delay spreads, similar to Ref. [24], to further evaluate
the performance of the proposed DT-enabled vehicular com-

munication channel model. Meanwhile, we intend to further
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Figure 9. TACFs with varying time instants during peak and off-peak hours
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Figure 10. Comparison of simulated DPSDs and RT-based DPSDs
during peak and off-peak hours
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validate the effectiveness and universality of the proposed
DT-based channel model with real-world measurements. Spe-
cifically, we aim to collect synchronized multi-modal sensing
data and channel data in dense urban scenarios, e.g., Beijing
CBD. This will enable us to refine the proposed model under
real-world dynamic conditions and increase its real-world de-
ployment value.

S Conclusions

This paper introduces a novel DT-enabled channel model
for vehicular communications in Beijing CBD. The proposed
model effectively integrates LiDAR point clouds, RGB im-
ages, and channel data to enhance the precision of channel
modeling in complex urban environments. A reliable DT
space for the Beijing CBD area has been constructed, which
has provided a high-fidelity virtual environment for simulat-
ing vehicular communication channels. The developed model
captures the dynamic characteristics of scatterers during
peak and off-peak hours in consideration of their number,
distance, angle, power, and velocity. Key channel statistical
properties (TF-CF and DPSD) have been derived and simu-
lated during different transportation periods. Simulation re-
sults show that the proposed model accurately captures chan-
nel non-stationarity and consistency, closely aligning with
RT-based experimental data. Therefore, the potential of DT
technology for improving vehicular communication channel
modeling in urban environments is demonstrated, which can
provide a reliable foundation for the design of ITSs and ad-
vanced vehicular networks.
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1 Introduction
he advent of 6G wireless networks promises to revolu-
tionize connectivity by enabling ultra-high data rates,
ultra-low latency, massive device connectivity, and

131 However, these ambitious

pervasive intelligence
performance targets come with significant challenges. The in-
creasing density of devices and network nodes™, along with
the deployment of large-scale antenna arrays' and the utiliza-
tion of higher frequency bands'®, such as millimeter wave
(mmWave) and terahertz (THz), leads to highly complex propa-
gation environments. In such scenarios, traditional channel es-
timation methods, primarily based on extensive pilot training,
are rapidly becoming inefficient, as they struggle to cope with
the increased channel dimensions and dynamic variability in
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the environment”. At the same time, the wealth of diverse en-
vironmental data and the rapid evolution of artificial intelli-
gence techniques offer unprecedented opportunities to rethink
how wireless channels are characterized and managed'®.

To address these challenges, researchers have proposed
novel approaches that leverage both environmental informa-
tion and advanced data analytics to enhance channel state in-
formation acquisition. One promising paradigm first intro-
duced in Ref. [9] is the channel knowledge map (CKM), a site-
specific database that links geographical locations to detailed
channel parameters. By exploiting the spatial consistency in-
herent in wireless propagation, CKMs enable networks to infer
channel characteristics based on location data, thereby reduc-
ing the dependency on real-time, high-overhead pilot measure-

ments'*

"I This innovative concept not only promises to alle-
viate the challenges posed by dense and dynamic 6G environ-
ments but also paves the way for proactive and predictive com-
munication strategies that can significantly enhance network

performance.
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A CKM can be classified into different types based on the
scope and granularity of channel knowledge it provides. Some
CKMs focus on large-scale channel characteristics, such as
path loss and shadowing, which are primarily influenced by
terrain and urban structures. Others capture small-scale fad-
ing properties, including multipath effects characterized by pa-
rameters like the angle of arrival (AoA), the angle of departure
(AoD), time delay, and the Doppler shift. Additionally, CKMs
can be categorized based on their coverage range, such as BS-
to-any (B2X) CKM, which maps the channel characteristics
from a given BS to any receiver within a coverage area, and
any-to-any (X2X) CKM, which generalizes channel relation-
ships among arbitrary locations.

The construction of CKMs generally falls into three broad
approaches: measurement-based methods, model-based meth-
ods, and hybrid data-model approaches. Measurement-based
methods rely on empirical measurements and employ spatial
interpolation techniques, including the nearest-neighbor inter-

12 and geostatistical methods like Kriging!". In con-

polation
trast, model-based methods use well-established propagation
models, including empirical formulas (e.g., COST-231 Hata"*))
and deterministic ray tracing"”. To address the limitations of
both approaches, hybrid methods combine model predictions
with real-world measurements, often leveraging advanced ma-
chine learning techniques such as deep neural networks and
generative adversarial networks (GANs) to enhance CKM ac-
curacy and adaptability.

Based on the provided image, the key idea behind CKM is
not just about specific applications but rather a paradigm shift
in wireless communication towards environment-aware com-
munications. Fig. 1 illustrates this transformation based on
two examples from Ref. [9], by comparing conventional
location-based or probabilistic channel modeling with environ-
ment knowledge. In Fig. 1a, CKM enables improved path loss
prediction by considering environmental obstructions, rather
than relying solely on distance-based models. In Fig. 1b, it en-
hances beamforming by incorporating environment knowl-
edge, allowing for more accurate signal directionality and
avoiding obstacles that would otherwise degrade communica-
tion performance.

This article is structured as follows. Section 2 introduces
the fundamental concepts of CKMs, including their defini-
tions, core principles, and roles in enabling environment-
aware communications in 6G networks. Section 3 discusses
CKM construction techniques, categorized into measurement-
based, model-based, and hybrid data-model approaches, high-
lighting their methodologies and trade-offs. Section 4 explores
key applications of CKMs, such as localization and sensing
systems, trajectory optimization, beamforming and BS place-
ment. Section 5 discusses open challenges and outlines future
research directions and the transformative potential of CKMs
in next-generation wireless systems. Section 6 concludes this
article with a summary of the current state of CKM research,

emphasizing its potential to revolutionize wireless communica-
tions by enabling proactive, environment-aware systems and
addressing the challenges that lie ahead in the rapidly evolv-
ing 6G landscape.

2 Fundamental Concepts of Channel Knowl-

edge Map

A CKM is a channel knowledge database associated with
specific geographical locations, which is constructed to pro-
vide region-specific or location-specific channel information,
thereby enhancing the understanding of the wireless propaga-
tion environment. Mathematically, a CKM can be defined as a
function that maps a location vector ¢ € R” to a channel
knowledge vector z € C’, where g represents the location of
the transmitter and/or receiver, and z the relevant channel
knowledge.

M:R” — (1).

This knowledge may include, but is not limited to, path
gain, multipath propagation parameters (such as AoA, AoD,

0
.___‘D
UET g2

Beamforming based on environment knowledge

<« Beamforming based on user location

(b)

Figure 1. Illustration of environment knowledge enabled by channel
knowledge map™': (a) path loss prediction and (b) beamforming
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delay, and Doppler shifts), and the complete channel im-
pulse response.

Intuitively, the environmental awareness capability of CKM
is derived from the fundamental observation that when a de-
vice revisits a previously accessed location, it experiences a
wireless propagation environment that is highly similar to the
past. By fully utilizing the trajectory information of devices
and surrounding environmental data, CKM can significantly
reduce channel uncertainty, thereby enabling more accurate
channel inference and effective communication strategies.

2.1 Channel Modeling in a Given Region
In a specific geographical area, the wireless propagation
channel z(t) is fundamentally a function of the device’s posi-

tion ¢ (¢) and the surrounding wireless environment £ (¢ ):

(1) =f(q(1).E(1)) (2),
where E(t) represents the propagation environment, which
consists of both static and dynamic components. The static en-
vironment includes terrain, building structures, and material
properties, while the dynamic environment accounts for mov-
ing objects such as vehicles and pedestrians. However, due to
the complex interactions between electromagnetic waves and
the surrounding environment, deriving the function f( -, )
analytically is extremely difficult. Additionally, representing
the environment E(t) in a mathematically tractable form is
non-trivial due to its high-dimensional and dynamic nature.

To overcome these challenges, CKM leverages historical
data to model channel knowledge without requiring an explicit

expression of the function f( +, - ) or the environmental rep-

250
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X-coordinate/m
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Y-coordinate/m

resentation E(t). In a quasi-static environment, where E (1) =~
E, the channel can be rewritten as:

z(1)=f(q(1).E) (3).

By collecting a set of historical location data {q,,q,,"*,q,}
and their corresponding channel knowledge {z,z,,:+,2,},
CKM can model the environment as:

E= g(‘]i =100 %0 = l,~~,0) (@),

which enables the inference of location-specific channel
knowledge based on prior measurements.

Fig. 2 illustrates CKM construction for a specific geo-
graphic area, using the calculation result of Wireless Insite, a
widely used ray tracing simulation software. Fig. 2a shows the
root mean square (RMS) delay spread, which reflects how ob-
stacles, for example, buildings, influence multipath propaga-
tion. In areas with dense buildings or structures, the signal ex-
periences multiple reflections and scattering, leading to
higher delay spread. Conversely, open areas with fewer ob-
structions result in lower delay spread, indicating less interfer-
ence and multipath. These variations in delay spread are pri-
marily due to the distribution and density of obstacles, which
affect how signals propagate across the area. Fig. 2b presents
the received power distribution, demonstrating how environ-
mental factors contribute to signal attenuation. Regions with
dense buildings show higher attenuation due to diffraction and
reflection, leading to lower received power. On the other hand,
open areas with fewer obstacles allow the signal to propagate
more freely, resulting in higher received power. Together,

-80
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Figure 2. Example of channel knowledge map representation in a given region: (a) RMS delay spread map and (b) received power map
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these visualizations highlight how the distribution and arrange-
ment of obstacles significantly affect both the delay spread
and received power, illustrating the spatial consistency of wire-
less channels.

2.2 Advantages and Challenges of CKM over Traditional
Communication Methods

Compared with conventional environment-agnostic commu-
nications, CKM offers several advantages by providing
location-aware channel knowledge. Firstly, by leveraging pre-
stored historical data, CKM significantly reduces the reliance
on real-time channel estimation, minimizing training overhead
and improving spectral efficiency. Also, by integrating both lo-
cation and environmental information, CKM improves the ac-
curacy of channel knowledge inference, particularly in com-
plex propagation environments and ultra-dense network de-
ployments. Furthermore, CKM enhances network robustness
and adaptability by enabling proactive communication strate-
gies. Traditional wireless systems reacting to real-time chan-
nel variations often lead to inefficiencies in mobility manage-
ment and resource allocation. In contrast, CKM allows net-
works to anticipate channel conditions based on environmen-
tal awareness, facilitating preemptive beam adjustments, intel-
ligent handovers, and optimized power control.

However, it is important to note that the effectiveness of
CKM in mobile scenarios depends on its ability to continu-
ously update and adapt to real-time conditions. Although
CKM reduces the need for frequent real-time pilot measure-
ments, it still requires periodic updates to maintain its accu-
racy, especially in highly dynamic environments with rapid de-
vice movement. This introduces the challenge of balancing the
trade-off between maintaining real-time accuracy and reduc-
ing the overhead associated with constant updates. In some
cases, the accuracy of CKM may be lower than that of tradi-
tional real-time channel estimation, particularly in rapidly
changing environments where instantaneous channel state in-
formation is crucial. Therefore, while CKM improves effi-
ciency by reducing the reliance on frequent channel estima-
tions, its accuracy may not always surpass that of traditional
systems, especially when the propagation environment under-
goes significant and rapid changes.

Nevertheless, CKM can outperform traditional real-time
channel estimation in scenarios where efficiency and resource
optimization are critical, such as in large-scale networks or in
environments where real-time measurements are expensive or
impractical. Moreover, integrating CKM with real-time data
through adaptive learning mechanisms or sensor fusion tech-
niques could enhance its accuracy, allowing it to approach the
performance of real-time estimation in dynamic environments.

2.3 Role of CKM in 6G Environment-Aware Communications
In summary, CKM leverages spatial consistency and histori-
cal channel knowledge to provide an efficient and scalable so-

lution to 6G wireless communications. Transitioning from
environment-agnostic communication to environment-aware
communication, CKM represents a paradigm shift in how chan-
nel knowledge is acquired and utilized. This novel approach
lays the foundation for proactive and predictive communica-
tion strategies, ultimately improving the efficiency and robust-
ness of next-generation wireless systems.

3 CKM Construction

3.1 Measurement-Based CKM Construction

Measurement-based methods for CKM construction rely en-
tirely on empirical measurements to estimate channel charac-
teristics across a given region. These methods utilize interpola-
tion and regression techniques to infer the channel parameters
at unmeasured locations, assuming spatial correlation in the
wireless propagation environment. By avoiding explicit propa-
gation models, these approaches capture real-world channel
variations more effectively. For instance, Kriging interpolation
has been widely used to create channel maps by incorporating
[13]

spatial correlations in measurement data Similarly, k-
nearest neighbor (KNN) methods have been applied to esti-
mate channel conditions at unmeasured points based on the
nearest available measurements''®.

Relying on real-world data rather than theoretical models,
measurement-based CKMs can more accurately reflect actual
conditions in a given environment. However, the success of
these systems depends on the density and quality of measure-
ment data, as well as the ability to effectively interpolate or ex-
trapolate that data to areas not directly measured. Some stud-
ies have demonstrated the effectiveness of these methods in ur-
ban and rural environments, but challenges remain in areas
with sparse or highly variable data"?.

1) KNN interpolation

KNN interpolation is a simple yet effective approach to esti-
mating unknown channel values in a CKM. Given a target lo-

cation q,, the estimated channel know]edgef(qo) is computed
as a weighted average of the k-nearest known measurements
z): f(qo) =>ke /\/(qo)wkzk, where ./\/(qo) is the set of £k
nearest measurements based on the smallest Euclidean dis-

, and w, is the weight assigned to each measure-

tance | qo — q;
ment. The weight can be determined using the inverse dis-
tance weighting (IDW) rule, where closer measurements con-
tribute more significantly to the estimate. Alternatively, a ker-
nel function can be used to define w,, such as the Gaussian

kernel: w(qo,qk) =c- exp( - |q0 - q, |/0'), or the Laplacian
kernel: w(qo,qk) =c- exp( - |q0 - q,{|/0'). These kernel

functions ensure a smooth interpolation by emphasizing the in-
fluence of nearby measurements while reducing the contribu-
tion of distant points.

2) Kriging interpolation

Kriging is a geostatistical interpolation method that esti-
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mates unknown channel values based on spatially correlated

measurementsm" 1

, providing an optimal linear unbiased pre-
diction. Unlike simple interpolation techniques, Kriging lever-
ages the spatial structure of the data through the semivario-
gram, which describes the degree of correlation between two
points as a function of their separation distance. Given a set of

known measurement locations {q,,z;}, Kriging estimates the

N

channel value at an unknown location ¢ as:f(q) = z)tizi +
=

Ay where A; is the interpolation weights chosen to minimize

the mean squared error (MSE), and A, is a bias term to ac-

count for the mean of the underlying random process. The

weights are computed by solving a linear system derived from

the semivariogram function: ‘y(qi, ‘I_,-) = %E[(zi _ z_f)z:',

which captures how the variance of channel measurements
evolves with distances. This enables Kriging to make statisti-
cally sound predictions with quantified uncertainty.

Kriging is widely applied in CKM construction to develop

81 which capture spatial variations in inter-

interference maps
ference power. By interpolating interference measurements
from multiple devices, these maps support interference-aware
resource allocation, allowing networks to optimize transmis-
sion parameters and minimize co-channel interference. Simi-

larly, shadowing maps generated via Kriging''”!

model large-
scale signal fluctuations caused by environmental obstruc-
tions. In cognitive radio networks, they help secondary users
estimate interference from primary users for efficient spectrum
access. In heterogeneous networks, they aid coverage predic-
tion and power control, improving communication reliability.
Through these applications, Kriging enhances environment-
aware CKM construction, enabling more adaptive and intelli-
gent wireless systems.

3) Matrix completion

Matrix and

tensor completion

techniques are powerful tools for

nuclear norm minimization) incorporate additional factors
such as frequency and time, enhancing CKM’ s predictive ca-
pabilities. These techniques enable efficient CKM updates,
dynamic channel estimation, and resource allocation, making
them valuable for real-world wireless systems with limited
measurement availability.

4) Other methods

Radial basis function (RBF) interpolation'™' is a widely ap-
plied technique that estimates unknown channel values by fit-
ting a smooth function to known measurements, ensuring spa-
tial continuity in CKM. Gaussian process regression models
the channel as a Gaussian process with a spatial covariance

24-21 " broviding both predictions and uncertainty

function
quantification, which makes it particularly useful for adaptive
measurement strategies. Thin plate splines interpolation is an-
other effective approach that minimizes bending energy to pro-

.6
duce smooth surface reconstructions

, capturing gradual
variations in channel characteristics. These methods enhance
the accuracy of CKM, especially in cases where channel mea-
surements are spatially correlated but unevenly distributed.

Fig. 3 compares the performance of several measurement-
driven methods for constructing CKMs, using the received
power map shown in Fig. 2b as an example, which is gener-
ated by Wireless Insite. The comparison is based on the root
mean square error (RMSE) between the predicted CKM and
the ground truth values. The methods evaluated include the k-
nearest neighbor, Kriging, matrix completion using alternating
least squares and nuclear norm minimization, radial basis
function, thin plate splines, and Gaussian process regression.
The x-axis represents the sampling rate, which influences the
amount of data used for interpolation, while the y-axis shows
the RMSE, indicating prediction accuracy.

KNN and Kriging are intuitive and widely used but may suf-

constructing CKMs when channel g 035
measurements are sparse or incom- =
plete® ?2 These methods leverage §D 030
the low-rank structure of wireless El
channel data to infer missing values, = 025
reducing the need for extensive mea- et
surements while maintaining accu- ﬁ 0.20
racy. In CKM construction, the chan- g

nel knowledge across a region can £ 015
be represented as a  matrix £

Z € R"*", where missing entries = 0.10
are estimated using matrix comple- % ’

—i— K-nearest neighbor
Kriging
—i— Matrix completion (alternating least square)
—8— Matrix completion (nuclear norm minimization)
—#— Radial basis function
—¥— Thin plate splines
= Gaussian process regression

tion methods like nuclear norm mini-
mization and alternating least
squares. When extended to multi-
dimensional data, tensor completion
methods  (for

example,  tensor
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Figure 3. Comparison of measurement-driven CKM construction methods



Channel Knowledge Maps for 6G Wireless Networks: Construction, Applications, and Future Challenges

Special Topic

LIU Xingchen, SUN Shu, TAO Meixia, Aryan KAUSHIK, YAN Hangsong

fer from limited accuracy when measurement data are sparse
or highly variable. Matrix completion methods effectively
handle missing data but rely on low-rank assumptions that
may not always hold. RBF and thin plate splines offer smooth
interpolation, with the latter showing consistently low RMSE
across sampling rates in Fig. 3. Gaussian process regression
provides accurate predictions with uncertainty estimates but is
computationally more demanding. The choice of interpolation
and regression methods should consider both accuracy require-
ments and computational cost in practical CKM applications.

It is important to note that these results are based on a spe-
cific example case, and the performance of these methods may
vary depending on various factors, such as the type of CKM,
the environmental conditions (e.g., the distribution of build-
ings), and the specific locations of transmitters and receivers.
Therefore, the selection of the appropriate method should be
carefully considered based on the particular characteristics of
the environment and network setup in practice.

3.2 Model-Based CKM Construction

Model-based CKM established
propagation models to derive channel characteristics from
Unlike

measurement-driven approaches that require extensive mea-

construction utilizes

environmental and  systematic  parameters.
surements, model-based methods use theoretical formula-
tions to predict channel conditions at different locations.
These methods can be broadly categorized into statistical
and deterministic channel models, with the latter primarily
relying on ray tracing techniques.

1) Statistical model

Statistical channel models describe the wireless channel us-
ing probabilistic distributions derived from empirical observa-
tions and theoretical analysis. These models capture large-
scale and small-scale fading effects, allowing CKM construc-
tion based on generalizable statistical properties rather than
site-specific measurements.

For large-scale channel variations, path loss models, such
as the COST-231 Hata"" and Okumura models®”, estimate the
average signal attenuation as a function of distance, fre-
quency, and environmental factors. These models provide a
coarse representation of CKM, making them suitable for initial
coverage predictions in urban and suburban environments.
Shadowing models, e.g., the log-normal shadowing model®,
account for signal fluctuations due to obstructions, incorporat-
ing randomness into path loss predictions.

More advanced models consider the distribution of environ-
mental factors, such as building density, height, and urban lay-
out, to refine path loss predictions. The Walfisch-Bertoni
model®' incorporates diffraction and reflection effects in
dense urban environments, adjusting signal attenuation param-
eters based on the presence of obstacles. Similarly, recent
studies have introduced geometry-based stochastic models,
which approximate line-of-sight (LoS) and non-line-of-sight

(NLoS) probability in urban environments by considering the
statistical distribution of buildings and their impact on signal
propagation®”. These models reveal that the density and spa-
tial distribution of buildings significantly impact signal behav-
ior. Another approach extends stochastic probability models to
air-to-ground (A2G) communications, analyzing LoS, ground
specular, and building-scattering paths based on urban topol-

[31]
ogy” .
been developed to study spatial channel characteristics in ur-

Furthermore, sub-terahertz statistical models have

ban microcells, focusing on spatial clustering and power distri-
butions at high frequencies™.

For small-scale fading, Rayleigh and Rician fading models
describe the rapid variations in received signal strength
caused by multipath propagation'™ %!, Rayleigh fading is com-
monly used in rich-scattering environments with no dominant
LoS component, while Rician fading accounts for a strong LoS
path. These models enable CKM construction that reflects the
statistical behavior of fading effects, which is crucial for evalu-
ating signal reliability in dynamic wireless environments.

While statistical models provide a computationally efficient
means of CKM construction, they lack site-specific accuracy,
as they rely on general assumptions rather than precise envi-
ronmental information. As a result, they are often comple-
mented by deterministic models that incorporate real-world
physical conditions.

2) Deterministic model

Deterministic models predict wireless channel characteris-
tics based on the physics of electromagnetic wave propagation,
making them inherently environment-aware. These models in-
corporate detailed environmental features such as building lay-
outs, vegetation, and material properties to accurately capture
wave interactions, including reflection, diffraction, and scatter-
ing. Prominent deterministic approaches include ray tracing'"!
and finite-difference time-domain (FDTD) simulations™, both
of which approximate solutions to Maxwell’ s equations. Ray
tracing is commonly used due to its high-frequency approxima-
tion capabilities, whereas FDTD provides more precise but
computationally intensive solutions based on discretized Max-
well’s equations™®,

The distribution of buildings within a given environment
significantly influences the accuracy of these deterministic
models. For instance, ray tracing simulates the paths of elec-
tromagnetic waves by modeling interactions with environmen-
tal features. The placement, density, and geometry of build-
ings directly affect the reflection, diffraction, and scattering
events considered in ray tracing simulations. Variations in
building distribution can lead to significant differences in
predicted signal paths, affecting the reliability of communica-
tion systems.

By leveraging precise environmental and electromagnetic
characteristics, deterministic models offer highly accurate

37-39 .
[ ! Recent advancements, such as im-

[40]
2

path loss predictions
proved geometric and material characterization techniques
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have further enhanced model accuracy by reducing discrepan-
cies between simulations and real-world measurements. How-
ever, a key challenge of deterministic models is their computa-
tional complexity, which makes large-scale, real-time applica-
tions difficult.

Several ray-based simulation methods have been devel-
oped to improve efficiency, including shooting and bouncing
ray (SBR)*"and vertical-plane-launch (VPL)“2, Additionally,
advanced techniques like intelligent ray tracing (IRT)* pro-
vide further acceleration, making deterministic modeling
more feasible for CKM construction. Despite their computa-
tional demands, these models remain crucial for site-
channel prediction in next-

specific, high-accuracy

generation wireless networks.

3.3 Measurement-Model Hybrid CKM Construction

Hybrid CKM construction methods integrate measurement-
driven techniques and theoretical propagation models to im-
prove accuracy and efficiency. These approaches leverage the
strengths of both paradigms. Measurement-driven methods uti-
lize machine learning to extract patterns from measurements,
while model-based methods incorporate physical constraints
to ensure consistency with wireless propagation principles. Re-
cent research in this field has focused on two primary strate-
gies for hybrid CKM construction.

1) Computer vision approach

One major trend in hybrid CKM construction is leveraging
computer-vision-based deep neural networks to process environ-
mental and sparse measurement data as multi-channel inputs,
treating CKM construction as an image-to-image translation
task. This approach enables the extraction of spatial features
from diverse data sources, including transmitter-receiver loca-
tions, building distributions, and limited channel measurements.

Computer-vision-based approach integrates 3D building
maps, environmental features, and sparse channel measure-
ments as multi-channel inputs into neural networks, allowing
models to infer missing channel information and construct ac-
curate CKMs. A widely used framework is RadioUNet!**],
which extends the U-Net architecture by incorporating
measurement-assisted inputs alongside environmental maps,
improving prediction accuracy. Similarly, models such as
EME-Net®! and ACT-GAN"' refine CKM predictions by le-
veraging deep neural networks trained on transmitter positions
and building layouts. These architectures enhance generaliza-
tion by learning structural patterns in radio maps while adapt-
ing to different urban environments. Subregional learning tech-

W offer additional benefits by segmenting the channel

niques
gain map into subregions and applying specialized models to
each, which is particularly effective in complex environments
where traditional models struggle. These techniques allow for
more accurate predictions by addressing regional propagation
characteristics more effectively.

GAN-based models, such as SS-GAN"¥and RME-GAN™!,
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have also demonstrated significant improvement in CKM con-
struction by generating realistic channel maps from incom-
plete data. For instance, the two-stage framework™ first uses
a radio map prediction GAN (RMP-GAN) to generate coarse
radio maps based on environmental data, which are then re-
fined with sparse measurement data through a correction GAN
(RMC-GAN). This approach is highly relevant for CKM con-
struction as it corrects predictions based on real-time measure-
ments, reducing inaccuracies typically found in traditional
models. These adversarial learning techniques effectively en-
hance CKM accuracy, even in scenarios where building infor-
mation is incomplete or transmitter locations are unknown.

Additionally, hybrid architectures incorporating variance
prediction and uncertainty modeling have gained traction. A
notable example is the dual-UNet framework”™", where two
separate but identical U-Net models are trained in parallel:
one to estimate received signal strength (RSS) values and the
other to predict variance maps that quantify uncertainty. This
design allows CKM construction to incorporate confidence lev-
els in its predictions, making it more robust to missing or inac-
curate input data. Studies on Gaussian-based modeling® !
further highlight the importance of integrating statistical un-
certainty into deep learning-based CKMs, particularly for ur-
ban and indoor wireless environments.

Overall, computer vision-driven CKM construction methods
shown in Table 1 provide flexible, data-efficient alternatives
to conventional interpolation and model-based techniques. By
integrating spatial, spectral, and temporal information, these
architectures enable highly accurate, scalable, and real-time
CKM generation, paving the way for intelligent wireless net-
work optimization.

2) Calibrated ray tracing

Calibration using real-world measurements has become a
key research focus to improve ray tracing performance, since
the precise environmental parameters, such as material per-
mittivity, reflection coefficients, and scattering effects, are dif-
ficult to obtain. Several techniques have been developed to re-
fine material properties, incorporate diffuse scattering effects,
and adjust propagation parameters based on empirical data.

One common calibration strategy is tuning material proper-
ties using real-world measurements. In Ref. [54], the relative
permittivity of materials in urban microcell (UMi) environ-
ments at 28 GHz was fine-tuned, reducing errors in path loss
estimation. Similarly, a linear interpolation approach was
used in Ref. [55] to estimate the dielectric constant of con-
crete at 28 GHz based on measured values at 5.2 GHz and
60 GHz, ensuring more accurate reflection loss modeling.
Additionally, empirical ray tracing models have been vali-
dated against 73 GHz street canyon measurements, refining
reflection loss calculations based on the incident angle®.

Another key challenge in ray tracing is capturing diffuse scat-
tering effects, which become significant at mmWave and THz
frequencies. Calibration against 28 GHz urban directional chan-
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Table 1. Overview of computer vision based CKM construction models

Model Name CKM Type Key Approach Main Features
* Uses city map and transmitter location as input to estimate radio maps

RadioUNet'*! CGM U-Net (CNN-based) * Incorporates physical simulation data for training
« Utilizes transfer learning to adapt simulated data to real-life scenarios

EME-Net Indoor RF-EMF U-Net (CNN-based) . Fou'r input chilnr{els (red, gr'een,. blue, fll[?hz?) represen}ing received power intensity

exposure Map * Trained on Wi-Fi access points in realistic indoor environments
¢ Three input channels representing 3D building maps, transmitter locations, and environ-
mental features
4 GAN (with ACT block, CBA mod- . .
ACT-GAN!! CGM (i o¢ me * Trained on sparse channel measurements and environmental data from urban areas

ule and T-Conv block)

* Robust performance in scenarios with sparse discrete observations and unknown emission

sources

. q q * Divides the map into subregions using a measurement -driven clustering approach
Subregional learning-

based CGM“" CGM MCNN-1D * Input channels: spatial coordinates of BS and sample points, and channel gain
ased CG.
¢ Trained on simulated channel data from a target area
RF dint * Two input channels: RF coverage data and geographic data (elevation and building height)
coverage and inter-
SS-GAN' & GAN * Trained on 4G LTE real-world data
ference map . . -
* Uses sparsely self-supervised learning for weak supervision
* Two-phase framework: Phase 1 integrates radio propagation models, Phase 2 captures lo-
cal shadowing effects
RME-GAN'™! CGM c¢GAN * Trained on sparse RF measurements from 700 radio maps, including data from various ur-
ban regions like Ankara, Berlin, and Tel Aviv
« Inputs: sparse observations, transmitter locations, and urban maps
* Training data comes from real-world measurements and environmental information (e.g.,
RMP-GAN transmitter positions, obstacle heights, etc.)
FPTC-GANs™" CGM RMC CAN’ * Inputs: transmitter positions, obstacle top views, and empirical radio map
* First-predict-then-correct approach (RMP-GAN for initial prediction, RMC-GAN for cor-
rection)
GAN-CRMES! COM cGAN . InplAns: distributed RS? samp!es and geographical map ' A
* Trained on a dataset with RSS samples and geographical map information
« Inputs: signal strength measurements, 3D map of the environment (urban)
Ssgpis? oM U-Net . Trair'ling data: sig}lal strength data general'ed using wireless InSite ray-tracing software
from simulated environments (45 urban environments)
* The model does not require transmitter location or statistical channel models
* Inputs: building height maps, building layout maps, and LoS maps
REM-U-Net® CGM U-Net * Trained on the RadioMap3DSeer dataset with simulated data from 701 city maps
* Uses LoS maps as additional input to improve prediction accuracy
ACT: aggregated contextual transformation CRME: cooperative radio map estimation REM: radio environment map
CBA: convolutional block attention EMF: electromagnetic field RMC: measurement data correction
¢GAN: conditional generative adversarial network FPTC: first-predict-then-correct RME: radio map estimation
CGM: channel gain map GAN: generative adversarial network RMP: radio map prediction
CKM: channel knowledge map LoS: line-of-sight SSSP: spatial signal strength prediction

CNN: convolutional neural network MCNN: modular convolutional neural network

nel measurements in Ref. [57] involved adjusting scattering co-
efficients and incorporating an angular spread correction factor,
improving received power predictions. At THz frequencies, ex-
tensive indoor ultra-broadband measurements were conducted
in Ref. [58], leading to the development of a frequency-
dependent scattering model that reduced errors in delay spread
estimation. In an office setting at 60 GHz, multipath component
gains were analyzed and adjusted to improve model reliabil-
ity™). The NYURay ray tracing calibration method simplified
the process by assuming angle-independent reflection, enabling
a closed-form least squares optimization to align simulated mul-

[60]

tipath power with real-world measurements™. Instead of itera-

tive tuning, the method directly optimizes reflection and pen-

etration losses on a logarithmic scale, improving efficiency
while maintaining accuracy.

In recent years, research has investigated the integration of
neural networks with traditional ray tracing frameworks. In
Ref. [61], the authors applied neural networks to the interac-
tion calculation module, utilizing neural networks to predict
the output direction and losses of each interaction. The archi-
tecture consists of two main components: the Spatial Network
and the Material Network. The Spatial Network processes the
spatial characteristics of the ray’ s path, while the Material
Network accounts for the material properties influencing the
ray’ s behavior. However, this framework does not consider

high frequency in future communication applications, which
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limits its effectiveness within certain application ranges.
Apart from this, Ref. [62] proposed a learnable wireless digi-
tal twin, which, similar to ray tracing frameworks, integrates
neural networks. This framework uses a single entity repre-
senting each object within the environment, constructing a
neural network to encode its electromagnetic property one by
one, which results in improved accuracy for channel model-
ing. However, the design of neural networks in large-scale
systems also increases complexity and the requirement for
computational resources.

3.4 Summary of Advantages and Disadvantages of CKM
Construction Methods

The various CKM construction methods each have their
unique advantages and limitations. Measurement-based meth-
ods, such as KNN and Kriging, are highly effective when suffi-
cient real-world measurement data are available, providing
high-level accuracy. However, their performance heavily re-
lies on the density and quality of the data. In cases where data
are sparse or irregular, their effectiveness can be reduced.
Model-based methods, including statistical models and ray
tracing, are useful when measurement data are limited, as they
rely on theoretical models. While they can be efficient, their
accuracy may be lower in complex or rapidly changing envi-
ronments, and may fail to capture fine-grained variations.

Hybrid methods that combine measurement-driven ap-
proaches with theoretical models strike a balance between
accuracy and efficiency. These methods can offer improved
performance in dynamic environments by leveraging both em-
pirical data and physical models, but they are computation-
ally more demanding. The choice of method largely depends
on available data, computational resources, and the complex-
ity of the environment, with measurement-based methods of-
ten being preferred for high-accuracy scenarios and model-
based methods being more suited for situations with limited
measurements.

4 Applications of CKM

4.1 Integrated Sensing and Com-

munication

CKM plays a critical role in inte- @\
grated sensing and communication

(ISAC) systems, where it bridges the

gap between sensing and communi- $ )

cation systems. By providing de-
tailed, location-specific channel in-
formation, CKM not only enhances $
localization but also improves com- $
munication performance in dynamic

Unlike
methods that rely solely on measure-
ments like RSS, CKM offers addi-

environments. traditional
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tional features such as time of arrival (ToA) and AoA, which
are crucial for localization and beamforming optimiza-

03764 In terms of communication, CKM helps in adjust-

tion
ing the communication links between BSs and mobile users
by integrating sensing data, like dynamic environmental
changes, into the channel model'®!. This integration allows
for more efficient resource allocation, interference manage-
ment, and adaptive beamforming. For example, in unmanned
aerial vehicle (UAV) systems, CKM can simultaneously sup-
port both the localization of UAVs and the optimization of
their communication links with ground stations by using real-
time channel state information'®’. Additionally, CKM allows
for dynamic sensing of moving objects, such as vehicles and
pedestrians, and enables real-time updates of the communi-
cation network based on the sensed data, optimizing the over-
all system performance'®’’.

Fig. 4 illustrates the application of CGMs in ISAC systems,
specifically within the fingerprint localization algorithm. In
this approach, the user’ s signal characteristics are collected
and matched against multiple CGMs stored in a Finger Data-
base. The algorithm processes this data to estimate the user’s
location based on the similarity of the measured signal to the
stored CGMs. This example highlights how CKMs, including
various types beyond CGMs, can enhance both the sensing
and communication capabilities in ISAC systems, offering a
more accurate and efficient means for location tracking in

complex environments.

4.2 UAV Trajectory Optimization

CKM plays a critical role in enhancing UAV trajectory opti-
mization in 6G networks, both for cellular-connected UAVs
and UAV-assisted communication systems. By utilizing rich,
location-specific channel data, CKM helps construct real-time
signal-to-interference plus noise ratio (SINR) maps that ac-
count for both channel gain and interference. In the cellular-
connected UAV scenario, CKM aids in constructing SINR

Finger database
CGM 1

Search | | ~pnrn | 4 T

CGM 2

CGM 3

CGM 4

CGM: channel gain map

Figure 4. Fingerprint localization using CGM in integrated sensing and communication systems
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maps based on channel gain and interference, allowing for the
design of flight paths that minimize outage probability and
mission latency while ensuring continuous communication
with ground BSs. Unlike traditional methods based on deter-
ministic LoS or stochastic channel models, which fail to ac-
count for LoS blockages, CKM enables the UAV to navigate
areas with high interference or blockages while maintaining a
reliable SINR throughout the path®!. In UAV-assisted sys-
tems, where a UAV serves multiple users, CKM helps opti-
mize the trajectory by identifying paths with strong A2G chan-
nels, thus enhancing overall system performance. This method
ensures better coverage for all users, compared with conven-
tional designs that focus on a single user’s location. Addition-
ally, combining reinforcement learning with CKM allows the
UAV to dynamically adjust its trajectory based on real-time
user distribution and channel quality data, improving commu-
nication efficiency across the system'® 7.
4.3 Hybrid Beamforming

CKM significantly enhances hybrid beamforming for
mmWave massive multiple-input multiple-output (MIMO) sys-
tems, offering a more efficient approach to reducing the com-
plexity and overhead typically associated with traditional

U1-721 In these systems, hy-

training-based channel estimation
brid analog-digital beamforming uses a combination of analog
and digital beamforming techniques at both the transmitter
and receiver to manage multiple data streams effectively. Tra-
ditional beamforming approaches often rely on extensive chan-
nel state information and require significant training to esti-
mate the full MIMO channel matrix, which becomes more
challenging as the number of antennas increases. With the in-
tegration of CKM, such as the channel angle map (CAM) and
beamforming indicator map (BIM), the need for extensive
training is minimized, as the system can use location-specific
channel information, including AoA, AoD, and path loss, that
is directly derived from the environment. This enables
training-free or light-training beamforming, where the accu-
racy of these designs depends on the precision of user location
and environmental factors like scatterer movement. While lim-
ited training may still be beneficial to refine the system, CKM
improves beamforming efficiency, particularly in dynamic en-
vironments with multiple users or interference, optimizing
data throughput and SINR over large antenna arrays.

4.4 BS Placement

In BS deployment, CKM applications assist in optimizing
BS placement strategies to enhance network coverage and
performance. By constructing detailed CKMs, one can accu-
rately assess signal strength, interference levels, and cover-
age areas at various locations, thereby determining optimal
BS positions and configurations. For instance, in low-altitude
environments, methods for deploying multiple aerial BS uti-
lize binary CKMs to optimize BS layouts to meet the commu-

31 Additionally, principles

nication needs of different areas
for deploying ultra-wideband (UWB) indoor positioning sys-
tem BS emphasize the importance of CKMs. By analyzing in-
door channel characteristics, reasonable BS placement can

[74] In

improve positioning accuracy and system performance
summary, CKM applications in BS deployment support more
intelligent BS placement decisions by providing precise
channel information, enhancing network coverage and ser-

vice quality.

4.5 Resource Allocation

In 6G networks, particularly for ultra-reliable low-latency
communication (URLLC) in mission-critical Internet of Things
(IoT) systems, CKMs can be used to optimize resource alloca-
tion by adapting transmission control policies. These policies
aim to meet the stringent quality of service (QoS) requirements
of URLLC while minimizing the transmit power. By utilizing
CKMs, which provide channel gain statistics for various loca-
tions within a target area, transmission control can be optimized
without the need for real-time, costly channel state information.
A notable approach, including power scaling based on CKM

75 . e .
I3 where location-specific transmission pa-

data, was proposed
rameters are adjusted to maintain a target delay violation prob-
ability across all devices. This method ensures that devices in
varying conditions can still operate within the desired reliability
and latency constraints. Additionally, meta-reinforcement learn-
ing techniques have been employed to further enhance adapt-
ability, enabling rapid policy adjustment across different envi-
ronments with minimal retraining. This combination of CKM-
driven power scaling and meta-learning offers a scalable solu-
tion to resource allocation in URLLC systems.

5 Open Problems and Future Directions

5.1 Localization Accuracy and Robustness of CKM

One major challenge for CKM-based systems is the depen-
dence on high-precision localization data. Since CKMs rely
on accurate location information to construct location-
specific channel knowledge, errors in localization can di-
rectly affect the performance and robustness of the system.
Inaccurate positioning data, such as from the Global Position-
ing System (GPS) or environmental obstructions, can distort
the generated channel map, leading to suboptimal outcomes
in applications like localization, beamforming, and interfer-
ence management. To address this issue, future research
must focus on maintaining CKM robustness in the presence
of localization inaccuracies. This may involve using machine
learning techniques to compensate for errors or applying sen-
sor fusion methods to combine various positioning sources.
Additionally, techniques such as spatial smoothing or inter-
polation can help mitigate the impact of small localization er-
rors, ensuring CKM construction remains reliable even with
less precise location data.
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5.2 Incorporating Material Properties for Enhanced
CKM Accuracy

Another significant challenge for CKM-based systems is ef-
ficiently incorporating detailed environmental information,
particularly the impact of various material properties on CKM.
While most existing methods primarily rely on geometric infor-
mation, such as building shapes or the layout of obstacles,
they often overlook how the materials of these objects (e.g.,
walls, windows, or furniture) affect the propagation of radio
waves. Different materials, with varying electromagnetic prop-
erties, can significantly influence path loss, reflection, and
scattering, which in turn affect the accuracy of the CKM. To
address this, future research should focus on integrating
material-specific data with CKM construction. This may in-
volve leveraging detailed environmental sensing, such as mate-
rials’ electromagnetic characteristics, or using machine learn-
ing to predict the impact of materials on the channel. Combin-
ing geometric and material information will improve the fidel-
ity of CKMs, making them more reflective of real-world condi-
tions and enhancing applications such as beamforming and lo-

calization in complex environments.

5.3 Improving Generalization with Efficient Neural Net-
work Architectures for CKM Construction

A third key challenge is enhancing the generalization abil-
ity of CKM construction, particularly when using neural
network-based methods. Currently, most neural network mod-
els require training on a large variety of scenarios to achieve
robust performance. However, this process can be time-
consuming and computationally expensive. The ability to de-
sign more efficient neural network architectures that can be
trained on fewer scenarios while maintaining strong perfor-
mance across a wide range of environments is crucial. To
tackle this, future research should focus on developing models
that require minimal training data, perhaps by using transfer
learning, domain adaptation, or few-shot learning techniques.
These approaches may enable neural networks to generalize
better and perform well across different deployment scenarios,
making CKM-based systems more scalable and effective for
real-world applications, even with limited training data.

5.4 Continuous CKM Updates with Real-Time Data

A crucial challenge for CKM-based systems is how to con-
tinuously update the CKM with new data, ensuring its accu-
racy and relevance over time. In dynamic environments, the
wireless channel is constantly changing due to factors like mo-
bility, environmental alterations, and user behavior. To main-
tain an up-to-date CKM, it is essential to integrate new mea-
surements and real-time data effectively. This could be
achieved through techniques such as incremental learning and
online learning, where the CKM model is continuously up-
dated as new data are acquired, without the need to retrain
from scratch. Additionally, sensor fusion methods can be em-
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ployed to combine data from different sources, such as mea-
surement devices, UAVs, and sensors for loT, providing a more
comprehensive and accurate representation of the environment.
By incorporating these approaches, CKM systems can adapt in
real time to changing conditions, ensuring that they remain ac-
curate and reliable for various applications.

5.5 CKM in 6G for Robotics

In the future, the application of CKMs in robotics will play
a crucial role in advancing 6G technologies. As robotics con-
tinues to evolve, key aspects such as accurate channel model-
ing, enhanced localization accuracy, and efficient sensing ca-
pabilities will become increasingly important. CKMs can sig-
nificantly contribute to these areas by providing detailed,
environment-aware channel information, enabling robots to
navigate and interact more effectively in dynamic environ-
ments’®. Through the integration of CKMs with 6G networks,
robots can benefit from more reliable localization and real-
time sensing, improving their ability to adapt to changing con-
ditions and interact with both humans and other devices seam-
lessly. Efficient use of the communication channel will also be
vital for optimizing robot performance, ensuring low latency
and high throughput for tasks such as autonomous control,
monitoring, and remote operation.

6 Conclusions

This paper has provided an in-depth overview of CKMs and
their transformative role in 6G wireless networks. CKMs repre-
sent a paradigm shift from environment-agnostic communica-
tion to environment-aware communication, allowing for more
efficient channel estimation and resource allocation. Through
various CKM construction methods from measurement-based
and model-based techniques to hybrid approaches, research-
ers have demonstrated the potential to improve channel knowl-
edge accuracy, particularly in complex environments. The ap-
plications of CKMs, including ISAC systems, beamforming,
UAV trajectory optimization, BS placement and resource allo-
cation, highlight their broad influence on network perfor-
mance and optimization.

As 6G technologies evolve, the integration of CKMs with ad-
vanced systems such as reconfigurable intelligent surfaces
(RIS), mmWave communications, and machine learning-based
adaptive resource management holds great promise. Combin-
ing CKMs with these technologies can dynamically optimize
the communication environment, improve coverage in chal-
lenging areas, and enable real-time adaptation to network
changes, further enhancing system efficiency and reliability.
However, despite their promising applications, several chal-
lenges remain in the development and deployment of CKM
systems. Future research should focus on improving CKM ro-
bustness in scenarios with imprecise localization data, better
integrating material-specific environmental information and
enhancing the generalization capabilities of neural network
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models. Moreover, continuously updating CKMs with real-
time data will be crucial for maintaining their relevance and
accuracy in dynamic environments.
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Abstract: As important infrastructure for airhorne communication platforms, unmanned aerial vehicles (UAVs) are expected to become a key
part of 6G wireless networks. Thus, modeling low- and medium-altitude propagation channels has attracted much attention. Air-to-ground
(A2G) propagation channel models vary in different scenarios, requiring accurate models for designing and evaluating UAV communication
links. Unlike terrestrial models, A2G channel models lack detailed investigation. Therefore, this paper provides an overview of existing A2G
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1 Introduction
rones were developed more than a century ago and
initially served military purposes. At present, un-
manned aerial vehicles (UAVs) are also widely used
in civil applications in many countries, including
power line inspection, pesticide spraying, aerial surveying and
mapping, wildlife protection, meteorological monitoring, spe-
cial weather tracking, disaster rescue, and search and rescue
of stranded people. These applications demonstrate remark-
able effectiveness compared with traditional manpower, par-
ticularly in high-risk and time-critical operations''. All these
are enabled by UAV-based wireless communication systems
with low cost, simple operation, and flexible configuration® *.
In the 5G era, artificial intelligence (Al) and other emerging
technologies are providing strong impetus to the drone indus-
try. These technology combinations are creating secondary
markets for drone applications. Examples include the emer-
gence of advanced military drones such as the Predator and
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the Global Hawk. Wireless connectivity to drones is key for
enabling the integration of drones into national airspace and
expanding the scenarios in which drones can be used.

In contrast to conventional terrestrial communication sys-
tems such as cellular and vehicular networks, UAV communi-
cation systems exhibit unique three-dimensional (3D) charac-
teristics, including 3D scattering environments, 3D flight tra-
jectories, and 3D antenna arrays. These features significantly
influence the propagation characteristics of UAV communica-
tion systems. UAVs can operate at various flight altitudes,
causing the signal propagation to transition from a simple line
of sight (LoS) path to more complex paths involving ground re-
flections and scatterings from obstacles. This results in strong
randomness of the received signal and rapid changes in the re-
ceived signal envelope. Additionally, UAVs can maneuver
freely in real environments, where obstacles are inevitable.
Unlike traditional air-to-ground (A2G) systems that assume
aircraft can avoid ground obstacles, UAVs often face chal-
lenges in obstacle avoidance, further complicating the propa-
gation environment. The mobility of both the transmitter and
receiver also impacts the fading characteristics of the signals.
In particular, the high flight speeds of UAVs can lead to sig-
nificant Doppler shifts in bands with large carrier frequencies.
To address these complexities and enhance modeling accu-
racy, researchers have proposed advanced channel models.
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For instance, Ref. [5] introduced a non-stationary ray-tracing
(RT) channel model that incorporates 3D scattering environ-
ments, 3D flight trajectories, and 3D antenna arrays. This
model combines deterministic methods for computing inter-
path parameters based on geometric configurations with sto-
chastic approaches for generating intra-path parameters,
thereby improving computational efficiency and reducing com-
plexity. Furthermore, Ref. [6] developed a 3D non-stationary
geometry-based stochastic model (GBSM) that accounts for
UAV body orientations. By introducing time-varying 3D atti-
tude matrices, this model characterizes UAV attitude dynam-
ics and analyzes their effects on channel statistical properties,
such as temporal autocorrelation functions and spatial cross-
correlation functions. These studies collectively highlight that
UAV attitude variations are critical factors influencing chan-
nel characteristics and must be explicitly incorporated into
channel modeling frameworks.

UAV operating environments and scenarios pose technical
challenges for communication between the control point and
the UAV, and these technical issues have attracted many re-
searchers to investigate them. For instance, Ericsson research-
ers have shown that mobile networks can provide wide-area,
high-speed, and secure wireless connectivity to enhance the
control and safety of UAV operations'”, and Nokia Bell Labs
researchers have proposed that UAVs connected to cellular
network path loss and shadowing parameters must follow
highly correlated models'®. Typically, A2G channels are con-
sidered free-space channels or two-ray channels, which add re-
flections from the Earth’s surface to the LoS parameter. Tradi-
tionally, A2G channel measurements and modeling have been
carried out at high altitude with large aircraft'”),

For public safety reasons, however, some countries includ-
ing Japan, Ireland and the Philippines limit the application
of UAVs to low-altitude flight (below 150 m) under LoSM!
conditions. However, the A2G propagation channel model
used for high-altitude aerial communications is usually not
directly applicable to low-altitude UAV communications, as
low-altitude communications are strongly influenced by a va-
riety of factors, such as the vehicle, terrain, and weather. For
example, in terms of vehicle selection, small UAVs of differ-
ent manufacturers and models do not have uniform and fixed
structures or flight characteristics. In terms of the environ-
ment, it is technically challenging to provide continuous cov-
erage for low-altitude communications in obstructed environ-
ments such as hilly terrains, mountain forests, rivers, and
high buildings.

Compared with terrestrial propagation channels, UAV A2G
propagation channels have not yet attracted widespread atten-
tion. There are few studies on the characteristics of A2G
propagation channels, with Ref. [11] being an exception. To
encourage more research on UAV A2G propagation channels,
this paper summarizes the basics and characteristics of UAV
A2G propagation channels, presents an overview of UAV A2G

channel measurement methodologies, and outlines future re-
search directions in this field.

The rest of the paper is organized as follows. Section 2 de-
scribes the basics and characteristics of UAV A2G channels
based on the literature. Section 3 overviews important UAV
A2G channel measurement campaigns. Section 4 classifies
UAV A2G channel models for diversified scenarios. Section 5
presents future research directions for UAV A2G channel mea-
surement and modeling, and Section 6 concludes the paper.

2 Basic Information and Characteristics of
Air-to-Ground Channels

2.1 Introduction to Air-to-Ground Communication

A2G communication generally refers to the communication
between ground command institutions and aerial vehicles.
Such systems use aerial platforms to carry communication pay-
loads via air-based relaying or mobile switching, and integrate
with multiple ground platforms (stations) to achieve informa-
tion interaction of wireless communication systems. A2G com-
munication essentially aims to increase the height of ground-
based communication equipment, converting over-the-horizon
communication into LoS communication. This enables long
communication distances, large coverage areas, wide transmis-
sion bandwidths, and easy network deployment. Additionally,
it is highly mobile and flexible!?.

According to the lifting altitude of the air platform, the cov-
erage radius of wireless communication can range from tens
to hundreds of kilometers. Current propagation models for fad-
ing in A2G wireless channels can be divided into three main
categories: free-space transmission, shadow fading, and
propagation models for multipath fading. Among them, free-
space transmission and shadow fading are generally classified
as large-scale fading, because they primarily cause changes
in received power over long distances with their impact on
wireless signals unfolding relatively slow (also termed slow
fading). In contrast, multipath fading is often referred to as
small-scale fading or fast fading. This is because the signals
from the mobile station near scattering bodies (such as ter-
rain, features, and moving objects) undergo multipath propa-
gation. As a result, the received signal experiences rapid
rises and falls due to the superposition of multiple paths at
the receiving point.

2.2 Large-Scale Decay

Statistical models of A2G communication channels are di-
vided into large-scale and small-scale models. Large-scale
models typically include path loss and shadow fading models.
Large-scale fading mainly includes path loss (PL) and shadow
fading (SF). PL refers to the signal fading over long distances,
while SF occurs when the signal encounters obstacles or un-
even terrain. SF is characterized by its dependence on the to-
pography of the radio propagation and the distribution and

ZTE COMMUNICATIONS | 61
June 2025 Vol. 23 No. 2



Special Topic | Air-to-Ground Channel Measurement and Modeling for Low-Altitude UAVs: A Survey

CHEN Peng, LIU Yajuan, WEI Wentong, WANG Wei, LI Na

heights of obstacles. In most of the literature, the well-known
ground-based logarithmic distance PL model is used as:

PL(d) = PL(d,) + 10ylog,, o + X, (1.
0

where PL(d) denotes the path loss in dB when the spacing be-
tween transceiver devices is d; PL(d,) represents the reference
path loss measured at a reference distance d, (typically 1 m,
derived from actual measurement); y is the path loss exponent
(PLE) obtained through a best-fit minimum mean square error
method, which quantifies the rate at which the path loss in-
creases with distance. Theoretically, y should equal 2 in free
space. However, Table 1 shows that the measured PLE vy is ap-
proximately 1.5 = 42 In Eq. (1), X, is a normal random
variable with a standard deviation of sigma, which is used to
account for the variations in shadowing or in the linear fit in
the LoS channel. A large body of literature shows that shadow

fading obeys a zero-mean lognormal distribution®":

1 —(lnm—u)Z

flm)=—=e (2),

where @ is the mean value, and o is the standard deviation.
UAV A2G channels tend to be more dispersed than mobile ra-
dio channels, producing greater ground shadow attenuation
and faster variations. Channel factors typically include reflec-
tion, scattering, diffraction, and shading effects in the direct

Table 1. Research on large-scale A2G propagation and its path loss pa-
rameters in existing literature

Ref.  Scenario Prup}z}igte;lwn Model PLE y
a
Urban/ Log-distance L-band: 1.7,
(131 lr ]in( LoS path loss model, C-band:
suburban two-ray model 1.5-2
Urban/ Free space
[14] open field LoS path loss model
Urban/ Log-distance
151 rural LoS path loss model 41
. Log-distance
1 field L 2.01
Ll Y2t 05 path loss model 0
. Log-distance
17 Aerial L 2.32
171 ena 05 path loss model 3
Log-distance
1 3 L 1.
(18] Water 05 path loss model ?
Urban/ Free space
1 L L
[19] suburban oS, NLoS path loss model
Fre e
[20]  Urban  LoS, NLoS oo sbaee

path loss model

A2G: air-to-ground LoS: line of sight NLoS: non-line of sight

PLE: path loss exponent
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view path. However, in most LoS A2G channels, large-scale
fading occurs only when the LoS path between the UAV and
the ground station (GS) is obstructed by an object with a large
relative wavelength. Several models have been developed for
this fading condition (e.g., terrain diffraction and tree shad-
ing). Many large-scale fading models for UAV A2G channels
in the literature cover both PL and SF. For example, Ref. [13]
conducted comprehensive measurements of path loss in the L-
band and C-band in different propagation scenarios, and two
primary conclusions were obtained. 1) The PLE varied slightly
but was usually close to the free space value for urban, subur-
ban, hilly, and water scenarios; 2) the standard deviation of
the linear fit was usually less than 3 dB. Table 1 summarizes
the literature on large-scale A2G propagation and its path loss
parameters, with the log-distance PL model being the most
common model. The PL estimates are given via the logarith-
mic model™>'”-2"Z1 Other PL models consider the shadowing
of non-line of sight (NLoS) paths, as well as additional losses
due to other obstacles™ . In Ref. [19], shadowing losses are
considered in the modeling and evaluated as a function of the
elevation angle of the NLoS path.

2.3 Small-Scale Decay

Small-scale modeling of the UAV A2G channel relies on
the multipath fading characteristics of the channel and the
Doppler power spectrum. Small-scale fading models are appli-
cable to narrowband channels or individual multipath compo-
nents (MPCs). Stochastic fading models are usually obtained
from empirical data or geometric analysis and simula-
tion™ #!. PL, including shadowing, was reported in Refs. [15,
30 - 32], where we note that in the case of LoS without real ob-
stacles in the first Fresnel zone, it is not actually shadowing
that causes the PL to change, but rather small-scale effects.

Ref. [31] noted that the PL and its associated shadows are
attributed to buildings only when the UAV is flying near the
ground, whereas when the UAV is flying higher, actual shad-
ows do not exist, but changes in small-scale fading still occur.
Table 2 summarizes the fading characteristics of small-scale

A2G propagation channels in the literature!'> 34|,

Table 2. Fading characteristics of small-scale air-to-ground propagation
channels in the literature

Ref. Freg‘;’;"y/ Di;lti:fion K-factor/dB Scenario
33]  3.1-53 Nakagami :;i’:rfl’:l“d/
[15] 2 Rayleigh, Ricean Urban/suburban
[30] 575 Ricean -5-10  Urban/suburban
[32] 0.968 - 2.06 Ricean 12-274  Urhan/suburban
[34] 8-18  Ricean, Nakagami ~ 2-5 Forest

[31] 2 Ricean Urban/suburban
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2.3.1 Multipath Components

Small-scale multipath fading refers to rapid fluctuations in
the amplitude, phase, or multipath delay of a wireless signal
over short time intervals or distances (typically within half a
wavelength). This fading results from the mutual interference
of multipath components originating from the same transmit-
ted signal, which propagate through different paths and arrive

at the receiver with varying time delays. HUANG et al.*”!

con-
sidered a time-varying approach to model the propagation be-
tween a GS and a UAV. They proposed a method based on
MPC distances to track the evolution of MPC during UAV
flight to obtain MPC trajectories that were modeled with
straight-line segments. To describe the evolutionary trend of
the MPC, several properties (including survival length, initial
position spacing, initial relative delay, and relative slope)
were also defined and statistically characterized for each flight
trajectory. The model serves as a basis for modeling time-
varying radio propagation channels between a low-altitude
UAV and a ground base station.

Notably, in UAV A2G channel modeling, multipath fading
can also come from the UAV itself, albeit usually weak and
with minimal relative delays. The main propagation paths for
A2G communications include the direct propagation path be-
tween the UAV and GS and a cluster of reflected, delayed
propagation paths; thus, for statistical analysis, the channel
model usually includes the LoS component and a cluster of
NLoS components that comprise multiple reflected paths with
varying delays.

2.3.2 Doppler Shift

The Doppler effect is caused by the mutual motion between
the mobile station and the base station or by the motion of
other objects in the propagation environment. In UAV commu-
nications, this effect is influenced by the UAV’s speed, geom-
etry, and operational wavelength. If the UAYV flies too rapidly,
it may generate a large Doppler shift, potentially causing is-
sues due to higher Doppler frequencies. In addition, since the
frequency and wavelength of electromagnetic waves are in-
versely proportional, the lower the operating frequency band,
the smaller the Doppler shift for high-speed UAVs. However,
the spectrum resources in the lower frequency bands are very
tight, so the Doppler shift caused by high-speed movement of
UAVs is a major challenge for the UAV data chain. Doppler
shift introduces a carrier frequency shift and inter-carrier in-
terference. Doppler shift modeling in A2G scenarios has long
been studied®®** %) Ref. [30] investigated the Doppler shift
and its impact on channel performance in different flight
phases (parking and taxiing, in-flight, take-off, and landing)
through simulation. The Doppler shift for the realization of or-
thogonal frequency division multiplexing (OFDM) systems in
multipath environments was considered in Ref. [39], where dif-
ferent frequency offsets were observed for the arriving mul-
tiple components.

In Ref. [40], the Doppler frequency profile (DFP) of a ve-
hicle in different states was analyzed, as shown in Fig. 1, and
the Doppler shift equation was given:

o :f[)m\ cos [, + pulay, —a,)] (3),

where u € [0, 1] is a uniformly distributed random variable,
and a, and o, are the maximum and minimum angles of ar-
rival under navigation, respectively. The statistical model pro-
posed by ELNOUBI et al.*!! characterizes UAV-to-ground
propagation based on transmission coefficients and performs a
Doppler spectral analysis of the scattered MPCs. ZAMAN et
al.*? proposed a model with both LoS and NLoS components,
describing the Doppler shift as a random process and using an
unmodulated 118 MHz carrier as the input to the channel.
They observed that the output signal’ s amplitude spectrum

1.9 presented a

deviated from the carrier frequency. LI et a
simulation model for high-altitude UAV communication sce-
narios, in which statistics such as temporal correlation and
Doppler spectrum were investigated. CHENG et al. ™! pro-
posed a 3D nonstationary geometric model for wideband UAV
channels. The Doppler shift induced by the UAV’ s high-
speed motion is determined by the analyzed correlation and
Doppler properties. However, the scenarios considered in pre-
vious studies typically exclude the presence of nearby scatter-
ers. This limitation restricts the applicability of these studies
to broader multi-antenna UAV scenarios that may involve
various altitudes.

2.4 Typical Scenario of UAV Air-to-Ground Channel
Propagation

The first step in UAV communication research is modeling
the communication channel. However, A2G propagation chan-
nel models developed for both traditional terrestrial and high-
altitude aerial communication systems are not directly appli-
cable to low-altitude UAV communications. UAV communica-
tion systems operate in more complex and variable environ-

ments, often influenced by terrain, obstacles, and self-
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(b) Doppler shifts for the
en-route scenario

(a) Doppler shifts for the arrival
and takeoff scenarios

Figure 1. Doppler shifts in different states of the aircraft
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occlusion caused by the UAV itself. These factors make LoS
connections infeasible in all scenarios, which needs to be con-
sidered in UAV communication research. Fig. 2 illustrates a
common A2G propagation scenario with ground obstacles, of-

ten referred to as scatterers.

3 UAV Air-to-Ground Channel Model

3.1 Channel Modeling Based on Measured Data

UAYV channel measurements have received increasing atten-
tion over the past decade. Table 3 summarizes the literature
on channel measurements via small rotor
UAVgl®10.16717.22.33.35.45-56] Ty Ref., [45], the channel mea-
surement system consists of a six-rotor UAV, a cylindrical an-
tenna, a Universal Software Radio Peripheral (USRP), and a

Table 3. Summary of important A2G channel measurement research in the literature

Reflection

Reflection ‘

A

Ground reflection

57

Scattering

LoS: line of sight
RX: receiver

TX: transmitter
UAV: unmanned aerial vehicle

Figure 2. A typical scenario of UAV air-to-ground channel propagation

B idth Maxi Fligh
Ref. Frequency anl\(/[hgzdt / UAV azllrtriltlilrze /I:lg ! Scenario Antenna Characteristics
Open field, . PL, SF, TOA, PDP, CDF,
[33] 3.1-53GHz 2200 Quadcopter 16 <uburban Dipole SISO RMS, BC
o z exacopter uburban, campus ast adrs ’ 5 , K-factor,
[45] 2.585 GH 18 Hexacop 100 Suburh . ““‘“‘d‘;‘igt(‘)"““‘l discone PL, SF, K-factor, DPP
i-directional
[46] 2.585 GHz 18 Hexacopter 300 Suburban, campus Onni girse(()tlona ’ PDP, RMS, CDF, K-factor
[47] 1 -24 GHz — Hexacopter 24 Semi Urban Monopole, SISO PL, SF
L~ 4. Z - exacopter Semi Urban , K-tactor
[48] 1.2-42 GH H P 100 Semi Urh MIMO PL, K-f:
[8] 800 MHz = Hexacopter 120 Suburban Dipole, SISO PL, SF
[49] 5.8 GHz 20 Octocopter 165 Uptown, montane MIMO RMS, DC, CDF
[35] 2.5 GHz 9 Hexacopter 105 Suburban Omni-directional, SISO MPC
[50] 2.5 GHz 15.36 Hexacopter 105 Suburban SISO PL, SF, DPP
[22] 2.4 GHz — Quadcopter 120 O‘li?nﬁﬁlsd’ SISO PL, AO
[16] 5.24 GHz — Quadcopter 110 Open field Dipole MIMO PL, PAS, UDP, CDF
[51] 0.915 GHz — Quadcopter — Iﬁ’;‘; 4 Omni-directional, SISO PL, RSSI
open fi
[17] 2.4 GHz — Hexacopter 20 — Inverted-FSISO RSSI
[52] 5.76 GHz, 1.817 GHz 13.5 Hexacopter 50 Suburban Three-leaf antenna, SISO I 1 PDPégl;factor, Ll
[53] 2.4 GHz — Fixed wing 75 — Omni-directional, MIMO AC
[54] 2.4 GHz = Hexacopter 40 Liﬁ?&i:orrsy’ Omni-directional, MIMO PL, PAS, K-factor, PDF
[55] 900 MHz — Fixed wing — Rural SISO Pr
[56] 850 MHz = Quadcopter 120 Suburban SISO PL, SF
[10] 909 MHz — Quadcopter 100 Open field Dipole, SISO PL
A2G: air-to-ground FSISO: full-duplex single input single output ~ RMS: root mean square -delay spread
AC: antenna correlation MIMO: multiple-input multiple-output RSSI: received signal strength indicator
AO: antenna orientation MPC: multipath component SF: shadow fading
BC: bandwidth-coherence PAS: power angle spectrum SISO: signal input signal output
CDF: cumulative distribution function ~ PDP: power delay profile TOA: time-of-arrival
DC: direct current PL: path loss UAV: unmanned aerial vehicle
DPP: Doppler power profile Pr: power-received UDP: user datagram protocol
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laptop for controlling the USRP and connecting the laptop to a
router. Measurements of five horizontal flights at different alti-
tudes and five ascending flights at different horizontal dis-
tances to the base station were carried out in the 2.585 GHz
band, as shown in Fig. 2. This is a common experiment for
UAYV air-to-ground channel measurements.

In Ref. [46], a new channel modeling method was proposed
based on a feature selection algorithm, an effective and funda-
mental method for big data analysis. The measurement was
conducted via a USRP-based channel sounder by transmitting
a frequency modulated (FM) continuous wave with a center fre-
quency of 5 760 MHz and a bandwidth of 16 MHz. Refs. [17,
22, 33] also provided propagation measurement examples per-
formed by a rotorcraft during both flight and hovering. These
A2G propagation measurements were conducted at different
UAYV altitudes ranging from 16 m to 120 m.

However, the effect of UAV hovering on the received signal
was not considered in these measurements. Ref. [47] investi-
gated the multi-frequency A2G propagation channel of a low-
altitude UAV flying vertically. The basic parameters of large-
scale and small-scale channels, including path loss, autocorre-
lation, shadowing and small-scale fading characteristics, were
comprehensively analyzed and modeled. Moreover, Ref. [48]
studied the variation in the propagation channel over the flight
range of a small- to medium-sized UAV.

Measurements of different routes in a semi-urban complex
environment have been carried out to obtain data at different
locations. Analysis of the measurement results reveals that
small-scale fading is more strongly influenced by the flight al-
titude than by the elevation angle or distance. In Refs. [35,
50], a height-dependent model was proposed for path loss and
shadowing parameters. Measurements in Ref. [51] were con-
ducted in open terrain to explore the feasibility of fixed cellu-
lar networks for UAV telemetry and control, focusing on radio
propagation, which is shorter in the air than on the ground. In
addition to conventional A2G channel detection, such mea-
surements can also leverage fixed cellular networks using the
IEEE 802.11 standards with different protocol versions for in-
direct UAV A2G channel measurements'®'”?. Specifically,
Ref. [13] used a tracking algorithm based on multipath compo-
nent distances and proposed a dynamic model that could de-
scribe the time-varying radio propagation channel between a
low-altitude UAV and a ground base station from identified
time-varying trajectories.

Ref. [7] proposed a flyby communication scenario using an
airborne UAV connected to a cellular network. The study
tested several scenarios with different altitudes, orientations,
and distances, and analyzed the performance of LTE networks
in dynamic 3D environments. Simple extensions to the com-
munication system are proposed to achieve quasi-isotropic ra-
diation to provide uniform 3D connectivity.

Antennas are also key components that cannot be ignored
in A2G communications. The number, type and orientation of

antennas are all factors that affect the performance of an A2G
link. Most A2G channel measurements use a standalone
(single) antenna, and a multiple-input multiple-output
(MIMO) antenna configuration is available in the literature
for A2G propagation measurements'*®** ¥ Antennas can be
classified into two types based on their directionality: direc-
tional antennas and omnidirectional antennas. Directional an-
tennas, which provide significant gain in a specific direction,
are suitable for long-distance communication. However, their
performance is poor during movement due to their limited an-
gular coverage. In contrast, omnidirectional antennas offer su-
perior performance during movement because of their wide
coverage area. This makes them particularly popular in ve-
hicle communications.

The omnidirectional or directional orientation of the an-
tenna affects the received signal strength and system through-
put. Ref. [12] reported that the PLE of IEEE 802.11 communi-
cation varies during UAV hovering and moving due to the dif-
ferent orientations of vehicle-mounted antennas. Compared
with the vertical-vertical orientation, the horizontal-horizontal
orientation exhibits better throughput performance in Ref.
[57]. In Ref. [58], the horizontal antenna orientation helps
overcome the difference in yaw; similarly, the vertical orienta-
tion performs better during UAV tilting. Therefore, antenna
orientation maps may affect the true channel path loss charac-
teristics, but eliminating their effects is not always easy.

Ref. [25] suggested the use of MIMO systems to improve the
channel capacity of A2G propagation channels. Different val-
ues of MIMO channel capacity are obtained by varying the cir-
cular antenna array diameter and UAV flight altitude””. Omni-
directional antennas are usually more suitable for UAVs than
directional antennas due to the high maneuverability of UAVs
during flight. In addition, the generated PL model is still use-
ful for the particular UAV configuration used. However, owing
to arbitrary mobility patterns and different types of communi-
cation applications'®, UAV A2G communications face many
other challenges.

3.2 Geometry-Based Random Channel Model

In recent years, geometry-based stochastic channel models
have been widely used. They offer higher accuracy than statis-
tical models and better integration with MIMO techniques,
while requiring less computational effort than deterministic
models. Any geometry-based model is determined by the posi-
tion of the scatterer. In deterministic geometric methods (e.g.,
RT), the position of the scatterer is set in a database. In con-
trast, the geometry-based stochastic channel model (GBSCM)
generates the scatterer positions randomly according to a spe-
cific probability distribution. The GBSCM can be further clas-
sified into a regular-shaped GBSCM and an irregular-shaped
GBSCM. For the former, the scatterer distribution, such as an
ellipsoid, a cylinder, or a sphere, is ideal.

Overall, the main difference among regular-shaped GB-
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SCMs is the locations and statistical distributions of scatter-
ers, which leads to variability in the calculation results of 2D
angular parameters. Table 4 presents the Angle-of-Arrival
(AOA) distributions of common GBSCMs and compares differ-

[27, 44,57, 61 - 65] Among them, cylindrical and

ent shape models
spherical channel models are currently the primary methods
for UAV-based geometrically stochastic A2G channel model-
ing. With the application of MIMO technology, an increasing
number of stochastic channel models have incorporated
MIMO capabilities. For example, Ref. [61] proposed a 3D
hemispherical GBSM for UAV MIMO channels, which takes
into account the non-smooth propagation environment due to
the fast movement of UAVs and scattering clusters.

Ref. [66] modeled UAV rotation as a sinusoidal process and
investigated the effect of UAV rotation on the MIMO channel
characteristics of air-to-ground communication systems by
considering the effective scatterers within the main flap of the
directional antenna. Ref. [67] introduced a Gauss-Markov mo-
bility model to describe the 3D arbitrary trajectories of UAVs
and proposed a 3D cylindrical GBSM for UAVs with broad-
band unsteady channels. Considering a uniform and two differ-
ent propagation scenarios with variable speeds, the numerical
results reveal that under the uniform speed condition, the ver-
tical motion of the UAV has a greater effect on the time corre-
lation function than does the horizontal motion. In contrast,
when the UAV moves at a variable speed, the effect of the
UAV on the correlation function at a constant speed disap-
pears due to the randomness of maneuvering.

Ref. [64], with the same assumption as Ref. [24], proposed a
3D columned GBSM for UAV-MIMO Rayleigh channels, as
shown in Fig. 3, and investigated the effects of several UAV-
related parameters on the GBSM. The numerical results reveal

that both the UAV ’s direction of motion and its position
strongly influence the obtained correlations. They indicate that
to maintain a stable UAV link, the UAV should move toward
the ground mobile users, whereas for reliable MIMO perfor-
mance, the UAV should move horizontally. Ref. [68] proposed
a stochastic model for A2G channels based on 3D geometry.
Moreover, a Gauss-Markov mobility model was used to gener-
ate dynamic trajectories. According to different scattering envi-
ronments, a reference model and a statistical simulation model
of the A2G channel were developed. The dynamic motion sce-
narios generated by the Gauss-Markov process were analyzed,
along with their effects on the correlation of the A2G channel.
Notably, the authors developed a statistical simulation model
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|
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Figure 3. MIMO air-to-ground channel model of a UAV
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to reduce computational complexity. This is relatively rare.

3.3 UAV Channel Modeling Across Different Frequency
Bands and Bandwidths

UAV communication systems are being explored across di-
verse {requency bands and bandwidths to meet varied applica-
tion requirements.

1) Sub-6 GHz frequency band

At sub-6 GHz frequencies, UAV channels exhibit character-
istics similar to terrestrial channels, but feature enhanced 3D
scattering and multipath effects due to the aerial nature of
UAVs. Path loss and shadowing are significant, and the im-
pact of terrain and urban structures on signal propagation
must be carefully modeled. For instance, in urban environ-
ments, signal reflections from buildings and the ground create
complex multipath scenarios. Studies including Ref. [69] show
that traditional PL models need adaptation for the higher el-
evation angles typical in UAV communications.

2) Millimeter-wave (mmWave) frequency band

The mmWave frequency band offers large bandwidths for
high data rate communications but suffers from higher path
loss and sensitivity to blockage. UAV channels in this band
are highly dependent on LoS conditions. The narrow beam-
forming used in mmWave communications requires precise
alignment between the UAV and GS, which is challenging due
to the mobility of UAVs. Research in Ref. [70] indicates that
unique 3D flight trajectories of UAVs necessitate advanced
beam management and tracking algorithms to maintain reli-
able connections.

3) Terahertz (THz) frequency band

The THz band promises ultra-high data rates and ultra-low
latency, making it attractive for future 6G applications. How-
ever, signal propagation in this band is severely affected by at-
mospheric absorption and scattering, leading to significant
path loss. UAV channel modeling in the THz band must incor-
porate the effects of weather conditions and molecular absorp-
tion. As highlighted in Ref. [71], the integration of ultra-
massive MIMO techniques is crucial to compensate for propa-
gation losses in this band.

4) Impact of bandwidth on channel modeling

The increasing use of large bandwidths in higher frequency
bands poses new challenges for channel modeling. Frequency-

selective fading and Doppler spread become more pro-
nounced, requiring more sophisticated models to capture the
dynamic nature of UAV channels. For example, in mmWave
and THz bands, the channel model must account for the rapid
changes in channel characteristics due to the high mobility of
UAVs and the narrow beam widths used.

3.4 RT-Based Channel Model

In the A2G propagation channel of a UAV, MPCs appear
due to reflections from the Earth’s surface, from ground ob-
jects, and sometimes from the body of the UAV itself. The
characteristics of the channel depend on the material, shape
and size of the scattering object. In A2G propagation sce-
narios, the strongest MPCs other than the LoS component are
usually single reflections from the Earth’s surface. This gives
rise to the well-known two-ray model shown in Fig. 4. Table 5
summarizes the two-ray model for selected A2G chan-

[13.15.17.23.32733.59.72° 74 1p two-ray PL modeling, there is a

nels
clear peak in the PL variation with distance due to the super-
position of the dominant and surface-reflected components. In
most of the PL. models, PL variation is approximated as a log-
normal random variable. This variation may be due to shadows
from the UAV airframe or MPC from ground scatterers such as

buildings!* "7 Ref. [73] presented path loss and shadow

/—\memlla altitude Reflection

A

Horizontal

LoS: line of sight ~ RX: receiver

Figure 4. Two-ray model

Table 5. Two-ray model for selected A2G channels

Ref. Frequency Bandwidth Transmit Power/dBm ~ Channel Characteristics
[13,23,32,72] 0.968 GHz, 5.06 GHz 5 MHz, 50 MHz 40 PL, K-factor
[15] 2.05 GHz — — MPC, K-factor, PL
[33] 3.1 -53GHz 2.2 GHz —-14.5 PL, MPC
[17] 2.4 GHz — 0 RSSI
[59] 5.7 GHz — 40 PL
[73 - 74] 200 MHz - 5 GHz — — PL, SF

A2G: air-to-ground ~ MPC: multipath component

PL: path loss

RSSI: received signal strength indicator  SF: shadow fading
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statistics functions related to elevation and height with PL ex-
pressions through 3D RT experiments.

Ref. [73] modeled the LoS transmission probability based
on the shape of the cell building and knife-edge diffraction
theory. The model takes into account key statistical param-
eters such as the building height, building size, building cov-
erage, and street width. In Ref. [74], 3D RT experiments were
conducted to characterize the height-dependent attenuation of
A2G transmission in suburban environments. AI-HOURANI
etal.>7

lations of statistical parameters recommended by the ITU.

I'implemented environmental terrain based on simu-

In Ref. [76], a generic PL model was proposed for low-
altitude platforms in which the channel model parameters were
estimated via 3D RT at 700 MHz, 2 000 MHz and 5 800 MHz.
The simulation results show that the elevation angle has a sig-
nificant effect on multipath path loss.

In the work of DANIEL et al.” and FENG et al.”, channel
models are limited to urban and suburban environments and
are not generalizable for migration to other environments. In
the work of AI-HOURANI et al.”> 7, the propagation condi-
tions depend on the height and coverage radius of the UAV.
The above three models are applied to different scenarios and
have their own advantages and disadvantages, which are sum-
marized in Table 6.

Although the statistical model based on the measured data
has low computational complexity, random parameter-based
modeling cannot meet the accuracy requirements of actual
signal transmission, and the application range is limited to a
large extent. The RT-based deterministic model requires pre-
cise channel scene parameters to accurately restore the signal
propagation process, but the computational effort is too large.
The geometry-based stochastic model matches the actual
channel scene, but it is difficult to reduce the computational
complexity.

3.5 Technical Challenges and Solutions in UAV Channel
Measurement

UAV channel measurement requires addressing a series of
technical challenges, including low-power consumption and
miniaturization, large-bandwidth high-frequency operations,
transceiver synchronization, airframe shadowing and dynamic
scenarios, as well as the integration of measurement hardware,
protocols, and synchronization mechanisms.

1) Low power consumption and miniaturization

Table 6. Comparison of the models proposed in Refs. [73 - 76]

Model Advantage Disadvantage

Matching actual channel - . . .
Measurement-based model R Single application scenario
scenarios ”

Ray-tracing-based model Discriminating multipath High computational vol-

in the channel ume and complexity

Geometric random channel Matching actual channel X
More complex calculations

model scenarios
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Channel measurement systems for UAVs must achieve strin-
gent low-power operation and compact form factors to accom-
modate deployment on small aerial platforms. Ref. [78] demon-
strated that integrating efficient signal processing algorithms
and lightweight hardware architectures can substantially re-
duce both power consumption and physical dimensions. For
instance, practical implementations utilize low-power RF
front-ends and miniaturized antenna arrays to enable high-
precision channel characterization. Such designs adhere to
UAV payload constraints while ensuring extended operational
durations under limited power budgets.

2) Large bandwidth and high-frequency bands

UAV communications predominantly operate in high-
frequency bands such as mmWave spectra, which offer large
bandwidth but impose stringent requirements on measurement
systems. Ref. [79] addressed these challenges by deploying ad-
vanced signal processing techniques to mitigate high-
frequency signal attenuation and noise interference. Key strat-
egies include high-sampling-rate analog-to-digital converters
(ADCs) and adaptive filtering algorithms to maintain signal in-
tegrity across wide bandwidths. Furthermore, Ref. [80] pre-
sented empirical results from low-altitude A2G channel mea-
surements in the 915 MHz band, revealing significant spatial
diversity even in sparse multipath environments. These in-
sights highlight the potential for high-capacity UAV communi-
cation links in practical deployments.

3) Transceiver synchronization

Accurate time and frequency synchronization between
transceivers is critical for reliable UAV channel measure-
ments. Ref. [16] emphasized the necessity of GPS-based tim-
ing alignment and high-precision frequency references to
minimize synchronization errors. For example, GPS synchro-
nization during measurement campaigns reduces timing dis-
crepancies by over 80%, enhancing data reliability. Comple-
mentary work in Ref. [81] validated the use of GPS time-
stamping to ensure temporal coherence in multi-device mea-
surement systems.

4) Airframe shadowing and dynamic scenarios

UAV airframes and wings introduce signal shadowing and
reflection effects, while environmental obstacles and rapid ter-
rain variations further degrade channel stability. Ref. [82] pro-
posed optimized measurement protocols, including multi-
antenna configurations and angular diversity techniques, to
mitigate shadowing and environmental interference. For in-
stance, deploying omnidirectional antennas reduces polariza-
tion mismatch-induced path loss by 35% in scenarios with
large roll angles. Additionally, Ref. [83] quantified the impact
of UAV attitude dynamics on channel statistics, demonstrating
that real-time attitude-aware data correction is essential for ac-
curate measurements in dynamic flight conditions.

5) Integrated measurement systems

The complexity of UAV channel measurements demands
holistic solutions integrating hardware innovation, protocol
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optimization, and synchronization frameworks. Ref. [16] in-
troduced an FPGA-based real-time processing algorithm for
extracting channel impulse responses (CIRs), compensating
for system response distortions, recovering power loss, and
adaptively identifying MPCs. This approach reduces data
storage requirements by 60% while improving processing ef-
ficiency. Parallel work in Ref. [81] developed a dedicated
channel-sounding system for low-altitude A2G measure-
ments, achieving sub-nanosecond timing resolution through
optimized antenna configurations and adaptive measurement
protocols. These integrated methodologies not only capture
the time-varying and spatially diverse nature of UAV chan-
nels, but also provide robust datasets for next-generation
channel modeling.

4 UAV Air-to-Ground Channel Measure-

ments in Different Scenarios
As with terrestrial cellular channels, the classification of

841 exhibits ambiguity and over-

the various A2G channel types
lap. The measurement activities of different A2G propagation
channels can be broadly categorized based on terrain, terrain
coverage, and sounding signal characteristics. The representa-
tive environments include deserts, rural areas (plains), forests,
suburban areas, and urban neighborhoods. However, these
classifications are not always disjoint or exhaustive. In this
chapter, we provide a brief overview and comparison of mea-
surement activities in different environments.

4.1 Urban and Semi-Urban Environments

In urban and semi-urban environments, A2G channels are
significantly affected by the dense network of buildings and in-
frastructure. Signals often encounter multiple reflections and
scatterings from these structures, leading to complex multi-
path effects and shadowing. Ref. [85] performed a model-
based fading statistical analysis of a narrowband UAV propa-
gation channel in an urban area, with the UAV flying at low el-
evation angles (1° to 6°) and altitudes of 100 m to 170 m. The
study used a 2 GHz continuous wave signal in an urban area
with an average building height of 22 m. These data represent
the received signal distribution through second-order statis-
tics, power spectral density, and an autocorrelation function
with a strong coherent component plus a diffuse reflection con-
tribution under Ricean assumptions. This work is unique be-
cause second-order channel fading statistics for A2G propaga-
tion via UAVs are rarely available in the literature. The au-
thors of Ref. [85] concluded that the partial shadowing model
is best suited for characterizing the dynamics of low-altitude
links located between pure terrestrial and land mobile satel-
lite channels. Using the partial shadowing model as a starting
point, they developed a narrowband time series generator ca-
pable of reproducing the observed signal dynamics, which con-
sists of two main modules: one generating the diffuse reflec-
tance component and the other generating the direct/coherent

signal. They also proposed a narrowband channel estimator ca-
pable of reproducing the dynamic characteristics of the signal.

The authors of Ref. [20] conducted some related measure-
ment campaigns using a similar device to simulate urban area
path loss models for flight altitudes between 150 m and 300 m.
They used a new methodology to simulate urban area path loss
models. In addition, they obtained measurements in urban
and forested areas® ™' for the research of spatial diversity
techniques and concluded that heavily wooded areas achieved
greater diversity gains than open sites. However, at lower el-
evation angles, the open sites presented significant gains in di-
versity. Compared with the diversity gain in the urban areas
studied in Ref. [85], this gain is approximately 4% lower.

Ref. [13] reported broadband A2G propagation channel
measurements in L-band and C-band urban areas. It is ob-
served that the reflection-guided root mean square (RMS) de-
lay extension increases in high-rise buildings. Ref. [86] per-
formed channel measurements using continuous waves with a
center frequency of 2 GHz. Received power was measured in
different propagation environments, including woods, and sig-
nificant differences were observed between shadowing effects
in the woods and uban buildings.

Studies have shown that the PLE in urban environments
typically ranges from 2.5 to 3.5, which is higher than that in
other scenarios. For example, measurements in urban areas at
2.4 GHz reveal a PLE of 3.2, indicating increased signal at-
tenuation compared to free space. These conditions necessi-
tate robust channel models that can capture the dynamic
changes in signal propagation, making them essential for reli-
able communication system design.

4.2 Suburban Environment

In the suburban environment, A2G channels exhibit a
blend of LoS and NLoS signal paths due to the mix of open
spaces and scattered obstacles like trees and low-rise build-
ings. Measured PLE values here are moderate, typically be-
tween 2.0 and 2.5. CAI et al.”* investigated the scenario of a
low-altitude A2G UAV wireless channel on the outskirts of
Madrid, Spain. Field experiments of UAVs flying above a
cluster of containers with a carrier frequency of 5.76 GHz
were conducted, and both narrowband and broadband mea-
surements were performed, as shown in Fig. 5. In the vertical
flight test, the UAV flew up and down from 0 to 50 m in alti-
tude, while the UAV performed the horizontal test at a dis-
tance of 210 m. The authors investigated the large-scale fad-
ing effect in the UAV propagation channel and proposed an
improved PL model and power delay profile (PDP). They also
computed the PLE in the horizontal and vertical directions
using the logarithmic distance path and the double-slope
loss model, as shown in Eq. (4). They reported that for a
UAV’ s performance in a particular environment, the delay
dispersion increased with height as the UAV rised above the
metal structure.
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Buildings

(a) Narrow band measurement scenario

RX: receiver  TX: transmitter

Tall building 2

(b) Broadband measurement scenario

USRP: Universal Software Radio Peripheral

Figure 5. Measurement scenarios and equipment

PL(d) =
a,10log, (d) + B, + X,, d < d,

(4)
a,10log, (d) + B, + adllologlo(;) +X,,d>d,
1

where d, is the fitted slope of the distance range between the
two links separated by the threshold, «, is the slope of the fit

for the two link distance ranges separated by the threshold, 8,

is the intercept, and X is the random variable representing
the variation in the fit. CHU et al.””! conducted RT simula-
tions in a simplified environment at ultralow altitudes (0 -
100 m) to analyze A2G channels with path loss, K-factors,
multipaths, and delay extensions at 1.2 GHz and 4.2 GHz.
The K factor denotes the power ratio of the LoS path to that of
the other paths, as shown in Eq. (5).

P LoS

p NLoS

K= (5).

The RMS delay spread is calculated using Eq. (6):
o . =JT-7T (6).

Experiments show that the multipath component decreases
with increasing altitude and eventually stabilizes at high alti-
tude, which can be used to design wireless communication sys-
tems for mainstream small UAVs that are restricted to flying
at specific altitudes. Ref. [58] presented a detailed measure-
ment analysis of the A2GMIMO propagation channel. It was
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observed that the spatial decorrelation of the received signals
at the GS is quite high due to the interaction of the non-planar
wavefront resulting from the near-field effects of the measure-
ment vehicles fitted with the GS antennas. More significant
near-field effects are expected from more conventional aerial
platforms. Interestingly, the authors suggested that at higher
elevation angles, the placement of scatterers near the GS
could produce greater spatial diversity.

In Ref. [86], MIMO system performance was tested in differ-
ent scenarios in outdoor environments, including urban, rural,
open field, and forest environments. The effect of terrain cover-
age on the received power was analyzed for these different sce-
narios. The results revealed that ground reflections play a cen-
tral role in affecting the propagation channel model, whereas
in forested areas, tree reflections and shadows are the primary
factors influencing the propagation channel characteristics. Al-
though there are differences between rural and urban environ-
ments, reflections from the walls and surfaces of buildings
play an important role. In Ref. [87], a flight measurement cam-
paign was described for an L-band A2G channel with a center
frequency of 970 MHz, and the aerial measurements consid-
ered a rural environment similar to an airport, featuring a mix
of large and small buildings and open grassy areas.

5 Research Directions for Future UAV Air-
to-Ground Channel Modeling

In this chapter, we discuss possible future research direc-
tions for currently available A2G channel measurements and
models. Our goal is to promote more comprehensive propagation
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channel models for future UAV communication applications.

5.1 UAV Millimeter-Wave Channel Modeling

UAV mmWave communication, as a promising future com-
munication technology, has received increasing attention in
fields such as air base stations, wireless relays, emergency
communications, and battlefield communications. UAVs often
have LoS paths in the communication process due to their
higher flight altitude, while the mmWave frequency band ex-
hibits higher path loss and lower scattering characteristics,
leading to higher requirements on LoS propagation conditions
for mmWave communication systems. Therefore, UAVs can be
an excellent platform for mmWave communication technology.
However, there are currently few actual measurement cam-
paigns for UAV A2G channels in the mmWave band. Ref. [69]
presented a path loss model for mmWave channels based on
measured data in the 28 GHz frequency band, but it did not
consider the characteristics of small-scale fading. In UAV
communication scenarios, the changes of channel characteris-
tics are extremely sensitive to the variations in narrow beam
pointing, and the cluster fading phenomenon is also more obvi-
ous, which significantly increases the difficulty and complex-
ity of UAV channel modeling.

Ref. [70] discussed the delay power spectrum and signal
angle distribution of UAV mmWave channels by reconstruct-
ing city, hill, forest, and ocean scenarios with the RT method.
Compared with other types of channel models, the RT-based
model has the advantages of high flexibility in scene construc-
tion and lower cost of data acquisition, but it faces challenges
in analyzing small-scale fading.

Obtaining channel parameters for actual propagation sce-
narios is one of the key techniques for the accurate operation
of UAV mmWave channel models. Although the RT-based
prediction of mmWave propagation parameters is accurate, it
is difficult to reflect the randomness and non-stationarity of
the fast time-varying environment of UAVs. For UAV
mmWave channels, the changes in channel characteristics
caused by new scenarios are currently unknown. In the future,
a large number of channel data can be generated using actual
measurements or simulations, and the analysis of large-scale
channel data using machine learning methods should be able
to make better use of the spatial and angular information of
the MPCs and the intrinsic correlation between the model pa-
rameters to discover new characteristics.

Combining the analysis with machine learning methods may
be an effective means of investigating the stochastic and non-
stationary nature of UAV channels. In conclusion, it is certain
that the future development of UAV communication will be
characterized by multi-scene applications, high mobility, high
frequency, and multi-antenna technologies. Therefore, the es-
tablishment of suitable UAV mmWave channel modes plays
an important role in the scheme design, performance optimiza-
tion and evaluation verification of future UAV mmWave com-

munication systems. Moreover, Ref. [88] upgraded the existing
UAV channel model to an ultra-large-scale MIMO mmWave-
terahertz oriented channel model, which is an important re-
search direction in the future. The mmWave-terahertz commu-
nication can utilize the huge communication bandwidth to
meet the application requirements of high-rate transmission
and ultra-low latency.

However, the signal wavelength in the mmWave-terahertz
band is extremely short. To mitigate this, Ref. [89] used beam-
forming to achieve high gain and combined it with massive
MIMO technology to compensate for the high propagation loss
of terahertz signals in practical applications. Currently, a 3D
mmWave-terahertz channel model to support hyperscale
MIMO wireless communication systems has been initially pro-
posed in Ref. [90], in which the evolution of clusters in the
spatial domain and the actual discrete phase shifts were taken
into account.

5.2 Ultra-Wideband Technology

In addition to mmWave, ultra-wideband (UWB) technology
is a research priority for future UAV A2G communication sys-
tems. The ability of UWB signals to capture MPC with good
temporal resolution makes UWB an attractive technology for
developing broadband propagation models. The large band-
width of UWB also promotes high data rates, better penetra-
tion through materials, and coexistence with narrowband net-
works for UAV A2G communications. Although the UAV
propagation channel has been studied in the literature, most of
the existing work focuses on the path loss characteristics of
the A2G channel, and there are almost no comprehensive and
dedicated UWB channel models for UAV A2G propagation
channels. KHAWAJA et al. developed random path loss and
multipath channel models to characterize the A2G UWB
propagation channel based on measured data®. However, the
maximum altitude of UAV flight is only 16 m, and the commu-
nication range is short.

Meanwhile, current UWB propagation channel models de-
8391 cannot be applied to UAV
A2G channels due to different propagation environments.
Therefore, establishing a suitable UAV UWB channel model

requires prior A2G channel measurements.

veloped for other scenarios

5.3 Advanced Modeling and Integration Strategies

Beyond mmWave and terahertz channel modeling, several
other promising directions deserve attention. Al and ma-
chine learning can enhance the accuracy and efficiency of
channel modeling by analyzing large datasets from measure-
ment campaigns. This can help discover new characteristics
of UAV channels and improve the predictive capabilities of
channel models. Additionally, the integration of advanced
antenna technologies like ultra-massive MIMO and intelli-
gent reflecting surfaces (IRS) can significantly improve com-
munication performance and optimize UAV communication
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systems. Dynamic and adaptive channel models that incorpo-
rate the mobility of UAVs and the time-varying nature of the
propagation environment are also crucial for providing more
accurate predictions. Furthermore, exploring the integration
of UAV communication systems with other technologies such
as satellite communications and IoT networks can enhance
the overall communication infrastructure and enable more di-
verse applications.

6 Conclusions

This paper comprehensively reviews the fundamentals and
characteristics of UAV A2G channels, emphasizing their
unique aspects compared to terrestrial channels, such as fully
3D scattering environments, flight trajectories, and body shad-
owing effects. We discuss the challenges of UAV channel
measurement, including low-power and miniaturized environ-
ments, high-frequency bands with large bandwidths, trans-
ceiver synchronization, airframe shadowing, and dynamic sce-
narios. Additionally, we overview UAV channel measure-
ments across different frequency bands and bandwidths and
classify UAV A2G channel models based on various environ-
ments. Finally, we explore future research directions, includ-
ing the potential of mmWave and terahertz technologies, ultra-
wideband technologies, and the integration of advanced mod-
eling strategies with machine learning to improve UAV chan-
nel modeling accuracy.
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1 Introduction
he 6G wireless communication network is envisioned to
revolutionize the telecommunication landscape by in-
corporating a wide range of advanced communication
capabilities. These enhancements are expected to sup-
port enriched and immersive experiences, ensure ubiquitous
and seamless coverage, and enable innovative collaboration!".
One of the primary catalysts is incorporating technologies
driven by artificial intelligence (AI). By harnessing Al, 6G aims
to overcome the limitations of current networks, offering ultra-
reliable and low-latency communication, extensive connectivity
for massive loT devices, and significantly improved mobile
broadband services”. This integration will facilitate ground-
breaking applications such as holographic telepresence, tactile
internet, intelligent autonomous systems, and smart cities. By
leveraging Al, 6G networks will not only optimize performance
and enhance data processing efficiency but also ensure adap-
tive, secure, and robust communication environments” . The
synergy between Al and 6G will pave the way for unprec-
edented connectivity and intelligent communication solutions,
fundamentally transforming industries and society as a whole.
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Although AT has exhibited great potential in reshaping the
next generation of wireless networks, deploying it in practical
communication scenarios remains challenging® ®. Fig. 1 shows
the 6G communication scenarios with Al integration. These chal-
lenges arise primarily due to several factors, as outlined below.

1) Robustness: Current Al models often struggle to maintain
performance in dynamic and unpredictable environments with

Pl In practical wireless networks,

varying data distributions
user mobility, signal condition changes, and interference can
cause significant variations in the data fed into Al models.
This lack of robustness can lead to substantial performance
degradation, making it difficult to ensure reliable operation'®.
For instance, an Al model trained under certain static condi-
tions may fail to adapt when deployed in a real-world setting
where wireless parameters continuously change. Addressing
this issue requires the development of adaptive Al models that
can learn and generalize from a wide range of conditions and
data patterns.

2) Interpretability: The black-box nature of many Al algo-
rithms poses significant challenges in understanding and ex-
plaining their decision-making processes'’. This lack of inter-
pretability raises concerns about the safety, transparency, and
fairness of Al-driven solutions in communication systems. In
wireless networks, where decisions can impact a wide range of
users and services, it is crucial to ensure that Al models make
decisions that are understandable and justifiable. For ex-
ample, in the context of spectrum resource allocation in com-
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Figure 1. 6G communication scenarios with AI integration

munications, the Al system should make fair and efficient de-
cisions. Enhancing the interpretability of Al models involves
developing methods to provide insights into the inner working
and decision criteria of the models.

3) Complexity: Al models, particularly deep learning archi-
tectures, require substantial computational resources and com-
plex infrastructure for training and deployment. Training deep
neural networks can be computationally intensive and time-
consuming, often necessitating specialized hardware such as
graphics processing units (GPUs) or tensor processing units
(TPUs). Moreover, the deployment of these models in practical
wireless networks must contend with constraints such as lim-
ited bandwidth, low latency requirements, and the need for
real-time processing®. This high complexity hinders their
practical implementation, especially in edge computing sce-
narios where computational resources are limited. Simplifying
AT models and optimizing their performance to run efficiently
on resource-constrained devices are critical areas of research.

Addressing these challenges is crucial for the successful
integration of Al into next-generation wireless networks, pav-
ing the way for more reliable, transparent, and efficient com-
munication systems. Overcoming these hurdles will allow Al
to revolutionize wireless communication, enhancing user ex-
periences and network performance and enabling innovative
applications and services. In this article, we provide an over-
view of the recently proposed liquid neural networks (LNNs)
H0=121"\hich are designed from first principles to be robust,
interpretable, and resource-efficient, making them well-
suited for the dynamic and complex nature of wireless com-
munication environments. We explore the opportunities that
LNNs bring to future wireless networks and discuss the chal-
lenges and design directions for their implementation.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of traditional neural networks and their limi-
tations. Section 3 describes the design of LNNs, and Section 4
presents the features and benefits of LNNs. The opportunities
that LNNs bring to the future wireless networks are explored
in Section 5. Section 6 discusses the main challenges associ-
ated with LNN-based communication systems and outlines po-
tential future research directions. Case studies are presented
in Section 7 to verify the performance of LNNs. Finally, Sec-
tion 8 concludes the paper.

2 Overview of Traditional Neural Networks
Traditional neural networks are fundamental in the develop-
ment of Al technologies, each offering unique strengths for
various applications. Below, we discuss four primary types of
traditional neural networks: feedforward neural networks
(FNNs), convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), and ordinary differential equation neural

networks (ODE-NNs).

2.1 Feedforward Neural Networks

FNNs are the simplest type of artificial neural network archi-
tecture. In FNNs, the information moves in one direction: from
input nodes, through hidden nodes (if any), to output nodes!"?.
There are no cycles or loops in the network. This structure
makes FNNs suitable for simple pattern recognition tasks, such
as image classification or function approximation. However,
they may struggle with tasks requiring memory or temporal de-

pendencies due to their lack of internal hidden states.

2.2 Convolutional Neural Networks
CNNs are specialized for processing structured grid data
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like images. They utilize convolutional layers that apply filters
to the input data to capture spatial hierarchies of features!.
CNNs are highly effective in image and video recognition, ow-
ing to their ability to learn spatial hierarchies and patterns.
The architecture includes convolutional layers, pooling layers,
and fully connected layers. CNNs are known for their robust-
ness in handling variations in image data, such as shifts,

scales, and distortions.

2.3 Recurrent Neural Networks

RNNs are designed to handle sequential data and capture
temporal dependencies. Unlike FNNs, RNNs have connections
that form directed cycles, allowing information to persist across
different steps in the sequence. This makes RNNs powerful for
tasks like time @eries data, natural language processing, and
speech recognition. However, traditional RNNs may suffer
from vanishing and explodlng gradients, which hinders their
performance on long sequences. To address these issues, vari-
ants such as long short-term memory (LSTM) networks and
gated recurrent units (GRUs) are developed. LSTMs introduce
gating mechanisms to manage long-term dependencies, while
GRUs simplify the architecture for computational efficiency.
Despite these improvements, both LSTMs and GRUs have limi-
tations, including the inability to model continuous-time dynam-
ics and reduced robustness in highly dynamic environments''.
2.4 Ordinary Differential Equation Neural Networks

ODE-NNs are designed to model continuous-time dynam-
ics, addressing limitations of traditional RNNs""\, Continuous-
time recurrent neural networks (CT-RNNs) and ODE-LSTM
networks are key examples. CT-RNNs use ordinary differential
equations (ODEs) to capture continuous-time sequences, mak-

\" 4

ing them suitable for irregular time intervals, but they are com-
putationally intensive due to the need for numerical solvers.
ODE-LSTMs integrate continuous-time modeling into the LSTM
framework, enhancing their ability to handle continuous depen-
dencies. Despite these improvements, ODE-LSTMs and CT-
RNNs face challenges such as increased computational com-
plexity and potential training instability, which can limit their
effectiveness and robustness in highly dynamic environments.

3 Design of LNNs

LNNs are uniquely designed based on first principles, fun-
damentally differing from other models in neuron operation’.
First principles derive properties and behaviors directly from
fundamental laws of nature, ensuring that the design is
grounded in the most essential elements. Inspired by the dy-
namic and adaptive nature of biological neural systems, LNNs
mimic the information transmission mechanisms observed at
synapses in the nematode Caenorhabditis elegans. This ap-
proach enables LNNs to emulate the flexibility and resilience
of natural neural networks. Unlike static architectures, LNNs
exhibit adaptability self-
reconfiguration in real-time input scenarios, maintaining high

dynamic through  continuous
performance and robustness in dynamic and unpredictable en-
vironments. This adaptability makes LNNs particularly well-
suited for real-world applications where conditions constantly
change. Currently, there are three types of liquid neural net-
works: liquid time-constant neural networks (LTCs), closed-

form continuous-time neural networks (CfCs), and neural cir-
cuit policies (NCPs).

3.1 Liquid Time-Constant Neural Networks
Fig. 2 illustrates the basic information flow of a liquid neu-
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Figure 2. Liquid neuron and the ODE modeling
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ron, which serves as the fundamental building block of LTCs.
In this model, a presynaptic neuron transmits information to a
postsynaptic neuron via the synapse between them, using pre-
synaptic stimuli. The potential of the postsynaptic membrane
acts as a dynamic variable, representing the hidden states in
the corresponding neural networks. This entire process is de-
scribed by an ODE, which captures the dynamic and non-linear
interactions between neurons. LTCs have demonstrated excep-
tional flexibility and generalizability, particularly in applica-
tions such as vehicle autopilot and vehicular communications.
These networks can adapt to changing external conditions with
remarkable efficiency. Notably, LTCs have achieved high-
fidelity autonomy in complex autonomous systems with as few
as 19 liquid neurons''". This capability can be extended to en-
hance vehicle-to-everything (V2X) communications, where
LTCs can optimize data transmission and processing in dy-
namic, real-time environments. By integrating LTCs into next-
generation wireless communication systems, vehicles can
achieve seamless connectivity, improve network performance,
and attain robust decision-making processes. This enables so-
phisticated or task-specific operations even under diverse and
fluctuating conditions.

3.2 Closed-Form Continuous-Time Neural Networks
While LTCs can adapt to changing environments, their lack
of closed-form solutions requires computationally intensive it-
erative solvers for forward propagation and back propagation.
To address this issue, a closed-form solution was proposed to
approximate the true solution of the ODE!"?, as illustrated in
Fig. 2. The closed-form expression successfully circumvents
the high overhead of traditional ODE solvers and approxi-
mates the solution with a few parameters. To take advantage of
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existing deep learning tools and theories, CfCs are represented
by a specially designed deep neural network structure, as de-
picted in Fig. 3. This innovative approach significantly re-
duces computational complexity while maintaining the adapt-
ability and robustness characteristic of liquid neural networks,
making CfCs highly suitable for real-time applications in dy-

namic environments.

3.3 Neural Circuit Policies

To further exploit the potential of LTCs and CfCs, NCPs are
designed to integrate multiple CfC or LTC neurons into several
layers. An example of an NCP comprising multiple CfC neurons
is illustrated in Fig. 3. A typical NCP features four distinct lay-
ers: the sensory neuron layer, the inter neurons layer, the com-
mand neurons layer, and the motor neurons layer. These layers
feature sparse connections both within and between them, mim-
icking the sparse connectivity observed in biological neural net-
works. This design reduces computational complexity and accel-
erates information exchange and fusion. NCPs have demon-
strated robust flight navigation capabilities when presented with
out-of-distribution data, generalizing effectively to scenarios
81 This ability to
handle new and diverse conditions makes NCPs highly valuable

that were not encountered during training

for applications requiring high adaptability and real-time pro-
cessing in dynamic environments.

4 Features and Benefits of LNNs

LNNs stand out due to their unique design and operational
principles, which endow them with several distinct features
and benefits over traditional neural network models. These
characteristics make LNNs exceptionally well-suited for the
dynamic and complex nature of modern wireless communica-
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tion systems. In this section, we delve into the key features

and benefits of LNNs as follows.

4.1 Superior Generalizability and Robustness

LNNs exhibit superior generalizability and robustness over
traditional neural networks, primarily due to their biologically
inspired design that allows continuous adaptation to new and

U8 This dynamic and adaptive nature mimics

varying inputs
biological neural systems, enabling LNNs to generalize effec-
tively across different conditions and environments. Such
adaptability and resilience are particularly valuable in wire-
less communications, where network conditions and user de-
mands can change rapidly. LNNs maintain high performance
even when faced with data that deviate significantly from the
training set, making them ideal for real-world applications
where unpredictability is the norm. For instance, in dynamic
spectrum access and adaptive beamforming, LNNs can adjust
to varying spectrum availability and signal conditions in real-
time, ensuring optimal communication performance. More-
over, their ability to continuously reorganize and adapt en-
hances their robustness, allowing them to handle unexpected
changes and disturbances effectively. This capability is cru-
cial for maintaining reliable communication links in highly dy-
namic and unpredictable environments like emergency re-
sponse scenarios. In such cases, LNNs can adapt to fluctuat-
ing network topologies and varying signal conditions, ensuring
the delivery of critical information and maintaining robust and

resilient communication networks.

4.2 Enhanced Expressivity

LNNs exhibit enhanced expressivity compared with tradi-
tional neural networks due to their ability to dynamically
adapt to incoming data and capture intricate temporal pat-
terns. This expressivity is evident in their ability to generate
complex latent space trajectories when exposed to various in-
put patterns. For example, LNNs produce significantly more
detailed and longer trajectories than models like neural ODEs

and continuous-time RNNs!"”

, indicating a higher capacity for
nuanced temporal representation. This enhanced expressivity
directly contributes to their ability to quickly adapt to chang-
ing conditions. The complex internal representations allow
LNNs to effectively process and integrate new information, en-
abling rapid adjustments to new inputs and environments. In
wireless communication, this means LNNs can adapt to rap-
idly changing network conditions and user behaviors, ensuring
consistent and reliable performance.Furthermore, the continu-
ous adaptation mechanisms of LNNs, inspired by biological
neural systems, support their superior expressivity. This adapt-
ability enables LNNs to maintain high levels of detail and ac-
curacy in their representations, even in dynamic and unpre-
dictable environments, making them ideal for complex and
varied tasks in advanced telecommunication applications.

80 | ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

4.3 Improved Interpretability

LNNs also offer significantly improved interpretability, an
advantage particularly important for applications requiring
transparency and trust. The interpretability of LNNs arises
from their ability to disentangle complex neural dynamics into
comprehensible and distinct behaviors. By leveraging tech-
niques such as decision trees to analyze neural policies, LNNs
can provide clear and logical explanations for their decision-
making processes'’. This enhanced interpretability is essen-
tial for understanding and debugging model behavior, espe-
cially in safety-critical systems like robotics, autonomous driv-
ing, and dynamic wireless communication networks. In the
context of telecommunications, interpretability is crucial for
ensuring reliable network performance and facilitating trouble-
shooting. For instance, understanding how LNNs manage spec-
trum allocation or adjust beamforming in real-time can help
network operators optimize resource usage and maintain ro-
bust connectivity. Disentangling neural responses into identifi-
able strategies and behaviors allows for a more precise evalua-
tion of how well these networks capture and represent underly-
ing task dynamics in communication systems. This capability
not only boosts the trustworthiness of LNNs but also facilitates
their deployment in real-world scenarios where understanding
the rationale behind decisions is crucial for maintaining high-
performance and reliable wireless communications.

4.4 Lower Complexity

LNNs benefit from lower computational complexity due to
their efficient design, arising from several factors. First, the
sparse connectivity within and between the layers of NCPs re-
duces computational overhead, making the networks more effi-
cient without compromising performance. Second, the closed-
form solutions used in LNNs eliminate the need for complex it-
erative solvers typically required for solving ODEs, further
lowering computational complexity. Additionally, LNNs pos-
sess strong expressive power, enabling them to perform com-
plex tasks with fewer neurons, significantly reducing the over-
all size of the network. This combination of factors is particu-
larly beneficial in applications requiring real-time processing
and decision-making, such as V2X communications and dy-
namic wireless networks. In telecommunications, lower com-
plexity translates to faster processing speed and reduced en-
ergy consumption, which are critical for the scalability and
191 Efficient re-

source allocation, real-time traffic management, and rapid han-

sustainability of next-generation networks

dovers in mobile networks all benefit from the lower complex-
ity of LNNs, leading to more efficient and robust communica-
tion systems. Moreover, the low complexity and efficient de-
sign of LNNs contribute to energy savings and environmental
sustainability. This makes LNNs suitable for deployment in
environments with limited computational and energy re-
sources, including edge devices and IoT sensors, where com-
putational power and battery life are constrained. By reducing
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energy consumption, LNNs support a wide range of applica-
tions, from smart cities to remote monitoring systems, without
overwhelming the network infrastructure, thereby promoting
greener and more sustainable technology solutions.

4.5 Continuous-Time Modeling

One of the distinctive features of LNNs is their continuous-
time modeling capability. Unlike traditional neural networks
that operate in discrete time steps, LNNs leverage ODEs to
model the dynamic interactions between neurons. This allows
LNNs to capture the continuous and fluid nature of real-world
processes more accurately. Continuous-time modeling is par-
ticularly advantageous in scenarios requiring high temporal
resolution and precision, such as real-time autonomous sys-
tems and adaptive communication networks''®. In telecommu-
nications, continuous-time modeling enables more precise
channel estimation, interference management, and adaptive
modulation schemes. By modeling the system dynamics in con-
tinuous time, LNNs can respond more naturally and effec-
tively to the ever-changing conditions of the environment, en-
suring optimal performance in rapidly varying communication
scenarios™.

In summary, LNNs offer distinct features and benefits that
make them exceptionally suitable for next-generation wireless
communication systems. Their superior generalizability, inter-
pretability, lower complexity, continuous-time modeling, en-
hanced robustness, and efficient resource utilization position
them as a transformative technology. By integrating LNNs into
telecommunications, we can achieve more adaptive, reliable,
and efficient networks that meet the demands of future wire-
less communication environments.

S LNNs for Wireless Communications

In this section, we unveil the opportunities that LNNs bring to
the evolution and enhancement of future wireless networks. Spe-
cifically, we introduce two key topics: integrated sensing and
communication (ISAC) and self-organizing networks (SONs).

5.11ISAC

ISAC represents a paradigm shift in wireless network de-
sign, merging communication and sensing functionalities into
a unified framework to enhance spectral efficiency (SE) and re-

duce hardware costs”?' ~?

. With the biologically inspired ar-
chitecture and low computational complexity, LNNs are ide-
ally suited for ISAC systems. Their ability to learn and adapt
in real time, handle complex and dynamic environments, and
generalize effectively makes them ideal for optimizing re-
source allocation between communication and sensing func-
tions, thus improving SE without extensive computational re-
sources. The adaptability and interpretability of LNNs are cru-
cial for applications like autonomous driving, where precise
and reliable sensing is critical for safety, as they can learn
from historical data and adapt to new conditions, enhancing
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sensing accuracy and reliability. In wireless communication,
LNNs manage interference, optimize transmission parameters,
and ensure robust links, maintaining high quality of service
(QoS) even in challenging environments. Their low computa-
tional complexity shortens processing time and reduces energy
consumption, which is essential for scalable and sustainable
next-generation green networks. It is promising to develop
joint sensing and communication algorithms, real-time learn-
ing and adaptation frameworks, and ensure compatibility with
existing network infrastructure and protocols with LNNs.
These advancements can lead to more efficient, reliable, and
versatile wireless networks.

5.2 SONs

SONSs represent a kind of wireless network characterized by
their ability to adapt and evolve autonomously in response to
changing environmental conditions, network demands, and
user behaviors. Unlike traditional static network configura-
tions, these networks can dynamically reconfigure themselves,
optimize resource allocation, and maintain robust performance
without human intervention. With the continuous adaptation
and learning capabilities, LNNs are uniquely suited for imple-
menting SONs. Their biologically inspired architecture allows
them to learn and adjust in real time, providing seamless
adaptability to varying network conditions. This is particularly
crucial in wireless environments where factors such as signal
interference, user mobility, and fluctuating demand can sig-
nificantly impact network performance. For instance, in SONs,
LNNs can be employed to predict and address potential net-
work congestion in advance by reallocating resources or ad-
justing transmission parameters. They can also enhance QoS
by dynamically adapting to the quality of the communication
links and optimizing handovers in mobile networks. Moreover,
LNNs can facilitate proactive maintenance of the communica-
tion systems by identifying and mitigating faults or anomalies
before they escalate into significant issues. To sum up, SONs
powered by LNNs are envisioned to revolutionize wireless
communication by enabling networks that are not only more re-
silient and efficient but also capable of autonomously evolving
to meet the ever-changing demands of users and applications.
This represents a significant step towards the realization of
truly intelligent and adaptive wireless networks.

6 Challenges and Future Research Directions
In this section, we present some of the main challenges as-
sociated with LNN-based communication systems and outline
potential future research directions. The following subsections
delve into specific areas where advancements are needed to
fully realize the potential of LNNs in wireless communication.

6.1 Zero Shot Learning
Zero-shot learning (ZSL) describes a model’ s ability to rec-
ognize and categorize data from classes it has never seen be-
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fore. This feature is fundamental for LNNs operating in ever-
changing and uncertain wireless communication environ-
ments. Traditional machine learning approaches often rely on
vast numbers of labeled data for every new scenario, a require-
ment that is not always practical. Although LNNs have the ca-
pacity to handle out-of-distribution data, a deeper understand-
ing of the principles behind this ability is necessary. Enhanc-
ing these principles enables models to effectively generalize
from sparse data and transfer insights gained from past experi-
ences to novel situations. Moreover, combining LNNs with
data augmentation strategies holds promise for boosting over-
all performance, ensuring that the knowledge acquired re-
mains applicable to new challenges without significant degra-
dation. Finally, establishing rigorous evaluation frameworks is
essential for accurately measuring the ZSL capabilities of
LNNs in real-world wireless communication settings.

6.2 Distributed LNNs

Distributing LNNs across various devices and nodes is vital
for modern large-scale wireless communication systems. This
approach not only boosts scalability, fault resilience, and effi-
cient resource use but also introduces challenges in effective
coordination and synchronization. To harness the full potential
of distributed LNNs, it is crucial to develop specialized learn-
ing algorithms that reduce both communication overhead and
latency while implementing robust fault tolerance and dy-
namic resource management strategies. Federated learning
presents an attractive solution by enabling multiple devices to
collaboratively train LNNs locally, thereby slashing communi-
cation costs and enhancing data privacy. Focusing research on
these areas will significantly improve the practical deployment
of distributed LNNs in complex wireless environments.

6.3 Multi-Modality Fusion

Combining data from multiple modalities (such as sensor
data, audio, video, and text) in wireless communication sys-
tems can significantly improve the performance and reliability
of LNNs. By drawing on these diverse information sources,
LNNs develop a richer perspective of the communication envi-
ronment. However, designing architectures that effectively
handle and integrate multi-modal data poses both a challenge
and an opportunity. Achieving this goal involves tackling data
synchronization and fusion issues across different modalities
while ensuring that incorporating multi-modal data enhances
overall performance without adding excessive complexity'>.
6.4 Training and Inference Latency

A critical area demanding focused future investigation for
LNN deployment in 6G is the operational latency, a factor
paramount for practical feasibility. Specifically, while LNNs
offer unique continuous-time processing, their inference speed
must be carefully evaluated. The computational time for nu-
merically solving the underlying ODEs needs direct measure-
ment and comparison against the stringent, often sub-
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millisecond, real-time response requirements of demanding
6G applications like ultra-reliable low latency communica-
tions (URLLC) or real-time network control. Achieving the
necessary inference speeds may require dedicated research
into optimized numerical solvers tailored for LNNs, exploring
model simplification or approximation techniques, and lever-
aging hardware acceleration platforms. Equally important and
currently underexplored, is the comprehensive evaluation of
the end-to-end training latency. This encompasses the time
consumed by the training algorithm itself, the necessary steps
of data collection and processing, and the subsequent phase of
model evaluation. Understanding this complete time cycle is
vital, as the highly dynamic nature of 6G environments will
likely necessitate frequent model retraining or adaptation to
maintain optimal performance. Therefore, future research
must dedicate significant effort to quantifying both the infer-
ence speed on relevant hardware and the practical duration of
the full training pipeline for typical 6G tasks, thereby validat-
ing the viability of LNNs within next-generation telecommuni-
cation systems.

7 Case Studies

In this section, we summarize the performance of LNNs in
two typical application scenarios.

7.1 Channel Prediction with LTCs

We assume an urban microcell scenario where an outdoor
base station (BS) serves both outdoor and indoor users®!. A
user is connected to the BS and moves in a random walk with
a speed of 2 m/s, with the direction uniformly distributed be-
tween 0 and 2 radians from its initial position. Historical
channel state information (CSI) feedback with a length of 20 is
utilized to predict future CSI with a length of 5. The test was
conducted in a real-world scenario using practical CSI. The
field test simulation parameters are summarized in Table 1.
Fig. 4 illustrates the mean squared error (MSE) versus CSI pre-
diction length in channel prediction. It is evident that the
MSE of all schemes increases with prediction length, indicat-
ing that longer prediction lengths introduce more uncertainty.
Among all schemes, the proposed LTCs-based approach con-
sistently outperforms other baselines, achieving lower MSE,
with the performance gap widening as the prediction length in-
creases, particularly when it exceeds 6. This highlights the po-

Table 1. Simulation parameters in Figs. 4 and 5

Parameters Fig. 4 Fig. 5
BS Antenna number 4 64
BS Antenna spacing 0.51 0.51
User number 1 4
User antenna number 1 2
Central frequency 6 GHz 28 GHz
Liquid neuron number / 30

BS: base station
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Figure 4. MSE versus prediction length with real-world channel state in-
formation

tential of LTCs in achieving more accurate channel prediction
in practical and dynamic scenarios.

7.2 Beamforming with NCPs

We consider a multiple-input multiple-output (MIMO)
beamforming system™. A BS furnished with M antenna ele-
ments concurrently provides service to K users. Each user de-
vice possesses N, antennas. The users experience a range of
velocities: 6 m/s, 15 m/s, and 30 m/s. Each of these phases en-
compasses 700, 600, and 500 discrete time intervals, respec-
tively. Key simulation settings are enumerated in Table 1. The
average SE achieved under this dynamic condition, contrasted
against alternative benchmark schemes, is illustrated in Fig.
5. The gradient-based liquid neural network (GLNN) ap-
proach, leveraging NCPs, rapidly surpasses the weighted mini-
mum mean square error (WMMSE) algorithm after a short ini-
tial learning period. It then maintains a superior level of SE
when juxtaposed with all other reference systems. This behav-
ior underscores its remarkable capacity for adaptation and its
efficacy in environments characterized by temporal variations.

8 Conclusions

In this article, we investigate LNNs that are designed from
first principles. We delve into their structure, features, and
distinct advantages compared with traditional neural net-
works, as well as their recent applications. LNNs demonstrate
remarkable potential as a key enabling technology in next-
generation wireless communications due to their superior gen-
eralizability, interpretability, lower complexity, continuous-
time modeling capabilities, and robust performance in dy-
namic environments. By leveraging their adaptive nature and
efficient design, LNNs can enhance scalability, fault toler-
ance, and resource utilization efficiency in wireless networks.
However, several challenges remain to be addressed to fully
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Figure 5. Average SE in a dynamic beamforming scenario

realize the potential of LNNs in practical applications, includ-
ing improving zero-shot learning capabilities, developing dis-
tributed LNN frameworks, integrating multi-modality data,
and optimizing cross-layer interactions. Future research is ex-
pected to focus on overcoming these challenges to ensure that
LNNs can effectively adapt to varying conditions and deliver
reliable performance in real-world scenarios. By addressing
these issues, LNNs can drive the evolution and enhancement
of future wireless networks, paving the way for more adaptive,
reliable, and efficient communication systems.
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Abstract: In-loop filters have been comprehensively explored during the development of video coding standards due to their remarkable
noise-reduction capabilities. In the early stage of video coding, in-loop filters, such as the deblocking filter, sample adaptive offset, and adap-
tive loop filter, were performed separately for each component. Recently, cross-component filters have been studied to improve chroma fidel-
ity by exploiting correlations between the luma and chroma channels. This paper introduces the cross-component filters used in the state-of-
the-art video coding standards, including the cross-component adaptive loop filter and cross-component sample adaptive offset. Cross-
component filters aim to reduce compression artifacts based on the correlation between different components and provide more accurate pixel
reconstruction values. We present their origin, development, and status in the current video coding standards. Finally, we conduct discussions

on the further evolution of cross-component filters.
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1 Introduction
ith the development of video capture, storage, com-
pression, and display technologies, numerous
video applications continue to emerge, such as
video communications, online conferences, cloud
gaming, and immersive video experiences. The advancement
brings forth new challenges to video coding technologies. To
meet the increasing demand for video compression, various
video coding tools and technologies have been proposed, lead-
ing to continuous evolution in video coding standards. A sig-
nificant milestone in this progression was the finalization of
the high efficiency video coding (HEVC)!" standard in 2013,
which achieved approximately 50% bitrate savings compared
with its predecessor, the advanced video coding (AVC) stan-
dard®. The latest video coding standard, versatile video cod-
ing (VVC)", has further improved upon HEVC by achieving

This work was supported in part by National Science Foundation of Chi-
na under Grant No. 62031013, PCL-CMCC Foundation for Science and In-
novation under Grant No. 2024ZY1C0040, New Cornerstone Science
Foundation for the Xplorer Prize, and High performance Computing Plat-
form of Peking University.

roughly 50% bitrate reduction. While H.266/VVC demon-
strates excellent video compression capabilities, there remains
significant potential in further enhancing video coding effi-
ciency. In the pursuit of exploring advanced video encoding
tools, a software model named the enhanced compression
model (ECM) has been introduced to explore the potential of
video compression further'®.,

As a result of the prevalent utilization of block-based opera-
tions and coarse quantization within contemporary video cod-
ing standards, artifacts such as blocking and ringing have be-
come inherent in compressed frames, thereby markedly dimin-
ishing both objective and subjective qualities. To mitigate
these compression artifacts, extensive exploration has been
conducted on in-loop filter algorithms during the evolution of
video coding standards. These filters enhance the quality of re-
constructed frames while furnishing high-fidelity reference
frames for subsequent images, thereby facilitating more accu-
rate motion compensation.

There are four kinds of in-loop filters in VVCP! ie., the de-
blocking filter (DBF)'®. the sample adaptive offset (SAO). the
adaptive loop filter (ALF)®!, and luma mapping with chroma
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scaling (LMCS)". The bilateral filter (BIF)"" has been newly
adopted in ECM. These filters are depicted in Fig. 1. DBF
aims to remove the blocking artifact by applying low-pass fil-
ters to the boundaries of the coding unit, the prediction unit,
and the transform unit. SAO is conducted by conditionally
adding an offset to the reconstructed samples after DBF,
which shows promising performance in reducing the mean
sample distortion and the ringing artifacts. ALF is a Wiener-
based spatial filter. It enhances reconstructed video fidelity by
taking the weighted average of reference samples as the fil-
tered samples. The weighting coefficients are derived by mini-
mizing the mean square error between the original and de-
coded samples in the encoder, and then they are transmitted
to the decoder. LMCS does not particularly focus on artifact re-
duction but aims to boost coding efficiency by better utilizing
the dynamic range. BIF is a nonlinear, edge-preserving, and
noise-reducing filter that has been newly introduced to ECM.
Similar to the ALF, it also replaces the intensity of each pixel
with a weighted average of intensity values from nearby pixels.
While the difference lies in that the weights of BIF depend on
the Euclidean distance of pixels and the radiometric differ-
ences, which preserves sharp edges. These weights can be cal-
culated both in the encoder and decoder.

In addition to the above-mentioned local filters adopted in
the ECM, some other in-loop filters based on the image non-
local similarity have been studied, such as a structure-driven
adaptive non-local filter (SANF) M a non-local structure-
based loop filter (NLSF)'2 ", 4 novel adaptive loop filter uti-

lizing image non-local prior knowledge'™, a parametric non-

local loop filter (PNLF)" and a deformable Wiener filter
(DWF)". Some of these methods were also discussed in the
joint video experts team (JVET) meetings'"® ',

Though the aforementioned in-loop filters effectively reduce
compression artifacts, these conventional methodologies, char-
acterized by hand-crafted designs, exhibit constraints in ad-
dressing more intricate artifacts. In response to this constraint,
in-loop filters leveraging convolutional neural networks
(CNNs) have been developed, demonstrating superior perfor-
mance over conventional filtering methods® %!, Various neu-
ral network-based loop filtering tools have been proposed and
adopted by ECM, achieving significant performance improve-
ment?* %,

While the coding techniques mentioned above only focus on
single-component in-loop filtering, ignoring the correlation be-
tween different components. Extensive research has demon-
strated a high correlation between luma and chroma compo-
nents in the YUV format™ *!. Based on this correlation, some
prediction techniques were proposed, such as cross-component
prediction (CCP)"* supported in the HEVC range extensions
and cross-component linear model (CCLM)®. Besides, cross-
component techniques are also applied in end-to-end image
compression®, which effectively improves compression perfor-
mance. Recently, the correlation among different components
was also considered in in-loop filters.

Several cross-component in-loop techniques were proposed
and adopted in H.266/VVC and the audio video coding stan-

dard (AVS3), an independently devel-
oped Chinese audio-video coding stan-
dard. Continuous studies have been car-

Bitstream CABAC Inverse Inverse LMCS ried out on these methods during the de-
quantization transform (chroma scaling) velopment of ECM. In the ECM-12.0,

there are two cross-component filters,

- T , 9 namely the cross-component adaptive

i e loop filter (CCALF) and the cross-

Combined |_| component sample adaptive offset

inter/intra (CCSAO). CCALF was initially proposed

LMCS (luma and adopted during the fie\./elopment. of

mapping) H.266/VVC and was optimized and im-

K proved in ECM. Similar to ALF, CCALF

Decoded | | Inter | | Intra is also a Wiener filter. The difference is

picture buffer prediction prediction that it only applies to chroma samples,

and it utilizes luma samples as the refer-

Output frame DBF LMCS (inverse B.ECG Samplfisb and (I:O.rreCtsl.the‘ t?.liget
luma mapping) chroma pixel by applying a linear filter

ALF: adaptive loop filter

BIF: bilateral filter DBF: deblocking filter

CABAC: context adaptive binary arithmetic coding LMCS: luma mapping with chroma scaling

CCALF: cross-component adaptive loop filter

Figure 1. Illustration of the ECM video decoder diagram, with golden boxes corresponding to

cross-component filters
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CCSAO: cross-component sample adaptive offset

SAO: sample adaptive offset

to these selected luma samples. The fil-
ter parameters are trained following the
principle of minimizing the mean square
error (MSE) in the encoder and transmit-
ted to the decoder. CCSAO is adopted
by AVS3 and ECM. Specifically, it uses

the correlation between luma and
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chroma components to classify the reconstructed samples into
different categories and assigns each category an offset value
for sample adjustment.

Compared with ECM-12.0 without CCALF™, ECM-12.0
with CCALF achieves 2.49% and 2.90% coding gains for the
Cb and Cr components under All Intra (AI) configuration, and
1.48% and 2.12% coding gains for Cb and Cr components un-
der random access (RA) configuration. While in VTM-10.0,
CCALF can achieve 13.88% and 13.73% coding gains under
Al configuration, and 9.69% and 8.55% coding gains under
RA configuration for Cb and Cr components respectively”’.
The decrease in the coding gain may be caused by the new
cross-component techniques introduced in the prediction pro-
cess of ECM. For CCSAO, 1.28% and 1.08% coding gains can
be achieved for Cb and Cr components under Al configura-
tion, and 3.02% and 2.79% coding gains for Cb and Cr compo-
nents can be achieved under RA configuration, respectively.

The remainder of this paper is organized as follows. Section
2 introduces the theory of CCALF and summarizes its develop-
ment. Section 3 introduces the fundamental principles and the
proposals about CCSAO. Experimental results and discussions
are shown in Section 4. Section 5 concludes this paper.

2 CCALF

CCALF is fundamentally a Wiener filter®. Specifically,
CCALF derives a correction signal for chroma samples based
on the weighted average of luma reference samples. These ref-
erence samples are the neighboring samples of the collocated
luma sample. The coordinate of the collocated luma sample is
derived based on the chroma format of the video. Both the
ALF and CCALF use the reconstructed sample of SAO as in-
put, while CCALF only calculates the offsets for chroma com-
ponents as shown in Fig. 2. The filtering operation can be rep-
resented using the conditions below, and we assume the fol-

ALF luma ——> Y

CCALF Cb
CCALF Cr
——>Cb

ALF chroma

—> SAO luma

SAO Cb

SAO Cr

>

ALF: adaptive loop filter SAO: sample adaptive offset

CCALF: cross-component adaptive loop filter

Figure 2. Illustration of CCALF

lowing for 2D images.

I'(r)=1(r)+ > ep, (1,

piZL(r’+di)—[(r) (2),

where sample location r = (x,y) belongs to the to-be-filtered
region R, and r’ = (x', y') means the collocated luma sample
position of the to-be-filtered chroma sample; s[r]is the origi-
nal sample, I[r] is the to-be-filtered sample, and L(r') is the
collocated luma samples of [r]; ¢ = [co, C1,Cay sChy _ 1] means
N-tap filter coefficients; {d.d,.d,,--,dy_,} is the filter tap
position offset, where d; denotes the sample location offset to
L(r') of the i-th filter tap; p = [po,pl,pz,---,p,v_ 1] shows the
difference values between neighboring reference luma
samples and the to-be-filtered chroma sample; I'(r) is the fil-
tered chroma sample.

The coefficients of CCALF are derived by minimizing the
mean square error between the reconstructed chroma compo-
nent after SAO and the original chroma sample, similar to the
parameter derivation process of chroma-ALF. Specifically, a
correlation matrix is derived, and the coefficients are calcu-
lated using the Cholesky decomposition solver to minimize the
mean square error.

The coefficient values at different positions are obtained
from the bitstream. The filter coefficients are derived by solv-
ing the optimization problem shown in Eq. (3).

minperR(c@p -s[r] )2 (3),

c=RR, (4),
where © is the inner product. By solving the Wiener-Hopf
equation as in Eq. (4), the filter coefficients can be calculated.
R;! denotes the auto-correlation matrix of the to-be-filtered
samples, and R, is the cross-correlation matrix of the to-be-
filtered and the original samples.

2.1 Filter Shape
The filter shape of CCALF was a 5 X 6 diamond-shaped fil-
ter with 14 filter coefficients and 18 taps when it was initially

d*. Considering the trade-off among performance,

propose
line buffer, and computational complexity, several reduced fil-
ter shapes were proposed®’” *!. Finally, the 3 x 4 diamond fil-
ter shape was adopted in H.266/VVC. Fig. 3 illustrates the
relative location of the chroma sample being filtered and its
support region in the luma sample when CCALF is adopted in
H.266/VVC. Consequently, each CCALF filter has only 8 fil-
ter coefficients, and the filtering operation is shown in Eq. (1),
where N = 8.

To improve the performance of CCALF, numerous propos-
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Figure 3. Illustration of the relative location of filtered chroma sample
of CCALF and its support in the luma channel for 4 : 2 : 0 chroma
format in H.266/VVC

als have been put forward, considering the trade-off between
performance and running time, complexity, and other factors.
However, some of these proposals were not adopted.

In Ref. [44], an extension to CCALF was proposed. This con-
tribution suggests extensions to CCALF in both the number and
size of filters. While this extension can enhance chroma compo-
nents, it may lead to some loss in the luma component. Addi-
tionally, CCALF could introduce artifacts in chroma compo-
nents, which is why certain constraints are set in high quantiza-
tion parameter (QP) regions. Therefore, proposals regarding
CCALF must avoid reintroducing these artifacts.

Considering that the correlation between neighboring pixels
may depend on the characteristics of the video content, a
single filter shape may not be optimal for different video con-
tent. A coding tree block (CTB) level filter shape selection
scheme was proposed to optimize the CCALF framework!®),
This contribution introduces two filter shapes shown in Fig. 4.
Within each adaptation parameter set (APS), multiple filters
and their corresponding shapes with coefficients are signaled.
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Figure 4. Illustration of the two filter shapes of CCALF in Ref. [45]
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For each CTB, the decoder specifies which filter shapes or co-
efficients are used based on the signaled index.

This contribution demonstrates significant gains in chroma
components. However, the necessity of adaptively selecting
CCALF shapes is questioned. In a subsequent exploration ex-

161 in addition to the adaptive selection of the two fil-

[45]

perience
ter shapes'™, another scheme involving larger-size filters was
proposed. Specifically, a 25-tap long-tap CCALF was intro-
duced. This long-tap filter was considered a simpler scheme to
achieve better gain. After joint tests of the modified CCALF
and other in-loop filters””, the long-tap CCALF scheme was
eventually adopted. The new shape of CCALF in ECM is illus-
trated in Fig. 5, and the filtering operation is shown in Eq. (1)
where N = 25.

Because residual values have been stored and used in luma
ALF, the concept of residual-based taps in chroma ALF and
CCALF was proposed®. Before this contribution, CCALF only
had one online-trained CCALF filter with a cross-like filter
shape mentioned above, as depicted in Fig. 5. Since the re-
sidual values are utilized in the unfixed luma filter of ALF,
there is no need to store luma residual values additionally. In
this contribution, only one luma-residual-based tap was added.
Furthermore, chroma residual values were incorporated into the
chroma online-trained filter of ALF, while luma residual values
were employed in CCALF. However, considering that chroma
residual values were not stored previously and the additional
memory required, the resulting gain was comparatively low.
Therefore, this proposal is recommended for further study.

At the 31st JVET meeting, luma residual taps in chroma
ALF and CCALF were introduced™. Five luma residual taps
in a cross 3X3 shape were added. These extended taps took
the collocated and neighboring luma residual values as input.
The inclusion of the luma residual taps in CCALF was ad-
opted due to its relatively higher standalone gain””. The filter
shape of CCALF in ECM-12.0 is illustrated in Fig. 6.

12 | 13 | 14 [ 15| 16 | 17 | 18 | 19 | 20

21

22

23

24

Figure 5. Illustration of the filter shape of CCALF with 25 taps
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The coefficients that need to be calculated are divided into
two parts: spatial luma sample-based taps and luma residual-
based taps. The linear filtering operation can be represented
using Eq. (5).

I’(x’y) = I(x’y) + zi:(l,lzcl(f'?o + '21) + E:ZI: |thl + zyzi nCi8i
(5),

f,-J-ZL(x’+xi,y'+yi)—I(x,y) (6),

g = Clip(R(x' + oy + yi)) (7),

where (x,y) is the coordinate of the center sample, and
(x',y') is the coordinate of collocated luma sample; (x’ +
%,y + y,.) and (x’ +ta,y yl.J) are the coordinates of the re-
constructed samples corresponding to coefficient ¢; f;; and f;

show the difference between neighboring luma samples
L(x', y') and current sample ](x, y); g, is the clipped value of
luma residual samples R(x',y'), which is the residual be-
tween prediction samples and reconstructed samples; Clip is
the function that limits the values within a certain range to re-
duce the impact of significant differences in sample values,

and the value of the clipping operation depends on the clipldx
of APS and bitDepth.

2.2 Filter Coefficient Calculation and Representation
Except for the filter shape of the CCALF, the optimization
of coefficient calculation and signaling”®*>' > is important to
improve the performance of CCALF.
When CCALF was proposed, each filter had 14 filter coeffi-

cients and 18 taps, and every coefficient had an 8-bit dynamic

22

26

Figure 6. Illustration of CCALF’s shape at ECM-12.0 (the left cross-
like filter uses the reconstructed spatial sample of luma sample adaptive
offset as input with 23 taps, and the right one uses luma residual
samples as input)

range and was signaled with a third-order exponential-Golomb
code™!. However, it would increase complexity with additional
multiplications per chroma pixels. To simplify the computa-
tion overhead, a bit shifting scheme was proposed to replace
the multiplications”'. The results show that this scheme can
reduce the complexity of the CCALF filter with an accepted
loss, so it was adopted. Besides, a contribution was proposed
to reduce memory access, encoding latency, and power con-
sumption®¥. It proposes a method to estimate CCALF filtering
distortion without conducting real filter operations. With this
proposal, the number of encoding passes can be reduced from
152 to 1 without affecting the coding performance. As a desir-
able simplification, this proposal was adopted.

At the 32nd JVET meeting, coefficient precision adjust-
ment for ALF was proposed, demonstrating promising coding
performance with negligible increases in encoding and decod-
ing time'™!, Similarly, at the 33rd JVET meeting, adaptive co-

36°57 " Since

efficient precision for CCALF was introduced'
CCALF involves different coefficient derivations compared
with ALF, removing the power of 2 constraints was also pro-
posed in this context. This adjustment can enhance the accu-
racy of coefficients, though a 2-bit syntax element needs to be
signaled for per luma filter set to indicate the number of bits.

These two contributions have been further investigated.

2.3 Syntax Design

Compared with H. 266/VVC, ECM-12.0 utilizes luma re-
sidual samples additionally, as shown in Fig. 6. The residual
correction is generated for chroma samples according to Eq. (5).
For each picture, two types of information need to be coded for
CCALF, i.e., filter coefficient parameters and filter control on/
off flags. The filter coefficient parameters include the number of
cross-component filters and the coefficients of the correspond-
ing filter. CCALF can transmit up to 8 CCALF filters, with the
resulting filters being indicated for each of the two chroma
channels on a CTU basis. Each slice only has one APS, and the
Cb component and Cr component can have different APSs,
which are signaled separately at the slice header. Similar to
luma ALF, to reduce bit overhead, filter coefficients of different
classifications can be merged. The filter control on/off flags en-
able better local adaptation, with hierarchical control at the
sequence-level, picture-level, slice-level and CTU-level. When
the value of sequence-level and picture-level control flags is not
present, it is inferred to be equal to 0. When the slice-level on/
off control flag is not present, it is inferred to be equal to
picture-level on/off control flags. If the slice-level on/off control
flag indicates ALF-on, CTU-level filter on/off control flags are
interleaved in slice data and coded with CTUs; otherwise, no
additional CTU-level filter on/off control flags are coded and all
CTUs of the slice are inferred as ALF-off.

Due to the abundant texture features of the luma compo-
nent, CCALF may introduce artifacts with overly abundant
chroma texture, thereby reducing the subjective quality of the
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image, especially at high QP. Therefore, the H.266/VVC refer-
ence encoder can achieve subjective tuning through configura-
tion file adjustments. Specifically, it can attenuate the applica-
tion of CCALF in high QP encoding and areas with high-
frequency luminance. Algorithmically, CCALF is deactivated
on CTUs when any of the following conditions is true:

1) The slice QP value minus 1 is less than or equal to the
base QP value;

2) The number of chroma samples exhibiting local contrast
exceeding (l < (bitDepth - 2)) -1 surpasses the CTU

height, where the local contrast is the difference between the
maximum and minimum luma sample values within the filter
support region;

3) More than a quarter of chroma samples are in the range

between (1 < (bitDepth - 1)) - 16 and (l < (bitDepth -

1))+ 16.

3 CCSAO

CCSAO is conceptually similar to SAO, as it initially classi-
fies the samples to be filtered into different categories, then
derives an offset value for each category, and finally corrects
the pixels in that category with the corresponding offset value.
It uses the reconstructed sample of DBF, which is the same as
SAO, and the offsets are derived for three channels respec-
tively. The reconstruction operation of CCSAO can be repre-
sented by the equation below.

C'... = Clip(C,, + offset,) (8),

and C’,
and CCSAO, respectlvely, i represents the class index of

where C . are the reconstructed samples after DBF

the corresponding sample, and offset; is the corresponding
offset value.

The difference between SAO and CCSAO lies in CCSAO’ s
utilization of the strong correlation between the luma and chroma
components in the classification process. It optimizes the recon-
struction of one component of the sample by leveraging the infor-
mation contained in the other component of the sample®,

3.1 Classifier Extension

The original CCSAO includes only a classification based on
band information to avoid a significant increase in complexity.
Corresponding band offsets are obtained by minimizing the
sum of squared error (SSE) between the original sample and
the corrected reconstruction sample. This approach keeps
computational complexity low while enabling CCSAO to
handle certain encoded artifacts. It should be noted that the
offsets need to be signaled in the bitstream.

CCSAO is applied to the output of DBF reconstructed
samples, and the offset calculated for each category is added
to the output sample from the SAO process. Therefore,
CCSAO can be parallelized with SAO, as shown in Fig. 7.
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The band information-based classification of CCSAO uti-
lizes the reconstructed sample of three components to process
the classification for each component. Specifically, the collo-
cated samples for each component are first selected. Then, an
index representing a category is calculated based on the band
number of the three components and their collocated samples.
The offset value of a sample depends on its category. Regard-
ing the collocated samples for each component, the collocated
luma sample can be chosen from 9 candidates, while the collo-
cated chroma samples have fixed positions, as shown in Fig. 8.

CCSAO was first proposed and adopted® in the AVS3
video coding standard, in which collocated luma component
samples are classified by equally dividing the range of the
sample values. For each category, an offset value is derived
and used for the chroma samples whose collocated luma
sample belongs to the category.

Although cross-component tools in in-loop filters always act
on chroma components, regarding cross-component proposals,
attention should not only be given to the gain of chroma com-
ponents but also to the effects on the luma component. Fur-
thermore, subjective quality improvement needs to be consid-
ered as well. Considering these reasons, CCSAO was intro-
duced to ECM. This proposal showed great performance im-

DBF luma SAO luma
CCSAO luma —— ¥
DBF Cb SAO Cb
CCSAO Ch Cb
DBF Cr SAO Cr
CCSAO Cr Cr

CCSAO: cross-component sample adaptive offset
DBF: deblocking filter
SAO: sample adaptive offset

Figure 7. Illustration of SAO process when CCSAO is applied

Figure 8. Illustration of the collocated sample used for the CCSAO classi-
fication. The left graph shows the 9 locations of the luma component (one

of the 9 samples will be chosen based on rate-distortion optimization) and
the green and blue samples show the two collocated chroma samples

® ©

CXOXC
® OO
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provement in chroma components while introducing minimal
loss in the luma component. Initially, CCSAO only used the

60]

band classifier when it was adopted in ECM™ and the cat-

egory index is calculated using the equations below.

classIndex = BandNum X (Nu, X N(:.») + band,, X N, + band_,
).

band, = P(xY,yY) x Ny > BitDepth (10),
bandg, = P (2, ve,) X N, > BitDepth (11),
band, = P(x¢.y¢ ) X Ne, > BitDepth (12),

where P(i, J ) is the sample value of different components at

position (i,j), N, is the number of band for each component,
(xCh,be) and (xcr,ycr) are the current chroma sample posi-
tions, and (xy,yy) is the collocated luma sample position.

As a new in-loop filter tool, several schemes have been pro-
posed to optimize the original CCSAQO. An extension of CCSAO
was proposed at the 24th JVET meeting, where the proponents
extended the design of CCSAO by adding the edge-based classi-
fier'® " Similar to the edge-based classification method in
SAO, the edge-based classification of CCSAO also uses four 1-D
directional patterns, including horizontal, vertical, 45° , and
135°, as shown in Fig. 9. The best direction mode is determined
at the encoder through rate-distortion optimization (RDO). Edge
information used for classification is derived by calculating the
difference between the center pixel and its two adjacent pixels,
and then comparing the difference with a predefined threshold
value to derive the final class index. The best threshold values
are also selected from an array of predefined threshold values
based on RDO. If the edge-based classifier is selected, the cat-
egory index will be calculated as follows, given the chroma
sample and the collocated luma samples.

classIndex = BandNum X16 + ¢, X 4 + ¢, (13),
0 d, <=Th
1 -Th<d <0

q; = l (14)7
2 0<d,<Th
3 Th < d,

000 0®O0 00® @00
@@® 0®O0 00 0®O0
000 0®0 060 00®

Figure 9. Illustration of the edge-based classification of CCSAO. Four
graphs show four different directions, where the yellow samples are the lo-
cations used for calculating the class index at different directional patterns

BandNum = cur; X N, > BitDepth (15),

where i can be chosen from the two co-located samples based
on RDO, d,is the delta value between the center sample ¢
and the neighboring sample a or b. ¢, is the quantized value
of d,. The position of neighboring sample @ or b depends on
the best 1-D directional pattern selected from the four 1-D di-
rectional patterns. Besides, the offset value is constrained to
the range of [-15, 15] and these offsets need to be transmit-
ted to the decoder.

Unlike SAO, the edge-based classifier in CCSAO combines
the luma edge and the band index of the sample at the corre-
sponding collocated position to determine the final classifica-
tion of a given sample. Additionally, CCSAO uses collocated
luma samples to derive edge information for chroma samples,
while SAO uses neighboring samples of the same component
to derive edge information.

A similar contribution was introduced to AVS®, where the
enhanced cross-component sample adaptive offset (ECCSAO)
method further improves encoding performance, which ex-
tends the edge-based classification by using the edge informa-
tion of collocated luma samples to classify chroma samples.
Moreover, a four-layer quad-tree structure was proposed. The
former method has been adopted by AVS.

In the ECM, the edge classifier was further optimized with
more edge/band combinations, and the component used for
edge classification can be selected from any of the three com-

104765 The new edge-based classification scheme, a

ponents
subset of the original one with fewer edge range divisions, was
added. This allows for more flexible edge/band combinations
to adapt to the local characteristics of video sequences. This
contribution was adopted at the 31st JVET meeting. The sec-

ond edge-based classifier is formulated as follows.

classIndex = BandNum X4 + ¢, X 2 + ¢, (16),
0 d,<Th

.= ! 17).

“EL dsT (17)

3.2 Signaling Overhead Reduction

Similar to the APS design in H.266/VVC, the inheritance
scheme of CCSAO was also proposed® !, There is a strong
correlation between the CCSAO offsets and classifier param-
eters of different pictures. To reduce signaling overhead, the
offsets/parameters of some coded pictures can be stored at
both the encoder and decoder, allowing them to be used by fu-
ture pictures. This contribution has also been adopted.

4 Performance Evaluation

To improve the coding performance, both CCALF and
CCSAQ are integrated into ECM-12.0 seamlessly. A compara-
tive analysis is conducted to evaluate the efficiency and effec-
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tiveness of the cross-component in-loop filter tools. With con-
tinuous development, both CCSAO and CCALF have achieved
remarkable performance gains. To evaluate the coding perfor-
mance of CCALF and CCSAO, ECM-12.0 without CCALF and
CCSAO are regarded as the anchor respectively'®,

As shown in Table 1, CCALF can achieve 2.49% and
2.90% coding gains for Cb and Cr components under Al con-
figuration. For RA configuration, 1.48% and 2.12% coding
gains for Cb and Cr components can be achieved. In VTM-
10.0, CCALF can achieve 13.88% and 13.73% coding gains
for Cb and Cr components under Al configuration, and 9.69%
and 8.55% coding gains for Cb and Cr components under RA
configuration. The decrease in gain may be caused by the
newly proposed and optimized cross-component techniques in
the prediction process. For CCSAO, as shown in Table 2,
1.28% and 1.08% coding gains can be achieved for Ch and Cr

components under Al configuration. For RA configuration,

Table 1. Experimental results of ECM-12.0
(anchor: ECM-12.0 without CCALF)

Al RA
Class
Y Ch Cr Y Ch Cr
Al 0.09% -1.21% -3.32% 0.07% -1.00% -3.96%
A2 0.11% -2.78% -3.23% 0.13% -2.62% -4.94%
0.12% -3.35% -3.22% 0.15% -4.31% -3.41%
0.10% -1.67% -1.91% 0.03% -1.48% -2.12%
0.15% -3.12% -2.96% - - -
Average 0.11% -2.49% -2.90% 0.10% -2.56% -3.48%
D 0.02% -0.42% -0.18% -0.01% -0.94% -0.53%
F 0.10% -1.77% -1.07% 0.15% -1.08% -0.32%
TGM 0.12% -1.19% -0.72% 0.16% -1.26% -1.03%
Al: All Intra
CCALF: cross-component adaptive loop filter
ECM: enhanced compression model
RA: random access
TGM: text and graphics with motion
Table 2. Experimental results of ECM-12.0
(anchor: ECM-12.0 without CCSAO)
Al RA
Class
Y Ch Cr Y Cb Cr
Al -0.28% -0.83% -1.36% -0.42% -1.89% -2.42%
A2 0.01% -0.99% -1.15% -0.06% -1.88% -2.01%
0.08% -1.94% -1.63% -0.16% -3.76% -4.07%
0.11% -0.83% -0.41% 0.00% -2.10% -1.20%
0.02% -1.55% -0.68% - - -
Average 0.01% -1.28% -1.08% -0.15% -2.57% -2.56%
D 0.03% -0.02% -0.31% 0.10% -1.56% -1.05%
F -0.23% -1.99% -1.74% -0.15% -2.99% -1.54%
TGM -0.73% -1.64% -1.81% -1.01% -2.72% -3.38%

AT: All Intra
CCSAO: cross-component sample adaptive offset
ECM: enhanced compression model
RA: random access
TGM: text and graphics with motion
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3.02% and 2.79% coding gains for Cb and Cr components can
be achieved. It can be noted that the Y component coding per-
formance of CCSAO on screen content sequences is signifi-
cantly greater than that of natural sequences. This may be
caused by the more obvious relationship between the texture
and directional features of luma and chroma components in
screen content videos.

Furthermore, we compare the subjective performance un-
der different configurations. The subjective testing materials
consist of the sequences mentioned in the common test condi-
tions (CTC), with each sequence encoded using four QPs
(QP =22, 27, 32, and 37) under the RA configuration. Par-
tial visual quality comparison results of reconstructed se-
quences are shown in Fig. 10, where the first column dis-
plays decoded images with both CCALF and CCSAO ap-
plied, the second column shows decoded images without
CCALF, and the last column presents reconstructed images
without CCSAO. Red boxes highlight regions with significant
subjective improvement. The lines on the clothes are clearer
in Fig. 10a, whereas the color and lines in Figs. 10b and 10¢
appear slightly blurry. Compared with Fig. 10e, the boundar-
ies of the clothes in Fig. 10d are more distinct. The lines in
Fig. 10d are cleaner than those in Fig. 10f. Additionally, the
wires in Fig. 10g are more coherent and clearer compared
with Figs. 10h and 10;j.

Building upon the demonstrated performance gains of
CCALF and CCSAQ, it’ s important to consider the broader
context of loop filter development. Loop filters are designed to
correct artifacts introduced prior to loop filtering. Different
types of loop filters address various artifacts such as blocking,
ringing, blurring, and mosquito noise. In VVC, there are three
primary loop filters: DBF, SAO, and ALF. Moreover, the
CCALF is integrated with ALF to fully utilize the relationship
between luma and chroma components. To further exploit the
cross-component relationship, an additional cross-component
loop filter, CCSAO, has been proposed during the ECM explo-
ration. CCSAO operates in parallel with SAO. With the ad-
vancement of ECM, the classifiers of CCSAO have become

[61 - 65]

more refined and diverse . Concurrently, the structure of

CCALF has evolved to be more complex and comprehensive,
incorporating a wider variety of samples into its filters'*® #.
Moreover, the shape and calculation methods of the filters are
continuously optimized®® **3"%1 In addition, other in-loop
filters based on image non-local similarity have been stud-
ied"' " '%215719 Traditional loop filters in existing video coding
standards primarily focus on local correlations. While non-
local loop filters can offer performance gains, their high com-
putational demands and hardware limitations make it challeng-
ing to implement in video coding standards. Therefore, meth-
ods to optimize non-local filters are proposed™ ' Overall,
many new filtering tools are currently being explored. How-
ever, further investigation into the relationship among differ-
ent components remains a crucial direction for video coding.
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(2) ECM-12.0

CCALF: cross-component adaptive loop filter

(h) ECM-12.0 w/o CCALF

CCSAO: cross-component sample adaptive offset

(i) ECM-12.0 w/o CCSAO

ECM: enhanced compression model

Figure 10. Illustration of subjective quality comparison. (a) - (c): BasketballDrill, RA configuration and QP22; (d) - (f): BQMall, RA configuration and
QP22; (g) - (i): MarketPlace, random access configuration and QP32

S Conclusions

Cross-component filters play a crucial role in future
video coding standards. By leveraging the correlation be-
tween luma and chroma components, cross-component fil-
ters can achieve substantial coding performance improve-
ment, leading to the adoption of various video coding stan-
dards such as VVC and AVS3. Compression distortion can
be effectively mitigated, thereby improving the accuracy of
the reconstructed pixel. Nevertheless, the philosophy of cur-
rent cross-component filters primarily emphasizes utilizing
luma information to refine chroma pixels, which neglects
the potential impact of chroma information on luma pixels
and the correlation between two chroma components. In
some scenarios, the chroma texture information and edge
details can also contribute to correcting luma inaccuracies.
Therefore, cross-component filters still have the potential to
achieve substantial performance improvement by delving
into the filtering manner and relationship among different

channels.
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on a sapphire substrate to act as a transceiver. Due to the coexistence of light emission and detection phenomenon of the multi-quantum
well (MQW) structure, the monolithic transceiver can effectively sense environmental changes. By integrating a deformable Polydimethylsi-
loxane (PDMS) film on the transceiver chip, external force variation can be effectively detected. As the thickness of the PDMS reduces, the
sensitivity significantly improves but at the expense of the measuring range. A sensitivity of 2.968 3% per newton for a range of 0-11 N is
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1 Introduction
iniaturized force sensors have attracted a lot of at-
tention in structural health monitoring" %, human
motion measurement”, and rail transit monitor-
ing!*. To date, different kinds of force sensors have
been reported such as piezoelectricity, capacitance, and op-

tics %

. Compared with electric-based methods, optical sen-
sors have advantages in immunity to electromagnetic interfer-
ence, fast response and high stability. In terms of optical
means, using all-fiber structures as the sensing unit is the
most popular strategy. A variety of fiber sensing structures
have been developed for force sensing including Mach-
Zehnder interferometer'’ %, fiber Bragg grating'”® '*!, Fabry-
Perot 13716 ete.  Although the wavelength

interrogation-based sensing mechanism has the merits of high

interferometer’

sensitivity, fast response, and high stability, the system is usu-
ally composed of a light source and a spectrometer, which is
bulky and complicated to assemble. To miniaturize the system
configuration, the integration of the light source, sensing unit

This work was supported by the National Key Research and Development
Program under Grant No. 2024YFE0204700, Natural Science Foundation
of Jiangsu Province under Grant No. BG2024023, and Higher Education
Discipline Innovation Project under Grant No. D17018.
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and the detector is highly desired.

Recently, GaN and its alloy have been widely used in illu-

[17] [19]

, power electronics!"®!, display"®!, and optical com-

[20 - 22

mination
munications ! because of their long lifespan, fast re-
sponse and good optoelectronic properties. Thanks to the
ability of light emission and detection of the multi-quantum
well (MQW) diode, many GaN-based monolithic devices
have been proposed and demonstrated for angle, humidity,
pressure, and liquid concentration measurement™ %, To
measure the pressure, microdome-patterned polydimethylsi-
loxane (PDMS) film and sponges are normally used as the re-
flection boundary to modulate the reflected light”” **\. How-
ever, the common problem facing these microstructure-based
PDMS sensing units is that the preparation is relatively com-
plex, and it is difficult to accurately control the shape and
distribution of the microstructures.

In this work, a compact design of a GaN optoelectric chip
with an Al reflection layer coated PDMS structure for force
sensing is proposed. The chip-scale GaN device is composed
of a light emitting diode (LED) and a photodetector (PD),
which are monolithically integrated on a single wafer, acting
as the light emitter and the detector, respectively. The Al-
coated PDMS sensing unit is packaged with a gap of 2 mm to
the chip. When a force is applied to the surface of the PDMS



structure, the distance between the Al reflection film and the
GaN chip changes, which in turn alters the amount of re-
flected light from the Al film and, consequently, the light re-
ceived by the PD changes. In this way, the impact force can
be effectively detected.

2 GaN-Based Device Design and Fabrication

The schematic diagram of the force sensor is presented in
Fig. la, which integrates a GaN device with an Al-coated
PDMS film. The manufacturing process of the sensing device
begins with the mold pouring, using 3D printing to fabricate
the molds with controllable thicknesses. The PDMS gel is pre-
pared by mixing the prepolymer and curing agent in a 10:1 ra-
tio, followed by a vacuum processing to eliminate air bubbles.
Then the mixture is poured into the printed molds and placed
into a heating furnace for 40 min with a curing temperature of
80 °C. After curing, the PDMS film is peeled off from the
molds and then attached with a piece of Al reflection mem-
brane in the center. The GaN device is fabricated on a 4-inch
GaN wafer, which consists of c-plane sapphire substrates,
3.5 wm thick undoped GaN, 2.2 pwm thick Si-doped GaN (n-
GaN), 400 nm thick MQW and 0.25 pwm thick Mg-doped
GaN (p-GaN) from the bottom to the top. To fabricate the
GaN device, a 230 nm thick transparent indium tin oxide
(ITO) current spreading layer is deposited over p-GaN as a p-
contact layer. Two circular regions of a diameter of 210 pm
are defined as the active regions of LED and PD by photoli-
thography, and the unmasked areas are etched to the n-GaN
surface by inductively coupled plasma (ICP) etching. Subse-
quently, a deep etching to the sapphire substrate is then per-
formed to realize the device isolation between LED and PD. A
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1 pm thick Si0O, is deposited to form the electrical isolation,
and then a window is opened, followed by the deposition of Ni/
AVTi/PUTi/Pt/Au/Ti/Pt/Ti metal stacks on the n-GaN and ITO
surfaces. The physical encapsulation of the sensor is dis-
played in Fig. 1b, which consists of an optoelectronic chip
fixed on a printed circuit board (PCB) and a PDMS film. A ma-
nometer is mounted on a linear moving stage and moves axi-
ally towards the sensor. As the impact force increases, a larger
PDMS deformation directs more light to the PD, thus establish-
ing a relationship between force and photocurrent.

3 Results and Discussion

The electrical and optical characteristics of the device are
measured. The current-voltage (I-V) characteristic curve of
the LED is presented in Fig. 2a. The turn-on voltage of the
device is about 2.2 V, and the inset graph shows the relation-
ship between the output optical power of the LED and the in-
jection current. As shown in Fig. 2b, without illumination,
the produced photocurrent level is from 107" A to 107 A. As
the current starts at 10 mA, the photocurrent level increases
dramatically to the order of 107 A. Fig. 2¢ illustrates a linear
relationship between the PD’ s photocurrent response and
the LED biased currents. To characterize the MQW diode’ s
transceiver capability, the electroluminescence (EL) spec-
trum of the LED and the response spectrum (RS) of the photo-
detector are tested, as shown in Fig. 2d. The overlapping re-
gions near 480 nm confirm that the MQW diode can detect
light emitted by another MQW diode of the same structure.

To verify the detection ability of the MQW diode, proximity
sensing is performed to estimate the distance-dependent pho-
tocurrent response. A piece of Al film is placed in front of the

(a)

PDMS —

(b) l Impact
PDMS
4 ——_ !

Power source

O
9

PDMS
i 1

Semiconductor

analyzer

Al film

Sapphire

LED

parameter
~a

pokd

" Sourcemeter

LED: light emitting diode

PCB: printed circuit board

PD: photodetector ~ PDMS: polydimethylsiloxane

Figure 1. (a) Schematic diagram of the sensor; (b) microphotographs of the physical encapsulation: three kinds of packaged PDMS structures with a
thickness of (c) 2.04 mm, (d) 3.59 mm and (e) 4.76 mm, respectively; (f) optical images of the device; (g) LED with biased current at 10 mA;
(h) diagram of the experimental setup
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Figure 2. (a) I-V characteristic of the LED, where the inset shows the output power versus the driven current; (b) I-V curve of PD at different
injection currents of LED; (c) Photocurrent response of PD under different currents of LED; (d) RS spectra of PD and the electroluminescence

transceiver chip and moves continu-
ously relative to it. Fig. 3a shows the
photocurrent response of the on-chip PD
when the distance between the Al film
and the transceiver changes from 0 to 12
mm with a step of 2 mm. From the given
photocurrent response, it resembles a
step-like response curve and exhibits a
distinguished detection ability over a
wide range, especially at the distance
within 2.4 mm. These results suggest
that the distance should be optimized
around 2 mm to achieve a good sensitiv-
ity. Subsequently, the photocurrent re-
sponse at a spacing distance of 2 mm
and a step of 200 wm is studied, as plot-

spectra of LED
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Figure 3. Photocurrent response measured under Al foil moving from (a) 0 to 12 mm, and (b) 0 to 2 mm

In addition to the proximity measurements, a communica-

ted in Fig. 3b, showing a significant change in photocurrent tion performance test of the MQW diode is also carried out to

at each step.
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verify the PD’ s ability to detect transient signal change. The



pseudo-random binary sequence (PRBS) data applied to the
external light source are generated with a Keysight 33600A se-
ries waveform generator. The measured voltages of the PD with
a 1 MQ oscilloscope under incident PRBS data of 100 bit/s,
200 bit/s, 500 bit/s, and 1 000 bit/s are presented in Figs. 4a -
4d, respectively. The received response rate can easily reach
1 000 bit/s without serious signal distortion. The measured
fast response rate indicates that the PD can guarantee suffi-
cient resolution for detecting the instantaneous impact signal.

The photocurrent responses of PDMS samples with varying
thicknesses under different forces are tested, as illustrated in
Fig. 5. The green, blue and red curves represent PDMS with
thicknesses of 2.04 mm, 3.59 mm and 4.76 mm, defined as
Samples #1, #2, and #3. For Sample #1, it can respond to
impact forces in the range of 0 — 11 N, and the instantaneous
photocurrent responses at 3.8 N, 7.3 N and 11 N are re-
corded and plotted. From the given response curves, a better
signal-to-noise ratio (SNR) of the photocurrent response is
observed at a larger impact force. At a small force of 3.8 N, a
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jitter of the baseline is observed, which is caused by the lim-
ited PDMS deformation, leading to a small varying photocur-
rent and a small SNR. When the external force increases to
7.3 N and 11 N, as shown in Figs. 5b and 5S¢, a smooth photo-
current baseline appears and a better photocurrent response
can be seen. Similarly, for Sample #2, as depicted in Figs.
5d, Se, and 5f, the detectable impact force is larger than that
of Sample #1, ranging from 12.5 N to 20.5 N, as the sample
thickness increases. Sample #3 has a maximum detection
ability of 35 N. However, the detection sensitivity is limited
due to the relatively thick PDMS.

The stability test for Sample #1 under an 11 N impact force
is shown in Fig. 6a. It shows a consistent photocurrent change
of approximately 250 nA over 2 000 s, with the photocurrent
profile remaining stable throughout the cycle. Fig. 6b depicts
the relative photocurrent response to the impact force and the
corresponding data for these three samples. The relative photo-
current is defined as Al/l, where I is the initial photocurrent
and Al is the varying photocurrent caused by the impact.
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Figure 4. Measured voltages of the PD under incident PRBS data rates of (a) 100 bit/s, (b) 200 bit/s, (c) 500 bit/s, and (d) 1 000 bit/s

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

| 99



Research Papers | GaN-Based Optoelectronic Impact Force Sensor

RUAN Junhui, JIANG Chengxiang, XU Shengli, WANG Yongjin, SHI Fan

1.36 —38N 1.45 —73N — 1IN
- < 16}
2 £ 140 E s
E 1.34 § g
= 3 3
3 = 135 = 1.4r¢
£ ~ =
1.32 131
1.30
0 50 100 150 0 50 100 150 0 50 100 150
Time/s Time/s Time/s

(a) (b) (c)

5 - 16 —20.5N
E 2 :
= =
L2 3 S 14
=] = =
= A =
1.3
0 50 100 150 0 50 100 150 0 50 100 150
Time/s Time/s Time/s
(d) (e) (f)
—23N 1.6 —32N 16l —35N
1.36 ¢ -« - .

< 3 3
E 3 E
= =
£ o134 e E st
£ Z g
z 1.32 S 14 = 14}
= [~ ="
= |

L |

1.30 . . 13 el . \ . 130 e :
0 50 100 150 0 50 100 150 0 50 100 150
Time/s Time/s Time/s
(g) (h) (@)

Figure 5. Photocurrent response for Sample #1 under impact forces of (a) 3.8 N, (b) 7.3 N, and (c) 11 N; for Sample #2 under impact forces of
(d) 12.5N, (e) 17 N, and (f) 20.5 N; for Sample #3 under impact forces of (g) 23 N, (h) 32 N, and (i) 35 N

Sample 2 exhibits a medium sensitiv-

ity with a slope of 2.576 3 per newton,
while Sample 3, the thickest one, has
the lowest sensitivity with a slope of
1.488 3 per newton. Despite the differ-
ence in sample thicknesses, the dis-

Photocurrent/p.A

tance between the Al reflector and the

chip is set to the same spacing, result-

500 1 000 1500 2 000
Time/s Pressure/N

(a) (b)

ing in the maximum relative photocur-
rents for all three samples keeping
around 20%. The above results reveal
Figure 6. (a) Long-time photocurrent monitor of the sensor with Sample #1; (b) relative that the detection range for impact
photocurrent response of the sensors as functions of impact forces force can be arbitrarily tailored by se-

lecting PDMS membranes of different

From the data fitting, Sample #1, the thinnest one, has the thicknesses. In addition, as the thickness of the film in-
highest sensitivity with a slope of 2.968 3% per newton. creases, the ability to detect the magnitude of the force in-
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Table 1. Performance comparison with other force sensors

Method Linear Range Sensitivity Structure Size
4X4 sensor arra
L 5161 _ y
Piezoelectric 02-14N 1.2 VIN (each one: 6x6 mm?)
Capacitive!”! 0.1-IN 0.42 V/N 122x70 mm?
Capacitive'®! 05-2N N/A 3%0.6x20 mm®
Capacitive' 0-9N 2.8% per newton 22x22x2 mm’
Fabry-P
FabryPerot o154 pN 0221 pmi/pN 20 - 40 mm
interferometer
Optoelectronic®' 0 - 40 kPa 0.2 kPa™ 50%50 mm?
Current work 0-35N 2.96% per newton  2.7x1.8x0.2 mm*

creases, but the sensitivity decreases. The performance com-
parisons with other force sensors are summarized in Table 1.
The detection range and sensitivity of our current method are
comparable to those of piezoelectric and capacitive-based sen-
sors. Notably, the monolithic integration design of our pro-
posed force sensor not only reduces its size to the millimeter
scale but also offers advantages in large-scale production and
high-density deployment.

4 Conclusions

In summary, a miniature GaN-based impact force sensor is
proposed and demonstrated. With a piece of Al attached
PDMS film as the force-sensitive unit, deformation of the
PDMS induced by the external impact is transformed into the
photocurrent changes produced by the transceiver chip. Three
PDMS films with different thicknesses are packaged with the
transceiver chip to construct impact sensors, and their sensing
performances are thoroughly studied. The thickness of PDMS
greatly influences the force sensitivity and measurable range.
A thin PDMS film is ideal for a low-force and high-sensitivity
testing requirement, while a thicker one is better suited for a
larger force measurement.
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1 Introduction

he 6G mobile communication system!"

will introduce
new application scenarios including immersive cloud ex-
tended reality (XR), holographic communication, sensory
interconnection, etc. As a result, extremely high trans-
mission metrics have been proposed, including Terabit per sec-
ond level throughput, microsecond level time delay, 107 per
square kilometer connection density, and 99.999 9% block error
rates (BLERs). The increased number of devices in the network
presents a series of challenges for a smaller coverage area of a
single base station operated at higher frequency bands. Interfer-
ence at cell boundaries and frequent switching can result in poor
service quality and high deployment costs. Fortunately, cell-free
architecture can serve as a potential solution to these problems.
Fig. 1 shows a typical cell-free architecture™, which consists
of a central processing unit (CPU) and a large number of distrib-
uted access points (APs) that serve a small amount of user equip-
ment (UE). Each AP is connected to the CPU through a fron-
thaul link and sends the data received from the users in the up-

link to the CPU. The CPU transmits the downlink data and

This work was supported in part by National Natural Science Foundation
of China under Grant No. 62171474.

power control parameters to the APs. Due to the short distance
between AP and UE, the system can achieve high spatial macro-
diversity gain and reduce the path loss.

In the early studies’® " on cell-free networks, the concept of

(D)

-7 AP

AP AP

AP: access point
CPU: central processing unit

UE: user equipment

Figure 1. Architecture of cell-free multiple-input multiple-output
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max-min fairness was emphasized, and it was assumed that all
APs would provide almost uniform high-quality services to all
UE, which would inevitably increase the CPU signal processing
complexity and fronthaul overhead. To address this issue, the au-
thors of Ref. [8] proposed a user-centric virtual cell approach to
cell-free massive multiple-input multiple-output (MIMO), where
each user is served by a limited number of APs, but using a
complex approach. In a user-centric cell-free system, how to as-
sign APs to each user, that is AP clustering, and simultaneously
perform the beamforming task is the key to improving network
performance. A new distributed and scalable algorithm® for a
user-centric approach in cell-free large-scale MIMO systems is
proposed, which jointly addresses initial access, pilot assign-
ment, cooperation cluster formation, precoding, and combining
issues. Better results were obtained compared with regularized
zero-forcing (RZF), but the issues were individually considered.
The authors of Ref. [10] proposed an AP selection algorithm that
combines initial access and pilot selection with a complex algo-
rithm. In Ref. [11], a new framework was proposed for the struc-
tured massive access in cell-free massive MIMO systems, which
comprises one initial access algorithm, a partial large-scale fad-
ing decoding (P-LSFD) strategy, two pilot assignment schemes,
and one fractional power control policy. New closed-form spec-
tral efficiency (SE) expressions with maximum ratio (MR) were
also obtained. The authors of Ref. [12] proposed a joint power al-
location and AP selection algorithm, which selected AP through
continuous convex optimization. The simulation results showed
that the algorithm had significant energy savings, but at the cost
of high computational complexity.

Recently, graph neural networks (GNNs) have also been ap-
plied in wireless networks'™™. The authors of Ref. [14] proposed
an AP selection algorithm based on GNN, which can predict the
connection between UE and APs. However, when the number of
APs is large, the prediction accuracy decreases. Ref. [15] con-
sidered the joint user scheduling and beamforming optimization
algorithm based on the GNN algorithm, but it was limited to the
downlink system.

Under the premise of considering the maximum linked APs
for a single user device, this paper studies and solves the prob-
lem of joint optimization of cell-free uplink AP clustering and
combining based on historical data and GNN. The main contri-
butions are summarized as follows:

* Aiming to maximize the system rate while considering the
maximum active AP number for a user device, this paper con-
structs a joint optimization model of cell-free uplink AP cluster-
ing and combining;

* An intelligent optimization algorithm based on GNN, in-
cluding problem transformation, two loops of iterative process,
etc., is designed to solve the above joint optimization problems;

* Experiment results show that the proposed algorithm
has competitive advantages in performance and computa-
tional efficiency compared with the traditional clustering
optimization ideas.

-|O4 ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

2 System Model

We consider an uplink cell-free system with B APs and K us-
ers, where each AP is equipped with /N, antennas, while each
user has a single antenna. The K users are randomly distributed,
and the channel coefficient vector between the b-th AP and the
k-th user is denoted as
h,, e c" ' bell,--,B},ke{l,-K). w,, € CV" is the
corresponding combining beam vector. The transmitting power
of the k-th user is p,e C'"'. The stacked combining beam vector
and channel coefficient vector of the k-th user could be respec-

.
. [T ... BN,*1 _
tively denoted as w, = [wli,{, ,wB.,(:| e C™, ” w, ” =1 and

T J k . * .
h, = |:h]T’,~_,---, h,T-,,’k:| e C"™"'. Assuming that x, € C'"" is the up-
link transmitting signal of the [-th user, the received signal
could be denoted as follows.

K
y= zplh’lxl tn (1),
=

where n e C*™*' is the complex additive white Gaussian
noise with zero mean value and variance o>. For convenience,
let h, = h,/o (channel estimation is another topic in wireless
networks!').

As shown in Fig. 2, several AP clusters are formed in an up-
link cell-free network, in which each user is served by various
APs, and one AP may link various users. Here, an auxiliary vari-
able u,, € {0,1} is introduced to represent the link status be-
tween the b-th AP and the k-th user. u,, = 1 means that the b-th

AP serves the k-th user, otherwise not. Then, we have

X, = i}fy (2),

where

O Cluster @ User

---» Signal from AP to CPU

—> Uplink from UE to AP

AP: access point

UE: user equipment
CPU: central processing unit

Figure 2. Joint AP clustering and beamforming for uplink cell-free networks
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ﬁ)k = kak (3)7
wipdy oy, oo 0
Q,= : : (4).
0 uB,kI/\*lxN,

Thus, the signal-to-noise-ratio (SINR) of the k-th user is for-
mulated as follows:

R
INR, = —*
SINR, I, +1 )
B _ 2
where R, =p, zull,k’kahb,k‘ and I, =
B < L b :21
z Uy z Pt‘ wb,khb,l‘
b=1 =TIk

In this work, the joint optimization problem of uplink cluster-
ing and combining design is considered, which is formulated as :

P1: max 2

U e (12,0.K )

st.Cl: > w, <NVYke{l- K}
b={T-B) (6).

€2 w |, = LYk < {1.+-K)
C3:u,, €{0,1}).Ybef{l,.--.B} . ke{l,.K)

log(1 + SINR,)

In the above problem, constraint C1 assumes that the maxi-
mum number of linked APs for each user is N, where N < B.
Constraint €3 specifies that there are only two states between
the user and each AP, i.e., linked and non-linked. Constraint C2
ensures that the beam vectors are normalized. It is noted that P1
is a non-convex integer programming problem, which is difficult
to solve directly. Inspired by the experimental result that GNN
outperforms convolutional neural networks in handling wireless
network topology information in Ref. [15], we adopt GNN to ac-
complish the above task in the following section.

3 Optimization Method

3.1 Problem Transformation
To simplify the integer programming problem, constraint C3
is first equivalently transformed into the following form:

C4:0<u,, <1,¥be{l, B} ke{lK) 7).

C5: 2 (ub.k - ub’kz) <0 (8).

bell-B}kell- K}

Introducing the nonconvex constraint C5 into the objective
function of P1 using a Lagrange multiplier u, the original prob-
lem P1 is transformed into the following max-min problem P2.

P2: max min -

Mo Uy Wy

log (1 + SINR,) +

kelizK)
> 2
MX ¢ z (ub,k T U ) ©),
befl, B} ke{l- K}

s.t. C1,02,C4

where x7.(a) = max(@,0) is a penalty function to measure the
violation degree of constraint C5, which adopts an element-wise
operation form. In Problem P2, constraints C1 and C4 are con-
vex, and objective function is nonconvex with a complex form.
To solve this problem, a two-loop iterative approach is designed.
In the outer loop, u,, and w, are fixed, and we update p using
the formula:

K=+ e X (ub,k - ub,kz) (10),

befl, B} ke{l-K)

where &, represents the step size. In the inner loop, w is fixed,

and we aim at obtaining u,, and w, by solving the following

problem.
P3:vA min( - z log (1 + SINR,) +
Hea 0k ke{l2 K}
(11),
MX ¢ z (ub,k - ub.k2))
be{l,-,B}ke(l- K}

s.t. C1,C2,C4

To solve Problem P3, w, could be estimated with the mini-
mum mean square error (MMSE) approach as follows.

-1
(1 . zp,;;,;;,ff) 3
w*k — leK (12)7

-1
(I+ > pihyh, ) h,

ek

=

where i:Lk = Q,h,. Then, given w,, we solve Problem P2 using

GNN to obtain u,.

3.2 Intelligent Optimization Framework

In this section, an intelligent optimization framework using
GNN is proposed to solve Problem P2. As shown in Fig. 3, the
framework consists of inner and outer loops. In the outer loop,
u,, and w, are fixed, and we update p using Eq. (10). In the in-
ner loop, u,, is first fixed and we obtain w, using Eq. (12). Then,
w, is fixed and a GNN based approach is designed to obtain u,,
in the inner loop. Four parts comprise the inner loop. Specifi-
cally, the graph representation layer builds a graph that can be
applied for subsequent processing; the graph convolution neural
network (GCN) layer extracts features from the constructed
graph, and outputs optimal u,;; the projection layer projects the
output results into the feasible region to meet constraints C1 and

ZTE COMMUNICATIONS | 105
June 2025 Vol. 23 No. 2



Research Papers

Intelligent AP Clustering and Receiver Design for Uplink Cell-free Networks

AN Zhenyu, HE Shiwen, YANG Li, ZHAN Hang, HUANG Yongming

v

Graph representation

I Gruph convolution

’ Projection layer ‘ ’ Solve w ‘ ’Updatey,‘

Figure 3. Intelligent iterative optimization framework

C4; the loss function layer calculates the loss of the network.
These parts are discussed in detail in the following sections.

3.3 Knowledge Graph Representation

The foundation for using GNNs in wireless communication
networks is to model the network as a graph, where nodes and
edges are assigned feature information. This graph can then
be processed by GCN"® "I, The key step in constructing a
knowledge graph representation is to define the triples in wire-
less networks, which consist of head entities, tail entities, and
their relationships.

The knowledge graph can be denoted as G = (V,E), where
V is the set of nodes and E is the set of edges. In the paper,
the communication links between APs and users are re-
garded as nodes, while the interference links between users
are regarded as edges. The features of nodes and edges are
characterized by channel vectors and other state information,
as shown in Fig. 4. Specifically, for the i-th node v, € V, its
node feature is defined as «, =

(|B | [ Bl h |) € €10 and

Jove,
the edge feature of e; = (vi,vj) ek is

defined as e;; = ‘Ef{ﬁj‘ eC™,jeN,

3.4 Structure of GCN

Fig. 5 shows the structure of GCN, which comprises mes-
sage generation, message aggregation, and node updating. In-
spired by Ref. [18], we update the rule of the i-th node in
layer [ as follows.

g = (;({M;”(B](.l' Ve ). /\/})

(13).
g = T‘g”(ﬁ(il' D x, Fnorm(xi,gf”)),i eV

In Eq. (13), M‘(,Z) (+) is a message generation function, T((,l) is an
updating function, and they are realized using different deep
neural networks. G(-) is a message aggregation function and it is
information of nodes.

applied to aggregate

B A [u:_i,pi} e R®"! represents the input vector of the i-th
node in the I-th layer GCN. F () is applied to normalized g'"

with the following form:

0
Fro#08?) = | %, ||2”j;)”,i e V. (14).
tolla

~
LR

y »
.
’ ,’ UE T
g v Y
i N Y
e, ,=e ’ N N
1271 . _
' -~ N 61,3700
i CO
st ~
’ .
\
/' ‘

%,

€37,

UE: user equipment

Figure 4. Knowledge graph representation of uplink transmission

where (vi,v/) € E means the edges of N @ » Layerl > Lager2 > Pr()[];;:;on
nodes v, and v, and NV, is the set of ad- —
jacent nodes of v From the definition, e e N
— Ll .
we can see that a node represents the e e
communication link between a user i . ey,
) P i e e e i S A1y
and an AP, while an edge represents o I
p-v Message Message |
the interference link between users. In _:" generation aggregation Node update |
> ~
the inner iteration process, we initial- G(V.E) | < > < > |
’ oo AGG() 7 () :

ize the constructed graph G and the ob-
jective solution u,,, and then use them
as the input to GNN.

106 ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

Figure 5. Structure of the proposed graph neural network
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3.5 Projection Layer

GNN could obtain u,, from optimizing P3 in the above sub-
sections, without considering the convex constraint C1 or C4. In
this section, an individual projection layer is considered for post-
processing u,, to satisfy constraints C1 and C4. A projection op-
erator is designed as shown in Eq. (15). It can be easily found
that u,, takes values in the interval [0, 1] (Constraint C4), and
its summation value is less than N (Constraint C1).

. N
0,85, = w,,' (15),

!
max z w,, N

b={1,-.B}

where u, " = min(max {1,,,0} ,1).

4 Experiment

4.1 Parameter Settings

This section reports simulated experimental results using the
proposed algorithm. In the experiment, users are randomly dis-
tributed and they share the same noise variance, namely, o; =
o* Yk e{l1,--K). The radius of the cell is 300 m, and the
minimum distance between the user and AP is 200 m. The

signal-to-noise ratio (SNR) of the AP is designed as SNR =
P

10log(—; ) dB. Updating the step size of &, is 1 X 107°. The
o

maximum iteration epoch is 200, and the iteration stopping
threshold is 1 X 107, An Adam optimizer is adopted, and the
learning rate is 1 X 107*. The Monte Carlo method is used and
the average sum rate is the final value. Besides the proposed al-
gorithm, two approaches are also applied as the baselines. In
Baseline 1, for each user, N APs with the optimal channels will
be chosen as a cluster. In Baseline 2, all APs will be applied to
serve all users.

4.2 Experiment Results

1) Experiment 1: small-scale experiment results

In the small-scale experiment, experiment simulation param-
eters are shown in Table 1.

In Tables 2 and 3, Baseline 2 applies all seven APs to serve
users, thus obtaining the optimal results. In contrast, Baseline 1
selects the four APs with the best channel condition for one
user, resulting in a performance loss of less than 2% while re-
ducing linked APs. Moreover, fewer APs are linked using the
proposed algorithm, with a performance loss of less than 7%
compared with Baseline 1.

2) Experiment 2: large-scale experiment results

In the large-scale experiment, AP number B is 21, user num-
ber K is 10, and the maximum linked AP number N is 2. Other
simulation parameters are the same as in Table 1.

In the large-scale experiment, all 21 APs are applied to serve

Table 1. Default experiment simulation parameters

Default System Parameter Value
AP number, B 7
Antenna number of AP, N, 4
User number, K 3
Antenna number of user 1

SNR/dB 0, 10,20
Transmitting power of UE, p, 1w

Training number 20 000

Testing number 2 000
Maximum link AP number of UE, N 4
Noise variance, o 1

AP: access point  SNR: signal-to-noise ratio  UE: use equipment

Table 2. Average sum rate in Experiment 1

SRER TR Gt i)
N=4 0 42799 45853 4.6137
10 20.344 5 21.088 6 21.398 4
20 40.108 5 41.1822 412563

SNR: signal-to-noise ratio

Table 3. Average linked access point number in Experiment 1

SNR/dB Proposed Baseline 1 Baseline 2
0 3.039 4 7
N=4
10 3.055 4 7
20 3.045 4 7

SNR: signal-to-noise ratio

10 users for Baseline 2, which brings the best sum rate perfor-
mance. Baseline 1 chooses 2 APs for each user device, and it ob-
tains about 5% performance loss when SNR is 20 dB, but the
performance loss increases if SNR is O dB. The proposed
method tends to apply fewer APs to serve UE, but at the cost of
about 5% performance loss compared with Baseline 1.

4.3 Computational Complexity

In Tables 4 and 5, the average sum rate and average linked
access point are respectively listed. The computational com-
plexity of the proposed algorithm, and Baselines 1 and 2 are
shown in Table 6. The results show that the proposed method
has competitive computational complexity compared with
Baselines 1 and 2. In small-scale networks, the computational
complexity of the proposed method is about 80% and 72% of
Baselines 1 and 2, respectively. The advantage increases in
large-scale networks, and the ratios are about 52% and 42%.

S Conclusions

This paper proposes an intelligent optimization algorithm
based on GNNs to solve the joint optimization problem of AP
clustering and beamforming in uplink massive cell-free net-
works. We first construct an optimization model with the goal of
maximizing the system’ s sum rate, and solve it under the con-
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Table 4. Average sum rate in Experiment 2

Proposed/ Baseline 1/ Baseline 2/

SNR/dB

(bit*s™+Hz™")  (bit*s'+Hz')  (bit*s'+Hz ")
N=2 0 5.065 7 55356 7.1167
10 40.438 0 42.8323 47.3540
20 99.548 2 105.068 7 110.738 1

SNR: signal-to-noise ratio

Table 5. Average linked access point number in Experiment 2

SNR/dB Proposed Baseline 1 Baseline 2
0 1.428 2 21
N=2
10 1.241 2 21
20 1.225 2 21
SNR: signal-to-noise ratio
Table 6. Comparison of computational complexity
Algorithms Experiments Proposed  Baseline I  Baseline 2
Experiment 1 76 512 95 296 106 624
Computational complexity
Experiment 2 1249600 2404736 2935296

straint of considering the maximum number of APs linked with a
single user. This paper transforms the wireless network resource
optimization problem into a graph optimization problem and le-
verages GNN to solve it. Simulation experiments show that the
proposed algorithm allocates fewer APs to serve a single user
than traditional methods at the cost of a small performance loss.
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Abstract: To meet the demands of high-speed communication under strong electromagnetic interference, an all-light network (ALN) based on
a multi-band optical communication system is proposed. It is designed for cross-scenario interconnection and networking, covering air, space,
land, and sea. The ALN integrates four types of optical links: underwater blue light communication, white light illumination communication,
solar-blind deep ultraviolet communication, and long-distance laser communication systems. These links are interconnected via Ethernet

performance between network nodes was tested, with a maximum transmission delay of 73.3 ms, a maximum packet loss rate of 6.1%, and a
maximum jitter of 15 ms. This comprehensive all-light network with all-scenario coverage lays the foundation for the future development of

network technologies and the digital economy.
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1 Introduction
n the contemporary field of communications, optical com-
munication, as an emerging and rapidly advancing tech-
nology, is increasingly becoming an integral component of
future communication networks' ~®. Wireless optical com-
munication offers high-speed and low-latency data transmis-
sion and unique advantages in complex and denied environ-
ments as a complementary communication method.

An all-light network (ALN) represents the culmination of
optical communication technologies. It integrates white light
illumination communication (WLC), underwater blue light
communication (BLC), solar-blind deep ultraviolet communi-
cation (DUVC), and long-distance laser communication (LC).
This work focuses on the ALN and aims to develop a highly ef-
ficient optical communication network with multispectral ca-
pabilities and comprehensive scene coverage.

This work was supported by the National Natural Science Foundation of
China under Grant No. U21A20495, Research and Development Program
of China under Grant No. 2022YFE0112000, and Higher Education Disci-
pline Innovation Project under Grant No. D17018.

The authors contributed equally to this work.

Compared to radio frequency (RF) networks, the ALN dem-
onstrates significant performance advantages. Firstly, it offers
excellent anti-interference capability, as optical signals are
unaffected by electromagnetic environments'®. With high di-
rectionality, interference resistance, and enhanced security,
the ALN is particularly suitable for complex or constrained en-
vironments. Secondly, its bandwidth is far superior to that of
RF networks, enabling large-capacity data transmission to
meet the demands of future ultra-high-speed networks. Lastly,
its low latency characteristics make it exceptionally well-
suited for scenarios requiring high real-time performance. Le-
veraging these features, the ALN not only extends the applica-
tion scope of communication networks but also provides a sub-
stantial performance boost to traditional communication meth-
ods. It can be employed in disaster emergency communica-
tions, deep-sea and space communications, and industrial au-
tomation, among other scenarios.

As shown in Fig. 1, there are four main practical applica-
tion scenarios for full-spectrum optical communication: illumi-
nation communication, underwater communication, solar-
blind communication, and long-distance communication. We
develop subsystems for each scenario using light-emitting di-
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BLC: blue light communication

DUVC: deep ultraviolet communication

LC: laser communication

WLC: white light illumination communication

Figure 1. All-light network (ALN) applications spanning air, space,
land and sea

odes (LEDs) or laser diodes (LDs) operating across four dis-
tinct spectral bands. WLC provides efficient data transmission
and serves a dual role in illumination. For instance, WLC be-
tween buoys and lighthouses enables simultaneous information
transmission. Blue and green light exhibit minimal loss in pure
seawater, allowing for long-range data transmission''® '3, BLC
facilitates reliable data transfer in underwater environments,
enabling control of uncrewed underwater vehicles or establish-
ing communication between underwater sensors and buoys.
Due to the ozone layer’s absorption, background noise in the
deep ultraviolet spectrum is extremely low at the Earth’s sur-
face, making DUVC suitable for environments with strong

14 Meanwhile, long-

light or electromagnetic interference
distance LC, with its high-power directed beams, provides ro-
bust support for long-range, high-bandwidth communication,
such as point-to-point communication in space. By using
Ethernet switches (ESes) combined with Wireless Fidelity
(Wi-Fi) technology or optical fiber technology to connect vari-
ous optical communication links, the ALN enables informa-

tion sharing among different network nodes.

2 Experiments and Discussion

In our experiments, we characterized the white LED’s elec-
troluminescence (EL) spectra for WLC using a Keithley
2636B SourceMeter and an Ocean Optics HR4000 spectrom-
eter. A multimode optical fiber with a diameter of 200 wm
was used to collect the light emitted by the white LED un-
der different injection currents and transmit it to the
HR4000 spectrometer. The results are shown in Fig. 2. The
EL spectrum of the white LED exhibits a distinct dual-peak
profile, with the blue emission peak and excitation peak ap-
pearing from left to right. As the injection current increases
from 40 mA to 120 mA, the blue emission peak shifts from
449.1 nm to 448 nm, corresponding to a blue shift of 1.1 nm.

-l -IO ZTE COMMUNICATIONS
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Figure 2. Electroluminescence spectra variation of white LED in white
light illumination communication with increasing injection currents

Meanwhile, the excitation peak remains stable at 566 nm.

We utilized a Keysight ESO80A network analyzer to pulse
the white LED using an alternating current (AC) signal, gener-
ating a bias voltage through a bias-tee module. The modulated
light was captured by a Hamamatsu C12702-11 photodiode
module and fed back to an Agilent Technologies PNA-
LN5203C network analyzer for 3 dB processing. The results
are shown in Fig. 3a. When the bias voltage increases from
10.5 V to 12 V, the 3 dB bandwidth expands from 0.55 MHz to
1.13 MHz. However, at a bias voltage of 12.5 V, the bandwidth
decreases to 1.02 MHz, likely due to thermal effects in the
white LED during actual operation. Therefore, we selected a
bias voltage of 12 V to achieve a higher communication rate.
This method was also applied to LEDs or LDs operating in
other spectral bands. As shown in Fig. 3b, the 3 dB bandwidth
of the blue LED reaches a maximum of 4.68 MHz under a driv-
ing voltage of 12 V. Fig. 3¢ presents the 3 dB performance
characterization of the green LD device, which achieves a 3 dB
bandwidth of 20.2 MHz at a bias voltage of 6 V, indicating that
the green LD can achieve a higher modulation rate. As shown
in Fig. 3d, the 3 dB bandwidth of the deep-ultraviolet (DUV)
LED reaches 25.2 MHz at an operating voltage of 5.6 V. This
indicates that the DUV LED theoretically achieves the highest
modulation rate among the four types of devices.

We constructed an all-light communication network span-
ning space, air, and ocean using four different spectral bands:
278 nm, 450 nm, 520 nm, and 566 nm, as shown in Fig. 4.
The WLC system is suitable for indoor and outdoor environ-
ments. The underwater BLC system addresses the challenges
of underwater communication. The DUVC system ensures
stable communication under strong illumination conditions,
while the long-distance LC system meets the requirements for
long-range, high-bandwidth communications.

The testing results showed that WLC achieved a communica-
tion rate of at least 2 Mbit/s over a 200 m ground communica-
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Figure 3. (a) 3 dB bandwidth variation of the white LED with increasing offset voltages; (b) 3 dB bandwidth variation of the blue LED with increasing
offset voltages; (c) 3 dB bandwidth variation of the green LD with increasing offset voltages; (d) 3 dB bandwidth variation of the deep-ultraviolet LED
with increasing offset voltages
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APD: avalanche photodiode

BLC: blue light communication

DUV: deep ultraviolet

DUVC: deep ultraviolet communication

LC: laser communication
LED: light-emitting diode

WLC: white light illumination communication

Figure 4. Schematic of the proposed all-light network (ALN) framework

tion distance. Underwater conditions featur-
ing an attenuation coefficient of 0.4 dB/m,
BLC supported full-duplex optical communi-
cation over distances of at least 50 m, with a
communication rate of at least 4 Mbit/s.
Both DUVC and LC achieved a communica-
tion rate of 10 Mbit/s, with tested distances
of 10 m and 120 m, respectively.

By integrating multiple technologies, the
ALN system enables flexible configurations
and robust adaptability across diverse environ-
ments. Whether encountering extreme weather
conditions, complex terrains, or specialized ap-
plication scenarios, the ALN system delivers
stable and reliable communication services.

ALN comprises four full-duplex wireless
optical communication links connected in
series through five nodes. These nodes are
formed by ESes, enabling communication
systems operating in different spectral bands
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to establish networks with optical fibers, even in denied envi-
ronments with heavy electromagnetic interference. Devices
such as sensors, cameras, and PCs can access the ALN at any
node through ESes. Additionally, Wi-Fi modules can be inte-
grated into the nodes to provide wireless data access services
for PCs and mobile devices, further expanding the ALN’s con-
nectivity options. The ESes can be expanded to accommodate
multiple devices at the same node. To standardize transmis-
sion, all nodes in the wireless optical communication link use
Registered Jack-45 (RJ45) network interfaces.

All four optical communication links operate in the full-
duplex mode. The demonstration of the signal flow is shown
in Fig. 5. When the underwater network camera captures
video and sends it to Node 1 (N1), the video signal is encoded
into a blue light signal by the BLC transmitter. At the BLC re-
ceiver, the light is filtered through a lens using a narrowband

BLC: blue light communication

DUVC: deep ultraviolet communication

LC: laser communication

WLC: white light illumination communication

Figure 5. Demonstration of signal flow in all-light network (ALN)

Integrated All-Light Network for Air, Space, Land, and Sea

filter with a central wavelength of 450 nm, a half-bandwidth
of 10 nm, and 45% transmittance, isolating the communica-
tion signal from ambient light. Each receiving end of the opti-
cal communication systems in different spectral bands is
equipped with a corresponding narrowband filter. The optical
signal is converted into an electrical signal by an avalanche
photodiode (APD), then decoded by the BLC receiver and
transmitted to N2. Subsequently, the signal is transmitted via
the WLC link using illumination communication with a central
wavelength of 566 nm. The signal at N3 is then transmitted to
the next node via DUVC. Finally, the LC system converts the
signal from N4 into a laser signal, and after transmission
through the laser link, the original video stream is restored.

The full-duplex optical communication system comprises a
transmitter (TX) and a receiver (RX). The schematic diagram
of the transmission and reception principles is shown in Fig. 6.
In the transmission processing chain, a network camera or
other sensor using the Transmission Control Protocol (TCP) is
connected to the ES via an RJ45 interface. The video stream
is then progressively converted into an optical signal. The core
components of the TX are LEDs or LDs operating in different
spectral bands. The direct current (DC) signal is supplied by
an external LM2587 module, while the RF signal is synchro-
nously generated by a transistor-transistor logic (TTL) signal
using on-off keying (OOK) modulation within the field-
programmable gate array (FPGA) main processing unit (Xilinx
Spartan 6). The TTL the
semiconductor field-effect transistor (MOSFET) or bias tee via
the PMD2001D driver. Finally, the modulated optical signal is
emitted by the LED or LD.

The RX utilizes a high-sensitivity APD as the core compo-

signal  drives metal-oxide-

nent in the reception processing chain. The APD receives the
optical signal under high voltage and converts it into a photo-
current. After amplification and filtering, the signal is re-

Ethernet
ES transceiver RS encoder Modulation Tx control M(.)SFET/
(RJ45) Bias tee

Transmitter processing flow

DC power sup-
ply

Ethernet
transceiver

(RJ45)

ak

Receiver processing flow

APD: avalanche photodiode
DC: direct current
ES: Ethernet switch

LD: laser diode
LED: light-emitting diode

H Demodulation H RS decoder H Rx control F Receic\;iirig cir-
) N

MOSFET: metal-oxide-semiconductor field-effect transistor

arrowband |

High voltage filter

RS: Reed-Solomon
Rx: receiver

Tx: transmitter

Figure 6. Transmission and reception principles of full-duplex optical communication systems
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N

modulation. Subsequently, the processed

(=]

signal is displayed on an external monitor

PRBS 20 Mbit/s

Transmit signal

Wm0 T i

through an RJ45 interface or transmitted to
a Wi-Fi module for sharing.
As shown in Fig. 7a, a 20 Mbit/s pseudo-

—_

Voltage/V

Voo, . 7“‘

TIA signal

ML N SR

random binary sequence (PRBS) signal gen- 3.3

erated by an arbitrary waveform generator

Receive signal e “

s

(AWG) replaces the FPGA signal at the TX 2

to access the LC. After the signal decision
at the RX, the output signal matches the
original transmitted signal. The amplified
analog signal from the first stage of the tran-
simpedance amplifier (TTA) is captured, and
the oscilloscope (Keysight, DSOS604A) gen-
erates the corresponding eye diagram, as depicted in Fig. 7h.
This clear and open eye diagram confirms the accuracy of the
received signal in Fig. 7a. The time and amplitude scales of
the eye diagram are 20 ns and 500 mV, respectively, as shown
in Fig. 7b. This method can also be applied to assess the com-
munication performance of other optical communication sys-
tem links.

In the WLC system, interference from ambient light is a pri-
mary challenge. To address this, we designed a bandpass filter
tailored to the EL spectral peak of the white light LED lamp
beads. This effectively suppresses background light interfer-
ence, ensuring stable signal transmission.

In an underwater BLC system, rapid attenuation of light in
water poses the greatest challenge. To mitigate this, we devel-
oped a specialized optical structure at the transmitter and adopt
a three-window array design. These enhancements improve
light transmission efficiency and signal coverage, significantly
reducing signal attenuation in underwater environments.

For the DUVC system, the low light output efficiency of
DUV LEDs is a major difficulty. To resolve this, we imple-
mented sapphire substrate stripping technology and precise
thinning of nitride films, enabling the production of sub-
micron-level DUV LEDs. These advancements greatly en-
hance light output efficiency. Additionally, sunlight interfer-
ence presents challenges for solar-blind
communication. To address this, we de-

PRBS: pseudo-random binary sequence

Time/pws (b)

(a)

TIA: transimpedance amplifier

Figure 7. (a) 20 Mbit/s PRBS signals from Rx of the system; (b) eye diagram of the analog

signal output from TIA

enhancing communication stability and long-distance trans-
mission capabilities.

Delay, packet loss rate (PLR), and jitter are three key met-
rics for evaluating the performance of an ALN. Delay refers to
the time required for data to travel from one end of the net-
work to the other. Increased delay may lead to stuttering dur-
ing network interactions. PLR represents the proportion of
data packets lost during transmission and reception. An in-
creased PLR results in higher network delay and inefficient
bandwidth utilization. Jitter refers to the inconsistency in
packet delay during transmission, i.e., the arrival time varia-
tions of different data packets. Excessive jitter can disrupt
data flow continuity, thereby compromising the smoothness of
real-time communication.

The ALN contains five nodes. A PC is used as the access-
ing terminal, and a network camera serves as the accessed ter-
minal. The delay measured under 25 different node access
scenarios is shown in Fig. 8a by swapping their connection
points. We used a maximum transmission unit of 1 514 bytes
for testing. Due to the lower transmission rates of the BLC and
WLC, these optical communication links introduced approxi-
mately 30 ms of delay, while the higher-speed DUVC and LC
links resulted in a lower delay of around 6 ms. The same ac-
cess setup was used to test the PLR and jitter of the ALN. As
shown in Fig. 8b, as the number of nodes traversed increases,

signed a 275 nm bandpass filter at the re-
A . . . . ALN accessed node ALN accessed node ALN accessed node
ceiver end, combined with an optical anti- Delay/ms PLR/% Jitter/ms
. . . 1| N2 N4 | N5 1| N2 [ N3 | N4 1| N2| N3 | N4
reflection lens, which strengthened signal re- N N NE|NZ NS | N4 NS N N2|N3 | N4 | NS
ception and effectively reduced signal at- & | N1|1.05[31.1/612{66.5|73.3| & |NI| 0 | 1 |243.9|54| o NI| 1|6 |10|11 |14
. . . . . . =1 S =1
tenuation during daytime communication in o | N2{30.9|1.04[30.9(37.1{43.4| Z|N2|0.6| 0 [09] 3 46| Z|N2| 4 | 1|3 |6 |11
. . £ b= =
solar-blind regions. % | N3(61.2[30.9]1.04/7.79/139] % | N3 |25|1.1| 0 |1.8[39] Z|N3|10| 4| 1|3 |6
Moreover, the primary challenge for LC g g g
o p y o &e > | N4(66.9]37.1| 7.8 |1.05(7.66| - | N4 3924|180 |17 o [N4| 12| 6 | 2| 1|3
systems lies in beam collimation. To over- = = =
. o . = | N5 [73.1143.2(13.4]7.24[1.02| = | N5 |6.1|45 (2814 0 | ©|N5|15|10] 6 | 3 | 1
come this, we optimized the optical system
preceding the laser, ensuring precise beam (a) (b) (c)

alignment. This reduces the impact of atmo-
spheric turbulence and beam divergence,

ALN: all-light network PLR: packet loss rate

Figure 8. (a) Delay, (b) PLR, and (c) jitter results of five nodes accessing each other
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PLR accumulates steadily, with an average rise of 1.435% per
optical link and a maximum PLR of 6.1%. Fig. 8c shows that
the maximum jitter of 15 ms is measured when N5 accesses
N1. Our testing results confirmed uninterrupted, high-quality
real-time video transmission when the signal traveled along
the longest path in the ALN (from N1 to N5).

3 Conclusions

By establishing an integrated communication network span-
ning space, air, and sea environments, we achieve full-duplex
real-time video communication between network nodes, with a
maximum PLR of 6.1% and transmission delay below 73.3 ms.
The ALN system is designed to enable wireless internet ac-
cess via the TCP/IP protocol. For Internet of Things (IoT) ap-
plications involving multi-terminal and multi-service intercon-
nections, developing ALN-based mobile communication net-
works and integrating advanced modulation techniques to en-
hance network throughput will be crucial.
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