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C
hannel characterization and modeling are funda‑
mental to communication system design, develop‑
ment, testing, and deployment. As the innate digital 
twins of wireless channels, channel models repli‑
cate real-world channel behaviors, e.g., large-scale/

small-scale fading, spatio-temporal-frequency non-stationarity, 
through mathematical and data-driven methods. This enables 
simulation-based validation across system development stages
—from protocol design to network optimization—without 
costly physical testing.

In 6G/B6G, new frequency bands (e. g., centimeter wave 
and millimeter wave) and new scenarios (e.g., integrated sens‑
ing and communication (ISAC), unmanned aerial vehicle 
(UAV) communications) have introduced highly dynamic, 
complex channel characteristics. The critical task is to con‑
duct channel measurements and modeling for diverse bands/
scenarios, challenged by technological advancements: Larger 
antenna arrays and higher resolution have driven transitions 
from traditional static measurements to dynamic ones, generat‑
ing massive datasets. In such cases, AI has become an essen‑
tial method to process big data, improve model accuracy, and 
enable real-time channel adaptation, overcoming bottlenecks 
in high-frequency and dynamic scenario analysis.

In this special issue, a series of articles are presented to ad‑
dress the challenges in channel measurement and modeling 
for next-generation wireless networks, offering innovative solu‑

tions to advancing the field. These articles cover a diverse 
range of topics, including novel measurement methodologies 
for complex scenarios, machine learning-enhanced channel 
data processing technologies, digital twin-enabled modeling 
frameworks, and applications in emerging 6G use cases such 
as ISAC and UAV communications. The call for papers of this 
special issue has received many high-quality submissions, re‑
flecting strong academic and industrial interest in overcoming 
the technical bottlenecks of channel characterization across 
frequency bands and scenarios. After two rounds of rigorous 
peer review, six excellent papers have been selected for publi‑
cation in this special issue, which are presented as follows.

The first paper, titled “Channel Measurement and Analysis 
of Human Body Radar Cross Section in 26 GHz ISAC Sys‑
tems”, proposes a systematic approach to characterizing elec‑
tromagnetic scattering from human bodies in ISAC systems, le‑
veraging multi-angle measurements and ray-tracing analysis 
to optimize joint communication-sensing performance in ur‑
ban micro-cellular environments.

The second paper, titled “Space Network Emulation System 
Based on a User-Space Network Stack”, presents a novel user-
space network stack (Nos) -based framework to realistically 
emulate satellite and aerial network channels, enabling valida‑
tion of space-air-ground integrated communication systems un‑
der dynamic propagation conditions and reducing develop‑
ment complexity through technologies like Open vSwitch 
(OVS) and traffic control (TC).

The third paper, titled “A Machine Learning-Based Chan‑
nel Data Enhancement Platform for Digital Twin Channels”, 
introduces a generative adversarial network (GAN) -driven 
platform to address channel data scarcity, demonstrating how 
AI can generate statistically realistic channel samples from 
sparse measurements to accelerate digital twin channel devel‑
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opment for 6G networks.
The fourth paper, titled “6G Digital Twin Enabled Channel 

Modeling for Beijing Central Business District”, proposes a 
scenario-specific digital twin framework that integrates light 
detection and ranging (LiDAR) point clouds, RGB images, 
and crowdsourced data to characterize ultra-dense urban 
channels, providing insights for network deployment in high-
rise commercial zones by mimicking channel non-stationarity 
and consistency.

The fifth paper, titled “Channel Knowledge Maps for 6G 
Wireless Networks: Construction, Applications, and Future 
Challenges”, establishes a knowledge graph based architec‑
ture to systematically organize channel data, models, and engi‑
neering experiences, facilitating intelligent decision-making 
in multi-band and multi-scenario communication systems 
through the concept of channel knowledge maps (CKMs).

The sixth paper, titled “Air-to-Ground Channel Measure‑
ment and Modeling for Low-Altitude UAVs: A Survey”, syn‑
thesizes recent advancements in low-altitude UAV air-to-
ground channel research, providing a comprehensive overview 
of measurement campaigns, modeling approaches, and future 
directions critical to 6G aerial network design, with a focus on 
millimeter-wave scenarios beyond suburban environments.

In conclusion, we hope this special issue serves as a valu‑
able resource for researchers, practitioners, and students en‑
gaged in 6G/B6G channel measurements and modeling. It 
aims to inspire innovative solutions for dynamic channel chal‑
lenges and drive advancements in AI-integrated channel mod‑
eling. We sincerely thank all authors, reviewers, and editorial 
staff for their contributions, which are crucial to curating this 
collection. We trust these articles will offer insightful guid‑
ance and foster new perspectives in wireless channel charac‑
terization for next-generation networks.
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1 Introduction

6G technology drives the evolution of integrated sensing 
and communication (ISAC) systems. With its large band‑
width advantage, a 6G system allows perception functions 
to be upgraded from basic positioning to high-precision 

tracking, target recognition, and classification. Accurately per‑
ceiving key targets in ISAC channels is essential for achieving 
high-accuracy positioning and tracking[1].

In the research field of ISAC, the scattering characteristics of 
the human body as a typical target have attracted significant re‑
search attention. As a critical metric for evaluating the reflec‑
tion characteristics of targets, the radar cross section (RCS) pro‑
vides a critical reference basis for ISAC systems. With the 
rapid development of autonomous driving, healthcare, security 

monitoring, and other fields, the demand for high-precision ob‑
ject detection and recognition technology has surged[2–3]. In 
healthcare, the detected data can facilitate remote monitoring of 
vital signs and early detection of health issues, leveraging the 
advanced communication-sensing capabilities of 6G networks[4]. 
Furthermore, in search and rescue operations for survivors bur‑
ied under avalanches, landslides, or collapsed buildings, RCS 
analysis of the human body can be promptly conducted to as‑
sess the situation and locate the trapped individuals. This capa‑
bility enables precise localization and monitoring, facilitating ef‑
ficient rescue operations and optimal resource allocation[2]. 
Other significant applications lie in the field of security, where 
this technology enables the identification and distinction of po‑
tentially dangerous individuals based on anomalous breath pat‑
terns or heartbeat patterns[5]. Human body RCS analysis further 
expands new applications for advanced technologies, such as 
multiple-input multiple-output (MIMO)[6], reconfigurable intelli‑
gent surface (RIS) [7–8], and micro-Doppler signature[9]. While 
there are ample application prospects and advantages, human 
body RCS analysis faces significant challenges. The radar simu‑

This work was supported by the National Natural Science Foundation of 
China under Grant No. 62271043, Ministry of Education of China under 
Grant No. 8091B032123, and Beijing Natural Science Foundation under 
Grant No. L212029.
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lation technique for human motion must be as close to the real 
radar data as possible; however, it must be easily imple‑
mentable and computationally efficient at the same time[3].

Currently, most existing human detection radar systems oper‑
ate in X-band, ultra-high frequency (UHF), and even lower fre‑
quency bands[10]. Ref. [11] discusses the findings of an RCS and 
specific absorption rate (SAR) study of the human head at 0.9–
2.45 GHz based on full-wave numerical model simulations. The 
effective RCS of human cardiopulmonary activity is studied for 
a male subject in supine and prone positions at 2.4 GHz[12]. An 
experimental setup for complex channel measurement in a non-
anechoic environment in the 6 – 10 GHz frequency range is 
validated in Ref. [13]. With the advancement of wireless com‑
munication towards higher frequency bands, such as 
millimeter-wave (mmWave), terahertz (THz), and visible light 
bands, an increasing overlap with traditional sensing fre‑
quency bands will occur[14]. Specifically, mmWave frequency 
bands are essential for 6G communication-sensing integration 
due to their remarkable capabilities, encompassing fine spa‑
tial resolution that enables high-precision target localization, 
speed measurement, and imaging[15]. Among mmWave fre‑
quencies, the 26 GHz band is particularly advantageous. It of‑
fers an effective balance between propagation characteristics 
suitable for long-range communications and the wide band‑
width essential for high-resolution sensing. Furthermore, the 
short wavelength of 26 GHz signals helps reduce interference 
from other cellular data, thereby enhancing spectrum efficiency.

Despite the recent execution of numerous ISAC channel mea‑
surements with human targets, a notable lack of data supporting 
human body RCS characteristics within the mmWave frequency 
bands poses a significant challenge for ISAC. Building on the 
limited existing literature, Ref. [16] presents detailed evalua‑
tions of human RCS characteristics. As an extension to prior 
analyses, it addresses open issues including the influence of dif‑
ferent limb postures and clothing types on the 23–28 GHz fre‑
quency bands. However, precise data regarding the human 
body within the ISAC frequency band remains severely lacking, 
and various influential factors have not been comprehensively 
considered. Firstly, owing to its non-rigid nature, the human 
body undergoes numerous dynamic motions, leading to signifi‑
cant variations in the RCS depending on individual posture and 
radar orientation. Secondly, the human body is composed of 
multiple dielectric layers, which further complicates the RCS 
analysis. The roughness of skin and clothing surfaces intro‑
duces substantial variability in these analyses[17]. Additionally, 
existing studies often fail to provide direct electromagnetic 
(EM) material parameters for the human body during the RCS 
data analysis, thereby limiting the generalizability of research 
findings to other deterministic studies. Achieving far-field con‑
ditions for antenna and target channel measurements poses sig‑
nificant physical challenges. Ray-tracing (RT) techniques can 
effectively overcome these limitations, enabling precise calcula‑
tion of RCS. However, current research still lacks RCS model‑

ing in the multi-polarization mode under far-field conditions[18].
To address the above-mentioned demands and challenges, 

this paper conducts measurements and analyses of the human 
body within communication channels to provide a reference 
for implementing sensing functions through the communica‑
tion systems. The main contributions and novelties of this pa‑
per are as follows.

• Channel measurements of the human body at 26 GHz are 
conducted on individuals wearing different clothing, capturing 
data from different angles in static situations. Based on these 
measurements, a comprehensive dataset of the human body is 
established.

• The EM material parameters related to the human body are 
calibrated. These parameters can be utilized for generalization 
simulations, providing a reference for deterministic modeling 
endeavors.

• The RCS at different azimuth and elevation angles is calcu‑
lated and analyzed for different multi-polarization combina‑
tions. Based on these findings, suggestions for the future design 
of the ISAC system are discussed.

The rest of this paper is organized as follows. Section 2 de‑
scribes the measurement system and campaign. Section 3 intro‑
duces the RT simulation and calibration of EM parameters. Sec‑
tion 4 presents a detailed RCS calculation and analysis, and 
Section 5 concludes the paper.
2 Measurement

2.1 Measurement System
In this work, the measurement system comprises a Keysight 

N5247A vector network analyzer (VNA), a personal computer 
(PC) control terminal, and two standard gain horn antennas, as 
depicted in Fig. 1. The VNA, connected to the PC and con‑
trolled by specialized programs, generates signals with a band‑
width of 1 GHz and acquires 201 frequency samples. The an‑

Figure 1. Measurement system

PC: personal computer     RX: receiver     TX: transmitter
Keysight N5247A

Port 1 Port 2

PC

45°

TX

Rotary table Rotary table

RX
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tennas, serving as the transmitter (TX) and receiver (RX), are 
fixed on separate rotary tables and connected to Port 1 and 
Port 2 of the VNA, respectively. The system is set up in a semi-
dark room with the antennas positioned at ±34° angles toward 
the human body, maintained at a distance of 1.6 m and a height 
of 1.01 m above the ground. This configuration ensures that the 
main lobe of the TX illuminates the human body, while the RX 
receives the corresponding echo. The configuration parameters 
of the measurement system are summarized in Table 1.
2.2 Measurement Campaign

The channel measurement of the human body at multiple 
angles is carried out in a semi-dark room built with absorbing 
materials. The subject is an adult male (1.78 m in height, 78 kg 
in weight) wearing two kinds of clothing (short and long 
clothes), as shown in Fig. 2. The point cloud of the subject’s 
body is obtained by laser scanning. After processing the point 
cloud and importing it into SketchUp to give the corresponding 
materials to the human body surface, the human body model 
used in RT simulation is established.

To obtain the scattering characteristics of the human body at 
different angles, five rotational positions of the human body 
relative to the measurement system are set up. The subject 
stands on a rotary table to control the rotation angle by the 
scale. The 0° position corresponds to the human body directly 
facing the measurement system, and the other four positions are 

set at 45°, 90°, 135°, and 180° in the clockwise direction. The 
measurement results under different clothing conditions are 
shown in Figs. 3 and 4. The absorbing material effectively 
shields the echoes from many environmental objects, and the 
multipath component (MPC) of the human body is marked.

The results show that the power of MPC of the human body is 
the strongest when facing the measurement system and facing 
away from it, which are rotating at 0° and 180° . In these two 
cases, the reflection and scattering area of the human body is 
larger, so the reflected echo energy is larger. The human back 
approximates a convex surface, resulting in the strongest reflec‑
tion power. This is because the convex surface concentrates the 
reflected waves into a smaller area, thereby increasing the 
power density of the reflected signal in the direction of reflec‑
tion. Meanwhile, the power of MPC under short clothes is 
higher than that under long clothes, which can be explained by 
the fact that human skin is smoother than clothing, and its echo 
power of reflection and scattering is stronger. However, in the 
case of rotating at 180°, the back in long clothes is flatter than 
that in short clothes, so the reflected power is stronger than that 
under short clothes. Additionally, the body posture observed in 
this study often has the limbs close to the body, making it chal‑
lenging to accurately identify different body parts using only the 
power delay profile (PDP).
3 RT Simulation and Calibration of EM Pa⁃

rameters

3.1 RT Simulation
In this work, the high-performance RT simulation platform 

developed by the State Key Laboratory of Advanced Rail Au‑
tonomous Operation of Beijing Jiaotong University is ad‑
opted[19–20]. In ISAC channels, the scattering characteristics of 
targets are crucial for accurate channel modeling, which is af‑
fected by the dominant propagation mechanisms of reflection 
and scattering. Fresnel reflection and directional scattering[21] 
are applied in RT.
3.1.1 Reflection

When an object whose volume is much larger than the wave‑
length of the EM wave is in the 
path of propagation, the wave can‑
not diffract through the object and 
will be reflected at the junction of 
different media. The wireless signal 
reflected by the ground or other ob‑
stacles reaches the receiver, called 
the reflected wave. The electric 
field strength of the reflected wave 
and transmitted wave depends on 
the Fresnel reflection coefficient of 
the incident wave in the medium. 
The coefficients r‖i, k and r⊥ i, k are 

Table 1. Configuration parameters of the measurement system
Measurement Parameter

Center frequency
Bandwidth

Delay resolution
Frequency samples

TX and RX heights from the ground
Distance between TX and RX

Antenna rotation angle towards the human body
Polarization mode

Antenna gain

Value
26 GHz
1 GHz
1 ns
201

1.01 m
1.6 m
±34°

Vertical polarization
22.4 dBi

RX: receiver      TX: transmitter

Short clothes

Long clothes

Figure 2. Human body in different types of clothes
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the reflection (scattering) coefficients of the vertical and hori‑
zontal components of the k-th multipath component at the i-th 
reflection (scattering) surface, respectively. For transversal mag‑
netic (TM) polarization, the reflection coefficient is:

r‖i, k = RTM i, k =
ε2
ε1

cos δ inc i,k - cos δ trans i,k

ε2
ε1

cos δ inc i,k + cos δ trans i,k

(1).

For transversal electric (TE) polarization, the reflection coef‑
ficient is:

r⊥ i, k = RTE i, k =
cos δ inc i,k - ε2

ε1
cos δ trans i,k

cos δ inc i,k + ε2
ε1

cos δ trans i,k

(2).

For the TM case, the magnetic field component is parallel to 
the reflection (scattering) surface. However, for the TE case, the 
electric field component is parallel to the reflection (scattering) 
surface. The angles δ inc i,k and δ trans i,k are the incidence and trans‑
mission angles, respectively, with respect to the normal vector 
of the surface where reflection (scattering) occurs.
3.1.2 Scattering

There are two kinds of scattering models in wireless commu‑
nication: the directional scattering and RCS scattering. The for‑
mer includes the directional single-beam model and the direc‑
tional double-beam model. The directional single-beam model 
is mainly introduced here. This model assumes that the scat‑

tered lobes reflect in the direction of the mirror surface, and the 
expression is as follows:

| ES |
2 = | ES0 |

2( 1 + cos ψ
2 ) αR,  αR = 1, 2,…, N (3),

where ψ denotes the angle formed between the scattering and 
reflection directions; αR represents the scattering equivalent 
roughness, an integer that dictates the width of the scattering 
lobe, with increasing values resulting in narrower beams; ES sig‑
nifies the scattered electric field, measured at an angle ψ from 
the reflection direction; ES0 signifies the maximum scattered 
electric field value. When the EM wave is incident on the sur‑
face of the material at the incident angle θi,  ES0 is expressed as 
follows:

| ES0 |
2 = ( SK

dtdr ) 2 dS cos θi

FαR

(4).

Extending the unit area of the material surface dS (the length 
of the scatterer is l and the width is unit length), we get the final 
expression of the DS model as follows:

| ES |
2 = | ES0 |

2( 1 + cosΨ
2 ) αR =

( SK
dtdr ) 2

l cos θi

FαR
( 1 + cosΨ

2 ) αR (5),

where l represents the length of the scatterer, K is a constant 
that depends on the incident power Pt and antenna gain Gt, K =
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60PtGt , and FαR
 is the proportionality factor.

3.2 Calibration of EM Parameters
EM parameters of materials are the foundation of RT, en‑

abling effective representation of the interactions between tar‑
gets and surroundings. Accurate EM parameters not only en‑
hance the generalization capability of RT across different ap‑
plication scenarios but also improve its predictive accuracy in 
complex environments. Before calibration of EM parameters, 
the system and cable losses are measured to ensure accuracy.

Multiple key EM parameters of the human body are cali‑
brated, including the real part of relative permittivity ϵrel, the 
loss tangent δ, the scattering gain S, and the effective smooth‑
ness αR. The EM parameters can also describe the body’s ab‑
sorption of radio waves to a certain extent. As shown in Fig. 5, 
the EM parameters are calibrated based on the power of MPC. 
The EM parameters of the relevant materials are continuously 
updated until the error between the simulation power and the 
measurement power converges. The initialized and calibrated 
EM parameters are summarized in Table 2.

Table 3 shows the errors between the power of calibrated 
simulation and measurement, including cases at multiple rotat‑
ing angles. The calibrated RT can accurately describe the 
scattering characteristics of the human body at multiple 
angles with a mean absolute error of 0.82 dB and a standard 
deviation of 0.89 dB.
4 Analysis of RCS

4.1 Calculation of RCS
RCS plays a key role in target sensing and recognition in 

ISAC channels, as it directly impacts the reflection and scatter‑
ing characteristics. The RCS σ can be calculated based on the 
receiving power Pr of the multipath, as shown in:

σ = Pr( )4π 3 R4

PtGtGr λ
2 (6),

where Pt is the transmitting power, λ is the wavelength, and R 
is the range between the target and the measurement system. 
The gains Gt and Gr represent the transmitting and receiving an‑
tenna gains.

Near-field effects arise near the radiating element, where the 
EM field is incomplete, causing significant inductive and ca‑
pacitive coupling. Conversely, far-field effects, observed at dis‑
tances where waves have propagated as plane waves, minimize 
coupling impacts. However, due to the physical limitations of 
the measurement systems and environments, it is often difficult 
to ensure that both the antenna and the target are in the far-
field region[22]. When the target and the antenna are in the far 
field, the EM waves can be approximated as plane waves. This 
facilitates the calculation and prediction of scattering character‑
istics, ensuring the stability and consistency of measurement re‑

sults. If not, near-field effects may significantly degrade mea‑
surement accuracy, leading to erroneous analysis outcomes. In 
such cases, RT, with its flexibility, breaks scenario constraints, 
making it an effective tool for calculating RCS.

The distance between the human body and RX is 1.80 m. 
The maximum size of the human body is 1.78 m. According to 
the equation:

Table 2. Comparison of initialized and calibrated EM parameters.

Material
Skin

Polyester
Cotton

Initialized
ϵrel
1
1
1

δ

0.1
0.1
0.1

S

1
1
1

αR

1
1
1

Calibrated
ϵrel

17.7
2.1
2.8

δ

0.953 1
0.750 0
0.700 0

S

0.88
0.85
0.83

αR

16.5
15.3
14.2

Table 3. Error statistics

Outfit

Short

Long

Angle/(°)
0

45
90

135
180

0
45
90

135
180

Measurement 
Power/dBm

−45.20
−47.37
−49.85
−49.01
−41.36
−48.05
−50.05
−48.71
−51.30
−39.51

Simulation Power/
dBm

−45.34
−47.70
−48.40
−50.45
−41.52
−47.93
−51.30
−48.85
−51.11
−42.44

Absolute Error/
dB

0.14
0.36
1.45
1.44
0.16
0.12
1.25
0.14
0.19
2.93

Figure 5. Working flow of calibration of EM parameters

EM: electromagnetic     RT: ray-tracing

Simulation configurations with initialized EM parameters

RT simulation Update EM parameters

Loss function

Start

Terminated

Yes

No

Simulation results Measurement results

Return the best EM parameter set

07



ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

DUAN Hongyu, WANG Mengyang, DUO Hao, HE Danping, MA Yihua, LU Bin, ZHONG Zhangdui 

Special Topic   Channel Measurement and Analysis of Human Body Radar Cross Section in 26 GHz ISAC Systems

df = 2D2 λ (7),
where df is the distance of the Fraunhofer region, D is the maxi‑
mum linear dimension of the antenna, and λ is the wavelength. 
The far-field distance of the human body is 561.6 m. In the 
simulation of this work, the distance between the human body 
and the measurement system is set to 580 m to ensure that both 
the human body and antennas are in the far field.

In ISAC systems, the variation of RCS at different azimuth 
angles is essential for describing a target’s scattering character‑
istics. Since RCS represents how a target reflects EM waves, its 
variation with angle directly influences sensing accuracy and 
communication channel performance. On the other hand, the re‑
search of RCS at different zenith angles is also very important 
for the deployment of ISAC systems. The TX-RX polarization 
combinations include horizontal-horizontal (H-H), horizontal-
vertical (H-V), vertical-horizontal (V-H), and vertical-vertical 
(V-V) polarizations. As shown in Figs. 6 and 7, the RCSes of 
the human body at different horizontal and elevation angles un‑
der different clothing are calculated by RT. Table 4 shows the 
statistics of RCS under different polarization modes.

The findings reveal that the RCS is typically greater when 
the TX and RX antennas are aligned in the same polarization 
mode. Furthermore, the RCS for short clothing tends to be 
slightly higher than that for long clothing in the same polariza‑
tion mode. Notably, the mean azimuth RCS, when subjected to 
different polarization modes, experiences a decrease of ap‑
proximately 16 dBsm compared to that in the same polariza‑
tion mode. The mean elevation RCS sees a reduction of 

around 14 dBsm under similar circumstances.
4.2 System Design Discussion

The calculation of RCS indicates that the RCS values are 
higher when using co-polarized transmit and receive antennas, 
which can be attributed to the EM scattering characteristics of 
co-polarization. In a co-polarization configuration, the polariza‑
tion of the TX and RX antennas is aligned, allowing for more ef‑
ficient capture of the reflected signals from the target. This 
alignment enables better matching between the incident wave 
and the target 􀆳 s scattering properties, particularly for surfaces 
with geometric regularity or dimensions comparable to the wave‑
length, resulting in stronger energy coupling and consequently 
higher RCS values. From an EM theory perspective, the target􀆳s 

Plane of horizontal
H-H polarization

Mean RCS: −2.78 dBsm

Back Front

H-H polarization
H-V polarization

H-V polarization

Back Front Back Front Back Front

Mean RCS: −19.30 dBsm
Mean RCS: −7.83 dBsm Mean RCS: −22.21 dBsm

Plane of elevation

V-H polarization

Mean RCS: −19.30 dBsm

Back Front

V-V polarization

Mean RCS: −2.52 dBsm

Back Front

V-H polarization

Mean RCS: −22.21 dBsm

Back Front

V-V polarization

Mean RCS: −7.45 dBsm

Back Front

Figure 6. RCS under short clothing

H-H: horizontal-horizontal     H-V: horizontal-vertical     RCS: radar cross section      V-H: vertical-horizontal      V-V: vertical-vertical

Table 4. Statistics of RCS under different polarization modes

Outfit

Short

Long

Polarization

H-H
H-V
V-H
V-V
H-H
H-V
V-H
V-V

Mean Azimuth 
RCS/dBsm

−2.78
−19.3
−19.3
−2.52
−3.91

−18.82
−18.82
−3.59

Polarization

H-H
H-V
V-H
V-V
H-H
H-V
V-H
V-V

Mean 
Elevation 
RCS/dBsm

−7.83
−22.21
−22.21
−7.45
−8.17

−21.91
−21.91
−7.54

H-H: horizontal-horizontal
H-V: horizontal-vertical

RCS: radar cross section
V-H: vertical-horizontal

V-V: vertical-vertical
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surface induces scattering, reflection, and absorption of the EM 
waves. Under co-polarized conditions, the reflection coefficient 
is relatively high. For complex targets such as the human body, 
various factors, including the surface roughness, material com‑
position, EM parameters, and clothing conditions, can signifi‑
cantly influence RCS. The co-polarization setup enhances the 
coherence of reflected signals, thereby increasing the strength 
of the scattered signals. Furthermore, as EM waves undergo 
multiple reflections on the target 􀆳 s surface, co-polarization 
tends to facilitate phase addition, further amplifying the magni‑
tude of the received signal.

The research content of this paper aims to analyze the char‑
acteristics of the target in the communication channel to realize 
the sensing function. Therefore, in the design of this kind of 
ISAC systems, opting for co-polarized TX and RX configura‑
tions can effectively enhance the echo signal from the target, 
improving detection sensitivity. It also enhances the system􀆳s re‑
silience to interference and reduces the impact of background 
noise, thereby improving sensing accuracy and robustness. 
Such a design is particularly suitable for scenarios requiring 
high sensitivity and precise sensing, such as long-range target 
detection and weak scattering characteristic capture.

However, interference may distort the reflected signal, lead‑
ing to fluctuations or attenuation of the RCS. The movement of 
a target in a dynamic environment alters its reflective character‑
istics, causing the RCS to vary with the incident angle. Mul‑
tipath effects may further exacerbate the impact. In the future, 
we need to consider measuring in more element-rich scenarios 
to fully account for these influencing factors.

5 Conclusions
This paper presents multi-angle channel measurements of 

the human body at 26 GHz under different clothing condi‑
tions. Based on the measurement data, the EM parameters of 
human body materials are calibrated with a mean absolute er‑
ror of 0.82 dB and a standard deviation of 0.89 dB. The RT 
simulator is deployed to comprehensively calculate and ana‑
lyze the RCS of the human body under various polarization 
configurations, azimuth angles, and elevation angles. The re‑
sults indicate that co-polarized antennas exhibit higher RCS 
values across a range of angles compared to cross-polarized 
configurations. Finally, some suggestions on the design of 
ISAC systems are given. This work not only highlights the sig‑
nificant impact of polarization on target scattering characteris‑
tics but also provides critical insights for target identification 
and environmental sensing. The data and results presented in 
this work offer theoretical support and practical guidance for 
the design of ISAC systems.
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1 Introduction

1.1 Development of Space Network and Its Emulation 
Methods

In recent years, with the continuous iteration of communi‑
cation technologies and the growing demands for informa‑
tion perception, satellite telemetry, and global network in‑
tegration, the traditional terrestrial Internet based on the 

Open Systems Interconnection (OSI) protocol stack can no lon‑
ger meet the increasingly diverse and expanding network ser‑
vice needs. As a new network service model, the space Inter‑
net offers a broader service coverage while ensuring transmis‑
sion bandwidth. It effectively overcomes challenges such as 
user access limitations due to terrestrial factors.

Satellite networks have become indispensable in various 
fields, including military security, aerospace, civilian net‑
works, and remote sensing exploration. However, a series of 
emerging and evolving network algorithms, protocol systems, 
and network management models have also surfaced alongside 
its rapid development. Implementing a new technology, from 
theoretical development to practical deployment, requires a se‑

ries of complex validation processes, such as performance 
evaluations and network throughput tests. As a communication 
network deployed in unique environments, the satellite net‑
work particularly requires systematic network emulation meth‑
ods and verification platforms to support technological valida‑
tion. Network emulation methods are generally categorized into 
four types: network theoretical model construction, physical 
platform setup, network simulation, and network emulation[1].

• Network theoretical model construction: This method in‑
volves network research through modeling, theoretical analy‑
sis, and algorithm design. It provides a theoretical foundation 
for the design and implementation of network technology.

• Physical platform setup: This approach aims to replicate 
the network scenario to the greatest extent, offering high au‑
thenticity. However, it is challenging to deploy, needs more 
scalability and reconfigurability, and has high hardware re‑
quirements for network equipment, limiting its use for large-
scale deployments.

• Network simulation: This software-based method simu‑
lates existing network scenarios, protocols, and services, offer‑
ing relatively simple, cost-effective and easily extendable ex‑
perimental environment. However, it does not support real traf‑
fic loads transmission, leading to less accurate results.

• Network emulation: Combining the advantages of physical 
platforms and network simulation, network emulation supports 

This work was supported by the National Natural Science Foundation of 
China under Grant No. 62131012 and ZTE Industry-University-Institute 
Cooperation Funds under Grant No. IA20230712005.
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real protocols and data flow transmission. It thus offers high fi‑
delity, flexibility, easy deployability, and scalability.

A network emulation platform is generally constructed 
through virtualization technology. Virtualization reallocates 
and isolates physical hardware resources on real physical de‑
vices, abstracting resources from computer hardware to the 
network operating system and network applications, to create 
an emulation environment. Traditional virtualization technol‑
ogy builds virtual machine managers on the host system, 
where each virtual unit requires its own operating system. In 
large-scale satellite network scenarios, where the network ap‑
plications between nodes are similar, traditional virtualization 
solutions result in considerable resource redundancy, leading 
to inefficiency. Therefore, container-based network solutions 
have been proposed. Based on the host server’s operating sys‑
tem, containerized networking implements process-level virtu‑
alization, which minimizes emulation node overhead and maxi‑
mizes the use of the host server’s physical resources.

Given the unique structure of the space network, it differs 
significantly from traditional terrestrial networks in terms of 
transmission conditions, node deployment, and information 
compatibility. For instance, network signals are significantly 
impacted by factors such as cosmic electromagnetic interfer‑
ence and terrestrial atmospheric activity during transmission. 
This results in high bit error rates or temporary link interrup‑
tions. Additionally, due to the large distances between satel‑
lite nodes, network signal transmission experiences high la‑
tency and time jitter. The high-speed movement of satellites 
further leads to highly dynamic network topologies, causing 
periodic changes in link relationships between nodes[2]. These 
factors restrict satellite network service to some extent. When 
constructing an emulation system for space network, these 
characteristics must be considered and incorporated into the 
design to best replicate the space network environment.

Existing studies have led to the design and implementation 
of several mature and stable network emulation systems, in‑
cluding NS3, OMNeT++[3], STK[4], and EmuStack[5]. While 
these tools provide valuable insights into space network behav‑
ior, they have notable limitations:

• Limited real-time protocol testing: Many tools focus on 
theoretical simulations, which limits their ability to validate 
real-world protocol implementations.

• Inefficiency in handling dynamic topologies: The frequent 
changes in space network topologies, such as those seen in 
low Earth orbit (LEO), are not well supported by traditional 
simulation platforms.

• High computational overhead: Some platforms require sig‑
nificant computational resources, making them less scalable 
for large-scale emulations.

• Dependence on kernel-based network stacks: These sys‑
tems often rely on kernel-level networking, leading to inefficien‑
cies due to context-switching and limited real-time performance.

1.2 User-Space Network Stack
The network interface subsystem, as the most complex mod‑

ule in the Linux operating system kernel, has undergone de‑
cades of development and evolution, achieving a high level of 
reliability and stability. However, while the kernel network 
stack is widely used, it has also faced criticism for its high de‑
bugging and development costs, as well as its relatively low 
packet forwarding speeds[6]. To improve the performance and 
scalability of the network stack, developers have been looking 
for ways to abandon the kernel network stack solution and mi‑
grate the entire functionality of the network stack to user 
space. With the continuous development and iteration of high-
performance network I/O technologies such as Data Plane De‑
velopment Kit (DPDK) and Netmap, the user-space network 
stack can bypass the operating system kernel, thereby directly 
delivering the received packets from the network interface 
card to the user space. This avoids the significant overhead 
caused by frequent context switching, memory copying, and 
other factors, thus improving the performance of the network 
stack[7]. Moreover, for network development personnel, a net‑
work stack located in user space is more straightforward to de‑
bug and maintain, which is beneficial for the development of 
space network technologies that require extensive validation 
work. Therefore, the kernel network stack is not well-suited 
for real-world space network environments.

Building upon existing user-space network stacks (e. g., 
mTCP[8], IX[9], and Arrakis[10]), this paper introduces a non-
open-source, high-performance commercial solution specifi‑
cally designed for next-generation space network routing tech‑
nologies. Unlike other user-space network stacks, Nos not 
only offers exceptional data processing efficiency but also 
demonstrates excellent topological adaptability. Furthermore, 
it can be integrated with Docker container technology to oper‑
ate in lightweight virtual environments. Designing and imple‑
menting an emulation system based on Nos allows for more ef‑
fective debugging and development, thereby providing en‑
hanced space network routing services.

This paper proposes an emulation system based on the user-
space network stack Nos. The system overcomes most of the 
limitations by providing high-performance data processing, 
better topology adaptability, and scalability in lightweight vir‑
tual environments. This approach offers a more efficient plat‑
form for validating space network protocols.
2 Design of Space Network Emulation System

2.1 Design of General Emulation System

2.1.1 Node Emulation Solution
As a virtual system, the space network emulation system is 

built on the virtualization and reallocation of emulation server 
hardware resources. These resources are then abstracted into 
independent emulation units. Among these components, the 
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emulation node serves as the core element of the scenario. In 
emulation experiments, Docker container technology is com‑
monly used to abstract hardware resources and manage the 
emulation nodes in a unified manner.

Docker is an open-source application container engine that 
provides a unified runtime environment for applications. It 
packages applications and their runtime environments into 
lightweight, portable container images, which can be deployed 
on any Linux machine. Meanwhile, Docker containers share 
the host system’s operating system and hardware resources, 
managed by the Docker engine. This allows for fast startup 
and execution speeds, as well as high hardware resource utili‑
zation, making Docker container technology ideal for the uni‑
fied orchestration of emulation nodes. It offers potent portabil‑
ity, quick startup, and high resource utilization[11].

The underlying principle of Docker networking is Linux 
“namespaces”, a core mechanism enabling container network‑

ing. Namespaces can isolate various resources of a container, 
such as process IDs (PIDs), filesystem mount points, host‑
names, and other system resources. The network namespace, in 
particular, logically provides independent network functional‑
ities for different containers, including network devices, routing 
tables, Address Resolution Protocol (ARP) tables, iptables, fire‑
walls, and sockets. Additionally, virtual devices such as veth, a 
virtual Ethernet device pair, can be used to interconnect con‑
tainers. Emulation nodes can support different network proto‑
cols by deploying and running the corresponding network appli‑
cations in Docker containers.
2.1.2 Link Emulation Solution

Connection between emulation containers is established 
through Linux’s veth and Open vSwitch (OVS). Specifically, a 
veth network interface is created between the container and 
the OVS bridge, with OVS managing the link connectivity be‑
tween nodes.

The emulation system provides an interface to control the 
link status. Users can upload a configuration file that stores 
the link connectivity information, and the main control pro‑
gram will import the relevant data into the MySQL database. 
Once the emulation experiment starts, the main control pro‑
gram continuously polls the database and, at time points 
where link events such as link up or down occur, calls the 
OVS processing function. It adds or deletes the corresponding 
flow entries in the bridge to represent the occurrence of the 
link event.

At the start of the emulation experiment, custom network ap‑
plications run in the containers, while a set of threads are sub‑
mitted by the main control service. When link characteristics 
such as delay, packet loss rate, and bandwidth change, these 
threads read the corresponding link configurations from the da‑
tabase and forward them to the network application in the con‑
tainer. The application then configures the appropriate traffic 
control (TC) queuing discipline for the container 􀆳 s veth inter‑

face to represent the occurrence of this particular link event. 
Thus, in the emulation experiment, dynamic topology and link 
characteristics control are abstracted as adding or deleting spe‑
cific network flow entries in the OVS bridge and configuring TC 
queuing discipline in the container’s virtual network interfaces.

The network applications running in the container can ei‑
ther be custom network programs that perform specific net‑
work configuration functions or open-source network pro‑
grams. For example, after configuring the network topology in 
the main control program, a Quagga process can be run in the 
container to calculate the routing rules for the emulation sce‑
nario dynamically.
2.1.3 Emulation Architecture Design

The emulation system architecture, as shown in Fig. 1, is 
designed and implemented. The system can be abstracted 
from three dimensions: service call, emulation logic, and emu‑
lation scenarios.

Service call refers to how developers call the functions of 
the emulation system. At the engineering implementation 
level, the emulation system is built as a Maven project inte‑
grated with Spring Boot. The frontend page provides a corre‑
sponding web graphical user interface (GUI), allowing devel‑
opers to invoke the system’s backend through the relevant in‑
terfaces. The frontend program is deployed on an Nginx 
server, and its GUI provides rich functional interfaces. It also 
visually displays the topological relationships of the emulation 
scenarios, supporting complex scenarios consisting of ground 
stations, LEO satellites, deep space satellites, and lunar explo‑
ration probes. The backend server (Center Server) of the sys‑
tem performs operations such as scenario construction, link 
configuration, and service processing according to specific 
web requests. The data interaction between the frontend and 
backend is typically achieved through HTTP requests and re‑
sponses. The frontend sends requests using JavaScript, and 
the backend receives and processes these requests and re‑
turns JSON data to the frontend. The backend 􀆳 s request pro‑
cessing often involves significant database access, as the data‑
base stores all experiment-related information, including ex‑
periment status, node configurations, and link details. The da‑
tabase and backend program are deployed on the same server, 
enabling local and high-speed database access operations. 
The backend main control program uniformly orchestrates the 
container nodes and builds a star-shaped topology with an 
OVS bridge at the center, as defined in the “Emulation Logic” 
module. As a virtual switch supporting the OpenFlow protocol 
and flow entry distribution, OVS provides support for dynamic 
topology control in the emulation system.

From a general perspective, the service call module serves 
as the interface through which the emulation system directly 
interacts with the user. User actions are transmitted via fron‑
tend requests to the backend, where they undergo a series of 
processing steps and database interactions. This process ulti‑
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mately constructs the container network as depicted in the 
Emulation Logic module. The elements in this container net‑
work are directly mapped to the corresponding elements in the 
Emulation Scenario. The Emulation Logic and Emulation Sce‑
nario represent two topological frameworks for the emulation 
experiment: the former reflects the actual network configura‑
tion, while the latter serves as an abstract model of the former. 
These three core modules effectively demonstrate the struc‑
ture of a general emulation system.

In designing the general network emulation system, it is cru‑
cial to consider the platform that best supports the performance 
and scalability requirements of space network emulation. The 
system performance is influenced by multiple factors, including 
network topology dynamics, packet processing efficiency, re‑
source allocation, and system scalability. These factors collec‑
tively determine the overall effectiveness of the emulation.

The system is deployed on a general-purpose x86, 64-bit 
server and utilizes a combination of Nos and Docker container‑
ization to achieve high performance and flexibility. Nos en‑
ables efficient packet processing and supports dynamic topol‑
ogy adaptation, while Docker containers provide a lightweight, 

scalable environment for running emulation nodes.
The use of Docker as the platform ensures efficient resource 

utilization, minimizing computational overhead and allowing for 
the emulation of large-scale satellite constellations with high fi‑
delity. This choice of platform addresses the limitations of tradi‑
tional kernel-based approaches, such as high computational 
costs and reduced scalability, making it an ideal solution to 
emulating space networks in a real-time, dynamic environment.
2.2 Integration of Nos

The space network emulation platform described above is 
designed to integrate Nos. In this design, two Docker contain‑
ers run in a single emulation node, as shown in Fig. 2. The net‑
work control plane functions are consolidated in the routing 
processor (RP) container, which is responsible for processing 
routing packets and dynamically calculating routing rules 
based on the real-time network topology. The network data 
plane functions are consolidated in the line processor (LP) 
container, which performs high-performance forwarding based 
on the routing information table of Nos. The two containers are 
connected through a veth pair and communicate with each 

Figure 1. Emulation system architecture
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other directly, collectively forming an emulation node.
Each emulation node 􀆳 s LP container is connected to the 

OVS bridge “ovsbr0” via a southbound veth interface, with all 
emulation traffic being exchanged through the ovsbr0 bridge. 
The RP container of the emulation node is connected to the 
OVS bridge “mng” via a northbound veth interface. The mng 
bridge, as a management bridge, ensures communication be‑
tween the main control server and the emulation node. Devel‑
opers can log into the RP container’s reserved port 22 via this 
management bridge and access the user management interface 
of the network stack.
2.3 Soft Forwarding Interface Configuration and Link 

Mapping
Unlike terrestrial networks, the space network often experi‑

ences link interruptions and handovers. For example, in a po‑
lar orbit constellation scenario, when a satellite enters the po‑
lar region, the link between satellites of adjacent orbits within 
the same latitude range will be temporarily interrupted and re‑
sume once the satellite exits the polar region[12]. Additionally, 
the satellite connected to a given ground station will change 
over time. In such high dynamic topologies, a unified emula‑
tion strategy is adopted. That is, all possible link resources are 
reserved during the scenario construction. When a link tempo‑
rarily fails, the corresponding flow entries are added to the 
ovsbr0 bridge, matching all packets from the two end nodes of 

the link and discarding them, thus emulating link up/down 
and handover events.

However, the apparent disadvantage of this emulation strat‑
egy is that reserving resources for all possible links in ad‑
vance can result in substantial waste, especially in scenarios 
where link handovers occur frequently, as shown in Fig. 3.

A ground station may only be connected to several satellites 
at any given time, while the links with all the other potential 
satellites are temporarily interrupted. These interrupted links, 

Figure 2. Emulation system architecture with integrated Nos
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however, could take significant system resources. In large-
scale constellation scenarios, such scale of resource waste is 
unacceptable. Nos uses a virtual network interface called 

“fei” for software forwarding. This interface is implemented in 
software within the network stack and does not incur addi‑
tional system resource overhead. All packets forwarded 
through the fei interface are first handed to the southbound 
veth interface of the LP container and then forwarded by the 
ovsbr0 bridge.

The LP container has only one southbound veth interface, and 
all emulation nodes are connected to the OVS bridge through a 
single veth interface. All traffic from the emulation node is trans‑
mitted through this interface. As shown in Fig. 4, in any given 
emulation node, the fei interface in the forwarding plane LP con‑
tainer is a virtual interface created in software, existing within 
the user-space network stack. An IP address needs to be as‑
signed to it for end-to-end forwarding in the emulation experi‑
ment. The IP address configured on the veth interface connect‑
ing all LP containers to OVS is specified within a particular sub‑
net (such as the subnet 192.170.10.0/24 in Fig. 4). That is, all 
LP container veth interfaces are in the same subnet.

To ensure that all packets passing through the veth inter‑
face are correctly matched with the software forwarding fei in‑
terface, a User Datagram Protocol (UDP) port number (uport) 
is introduced, and a mapping relationship from “veth IP + up‑
ort” to “fei IP” is established. Within any given emulation 
node, the fei IP address maps to the veth IP + uport of the LP 
container. For all neighboring nodes of a particular node, the 
link endpoints’ fei IP can be mapped as a four-tuple: “IP lo‑

cal, uport local， IP remote, uport remote”.
Before the experiment starts, the link mapping relationships 

between any node and its neighbors are saved in the network 
stack’s startup configuration file “soft_forward. xml”. Upon 
starting, the network stack reads this configuration file to es‑
tablish local link mappings with all neighbors. On the emula‑
tion layer, any packet is forwarded through the fei interface of 
the LP container after the network stack finishes encapsulat‑
ing it. However, at the implementation level, when the fei in‑
terface receives a packet, it cannot forward it directly. Instead, 
it must first use the local link mapping information and encap‑
sulate an additional layer, combining the local veth IP address 
and local UDP port with the corresponding remote veth IP and 
remote UDP port. The packet is then handed to the south‑
bound veth interface of the LP container and forwarded by the 
OVS bridge (Fig. 5). When an emulation node receives a 
packet, the same process occurs: the outer IP and UDP port 
numbers are decapsulated first, and then the packet is passed 
to the fei interface for processing.

In the emulation architecture mentioned above, the emula‑
tion of link characteristics also requires a corresponding de‑
sign. First, for the OVS bridge ovsbr0, which is responsible for 
forwarding all traffic generated by the emulation nodes, flow 
entries can be added in it to match specific packets and take 
corresponding actions. For example, when emulating a node 
failure, a flow entry can be added to match the source or desti‑
nation IP address of the node’s southbound veth interface and 
drop the packet. This effectively emulates the temporary isola‑
tion of that node in the emulation scenario. Simply deleting 

Figure 4. Virtual fei interface configuration for soft forward and its link-mapping rules
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the flow entry will suffice to restore the node’s state. Simi‑
larly, when emulating the failure of a link, a flow entry can be 
added to match the source IP + UDP port number or the desti‑
nation IP + UDP port number, and take the “drop” action.

Secondly, link characteristics such as delay and packet 
loss rate can be emulated by constructing a TC queue disci‑
pline tree (Fig. 6) on the southbound veth 
interface of the LP container. This will 
enable traffic flowing through the inter‑
face to be split. Packets enter the filter 
from the root queue, and the filter will 
match the destination IP address and 
UDP port number of the packets, direct‑
ing them into different leaf classes[13]. By 
configuring the appropriate queue set‑
tings under the leaf classes, these link 
characteristics  can be emulated.
3 Low Earth Orbit Constella⁃

tion Emulation
A small LEO constellation scenario, as 

shown in Fig. 7, is constructed in the emu‑
lation system. The scenario consists of 
two polar satellite orbital planes, each 
with four satellites, along with two ground 
station terminals. All ten emulation nodes 
are created through the frontend GUI in‑
terface, and all link configurations are im‑
ported.

The satellite motion model used in this experiment is based 
on real-world orbital dynamics, with satellite positions and 
movements derived from real-world data exported via Satellite 
Toolkit (STK). The orbital parameters, such as satellite speed, 
orbital inclination, and orbital altitude, are extracted from 
STK’s high-fidelity models, ensuring accurate representation 
of the satellite’s behavior in LEO over time. These orbital pa‑
rameters directly affect link availability and inter-satellite 
communication.

The link quality is computed based on various factors, in‑
cluding propagation delay, signal strength, and bit error rate. 
These factors are influenced by the relative distance between 
satellites, atmospheric conditions, and the satellite 􀆳s position. 
The link quality model reflects the real-time variations caused 

by satellite motion, orbital perturbations, 
and environmental factors, ensuring that 
the emulation results accurately represent 
the dynamic nature of space networks.

After the emulation experiment starts, 
the RP container within Nos reads the 
routing protocol configuration file and 
calculates the routing relationships for 
the nodes. After a certain period, the 
routing converges, and all nodes obtain 
routing entries for all subnets in the emu‑

lation scenario.
The threads submitted by the emulation system access the 

link up/down information in real time and synchronize the con‑
trol of the emulated links. For example, when a satellite enters 
the polar region, communication between adjacent-orbital sat‑

Figure 5. Additional packet encapsulation

Figure 6. Traffic control (TC) queuing discipline tree

Figure 7. A small low Earth orbit constellation scenario
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ellites in the same latitude zone will be temporarily inter‑
rupted until the satellite exits this region. When the control 
plane of Nos detects such network topology changes, it recal‑
culates and updates the routing. The TC thread accesses the 
database to obtain real-time inter-satellite distances. Using 
these measurements, it calculates the inter-satellite propaga‑
tion delay for the current time slice with a fixed duration and 
subsequently updates the TC queue discipline tree to propa‑
gate the delay information.

Fig. 8 shows the changes in delay and packet loss rates be‑
tween two adjacent-orbital satellites in the same latitude zone. 
The delay exhibits a certain periodicity over time. When the 
two satellites move from high-latitude regions to low-latitude 
regions, the inter-satellite delay gradually increases; when 
moving from low-latitude regions to high-latitude regions, the 
inter-satellite delay gradually decreases. When the satellite’s 
latitude becomes too high and it enters the polar region, the 
inter-satellite link is disconnected. In this case, communica‑
tion between the two satellites must rely on inter-satellite 
links with satellites in their respective lower-latitude orbits, re‑
sulting in significantly higher delays.

The delay and packet loss rate variations between the two 
ground station terminals are shown in Fig. 9. At the same 
time, throughput and bandwidth utilization tests were con‑
ducted on a ground station terminal, and the results are 
shown in Fig. 10. The end-to-end delay remains generally 
stable, with minor fluctuations caused by satellite movement. 
Due to the impact of bottleneck links in the satellite net‑
work, the throughput of the ground station ranges approxi‑
mately from 450 kbit/s to 700 kbit/s, with bandwidth utiliza‑
tion reaching over 75%. However, when a link is interrupted 
or involves a satellite-ground link switch, there is a certain 
waiting time for the routing information in Nos to converge 
again. During this time, the two terminals are temporarily un‑
able to communicate.
4 Conclusions

The construction of a space network emulation system is 
more complex than that of a ground network. We propose a 
space network emulation system based on Nos, a high-
performance user-space network stack, in this paper. This 
emulation system facilitates the development and debugging 
of protocol systems and network functions. The separation of 
control and forwarding in the Nos architecture improves the 
overall stability of the emulation system. By constructing an 
LEO satellite constellation scenario, the routing and forward‑
ing functions of Nos are validated, and the dynamic topology 
and time-varying link characteristics of the satellite network 
are realistically and reliably emulated. Nos has a rich set of 
functionalities. Therefore, this emulation system provides a re‑
liable means for applying many network concepts and tech‑
nologies to space communication.

There are still some areas in the space network emulation 

Figure 8. Delay and packet loss between two adjacent-orbital satellites 
in the same latitude region

Figure 9. Delay and packet loss between two ground station terminals

Figure 10. Throughput and bandwidth utilization of one ground station 
terminal
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that need to be fully considered. For example, inter-satellite or 
satellite-ground link delays are determined not only by dis‑
tance, but also by many other factors such as atmospheric 
cloud cover. Moreover, the protocol model provided by Nos is 
primarily designed for the terrestrial network, and when emu‑
lating deep-space communication scenarios, protocols like 
Delay-Tolerant Network (DTN) are not supported. Future itera‑
tions and optimizations of the emulation platform should focus 
on enhancing system realism, stability, and network function‑
ality completeness.
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1 Introduction

In recent years, the 6G wireless communication technol‑
ogy has attracted widespread attention, and many insti‑
tutes have officially started the 6G research[1]. With the 
expansion of 6G to full-scenario, multi-frequency, and 

wide-coverage applications, the demands for 6G mobile com‑
munications are becoming more diversified and complicated. 
As a signal transmission medium, wireless channels are an in‑
dispensable part of communication links, and their character‑
istics determine the upper limit of communication system per‑
formance. A channel model is a mathematical description of 
the key channel characteristics, so channel modeling is a ba‑
sis for the design, simulation, and planning of wireless com‑

munication systems.
The goal of channel research is to provide a model that can 

generate channel parameters according to the input parameter 
set. This model can be a mathematical model based on statisti‑
cal fitting, such as the common empirical statistical model[2] 
and the geometric stochastic model[3]. For example, Ref. [4] 
conducted statistical modeling of features such as arrival time 
and power of multipath components, ensuring they conform to 
specific distributions. Ref. [5] introduced a geometric 
multiple-input multiple-output (MIMO) channel model for 
millimeter-wave (mmWave) mobile-to-mobile (M2M) applica‑
tions, using a few clusters placed on two rings centered on the 
transmitter and receiver. In addition, the deterministic model 
based on numerical analysis and simulation is another chan‑
nel modeling idea[6]. For example, the classic Longly-Rice 
model[7] uses a two-ray interference approach from geometric 
optics to predict radio wave propagation characteristics within 
the line-of-sight region. Ref. [8] investigated the channel char‑
acteristics of massive MIMO systems in the 26 GHz mmWave 
band for indoor scenarios using ray-tracing (RT). The simula‑
tion results are consistent with the measured results. With the 

This work was supported by the National Key R&D Program of China un⁃
der Grant No. 2023YFB2904802 , National Natural Science Foundation of 
China under Grant Nos. 62301022, 62221001, 62431003, and 62101507, 
Young Elite Scientists Sponsorship Program by CAST under Grant No. 
2022QNRC001, and Program for Science & Technology R&D Plan Joint 
Fund of Henan Province under Grant No. 225200810112.
The corresponding author is YANG Mi.

20



ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

AI Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge 

A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels   Special Topic

expansion and application of artificial intelligence (AI) meth‑
ods such as deep learning, researchers have proposed some 
AI-based channel models that use neural networks instead of 
traditional mathematical formulas and numerical simulations 
to generate channel parameters. Typical examples are found 
in Refs. [9–11]. Specifically, Ref. [9] used the convolutional 
autoencoder to extract 3D-building information to assist path 
loss prediction in street canyon scenarios. Ref. [10] employed 
convolutional neural networks to predict channel path loss us‑
ing receiver-centric satellite maps as environmental features. 
Ref. [11] used a multilayer perceptron and long short-term 
memory (LSTM) to estimate real-time channel attenuation at 
Q-band. For a further overview of the existing classical model‑
ing methods, please refer to Refs. [12–14].

No matter what the specific modeling method is, a consen‑
sus is that the channel model is essentially a mapping relation‑
ship. Although the model input attributes can be heteroge‑
neous data such as scene category labels, antenna heights, 
three-dimensional models, and satellite images, the mapping 
relationship is generally between the environment and the cor‑
responding channel parameters. The question worth consider‑
ing here is whether these channel models, which we can col‑
lectively call environment-driven models, are the only solu‑
tions to channel research, in other words, whether these mod‑
els can solve all the demands for channel data at present. For 
most application requirements, such as network deployment 
and coverage prediction, it is meaningful to input the neces‑
sary environmental characteristics to get the channel param‑
eters of the corresponding input scene. However, it should not 
be forgotten that channel data are not only applied to 
environment-related applications. In other words, the exis‑
tence of environment input should not be a prerequisite for 
generating channel data. For example, after obtaining some 
measured channel data through expensive and time-
consuming actual measurement, researchers want to get more 
data under the same conditions conveniently. Another similar 
situation is that an algorithm needs to use a lot of real channel 
data to evaluate its performance, but the existing data are in‑
sufficient. The above two hypothetical situations are real cases 
in research and engineering practice. At the moment, the clas‑
sic environment-driven model cannot meet all the require‑
ments. Faced with these situations, researchers may need a so-
called data-driven channel model, which can learn the charac‑
teristics of a small number of existing data and output a large 
number of similar data. Alternatively, it can be interpreted as 
a digital twin model, which constructs a virtual copy of the 
real physical channel, and this “copy” has the same statistical 
characteristics as the original data. In a word, this data-based 
modeling process, which does not depend on environmental in‑
put, can be called Channel Data Enhancement. It has signifi‑
cant practical value in some application scenarios.

At present, there have been several studies on data-driven 
channel models. As the groundbreaking work, Ref. [15] intro‑

duced the use of generative adversarial networks (GAN) to ad‑
dress autonomous channel modeling. Building on this, the 
GAN model was utilized to learn the distribution of additive 
white Gaussian noise channels. Ref. [16] developed a link-
level MIMO channel generation method named ChannelGAN 
to support deep learning-based channel state information 
(CSI) feedback research. For different scenarios, Ref. [17] pro‑
posed a GAN-based channel data augmentation algorithm for 
communication systems in industrial Internet of Things (IIoT) 
scenarios to address the issue of insufficient data. Ref. [18] 
performed the GAN model to generate channel responses to 
address the issue of inadequate channel estimation perfor‑
mance in high-speed train scenarios. However, despite these 
efforts, some shortcomings still exist. Most studies rely on ide‑
alized simulated channel data, whereas measured data can 
more accurately capture various interference factors presented 
in real-world environments. Developing channel models based 
on measurement can enhance their credibility. Additionally, 
whether the channel characteristics described by these models 
are consistent with real data has not yet been comprehensively 
validated. Therefore, this paper proposes a channel data en‑
hancement platform, the core capability of which is to quickly 
generate a large number of simulation data with similar char‑
acteristics based on a small number of data. Specifically, the 
platform consists of three subsystems: the channel measure‑
ment subsystem, which is used to collect the measured data 
and construct the basic data set; the data enhancement algo‑
rithm, which provides a model that can learn the characteris‑
tics of the data set and output the simulation data; the applica‑
tion software, which integrates the algorithm and necessary 
control functions to provide a convenient interface for users.

The rest of this paper is organized as follows. Section 2 de‑
scribes the proposed channel data enhancement platform de‑
sign and architecture. Section 3 is about the subsystems re‑
lated to channel measurement and the data set in the platform. 
Following that, we explain the proposed data enhancement al‑
gorithm in Section 4. The algorithm verification and applica‑
tion software are described in Section 5. Finally, Section 6 
concludes the paper.
2 Platform Design and Architecture

In this paper, a channel data enhancement platform is 
implemented, which can complete channel measurement in a 
high dynamic scene and then use the proposed algorithm to 
learn and measure channel characteristics, greatly expanding 
the number of channel data. The overall design and architec‑
ture of the proposed platform are shown in Fig. 1.

The platform is divided into three subsystems:
1) Channel measurement subsystem
Based on the software-defined radio instrument, this subsys‑

tem realizes broadband channel sounding. The subsystem can 
be applied to dynamic scenarios covering the sub-6 GHz fre‑
quency band. The measurement subsystem contains a sepa‑
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rate transmitter and a receiver, which can process and display 
the collected signals in real time. In the dynamic scene, the 
back-to-back calibration can eliminate the influence of system 
response errors of cables and transceivers.

Due to the diversity of measurement scenarios, the core 
functional indicators of the measurement subsystem need to be 
defined by software. This can be scalable enough to meet the 
needs of different measurement environments. Specifically, 
the subsystem transmitter needs to complete baseband signal 
generation, power amplification, signal processing, and visual 
display. The receiver needs to complete signal reception, base‑
band signal processing, channel coefficient extraction, chan‑
nel parameter analysis, visual display, and others. The overall 
structural design is complex and needs to be adapted to the co‑
operation on different hardware devices. Therefore, the soft‑
ware and hardware design and development of the measure‑
ment subsystem is one of the main difficulties in the whole 
platform implementation process. The measurement system 
program is flexible and can be migrated to different SDR hard‑
ware. The hardware configuration can be flexibly combined ac‑
cording to the requirements of the actual environment.

2) Data enhancement algorithm
The data enhancement algorithm needs to use the measured 

channel impulse response (CIR) obtained by the measurement 
subsystem. Then, the channel simulator based on GAN is 
trained to learn the intrinsic characteristics of measured data. 

The proposed method reduces the complexity of channel simula‑
tion and can quickly generate channel data by using the trained 
model. In addition, the accuracy of generated channel data is 
verified by channel high-order statistical characteristics, such 
as power delay profile, shadow fading, and delay spread.

The key point of subsystem algorithm design is to learn the 
characteristics of measured data. However, with the increase 
of measurement bandwidth, the time delay resolution of data 
becomes higher. In addition, CIRs are composed of multiple 
ray clusters, which contain a lot of noise signals. Therefore, 
the prime difficulty in data preprocessing is to denoise and re‑
duce the dimension of the CIR matrix while retaining effective 
information as much as possible. Furthermore, the model net‑
work structure includes the number and types of networks, the 
logical relationship between networks, and others. These ar‑
chitectures directly affect the complexity and, more impor‑
tantly, the accuracy. In addition, the appropriate training algo‑
rithm should be carefully selected for the specific network 
structure. Architecture and training are the key control factors 
of model performance.

3) Application software
After verifying the channel simulation ability of the model 

through experiments, the focus shifts to building a convenient 
software platform. This paper designs an easy-to-operate simu‑
lation application program based on MATLAB, which can 
complete the functions of model loading, simulation data gen‑

Figure 1. Proposed channel data enhancement platform architecture
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eration, real-time verification, display, and data storage. In ad‑
dition, a visual interface is designed.
3 Channel Measurement and Datasets

The broadband wireless channel measurement subsystem 
includes a separate transmitter and a separate receiver. The 
transmitter consists of a baseband signal source, a local oscil‑
lator, an up-converter, a power amplifier, a filter, a signal pro‑
cessing unit, and an antenna. The receiver is composed of a 
baseband signal source, a local oscillator, a down-converter, a 
low noise amplifier, an electronic switch, a data storage unit, 
and an antenna[19]. The transmitter sends a signal at a specific 
carrier frequency to act as a sounding signal, and the receiver 
can identify and detect the signal after channel attenuation 
and distortion.

The channel measurement subsystem uses multi-carrier sig‑
nals as sounding signals, as shown in Eq. (1).

sk = ∑
i = 0

L - 1
di exp ( )j2iπk

L    (0 ≤ k ≤ L - 1) (1),

where L represents the number of subcarriers and di repre‑
sents the symbol of each subcarrier. The out-of-band power is 
reduced by rectangular window function filtering. At the re‑
ceiver, the received signal is shown in Eq. (2).

Y ( f ) = X ( f ) HTX ( f ) H ( f ) HRX ( f ) (2),
where X ( f ) and Y ( f ) represent the transmitted and received 
signals in the frequency domain respectively. H ( f ) represents 
the channel transfer function, and HTX ( f ) and HRX ( f ) are 
the transfer functions of equipment and cables at the transmit‑
ter and receiver respectively. The transmitter and receiver are 
directly connected by cables for back-to-back calibration, so 
the influence of equipment and cables on the measurement re‑
sults can be eliminated.

The measurement subsystem takes the signal transceiver 
based on software-defined radio (SDR) as core hardware. The 
transmitter implements the loading and generation of base‑
band sounding signals and the up-conversion of the baseband 
signals through secondary frequency conversion (baseband to 
intermediate frequency and intermediate frequency to radio 
frequency). The receiver samples and down-converts the sig‑
nals captured by the antennas to obtain the baseband signals 
and stores them in the local disk. This subsystem realizes 
hardware device driving and signal processing, and finally ob‑
tains key channel parameters and displays them visually. The 
receiver and transmitter of this subsystem use a rubidium 
atomic clock calibrated by the global navigation satellite sys‑
tem (GNSS) as the reference clock source to ensure the consis‑
tency of the 10 MHz reference clock[20]. Main parameters of 
the subsystem are shown in Table 1, and the equipment is 
shown in Fig. 2.

The software of the channel measurement subsystem is de‑
veloped based on LabVIEW. LabVIEW is a program develop‑
ment environment developed by National Instruments (NI), 
which is well compatible with SDR-based signal transceivers 
used in subsystems and can also easily establish a visual inter‑
face. The main purpose of subsystem software is to drive and 
control the hardware. The software design should be able to 
call the hardware equipment, configure the measurement pa‑
rameters such as frequency, bandwidth, clock, and sampling 
rate of the equipment, and ensure that the received signal data 
can be stored[21].

The subsystem also provides a visual user interface for tes‑
ters, as shown in Fig. 3. The interface includes the configura‑
tion of various parameters, system running state detection, 
and error reporting. To observe the channel state in real time 
during the measurement process, the subsystem also pro‑
cesses some collected data in real time and gets typical chan‑
nel parameters. In Fig. 3, the receiver interface shows the CIR 
at the current time. Besides CIR, the current time domain 
waveform chart and frequency spectrum chart can be dis‑
played in real time.

The original response obtained by the subsystem includes 
the channel response, the inherent response of the measure‑
ment system, and the antenna radiation characteristics. There‑
fore, system calibration verification is needed to eliminate the 
errors caused by these factors. As shown in Fig. 2, the calibra‑
tion verification of the subsystem is divided into three parts: 

Table 1. Parameters of measurement subsystem

Parameter
Carrier frequency

Bandwidth
Transmit power

Transmit signal type
Transmit signal samples

Snapshot interval

Value
5.9 GHz

Max to 160 MHz
Max to 55 dBm

Multi-carrier signals
1 024
6.4 μs

Self-calibration

Back-to-back measurement

Figure 2. Vector signal transceiver equipment

Antenna calibration
Antenna radiation pattern difference

Errors of cables,adapters, etc.

Internal inherent error of instru‑ment
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instrument self-calibration, back-to-back measurement cali‑
bration, and antenna system calibration.

The purpose of instrument self-calibration is to make the 
performance and output of the instrument conform to the nomi‑
nal value. The transmitter used in this paper has a self-
calibration function, and subsequent measurements can only 
be started after the self-calibration has passed before each 
measurement. Back-to-back measurement can eliminate the 
errors caused by cables and adapters. The specific method 
can be summarized as follows. The reference measurement is 
conducted when the channel response is known by connecting 
the attenuator directly between the transmitter and the re‑
ceiver. Thus, the system’s inherent response is obtained. Dur‑
ing the actual measurement data processing, the collected 
data are processed using these reference measurement results 
to eliminate the inherent response of the system and then get 
the accurate channel response. Antenna calibration refers to 
the measurement of antenna gain in all propagation directions 
in an anechoic chamber, which is an important prerequisite to 
ensure the accuracy of test results. The measurement error 
from antenna radiation can be eliminated when processing the 
received data.

The experimental study on channel measurement in this pa‑
per was carried out in Beijing, China. During the field mea‑
surements, the transmitter and receiver vehicles moved in the 
same direction and kept an interval of 20–40 m. During the 
measurement period, the maximum vehicle speed was no 
more than 70 km/h, and the system acquired 16-channel 

snapshots per second. To reduce the influence of random 
backscatters, measurement routes were restricted to empty 
road sections. Both the transmitting and receiving antennas 
were installed on the roof, and the antenna heights were about 
1.8 m. The total number of measured channel snapshots was 
about 7 000 groups.
4 Proposed Data Enhancement Algorithm

4.1 GAN-Based Algorithm
GAN is a kind of deep generation model, which can implic‑

itly learn the probability distribution of input images to gener‑
ate identically distributed images. Initially developed for im‑
age generation, GAN is not a simple method for copying or 
imitating reality, nor does it merely blend or average multiple 
real samples. Instead, it uses two game-theoretic neural net‑
works, namely the generator (G-network) and the discrimina‑
tor (D-network), to learn intrinsic statistical patterns of real 
data, without direct objective functions.

G-network is used to learn the distribution of real data to 
generate identically distributed data, and D-network judges 
the probability whether its input data comes from reality or 
generation. Through training, the purpose of the generator is to 
gradually generate realistic data to deceive the discriminator. 
Discriminators want to always be able to distinguish between 
real and generated data. Therefore, the essence of GAN is to 
make the generator learn the approximate value of real data 
distribution through antagonistic learning.

GAN usually has some problems in training, such as mode 
collapse, unstable optimization, gradient disappearance, and 
non-convergence. To avoid the above problems, this paper 
uses Wasserstein GAN with gradient penalty (WGAN-GP) as 
the network framework, which is an improved version of GAN. 
Wasserstein distance, also known as the Earth-Mover (EM) 
distance, is used to evaluate the similarity between two distri‑
butions, which can provide a relatively stable gradient relative 
to Jensen-Shannon (JS) divergence. GP can avoid the problem 
of gradient disappearance caused by large model weights. 
Therefore, WGAN-GP is more stable and converges faster in 
training and can significantly improve the training speed and 
address the slow convergence issue in original WGAN.
4.2 Algorithm-Based Model Design

4.2.1 Generator Design
Fig. 4 illustrates the network architecture and detailed pa‑

rameters of the generator in this algorithm. The model takes 
noise vector as input and generates CIR through the generator 
that uses one-dimensional convolution to extract features. The 
convolution layer can create a convolution kernel, and the in‑
put of this layer is rolled up in a single space (or time) dimen‑
sion to produce the output. The convolution kernel size in the 
generator is set to 3. Subsequently, the batch normalization 
layer is added behind each convolution layer, which acceler‑

Figure 3. Visual interface of channel measurement subsystem

RX: receiver     TX: transmitter
RX

TX
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ates the convergence speed of model training. It also makes 
the model training process more stable to avoid gradient explo‑
sion or gradient disappearance. In addition, this paper 
chooses Leaky Rectified Linear Unit (LeakyReLU) as the acti‑
vation function to alleviate the problem of gradient disappear‑
ance. The expression of LeakyReLU is shown in Eq. (3).

LeakyReLU( x ) = ì
í
î

x,  x ≥ 0
α ⋅ x,  otherwise (3),

where x is the input of LeakyReLU. When x < 0, LeakyReLU 
gives x a slope α. Parameter α is an adjustable superparam‑
eter, and the value set in this paper is 0.2. Because Tanh can 
limit the output to [−1, 1], the generated CIR better matches 
with the real CIR amplitude. Therefore, Tanh is selected as 
the activation function after the last convolution layer, and its 
expression is shown in Eq. (4).

Tanh( x ) = ex - e-x

ex + e-x (4),

where x is the input of Tanh. When the input noise passes 
through six convolution layers, it will pass through the Flatten 
layer, and the result will be mapped into a separable space in 
combination with the fully connected layer. The fully con‑
nected layer maps the learned features to the sample label 
space. Since the generator finally outputs the CIR, it is neces‑
sary to reshape the samples passing through the fully con‑
nected layer.
4.2.2 Discriminator Design

Fig. 5 shows the network architecture and detailed configu‑
ration of the discriminator. The input of the discriminator is 
the CIR sample generated by the generator or the real CIR 
sample. The input channel samples are first zero-padded to fa‑
cilitate the subsequent convolution process. Similar to the gen‑
erator, the discriminator mainly uses one-dimensional convolu‑
tion and LeakyReLU activation function. The convolution ker‑
nel size of the one-dimensional convolution is 5. Finally, it is 
output through the Flatten and fully connected layers. The out‑
put of the discriminator is the probability while the input is a 

Figure 4. Generator network design and detailed parameters

LeakyReLU: Leaky Rectified Linear Unit

Figure 5. Discriminator network design and detailed parameters
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real channel sample or a generated channel sample.
5 Algorithm Verification and Application 

Software

5.1 Algorithm Verification
Algorithm implementation consists of model design, model 

training, and CIR sample generation. The training process fol‑
lows an alternating scheme, where the discriminator is up‑
dated multiple times per generator update to ensure stable 
convergence. The Adam optimization algorithm is employed to 
update the parameters of the GAN network with a learning 
rate of 0.000 05. Upon completing 2 500 training epochs, the 
trained model is saved. Then, in the generation process, the 
saved model is used to generate CIR by inputting the desired 
number of CIR samples along with a 128-dimensional random 
noise vector.

In this section, the similarity between the real and gener‑
ated channels is demonstrated by comparing the distribution 
performance of the power delay profile (PDP), path loss, and 
root mean square (RMS) delay spread between the measure‑
ment and generated data. To facilitate accurate evaluation 
against real channels, this paper generates channel samples 
equal in number to the real ones.

Figs. 6a and 6b illustrate the channel PDP obtained 
through actual measurements and GAN generation, respec‑
tively. It can be seen that GAN-generated PDP closely 
matches the measured data in terms of morphology, especially 
aligning with the peak positions in the delay domain observed 
in the measurements. Additionally, the generated channels 
preserve the diversity, randomness, and noise-affected charac‑
teristics of real channels, demonstrating high fidelity. Fig. 6c 
presents a comparison of the averaged PDP. Specifically, 
when calculating the PDP, the samples are averaged accord‑
ing to the number of samples, as shown in Eq. (5).

PDP = 1
N∑

N
| h (n, τ ) |2 (5),

where N is the total number of channel samples, h represents 
the measured or generated CIR, n is the sample index corre‑
sponding to the number of delay points, and τ refers to the 
delay points.

For the real channel, the average PDP is depicted by the 
black curve in Fig. 6c. The average PDP of the channels gen‑
erated by the AI model after 2 500 training iterations is shown 
by the blue dashed line with square markers. For comparison, 
channels generated by the model after training for 20 epochs 
are included, with PDP illustrated by the purple solid line 

Figure 6. Algorithm verification results: (a) measured PDP; (b) generated PDP; (c) PDP comparison; (d) path loss; 
(e) RMS delay spread; (f) BER performance

BER: bit error rate     PDP: power delay profile     RMS: root mean square     SNR: signal-to-noise ratio
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with diamond markers in Fig. 6c. It can be observed that the 
channel power distribution generated by the model trained for 
20 epochs ranges in [ − 100 dB, − 60 dB], whereas the power 
distribution of both the real channel and the channel gener‑
ated by the model trained for 2 500 epochs spans from −120 
dB to −60 dB. This discrepancy arises from insufficient train‑
ing, which prevents the model from fully capturing channel 
characteristics and distribution. As a result, the generated 
channel data lack multipath details and exhibit higher noise 
power. Channels generated by a high-performing GAN model 
closely resemble the real channels, including the transition of 
the PDP from peak values to a gradual stabilization.

Further validating the distribution of channel parameters is 
crucial for evaluating model performance. Path loss is used to 
characterize the power loss that occurs during signal transmis‑
sion, which is an important parameter for evaluating signal 
coverage area and quality in wireless communication systems. 
It can be calculated using PDP, as shown in Eq. (6).

PL = 1
Nτ ( )∑

Nτ

|| h (n, τ ) 2 (6),

where Nτ denotes the number of delay points, and h represents 
the measured or generated channel. Fig. 6d illustrates the 
path loss distributions for both the measured and generated 
data. It is evident that the generated data (blue histogram) ex‑
hibits a high degree of overlap with the measurement (red his‑
togram) in terms of path loss. Meanwhile the mean path loss 
values for the measured and generated channels are 64.80 dB 
and 64.47 dB, further demonstrating the high similarity be‑
tween the generated and real channels.

RMS delay spread is used to describe the degree of delay 
dispersion in a channel, which reflects the impact of the delay 
distribution of each propagation path on the received signal in 
a multipath propagation environment. RMS delay spread can 

be calculated as follows:

τRMS (n ) =
∑

τN

τ (n ) 2PDP (n, τ )
∑

τN

PDP (n, τ ) - -τ (n ) 2 (7),

where τN represents the delay component of the N-th channel 
sample, -τ (n ) refers to the average delay. -τ (n ) is calculated as:

-τ (n ) =
∑

τN

τ (n )PDP (n, τ )
∑

τN

PDP (n, τ ) (8).

Comparing the histograms displaying the RMS delay spread 
distributions of the measured and GAN-generated channels, 
Fig. 6e shows that both channels exhibit a high degree of con‑
sistency in their distribution shapes and ranges. Additionally, 
the mean RMS delay spreads for the measured and the gener‑
ated channels are 30.65 ns and 30.74 ns, further validating 
the similarity between the two channel distributions. This also 
confirms the strong performance of the GAN model in captur‑
ing the channel delay characteristics.

Furthermore, the generation performance of the standard 
GAN model is further compared and evaluated. Figs. 7a and 
7b present the statistical distributions of path loss and RMS 
delay spread from the generated channel by the GAN model. 
By comparing these results with the WGAN-GP performance 
in Fig. 6, it is evident that WGAN-GP achieves better align‑
ment between the statistical characteristics of the generated 
channel data and those of the measured channel. Fig. 7c pro‑
vides a quantitative assessment of the fidelity of the generated 
channel data using the Frechet Inception Distance (FID) met‑
ric. The results indicate that the WGAN-GP model achieves 
significantly lower FID scores (0.114 3 for path loss and 0.106 
for RMS delay spread) compared to the standard GAN model 

Figure 7. Standard GAN model generation performance: (a) path loss; (b) RMS delay spread; (c) FID comparison
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(7.811 6 and 0.882 9, respectively). This demonstrates that 
WGAN-GP is capable of generating channel data with higher 
fidelity, ensuring a closer match to the statistical characteris‑
tics of measurements.

To validate the effectiveness of GAN-generated channels, a 
simplified link-level simulation was conducted for evaluation, 
which employed phase shift keying (PSK) modulation with 
100 transmitted bits and a modulation order set to 16. Fig. 6f 
compares the bit error rate (BER) of the real channel with that 
of the GAN-generated channel, where the BER curves of the 
real and GAN-generated channel are highly consistent, exhib‑
iting similar BER trends under different signal-to-noise ratio 
(SNR) conditions. This high level of similarity indicates that 
the GAN-generated channel can effectively simulate the real 
channel in terms of error performance.
5.2 Application Software

The main function of the application software is to generate 
channels by using the previous algorithm, and the visual inter‑
face is shown in Fig. 8. The software can be divided into two 

sub-functions: one-time channel generation and uninterrupted 
real-time channel generation. The former can generate a speci‑
fied number of channel data at one time. In addition, the soft‑
ware can track the duration record generated by the channel. 
When generating channels in real time, the function of select‑
ing generation batches is added. If the generation batch is se‑
lected, the channel can be generated in real time according to 
the batch size, and the dynamic generation process of the 
channel and the dynamic distribution of the channel param‑
eters can also be seen on the visualization panel. After the dy‑
namic generation of the channel is completed, the software 
will detect the end of the generation and turn the indicator 
light green as a prompt.

Fig. 9 shows the operation flow of the software. First, the 
path needs to be set, including selecting measurement data 
and generating models. The path to store the generated chan‑
nel data should also be configured. Next, the options of link 
simulation are configured. The modulation mode can be PSK 
or quadrature amplitude modulation (QAM), and the modula‑
tion order can be 4 or 16. In link simulation, we can choose 
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whether to perform channel estimation or not. Then, we should 
choose whether to generate channels in real time in the basic 
settings. If not, the software will generate all the channel data 
with the set number of channels at one time. If it is real-time 
generation, we need to further set the generation batch; the 
software will subsequently generate channel data according to 
the set generation batch, and the display window will dynami‑
cally display the whole channel generation process. Finally, af‑
ter clicking the Start button, the software will initiate the gen‑
eration of channel data based on the specified configuration. 
Clicking the Clear button will then clear the contents of the 
display window, allowing the settings to be reset for generating 
channel data under the new configuration.
6 Conclusions

Channel characteristics and models are the basis of commu‑
nication system design and evaluation. Meanwhile, it has been 
a consensus that channel data is the support of channel re‑
search and modeling. To address the current issue of challeng‑
ing channel data acquisition, this paper proposes a channel 
data enhancement platform based on the idea of a digital twin 
channel. The platform includes three key subsystems: channel 
measurement, enhancement algorithm, and application soft‑
ware. The measurement subsystem is a broadband dynamic 
channel measurement system based on the SDR architecture, 
which can complete channel data acquisition in the sub-6 GHz 
frequency. The channel enhancement algorithm, the core of 
the proposed platform, is a neural network based on the GAN 
architecture. It can learn the intrinsic characteristics of real 
channel data and quickly generate a large number of highly 
similar simulation channels. We verify and evaluate the gener‑
ated channel under the high-order characteristics of power de‑

lay profile, path loss, shadow fading, and root mean square de‑
lay spread. The results show that the generated channel is 
similar to the original channel in statistical characteristics and 
has sufficient randomness. Finally, the platform includes inte‑
grated software for engineers and researchers, which can call 
the above algorithm and generate channel data in real time. 
The result of this paper is a potential channel modeling and 
simulation methodology.
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1 Introduction

With the development of 6G wireless networks, the 
demands for high-performance communications 
are increasing, particularly in densely populated 
and built-up areas such as central business dis‑

tricts (CBDs). As the core business hub of China’s capital, 
Beijing CBD faces exceptionally high wireless communica‑
tion demands. The unique architecture and dense traffic flow 

in this area have a significant impact on wireless channel 
characteristics. 6G networks are expected to meet these chal‑
lenges by providing wider coverage, higher data rates, and 
lower latency. Intelligent transportation systems (ITSs), as a 
key technology to enhance traffic management and transpor‑
tation efficiency, promote traffic safety and efficiency 
through the application of information technology, communi‑
cation equipment, computing technology, and artificial intel‑
ligence (AI). Vehicular communication is an important part 
of ITS, which significantly improves road safety via real-time 
communications between vehicles[1]. However, in high-
density and high-traffic urban environments like Beijing 
CBD, vehicular communications are challenged by complex 
and dynamic wireless channel conditions. Accurate channel 
modeling is essential to ensure the reliability and efficiency 
of vehicular communications. Furthermore, traffic density dif‑
fers significantly between peak and off-peak hours. As a re‑
sult, more accurate channel models are essentially required 
to depict the wireless communication environment and to 
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guide a more precise design of the communication system.
Digital twin (DT) is a digital reconstruction of physical en‑

tities and can be utilized as an efficient method to character‑
ize, simulate, and visualize physical entities[2]. DT has advan‑
tages in representing physical entities that are difficult to 
model and replicate. DT enables the creation of a virtual rep‑
lica of the real-world environment, which allows the dynam‑
ics of the channel to be accurately modeled. 

Recent studies have integrated DT with wireless communi‑
cation systems. DT is utilized to construct virtual models that 
simulate the real world and facilitate data acquisition based 
on the constructed models. A platform for DT was proposed 
in Ref. [3], along with a synthetic dataset combining the data 
obtained through the real world and those obtained through 
virtual copies. This approach reduces the burden of collect‑
ing real-world channel data and significantly decreases the 
system overhead. DT can also reduce the data acquisition 
overhead of the communication system and improve the sys‑
tem accuracy. In Ref. [4], the authors introduced a ray-
tracing (RT) oriented approach for DT demonstration of radio 
propagation in multiple frequency bands from microwave to 
visible light. Furthermore, a super-resolution modeling 
method was developed by fusing RT and AI algorithms to im‑
prove the stability and accuracy of communications. The au‑
thors in Ref. [5] utilized site-specific DT models to train 
deep learning (DL) models. The proposed DT-based method 
generates site-specific synthetic channel state information 
(CSI) data through 3D modeling and RT methods, enabling 
effective training of DL models while reducing the overhead 
of real-world data collection. To further improve model per‑
formance, an online data selection approach is used to refine 
the DL model training with a small real-world CSI dataset. 
Since DT can contribute to balancing the overhead and the 
accuracy of communication systems, it has been widely ad‑
opted in various communication scenarios, such as UAV and 
vehicular communication systems. A framework for DT-
based UAV applications was proposed in Ref. [6], where a 
task manager orchestrated interactions between the DT sys‑
tem and physical UAVs. DT can assist UAVs to achieve 
more efficient flight paths and reduce energy consumption, 
which improves the efficiency of UAV communication sys‑
tems. For vehicular communication systems, a city-model-
aware DL algorithm for dynamic channel estimation in urban 
vehicular environments was proposed in Ref. [7]. The pro‑
posed model gained a balance between accuracy and timeli‑
ness. In summary, DT effectively reduces the overhead of 
data acquisition and significantly improves system accuracy 
by reflecting the dynamic changes of the environment in real 
time. DTs have been applied to a variety of typical communi‑
cation scenarios. However, accurate comprehension and mod‑
eling of the environment are essential to further enhance sys‑
tem security and reliability.

To accurately depict the communication environment, the 

channel characteristics between the transmitter (TX) and the 
receiver (RX) need to be precisely characterized. Therefore, 
channel modeling is the cornerstone of communication sys‑
tems, and more accurate channel models are essential to fur‑
ther improve the efficiency of communication systems. Con‑
ventional channel modeling approaches, including stochastic 
and deterministic models, have significantly contributed to 
wireless communication systems. However, the methods have 
limitations when applied to complex and dynamic urban envi‑
ronments. For example, stochastic models depend on pre‑
defined assumptions, which may not accurately capture varia‑
tions in specific scenarios[8]. Deterministic models, such as 
RT methods, provide better accuracy with high computa‑
tional overhead and the difficulty of real-time adjustment[9].

DT provides a new paradigm for channel modeling as it en‑
ables accurate physical-virtual world mapping. By precisely 
modeling and dynamically updating the virtual environment, 
DT can capture the changing characteristics in the environ‑
ment in real time. When integrated with machine learning 
(ML) algorithms, DT can also extract key characteristics from 
complex scenarios and realize high-precision modeling of di‑
verse channel characteristics. In Ref. [10], the authors pro‑
posed a channel modeling approach based on generative ad‑
versarial networks for DT environments, which can generate 
channel data with a statistical distribution that closely 
matches the measured channel. A data-driven continuous tra‑
jectory modeling method for a user equipment with a DT 
channel was proposed in Ref. [11]. This method generates 
channel models whose spatial and temporal characteristics 
match the real-world wireless channels. Nevertheless, cur‑
rent studies on DT-based channel modeling are still at the 
preliminary stage, particularly on high-precision modeling in 
dynamic environments. Most existing DT-based channel mod‑
els cannot handle high-mobility vehicular communication 
scenarios. Therefore, there is an urgent need to explore DT-
based methods for improving the accuracy of vehicular com‑
munication channel modeling.

To fill this gap, we explore the application of DT to chan‑
nel modeling and select a typical urban communication sce‑
nario, i. e., vehicular communications within Beijing CBD. 
We propose a new method of channel modeling based on DT 
for complex urban environments. The main contributions and 
novelties of this paper are summarized as follows.

1) A new reliable DT space for Beijing CBD is con‑
structed, where the physical and electromagnetic spaces are 
precisely aligned by AirSim and Wireless InSite. It provides 
a highly accurate virtual environment for channel modeling.

2) A DT-based dataset is constructed for Beijing CBD 
for the first time, which includes sensory data, i. e., light 
detection and ranging (LiDAR) point clouds, RGB images, 
and channel data. The dataset is constructed in complex 
and dynamic scenarios and comprehensively captures the 
unique characteristics of vehicular communications in ur‑
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ban environments.
3) A DT-enabled vehicular communication channel model 

for Beijing CBD is developed, which models and analyzes the 
channel characteristics of peak and off-peak hours in Beijing 
CBD for the first time. Furthermore, the channel parameters, 
e. g., number, distance, angle, and power of scatterers with 
different velocities, are developed under different transporta‑
tion periods.

4) Based on the proposed channel model for Beijing CBD, 
key channel statistical properties, i.e., time-frequency corre‑
lation function (TF-CF) and Doppler power spectral density 
(DPSD), are derived and simulated. According to the simula‑
tion results, the effect of different transportation periods on 
the channel statistical properties is investigated. Simulation 
results are consistent with the experimental results based on 
RT, which verifies the accuracy and practicability of the 
channel model based on DT.

The remainder of this paper is organized as follows. Sec‑
tion 2 describes the DT space for Beijing CBD. Section 3 pro‑
poses a novel DT-enabled vehicular communication channel 
model for Beijing CBD. Section 4 presents the statistical 
properties of the vehicular communication channel and com‑
pares the simulation results with those based on RT. Finally, 
Section 5 concludes the paper.
2 DT Space for Beijing CBD

Beijing CBD provides a unique scenario for ITS applica‑
tions with its high-density buildings, complex transportation 
networks, and diverse communication requirements. How‑
ever, conventional channel modeling methods face several 
challenges in complex urban scenarios, particularly in model‑
ing multipath propagation and dynamic changes. DT technol‑
ogy enables the construction of digital spaces that match the 
real world to accurately reflect real-time environmental 
changes. Therefore, a DT space for Beijing CBD is con‑
structed to achieve accurate modeling of the physical envi‑
ronment and dynamic traffic characteristics of the area. This 
DT space provides a robust platform for channel modeling, 
which can support the research of high-precision vehicular 
communication systems.
2.1 Construction of DT Space for Beijing CBD

In Beijing CBD, the diversity of building distribution and 
types has a significant impact on the signal propagation char‑
acteristics. The CBD, as the core business district of the capi‑
tal, features high building density with numerous high-rise 
and modern office buildings. The different heights, shapes, 
layouts, and building materials of these buildings signifi‑
cantly influence wireless signal propagation. As for transpor‑
tation, the traffic volume in Beijing CBD peaks during rush 
hours, and vehicle quantity and density directly affect wire‑
less signal transmission.

To construct a DT space that can match the real environ‑

ment well, we first use Blender, a 3D modeling tool, to estab‑
lish a scenario identical to Beijing CBD, leveraging satellite 
maps and 3D models of the buildings. To ensure the accu‑
racy of the constructed scenario, the heights, sizes, and inter-
building distances are strictly consistent with the real world. 
Then we utilize Wireless InSite in Ref. [12] to build the elec‑
tromagnetic space. The process involves importing the con‑
structed 3D model into Wireless InSite. Then the propaga‑
tion parameters are set with a frequency of 5.9 GHz, a band‑
width of 20 MHz, and an omnidirectional antenna for trans‑
ceivers. Parameters related to electromagnetic phenomena, 
such as reflections and dispersions, are configured in Wire‑
less InSite to simulate channel characteristics in specific fre‑
quency bands. Meanwhile, the influence of buildings, ve‑
hicles, and other obstacles in radio propagation is ensured to 
be effectively reflected. Two scenarios are constructed for in‑
vestigating the effect of peak and off-peak traffic conditions 
on channel characteristics. The objects in the two scenarios 
remain identical except for the number of vehicles. Vehicles 
are 57 during peak hours and 34 during off-peak hours. After 
establishing the electromagnetic environment model, the 
model exported from Wireless InSite is imported into the Air‑
Sim platform for detailed visualization, which provides a 
simulation of the visual and dynamic environment similar to 
Ref. [13]. Each vehicle in AirSim is equipped with sensory 
devices, i. e., RGB cameras and LiDAR devices. The dy‑
namic vehicular trajectories simulated in AirSim remains 
identical to those in Wireless InSite. With the precisely 
aligned scenarios in Wireless InSite and AirSim, the real-
world physical environment is accurately replicated in the 
virtual space. The environment consistency across different 
platforms is maintained and dynamically updated, facilitat‑
ing the construction of a highly reproducible DT space.
2.2 Data Collection and Processing in DT Space

Beijing CBD scenarios in Wireless InSite and AirSim are 
presented in Fig. 1. To construct the DT-based Beijing CBD 
vehicular communication dataset, a simulation setup in 
Wireless InSite and AirSim is required. The number of simu‑
lation snapshots is set to 300 with a time interval of 0.01 s. 
The batch generation of the scenarios is set up through 
MATLAB scripts in Wireless InSite, and the position of the 
vehicles is simulated through Python scripts set up by frame 
in AirSim. The vehicular trajectories during off-peak hours 
are shown in Fig. 2. Sensory data (LiDAR point clouds and 
RGB images) and communication data are collected. Simulta‑
neously, the moving vehicles establish the Beijing CBD ve‑
hicle communication dataset based on DT. The communica‑
tion links simulated in both transportation periods are identi‑
cal, as shown in Fig. 2. The constructed dataset consists of 
10 800 LiDAR point clouds, 10 800 RGB images, and 9 000 
communication link data.

The high mobility of multiple transceivers and scatterers 
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results in complex characterization. Therefore, the detection 
of the velocity properties of scatterers is extremely signifi‑
cant. With the support of sensing data (LiDAR point clouds 
and RGB data), zero velocity scatterers (ZVSes) and non-zero 
velocity scatterers (NVSes) can be detected and matched to 
static objects and dynamic vehicles. The LiDAR point 
clouds, combined with the clustering algorithm and RGB im‑
ages, can effectively distinguish between the ZVS and those 
with non-zero velocity. The point cloud data are prepro‑
cessed and then clustered using the density-based spatial 
clustering of applications with noise (DBSCAN) clustering al‑
gorithm in Ref. [14], a typical ML algorithm for grouping the 
point clouds. ZVS sets usually correspond to static objects 
such as buildings, which remain stable over multiple time 
frames, while NVS sets correspond to dynamic objects (ve‑
hicles), whose positions change over time. The two types of 
scatterers can be accurately distinguished by matching point 
cloud clusters in different time frames and combining them 
with velocity estimation methods. Some scatterers cannot cor‑
respond to any object due to exceeding the detection range of 
the LiDAR sensor. Since unknown scatterers are usually far 
away from the transceiver and the received power via them is 

very small, they can be ignored in the channel realization. 
Fig. 1 characterizes the scatterers extracted from the RT-
based wireless channel data.
3 DT Enabled Channel Modeling

Based on the constructed DT space, a DT-enabled vehicu‑
lar communication channel model for the Beijing CBD area 
is proposed, which considers the impact of different traffic 
densities for peak and off-peak hour periods. Moreover, to pa‑
rameterize the proposed model more accurately, the scatterer 
properties, i. e., number, distance, angle, and power of scat‑
terers with different velocities, are modeled and analyzed. 
Furthermore, the channel non-stationarity and consistency in 
the time domains are studied.
3.1 Framework of DT-Enabled Channel Model for Bei⁃

jing CBD
The channel impulse response (CIR) of the vehicular com‑

munication channel h ( t, τ ), i.e., the CIR of the transmission 
link from the i-th vehicle to the j-th vehicle, can be repre‑
sented as:

CBD: central business district      DT: digital twin      LiDAR: light detection and ranging      RX: receiver      TX: transmitter
Figure 1. DT space for Beijing CBD vehicular communication scenarios
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where Ω( t ) represents the Ricean factor of 
the transmission link from the i-th vehicle 
to the j-th vehicle. ηGR ( t ), ηz ( t ), and 
ηnz ( t ) are the power ratios of the ground 
reflection component, component via clus‑
ters with zero velocity, and component via 
clusters with non-zero velocity in the 
transmission link from the i-th vehicle to 
the j-th vehicle; they satisfy ηGR ( t ) +

ηz ( t ) + ηnz ( t ) = 1. The representation of the proposed DT-
enabled vehicular communication channel model for Beijing 
CBD is depicted in Fig. 3. The distance between transceivers 
is Di, j ( t0 ).

Figure 2. Vehicular trajectories and communication links under off-peak DT-enabled Beijing CBD scenarios

Figure 3. Geometry of the proposed DT-enabled vehicular communication channel model for 
Beijing CBD
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3.1.1 Ground Reflection Component
The ground reflection component complex channel gain of 

the transmission link from the i-th vehicle to the j-th vehicle 
can be represented as

hGR ( t ) = Q ( t ) PGR ( t ) × expì
í
î

j2π é

ë
êêêê∫

t0

t

f GR,Vi ( t )dt +

∫
t0

t

f GR,Vj ( t )dtù
û
úúúú + jφGR ( t )üý

þ
(2),

where Q ( t ) is a rectangular window function[15]; it equals 1 
when t0⩽t⩽T0 (where T0 means the observation time interval), 
otherwise equals 0. PGR ( t ), f GR,Vi /Vj ( t ), φGR ( t ), and τGR ( t ) de‑
note power, Doppler frequency at the i/j-th vehicle, phase, 
and delay of the ground reflection component from the i-th 
vehicle to the j-th vehicle, respectively. The Doppler fre‑
quency f GR,Vi /Vj ( t ) is expressed as

f GR,Vi /Vj ( t ) = 1
λ

DGR,Vi /Vj ( t ), vVi /Vj ( t )
 DGR,Vi /Vj ( t ) (3),

where DGR,Vi /Vj ( t ) is the distance vector from the i/j-th vehicle 
to the reflection point on the ground. The phase of the ground 
reflection component from the i-th vehicle to the j-th vehicle 
can be computed as

φGR ( t ) = φ0 + 2π
λ ( DGR,Vi ( t ) +  DGR,Vj ( t ) ) (4),

where φ0 is the initial phase shift.
The delay of the ground reflection component from the i-th 

vehicle to the j-th vehicle, τGR ( t ), can be computed as

τGR ( t ) =  DGR,Vi ( t ) +  DGR,Vj ( t )
c (5).

The calculation of distance vectors DGR,Vi ( t ) and DGR,Vj ( t ) 
is expressed below. The azimuth distance between the TX 
(the i-th vehicle) and the ground reflection point is dVi

( t ), 
which is derived from dVi

( t ) =  DVi,Vj ( t ) hVi
( t )

hVi
( t ) + hVj

( t ) ; hVi
( t )and 

hVj
( t ) are the ground clearances of the i-th vehicle and the j-

th vehicle. With the geometrical relationship, the distance 
between the i/j-th vehicle and ground reflection point can be 
computed as ‖DGR,Vi ( t )‖ = d2

Vi
( t ) + h2

Vi
( t )  and 

 DGR,Vj ( t ) =  DVi,Vj ( t ) 2 + h2
Vi

( t ) + h2
Vj

-  DGR,Vi ( t ) . The 
corresponding distance vectors can be expressed as

DGR,Vi /Vj =  DGR,Vi /Vj ×
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úcos αGR,Vi /Vj ( t ) cos βGR,Vi /Vj ( t )
sin αGR,Vi /Vj ( t ) cos βGR,Vi /Vj ( t )

sin βGR,Vi /Vj ( t )
(6),

where αGR,Vi /Vj and  βGR,Vi /Vj are the azimuth and elevation 
angles of the distance vector DGR,Vi /Vj. As the azimuth angle of 
the ground reflection path matches that of the line-of-sight 
(LoS) path and the combined power of the LoS and ground re‑
flection paths remains constant, only the elevation angle of 
the ground reflection path needs to be taken into account 
similar to Ref [16].  βGR,Vi /Vj is computed as  βGR,Vi /Vj =
arctan hVj

dVj
( t ) .

3.1.2 LoS Component
The LoS complex channel gain of the transmission link 

from the i-th vehicle to the  j-th vehicle can be represented as
hLoS ( t ) = Q ( t )exp é

ë
êêêê j2π ∫

t0

t

f LoS ( t )dt + jφLoS ( t )ù
û
úúúú (7).

The Doppler frequency, phase shift, and delay of the LoS 
component of the transmission link from the i-th vehicle to 
the j-th vehicle are obtained by

f LoS ( t ) = 1
λ

DLoS ( t ), vV j ( t ) - vV i ( t )
 DLoS ( t ) (8),

φLoS ( t ) = φ0 + 2π
λ  DLoS ( t ) (9),

τLoS ( t ) =  DLoS ( t )
c (10),

where ⋅,⋅ , φ0, and λ are the inner product, initial phase 
shift, and carrier wavelength; vVi ( t ) and vVj ( t ) are the veloc‑
ity vectors of the i-th vehicle and the j-th vehicle. Mean‑
while, the distance vector for the i-th vehicle and the j-th ve‑
hicle DLoS ( t ) is obtained by
DLoS ( t ) = DLoS ( t0 ) + ∫

t0

t

vVj ( t )dt - ∫
t0

t

vVi ( t )dt (11).

3.1.3 Non-LoS Component
Vehicular communication􀆳s high mobility causes real-time 

changes in the communication environment. To characterize 
the non-line-of-sight (NLoS) component of the channel gain, 
it is essential to separately model the characteristics of scat‑
terers according to their velocities. To compute the NLoS 
component’s complex channel gain, we separately calculate 
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the complex channel gains of clusters with zero and non-zero 
velocities. Using LiDAR point clouds and RGB images, the 
scatterers are classified by velocity (zero/non-zero). Mean‑
while, the scatterer parameters with different velocities will 
be analyzed and utilized for channel modeling, detailed in 
the next subsection. To depict the NLoS complex channel 
gain more clearly, we define clusters with centroids closer to 
TX/RX as TX/RX clusters, which are then randomly shuffled 
and paired to create twin clusters. The p-th TX/RX cluster 
with zero velocity and the q-th TX/RX cluster with non-zero 
velocity are represented as Cz, pTX/RX and Cnz, qTX/RX. The velocity 
vector vnz, qTX/RX is utilized to depict the q-th TX/RX cluster with 
non-zero velocity.

The NLoS component􀆳s complex channel gain from the i-th 
vehicle and the j-th vehicle via the np-th scatterer in the p-th 
twin cluster with zero velocity, i.e., hNLoSz

p,np
( t ), is calculated by

hNLoSz

p,np
( t ) = Q ( t ) PNLoSz

p,np
( t ) × expì

í
î

j2π é

ë
êêêê∫

t0

t

f NLoSz,TX
p,np

( t )dt +

∫
t0

t

f NLoSz,RX
p,np

( t )dtù
û
úúúú + jφNLoSz

p,np
( t )üý

þ
(12),

where PNLoSz

p,np
( t ) is the normalized power of ZVS,  f NLoSz,TX/RX

p,np
( t ) 

is the Doppler frequency of the clusters with zero velocity at 
TX/RX, and φNLoSz

p,np
( t ) is the phase shift.  f NLoSz,TX/RX

p,np
 is com‑

puted by

f NLoSz,TX
p,np

( t ) = 1
λ

DNLoSz,TX
p,np

( t ), vTX ( t )




DNLoSz,TX

p,np
( t ) (13),

f NLoSz,RX
p,np

( t ) = 1
λ

DNLoSz,RX
p,np

( t ), vRX ( t )




DNLoSz,RX

p,np
( t ) (14),

where DNLoSz,TX/RX
p,np

( t ) represents the distance between the TX/
RX and the np-th scatterer in the p-th twin cluster Cz,pTX/RX. The 
distance DNLoSz,TX/RX

p,np
( t ) is given by

DNLoSz,TX/RX
p,np

( t) =

DNLoSz,TX/RX
p,np

( t)
æ

è

ç

ç

ç

ç
ç
çç
ç

ç

ç

ç

ç
ö

ø

÷

÷

÷

÷
÷
÷÷
÷
÷

÷

÷

÷cos αNLoSz,TX/RX
p,np

( )t cos β NLoSz,TX/RX
p,np

( )t
sin αNLoSz,TX/RX

p,np
( )t cos β NLoSz,TX/RX

p,np
( )t

sin β NLoSz,TX/RX
p,np

( )t
(15).

The phase shift is computed by

φNLoSz

p, np
( t ) = φ0 + 2π

λ
é
ë




DNLoSz, TX

p, np
( t ) +





DNLoSz, RX

p, np
( t ) + cτ͂z, p ( t )ùû (16),

where τ͂z, p ( t ) represents the delay of the virtual link between 
the twin clusters Cz, pTX/RX, which obeys the Exponential distri‑
bution. Moreover, the delay via clusters with zero velocity at 
TX/RX is computed by

τNLoSz

p,np
( t ) =





DNLoSz,TX

p,np
( t ) + 



DNLoSz,RX

p,np
( t )

c + τ͂z, p ( t ) (17).

Similarly, the NLoS complex channel gain from the i-th ve‑
hicle and the j-th vehicle via the nq-th scatterer in the q-th 
twin cluster with non-zero velocity, i. e., hNLoSnz

q,nq
( t ), is calcu‑

lated by

hNLoSnz

q,nq
( t ) = Q ( t ) PNLoSnz

q,nq
( t ) × expì

í
î

j2π é

ë
êêêê∫

t0

t

f NLoSnz,TX
q,nq

( t )dt +

∫
t0

t

f NLoSnz,RX
q,nq

( t )dtù
û
úúúú + jφNLoSnz

q,nq
( t )üý

þ
(18),

where PNLoSnz

q,nq
( t ) is the normalized power of NVS, 

f NLoSnz,TX/RX
q,nq

( t ) is the Doppler frequency of the clusters with 
non-zero velocity at TX/RX, and φNLoSnz

q,nq
( t ) is the phase shift. 

 f NLoSnz,TX/RX
q,nq

 is computed by

f NLoSnz,TX
q,nq

( t ) = 1
λ

DNLoSnz,TX
q,nq

( t ), vTX ( t )




DNLoSnz,TX

q,nq
( t ) (19),

f NLoSnz,RX
q,nq

( t ) = 1
λ

DNLoSnz,RX
q,nq

( t ), vRX ( t )




DNLoSnz,RX

q,nq
( t ) (20),

where DNLoSnz,TX/RX
q,nq

( t ) represents the distance between the TX/
RX and the nq-th scatterer in the q-th twin cluster Cnz,qTX/RX. The 
distance DNLoSz,TX/RX

p,np
( t ) is given by

DNLoSnz,TX/RX
q,nq

( t) =

DNLoSnz,TX/RX
q,nq

( t)
æ

è

ç

ç

ç

ç
ç
çç
ç

ç

ç

ç

ç
ö

ø

÷

÷

÷

÷
÷
÷÷
÷
÷

÷

÷

÷cos αNLoSnz,TX/RX
q,nq

( )t cos β NLoSnz,TX/RX
q,nq

( )t
sin αNLoSnz,TX/RX

q,nq
( )t cos β NLoSnz,TX/RX

q,nq
( )t

sin β NLoSnz,TX/RX
q,nq

( )t
(21).

The phase shift is computed by
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φNLoSnz

q,nq
( t ) = φ0 + 2π

λ
é
ë DNLoSnz,TX

q,nq
( t ) +  DNLoSnz,RX

q,nq
( t ) + cτ͂nz, q ( t )ùû

(22),
where τ͂nz ( t ) represents the delay of the virtual link between 
the twin clusters Cnz,qTX/RX, which also obeys the Exponential 
distribution. Moreover, the delay via clusters with non-zero 
velocity at TX/RX is computed by

τNLoSnz

q,nq
( t ) =





DNLoSnz,TX

q,nq
( t ) + 



DNLoSnz,RX

q,nq
( t )

c + τ͂nz, q ( t ) (23).

The power parameter PNLoSz/nz

p/q,np/q ( t ), distance parameter 
DNLoSz/nz,TX/RX

p/q,np/q ( t ), and angle parameters αNLoSz/nz,TX/RX
p/q,np/q ( t ) and 

β NLoSz/nz,TX/RX
p/q,np/q ( t ) obey different statistical distributions, which 

are analyzed in the following subsection.
3.2 Parameters for Channel Realization

Based on the constructed DT-based Beijing CBD vehicular 
communication dataset, we use statistical approaches to com‑
pute the distribution of parameters related to scatterers with 
different velocities.

Accurately characterizing and modeling the number of 
scatterers and clusters is crucial for channel models[17]. How‑
ever, the statistical properties of the corresponding scatterers/
clusters are not depicted in the current standardized models 
for scatterers with different velocities[18–19]. To comprehen‑
sively characterize vehicular communication channels in Bei‑
jing CBD, the quantities of scatterers/clusters with zero/non-
zero velocities are explored. The numbers of ZVS and NVS 
in the transmission link from the i-th vehicle (TX) to the j-th 
vehicle (RX) are denoted as N z

si,j ( t ) and N nz
si,j ( t ). Since the dis‑

tance between the transceivers affects the evaluation of the 
scatterer number, the parameters controlling scatterer num‑
bers are defined as Y z

i, j and Y nz
i, j, which can be represented as

Y z
i, j ( t ) = N z

si, j ( t )
‖T i ( t ) - R j ( t )‖ (24),

Y nz
i, j ( t ) = N nz

si, j ( t )
‖T i ( t ) - R j ( t )‖ (25),

where T i ( t )and R j ( t ) are the locations of the i-th and j-th ve‑
hicles. Moreover, based on the constructed DT-based Beijing 
CBD vehicular communication dataset, the number ratios of 
ZVS and NVS for each communication link per snapshot 
across peak and off-peak traffic periods are calculated and 
analyzed. Fig. 4 presents the cumulative distribution func‑
tions (CDFs) of the velocity-based ratio related to the scat‑
terer number during peak and off-peak hours. These CDFs fit 
well with the Gaussian mixture model (GMM), which can be 

represented as
F z/nz

Y ( x ) = ∑
k = 1

K z/nz

πz/nz
k F z/nz

Y,k ( x ) (26),

where F z/nz
Y, k ( x ) and πz/nz

k  are the CDF and weight of the k-th 
Gaussian distribution, respectively. F z/nz

Y,k ( x ) can be given by 
F z/nz

Y,k ( x ) = Φz/nz
Y,k ( x - μz/nz

Y,k
σz/nz

Y,k ), where Φz/nz
Y,k  is the CDF of the stan‑

dard normal distribution; μz/nz
Y,k  and σz/nz

Y,k  are the mean and stan‑
dard deviations of the k-th Gaussian distribution. The ratios 
related to scatterer numbers can be obtained from the simula‑
tions using the constructed DT-based Beijing CBD vehicular 
communication dataset. The number of Gaussian distribu‑
tions k is 3. During off-peak hours, the simulation param‑
eters for the ZVS are πz

k = [0.395 2 ; 0.466 6 ; 0.138 2], μz
Y,k =

[ 0.156 5 ; 0.026 3 ; 0.617 9 ], and σz
Y,k = [ 0.008 2 ; 3.63 ×

10-4 ; 0.191 2 ], while those for the NVS are πnz
k =

[0.114 8 ; 0.317 5 ; 0.567 7], μnz
Y,k = [ 0.116 4 ; 0.049 2 ; 

0.010 7 ]and σnz
Y,k = [ 0.001 6 ; 5.14 × 10-4 ; 3.21 × 10-5 ]. 

Meanwhile, during peak hours, the simulation parameters for 
the ZVS are πz

k = [0.350 4 ; 0.281 9 ; 0.367 7] , μz
Y,k =

[1.167 3 ; 0.426 3 ; 0.072 3 ], and σz
Y, k = [ 0.254 2 ; 

0.022 2 ; 0.002 9 ], while those for the NVS are πnz
k =

[0.603 4 ; 0.378 4 ; 0.018 2], μnz
Y,k = [ 0.011 5 ; 0.055 8 ; 

0.273 5 ], and σnz
Y,k = [ 2.94 × 10-5 ; 3.86 × 10-4 ; 0.008 9 ]. 

Fig. 4 shows that both the mean and variance of the number-
related parameters for the NVS are greater during peak 
hours than during off-peak hours. This is because there are 
more dynamic vehicles around the transceiver during peak 

Figure 4. GMM-fitted CDFs of velocity-based ratios related to scatterer 
numbers during peak and off-peak hours
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hours, which increases the number of NVS. For the ZVS, the 
mean and variance are also greater during peak hours than 
during off-peak hours. This is due to the fact that the envi‑
ronment tends to be rich scattering during peak hours, result‑
ing in more propagation paths.

To investigate vehicular channel characteristics in Beijing 
CBD in detail, the scatterers are clustered to analyze cluster 
population statistics. Therefore, the parameters of zero-
velocity and non-zero-velocity clusters in the transmission 
link from the i-th vehicle (TX) to the  j-th vehicle (RX) are de‑
noted as U z

i, j and U nz
i, j. For each communication link per snap‑

shot, we denote the velocity-based cluster-number param‑
eters across peak and off-peak hours. The CDFs of velocity-
based ratios related to cluster numbers follow GMM distribu‑
tions, which can be expressed as

F z/nz
U ( x ) = ∑

k = 1

K z/nz

πz/nz
k F z/nz

U,k ( x ) (27),

where F z/nz
U,k ( x ), the CDF of the k-th Gaussian distribution, 

can be given by F z/nz
U, k ( x ) = Φz/nz

U, k( x - μz/nz
U, k

σz/nz
U, k ), where Φz/nz

U, k is the 
CDF of the standard normal distribution, while μz/nz

U, k and σz/nz
U, k are the mean and standard deviations of the k-th Gaussian 

distribution. The number of Gaussian distributions k is also 
3. For the clusters with zero velocity during off-peak hours, 
the simulation parameters are πz

k =
[0.254 3 ; 0.631 5 ; 0.114 2], μz

U,k = [ 0.040 9 ; 0.010 3 ; 
0.101 7 ], and σz

U,k = [ 2.97 × 10-4 ; 4.76 × 10-5 ; 0.002 ]. As 
for the clusters with non-zero velocity during off-peak hours, 
the parameters are πnz

k = [0.298 4 ; 0.606 8 ; 0.094 8], μnz
U,k =

[ 0.551 5 ; 0.011 7 ; 0.109 7 ], and σnz
U,k = [ 2.36 × 10-4 ; 3.05 ×

10-5 ; 0.001 7 ]. Meanwhile, for the clusters with zero velocity 
during peak hours, the simulation parameters are πz

k =
[0.340 6 ; 0.401 9 ; 0.257 5], μz

U,k = [ 0.085 2 ; 0.020 0 ; 
0.212 0 ] and σz

U,k = [ 6.96 × 10-4 ; 1.17 × 10-4 ; 0.005 5 ]. For 
the clusters with non-zero velocity during peak hours, the pa‑
rameters are πnz

k = [0.195 2 ; 0.778 5 ; 0.026 3], μnz
U,k =

[ 0.033 3 ; 0.010 9 ; 0.065 6 ], and σnz
U,k = [ 2.01 × 10-5 ; 3.01 ×

10-5 ; 1.07 × 10-5 ]. Fig. 5 presents the CDFs of the velocity-
based ratios related to cluster numbers during peak and off-
peak hours. The parameters related to the cluster number 
show similar trends to those related to the scatterer number 
with different velocities during peak and off-peak hours.

Distance distribution of scatterers is important for stochas‑
tic channel modeling. The distance parameters of scatterers 
are assumed to follow the Exponential distribution in Ref. 
[20]. However, scatterer velocity variations and traffic den‑
sity differences during peak and off-peak hours are ignored. 
Based on the constructed DT-based Beijing CBD vehicular 
communication dataset, distance characteristics of the scat‑
terers with different velocities are explored. The distance pa‑

rameters for the m-th scatterer with zero velocity and the n-th 
scatterer with non-zero velocity from the transceiver, i.e., the 
i-th vehicle and the  j-th vehicle, are represented as

Dz,m
i, j ( t ) =

‖T i ( t ) - Sz,m
i, j ( t )‖ + ‖R j ( t ) - Sz,m

i, j ( t )‖ -
‖T i ( t ) - R j ( t )‖
‖T i ( t ) - R j ( t )‖ (28),

Dnz,n
i, j ( t ) =

‖T i ( t ) - Snz,n
i, j ( t )‖ + ‖R j ( t ) - Snz,n

i, j ( t )‖ -
‖T i ( t ) - R j ( t )‖
‖T i ( t ) - R j ( t )‖ (29),

where Sz,m
i, j ( t ) and Snz,n

i, j ( t ) are the locations of the m-th scat‑
terer with zero velocity and the n-th scatterer with non-zero 
velocity in the transmission link between the i-th vehicle and 
the j-th vehicle;  ⋅  denotes the calculation of the Frobenius 
norm. We compute the distance parameters of scatterers with 
different velocities during peak and off-peak hours for each 
communication link per snapshot. The CDFs of distance pa‑
rameters with different velocities also fit well with the GMM 
distribution, which is represented as

F z/nz
D ( x ) = ∑

k = 1

K z/nz

πz/nz
k F z/nz

D,k ( x ) (30),

where F z/nz
D,k ( x ), the CDF of the k-th Gaussian distribution, 

can be given by F z/nz
D,k ( x ) = Φz/nz

D,k ( x - μz/nz
D,k

σz/nz
D,k ), where Φz/nz

D,k is the 
CDF of the standard normal distribution, and μz/nz

D,k and σz/nz
D,k 

Figure 5. GMM-fitted CDFs of velocity-based ratios related to cluster 
numbers during peak and off-peak hours

CDF: cumulative distribution function
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are the mean and standard deviations of the k-th Gaussian 
distribution. The number of Gaussian distributions k is still 
3. During off-peak hours, the simulation parameters for ZVS 
are πz

k = [0.312 9 ;  0.547 4 ;  0.139 7], μz
D,k =

[ 7.724 0 ;  0.653 0 ;  20.991 6 ], and σzND, k =
[ 9.628 3 ;  0.316 4 ;  102.07 ], while the parameters for the 
NVS are πnz

k = [0.674 2 ;  0.239 2 ;  0.068 8], μnz
D,k =

[ 0.710 5 ;  6.879 5 ;  20.943 5 ], and σnz
D,k =

[ 0.512 7 ; 10.750 7 ; 93.229 4 ]. On the other hand, during 
peak hours, the simulation parameters for the ZVS are πz

k =
[ ]0.623 1 ;  0.126 7 ;  0.250 2 , μz

D,k = [ 0.689 8 ;  27.995 2 ; 
7.395 6 ], and σz

D,k = [ 0.443 7 ;  110.228 6 ;  6.673 4 ], while 
the parameters for the NVS are πnz

k =
[0.736 0 ; 0.012 5 ; 0.251 5], μnz

D,k = [ 0.519 9 ; 4.989 4 ; 
-0.093 2 ] and σnz

D,k = [ 0.037 3 ; 0.003 0 ; 0.001 5 ]. Fig. 6 
shows the CDFs of all distance parameters of the scatterers 
with different velocities during peak and off-peak hours. The 
distance parameter of ZVS is larger than that of NVS during 
peak and off-peak hours, as ZVSes are mainly tall buildings 
and trees, while NVSes are dynamic vehicles. Dynamic ve‑
hicles are generally closer to the TX and RX, which leads to 
a shorter distance. The variance of the distance parameter is 
smaller at peak hours than that at off-peak hours since the 
scatterer distribution is more centered as vehicles around 
the transceiver increase.

The angle parameters related to scatterers are also crucial 
for analyzing and constructing channel models for DT-
enabled vehicular communication within Beijing CBD. These 
parameters, including azimuth angle of departure (AAoD), 
azimuth angle of arrival (AAoA), elevation angle of departure 
(EAoD), and elevation angle of arrival (EAoA), are analyzed 

for the scatterers with different velocities under different traf‑
fic densities during peak and off-peak hours. AAoA ratios for 
the m-th scatterer with zero velocity and the n-th scatterer 
with non-zero velocity from the transceiver, i. e., the i-th ve‑
hicle and the j-th vehicle, are expressed as

αz,m
i, j ( t ) = γz,m

i, j ( t )
‖T i ( t ) - R i ( t )‖ (31),

αnz,n
i, j ( t ) = γnz,n

i, j ( t )
‖T i ( t ) - R i ( t )‖ (32),

where γz,m
i, j ( t ) and γnz,n

i, j ( t ) represent the AAoAs of the m-th 
scatterer with zero velocity and the n-th scatterer with non-
zero velocity from the transceiver. Furthermore, based on the 
DT-based Beijing CBD vehicular communication dataset, the 
AAoAs of scatterers with different velocities in each commu‑
nication link per snapshot are analyzed. Fig. 7 shows the 
CDFs of all AAoAs of the scatterers with different velocities 
under different traffic densities during peak and off-peak 
hours, which fit well with the Gaussian distribution. The 
CDF of the Gaussian distribution for AAoAs related to scat‑
terers with different velocities can be represented by

F zAAoA ( x ) = 1
2
é

ë

ê
êê
ê
ê
ê1 + erf ( x - μzAAoA

σzAAoA 2 )ùûúúúúúú (33),

F nzAAoA ( x ) = 1
2
é

ë

ê
êê
ê
ê
ê1 + erf ( x - μnzAAoA

σnzAAoA 2 )ùûúúúúúú (34),

Figure 6. GMM-fitted CDFs of distance parameters during peak and 
off-peak hours
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where μz/nzAAoA and σz/nzAAoA denote the mean value and standard 
deviation of the Gaussian distribution for AAoAs related to 
scatterers with different velocities; erf (⋅) is the error func‑
tion. Similarly, AAoD θz/nz, m/n

i, j ( t ), EAoA β z/nz, m/n
i, j ( t ), and EAoD 

ϕz/nz, m/n
i, j ( t ) are calculated and also obey the Gaussian distribu‑

tion. The distance parameters of the simulation during off-
peak hours are μz/nzAAoA = -0.576 9/ - 0.385 2, σz/nzAAoA =
1.065/0.433 5; μz/nzAAoD = -0.146 4/0.296 8, σz/nzAAoD =
1.297 4/0.900 8; μz/nzEAoA = -0.129 4/ - 0.029 3, σz/nzEAoA =
0.153 9/0.036 7; μz/nzEAoD = -0.157 9/ - 0.052 3, σz/nzEAoD =
0.289 0/0.066 4, while the distance parameters during peak 
hours are μz/nzAAoA = -0.548 1/ - 0.122 1, σz/nzAAoA =
1.081 1/0.434 9; μz/nzAAoD = -0.164 0/0.212 6, σz/nzAAoD =
1.237 2/0.891 0; μz/nzEAoA = -0.146 8/ - 0.069 8, σz/nzEAoA =
0.165 5/0.103 8; μz/nzEAoD = -0.226 7/ - 0.190 1, σz/nzEAoD =
0.481 0/0.630 1. As shown in Fig. 7 and according to the angle 
parameters of the statistical distributions above, NVS have a 
smaller azimuth angle variance than those with zero velocity. 
This is because the NVS mainly come from dynamic vehicles, 
which have less variation in heights. Moreover, the angle pa‑
rameter variance is larger during peak hours than during off-
peak hours. This is due to the more complex and variable en‑
vironment during peak hours, causing greater angle variations.

In addition, path power and delay characteristics are sig‑
nificant in channel realization. The path power is an expo‑
nential function of the path delay[21]. Using the DT-based Bei‑
jing CBD vehicular communication dataset, we separate the 
path power into power via ZVS and that via NVS. The path 
power from the i-th vehicle to the j-th vehicle via the m-th 
scatterer with zero velocity and the n-th scatterer with non-
zero velocity is expressed by

Pz, m ( t ) = exp ( - ξzτz, m ( t ) - ηz )10- Zz

10 (35),

Pnz, n ( t ) = exp ( - ξnzτnz, n ( t ) - ηnz )10- Znz

10 (36),
where ξz/nz and ηz/nz are the delay-related parameters of scat‑
terers with different velocities; τz/nz,m/n is the delay of the path 
via the m-th scatterer with zero velocity and the n-th scat‑
terer with non-zero velocity; Zz/nz follows the Gaussian distri‑
bution N (0, (σz/nzE ) 2 ). For accurate linear fitting, Eqs. (35) 
and (36) are transformed as

-lnPz, m ( t ) = ξzτz, m ( t ) + ηz + ln 10
10 Zz (37),

-lnPnz, n ( t ) = ξnzτnz, n ( t ) + ηnz + ln 10
10 Znz (38).

The power and delay of each path via each scatterer with 
different velocities per snapshot are calculated. Fig. 8 pres‑

ents the fitting results under different traffic densities during 
peak and off-peak hours. The parameters related to power 
and delay during off-peak hours are ξz/nz = 3.726 4 ×
106 /2.763 6 × 106, ηz/nz = 28.065 8/28.876 9, and σz/nzE =
7.971 6/7.005 9, while those during peak hours are ξz/nz =
4.029 4 × 106 /2.613 3 × 106, ηz/nz = 27.443 8/29.404 1, and 
σz/nzE = 8.482 8/7.514 2. Fig. 8 shows that the power of NVS is 
more sensitive to delay changes than that of ZVS. Therefore, 
an increase in the delay of NVS notably reduces their power.

Consequently, the parameters related to scatterers with dif‑
ferent velocities can be generated by the statistical distribu‑
tion obtained from the aforementioned analysis.
3.3 Capturing of DT-Enabled Channel Non-Stationarity 

and Consistency
We depict channel non-stationarity and consistency based 

on the proposed DT-enabled Beijing CBD vehicular commu‑
nication channel model. The environment is constantly 
changing with the continuous movement of the vehicle, 
which leads to continuous changes in LiDAR point clouds 
and RGB images captured by sensors. Meanwhile, the scat‑
terers in communication links are not effective as they move 
away from the transceiver. In the transmission links related 
to different vehicles, the sets of effective clusters are differ‑
ent as well, which leads to the non-stationarity of clusters in 
the time domain in the DT-enabled Beijing CBD vehicular 
communication channel. In addition, given the temporal con‑
tinuity of the communication environment, scatterers exhibit 
smooth transitions in appearance and disappearance across 
time and space. This maintains the scatterer consistency in 
both time and space domains of the DT-enabled Beijing CBD 

Figure 8. Scatterer power-delay CDFs with Exponential fit during peak 
and off-peak hours

CDF: cumulative distribution function
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vehicular communication channel.
To accurately and simultaneously model the channel non-

stationarity and consistency in the time domain, a new vis‑
ibility region (VR) -based method is proposed, which consid‑
ers the generation of scatterers with different velocities. In 
the VR methods in Ref. [22], clusters located within the VR 
range have an impact on the channel realization. As the VR 
and cluster positions move, the set of visible clusters evolves 
smoothly, which reflects the channel non-stationarity and 
consistency in the time domain. To depict smooth cluster 
time evolution in channels for DT-enabled Beijing CBD ve‑
hicular communication, a VR-based method is proposed 
based on the statistical parameter distribution for different 
traffic densities during peak and off-peak hours. The scatter‑
ers in the environment are initialized, and their parameters, 
including velocities for peak and off-peak hours, are gener‑
ated according to the distribution obtained in Section 3.2. 
The number of scatterers with different velocities between 
the i-th vehicle and the  j-th vehicle at the initial time t0 and 
the distances are both generated according to the GMM dis‑
tribution. The departure and arrival angles (AAoDs, AAoAs, 
EAoDs, and EAoAs) are generated following the Gaussian 
distribution. Based on the generated distances and angles for 
each scatterer, the initial positions of these scatterers at time 
t0 are determined. Moreover, the generated scatterers with 
different velocities are clustered using the K-means algo‑
rithm. Each vehicle 􀆳 s VR is modeled as a semi-sphere cen‑
tered at the vehicle. The VR radius Ri /Rj  of the i/j-th vehicle 
is the maximum distance between the vehicle and initially 
generated velocity-varying clusters at the initial time. The 
clusters within Ri /Rj  at time t are defined as visible clusters. 
Since the distance between the cluster and TX/RX at time 
t0 + Δt is still shorter than the radii of VRs, the cluster is 
still in the VRs and affects the channel. The number of sur‑
viving clusters with different velocities between the i-th and 
j-th vehicles at time t0 + Δt is given as U z,sur

i, j ( t0 +
Δt ) /U nz,sur

i, j ( t0 + Δt ). In addition to the surviving clusters, 
there are some newly generated clusters with different veloci‑
ties at time t0 + Δt. For a certain distance between the i-th 
and j-th vehicles at time t0 + Δt, the number parameter 
U z,GMM

i, j (t0 + Δt) /U nz,GMM
i, j (t0 + Δt) related to clusters with dif‑

ferent velocities is randomly generated according to the 
GMM distribution. The number of newly generated clusters 
is computed by

U z/nz, new
i, j ( t ) = U z/nz, GMM

i, j ( t ) - U z/nz, sur
i, j ( t ) (39),

where U z/nz, GMM
i, j ( t )  is greater than U z/nz,sur

i, j ( t ) and there are 
U z/nz

i, j ( t ) = U z/nz, GMM
i, j ( t )  clusters with different velocities that 

contribute to channel realization. However, if U z/nz, GMM
i, j ( t ) is 

less than U z/nz,sur
i, j ( t ), the number of newly generated clusters 

is U z/nz, new
i, j ( t ) = 0. In this case, there are 

U z/nz
i, j ( t ) = U z/nz,sur

i, j ( t )  clusters with different velocities that 

contribute to channel realization.
4 Channel Statistical Properties

In this section, the key statistical properties for the pro‑
posed DT-enabled Beijing CBD vehicular communication 
channel are derived, including the TF-CF and DPSD.
4.1 TF-CF

The TF-CF of the transmission from the i-th vehicle to the 
j-th vehicle can be calculated as

Π( t, f ; Δt, Δf ) = E [ h∗ ( t, f )h ( t + Δt, f + Δf ) ] (40),
where E [⋅] and (⋅)*represent the expectation operation and 
complex conjugate operation similar to Ref. [23]. As the TF-
CFs of the LoS component, ground reflection component, and 
NLoS component can be assumed as independent, the TF-CF 
can be obtained by

Π( t, f ; Δt, Δf ) = ΠLoS ( t, f ; Δt, Δf ) + ΠGR ( t, f ; Δt, Δf ) +
ΠNLoSz ( t, f ; Δt, Δf ) + ΠNLoSnz ( t, f ; Δt, Δf ) (41).
The TF-CFs of the LoS component, ground reflection com‑

ponent, and NLoS component can be computed by
ΠLoS( t, f ; Δt, Δf ) =

Ω( t )Ω( t + Δt )
(Ω( t ) + 1) (Ω( t + Δt ) + 1) hLoS* ( t )hLoS ( t +

Δt ) exp[ ]j2πfτLoS ( t ) - ( f + Δf )τLoS ( t + Δt ) (42),

ΠGR( t, f ; Δt, Δf ) =
ηGR ( t )ηGR ( t + Δt )

(Ω( t ) + 1) (Ω( t + Δt ) + 1) hGR* ( t )hGR ( t +
Δt ) exp[ j2πfτGR ( t ) - ( f + Δf )τGR ( t + Δt ) ] (43),

ΠNLoSz/nz ( t, f ; Δt, Δf ) = ηz/nz ( t )ηz/nz ( t + Δt )
(Ω( t ) + 1) (Ω( t + Δt ) + 1) ×

E é

ë

ê
êê
ê
ê
ê ∑

p/q = 1

N z/nzc ( t ) ∑
p′/q′ = 1

N z/nzc ( t + Δt ) ∑
np/q = 1

N z/nzs ( t ) ∑
n'p/q = 1

N z/nzs ( t + Δt )
hz/nz

p/q,np/q ( t )hz/nz
p′/q′,n'p/q ( t + Δt ) ×

exp ( j2πτz/nz
p/q,np/q ( t ) f - ( f + Δf )τz/nz

p′/q′,n'p/q ( t + Δt ) )ù
û

ú
úú
ú
ú
ú

(44).
Therefore, the time auto-correlation function (TACF) and 

the frequency correlation function (FCF) can be obtained by 
setting ∆f = 0 and ∆t = 0, respectively.
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4.2 DPSD
The DPSD can be obtained by the Fourier transform of the 

TACF, which is computed by
Ψ ( t ; fD ) = ∫-∞

+∞Π( t ; Δt )e- j2πfDΔtd(Δt ) (45),

where fD and Π( t ; Δt ) are the Doppler frequency and TACF. 
The time-varying DPSD depicts the time-varying characteris‑
tic of the proposed DT-enabled Beijing CBD vehicular com‑
munication channel model.
4.3 Simulation Results and Analysis

The computational complexity of channel modeling mainly 
focuses on the generation of the CIR matrix. The primary 
source of computational complexity comes from the calcula‑
tion of physical environment parameters. Specifically, the 
time complexity of generating the CIR matrix is O (Nt ⋅ Nr ), 
where Nt and Nr represent the numbers of TXes and RXes, 
respectively. The time complexity of processing the LiDAR 
point cloud is O (P ), where P is the number of points in the 
point clouds. The time complexity of RGB can be considered 
to be constants in a snapshot of data processing, i. e., O (1). 
Therefore, the overall complexity is O (Nt ⋅ Nr + P ). The 
time consumption of the computation mainly depends on the 
simulation setting.

Key statistical channel properties are simulated and com‑
pared with the accurate RT-based results. The parameters 
remain unchanged unless otherwise stated. The carrier fre‑
quency is  fc = 5.9 GHz with 20 MHz communication band‑
width. Delays of virtual links τi ( t ) and τj ( t ) obey the Expo‑
nential distribution with the mean and variance of 80 ns 
and 15 ns to imitate the complex transmission between 
twin clusters.

Fig. 9 shows the absolute normalized TACFs during peak 
and off-peak hours at t = 0 s and t = 5 s. The TACFs depend 
on time instants and time separations. Moreover, time non-
stationarity is depicted. The TACF decreases as the traffic 
density increases, demonstrating that the TACF is lower dur‑
ing peak hours than that during off-peak hours. This is be‑
cause, as the number of vehicles increases, the channel be‑
comes more variable and the temporal correlation decreases.

The RT-based CIRs are collected in Wireless InSite 
within the DT space shown in Fig. 1. DPSD is derived based 
on the CIR data compared with the simulated DPSD during 
peak and off-peak hours. As shown in Fig. 10, the RT-based 
DPSD is much closer to the simulated DPSD during peak 
and off-peak hours, which demonstrates the validity of the 
proposed model. The DPSD is flatter during peak hours 
than during off-peak hours, because vehicles are denser dur‑
ing peak hours and the vehicular communication channels 
are more complex. Therefore, the comparison of different 
traffic densities during peak and off-peak hours is signifi‑

cant for the proposed DT-enabled vehicular communication 
channel model.

The effectiveness of the proposed DT-enabled vehicular 
communication channel model is demonstrated by comparing 
the TACF and DPSD of the proposed model with the RT-
based TACF and DPSD. In the future, we can analyze more 
channel characteristics, e. g., angular/delay power spectral 
densities (PSDs) and root mean square (RMS) angular/Dop‑
pler/delay spreads, similar to Ref. [24], to further evaluate 
the performance of the proposed DT-enabled vehicular com‑
munication channel model. Meanwhile, we intend to further 

DPSD: Doppler power spectral density
Figure 10. Comparison of simulated DPSDs and RT-based DPSDs 
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validate the effectiveness and universality of the proposed 
DT-based channel model with real-world measurements. Spe‑
cifically, we aim to collect synchronized multi-modal sensing 
data and channel data in dense urban scenarios, e.g., Beijing 
CBD. This will enable us to refine the proposed model under 
real-world dynamic conditions and increase its real-world de‑
ployment value.
5 Conclusions

This paper introduces a novel DT-enabled channel model 
for vehicular communications in Beijing CBD. The proposed 
model effectively integrates LiDAR point clouds, RGB im‑
ages, and channel data to enhance the precision of channel 
modeling in complex urban environments. A reliable DT 
space for the Beijing CBD area has been constructed, which 
has provided a high-fidelity virtual environment for simulat‑
ing vehicular communication channels. The developed model 
captures the dynamic characteristics of scatterers during 
peak and off-peak hours in consideration of their number, 
distance, angle, power, and velocity. Key channel statistical 
properties (TF-CF and DPSD) have been derived and simu‑
lated during different transportation periods. Simulation re‑
sults show that the proposed model accurately captures chan‑
nel non-stationarity and consistency, closely aligning with 
RT-based experimental data. Therefore, the potential of DT 
technology for improving vehicular communication channel 
modeling in urban environments is demonstrated, which can 
provide a reliable foundation for the design of ITSs and ad‑
vanced vehicular networks.
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1 Introduction

The advent of 6G wireless networks promises to revolu‑
tionize connectivity by enabling ultra-high data rates, 
ultra-low latency, massive device connectivity, and 
pervasive intelligence[1–3]. However, these ambitious 

performance targets come with significant challenges. The in‑
creasing density of devices and network nodes[4], along with 
the deployment of large-scale antenna arrays[5] and the utiliza‑
tion of higher frequency bands[6], such as millimeter wave 
(mmWave) and terahertz (THz), leads to highly complex propa‑
gation environments. In such scenarios, traditional channel es‑
timation methods, primarily based on extensive pilot training, 
are rapidly becoming inefficient, as they struggle to cope with 
the increased channel dimensions and dynamic variability in 

the environment[7]. At the same time, the wealth of diverse en‑
vironmental data and the rapid evolution of artificial intelli‑
gence techniques offer unprecedented opportunities to rethink 
how wireless channels are characterized and managed[8].

To address these challenges, researchers have proposed 
novel approaches that leverage both environmental informa‑
tion and advanced data analytics to enhance channel state in‑
formation acquisition. One promising paradigm first intro‑
duced in Ref. [9] is the channel knowledge map (CKM), a site-
specific database that links geographical locations to detailed 
channel parameters. By exploiting the spatial consistency in‑
herent in wireless propagation, CKMs enable networks to infer 
channel characteristics based on location data, thereby reduc‑
ing the dependency on real-time, high-overhead pilot measure‑
ments[10–11]. This innovative concept not only promises to alle‑
viate the challenges posed by dense and dynamic 6G environ‑
ments but also paves the way for proactive and predictive com‑
munication strategies that can significantly enhance network 
performance.

This work was supported by the National Natural Science Foundation of 
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A CKM can be classified into different types based on the 
scope and granularity of channel knowledge it provides. Some 
CKMs focus on large-scale channel characteristics, such as 
path loss and shadowing, which are primarily influenced by 
terrain and urban structures. Others capture small-scale fad‑
ing properties, including multipath effects characterized by pa‑
rameters like the angle of arrival (AoA), the angle of departure 
(AoD), time delay, and the Doppler shift. Additionally, CKMs 
can be categorized based on their coverage range, such as BS-
to-any (B2X) CKM, which maps the channel characteristics 
from a given BS to any receiver within a coverage area, and 
any-to-any (X2X) CKM, which generalizes channel relation‑
ships among arbitrary locations.

The construction of CKMs generally falls into three broad 
approaches: measurement-based methods, model-based meth‑
ods, and hybrid data-model approaches. Measurement-based 
methods rely on empirical measurements and employ spatial 
interpolation techniques, including the nearest-neighbor inter‑
polation[12] and geostatistical methods like Kriging[13]. In con‑
trast, model-based methods use well-established propagation 
models, including empirical formulas (e.g., COST-231 Hata[14]) 
and deterministic ray tracing[15]. To address the limitations of 
both approaches, hybrid methods combine model predictions 
with real-world measurements, often leveraging advanced ma‑
chine learning techniques such as deep neural networks and 
generative adversarial networks (GANs) to enhance CKM ac‑
curacy and adaptability.

Based on the provided image, the key idea behind CKM is 
not just about specific applications but rather a paradigm shift 
in wireless communication towards environment-aware com‑
munications. Fig. 1 illustrates this transformation based on 
two examples from Ref. [9], by comparing conventional 
location-based or probabilistic channel modeling with environ‑
ment knowledge. In Fig. 1a, CKM enables improved path loss 
prediction by considering environmental obstructions, rather 
than relying solely on distance-based models. In Fig. 1b, it en‑
hances beamforming by incorporating environment knowl‑
edge, allowing for more accurate signal directionality and 
avoiding obstacles that would otherwise degrade communica‑
tion performance.

This article is structured as follows. Section 2 introduces 
the fundamental concepts of CKMs, including their defini‑
tions, core principles, and roles in enabling environment-
aware communications in 6G networks. Section 3 discusses 
CKM construction techniques, categorized into measurement-
based, model-based, and hybrid data-model approaches, high‑
lighting their methodologies and trade-offs. Section 4 explores 
key applications of CKMs, such as localization and sensing 
systems, trajectory optimization, beamforming and BS place‑
ment. Section 5 discusses open challenges and outlines future 
research directions and the transformative potential of CKMs 
in next-generation wireless systems. Section 6 concludes this 
article with a summary of the current state of CKM research, 

emphasizing its potential to revolutionize wireless communica‑
tions by enabling proactive, environment-aware systems and 
addressing the challenges that lie ahead in the rapidly evolv‑
ing 6G landscape.
2 Fundamental Concepts of Channel Knowl⁃

edge Map
A CKM is a channel knowledge database associated with 

specific geographical locations, which is constructed to pro‑
vide region-specific or location-specific channel information, 
thereby enhancing the understanding of the wireless propaga‑
tion environment. Mathematically, a CKM can be defined as a 
function that maps a location vector q ∈ RD to a channel 
knowledge vector z ∈ CJ, where q represents the location of 
the transmitter and/or receiver, and z the relevant channel 
knowledge.

M: RD → CJ (1).
This knowledge may include, but is not limited to, path 

gain, multipath propagation parameters (such as AoA, AoD, 

Figure 1. Illustration of environment knowledge enabled by channel 
knowledge map[9]: (a) path loss prediction and (b) beamforming
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delay, and Doppler shifts), and the complete channel im‑
pulse response.

Intuitively, the environmental awareness capability of CKM 
is derived from the fundamental observation that when a de‑
vice revisits a previously accessed location, it experiences a 
wireless propagation environment that is highly similar to the 
past. By fully utilizing the trajectory information of devices 
and surrounding environmental data, CKM can significantly 
reduce channel uncertainty, thereby enabling more accurate 
channel inference and effective communication strategies.
2.1 Channel Modeling in a Given Region

In a specific geographical area, the wireless propagation 
channel z ( t) is fundamentally a function of the device’s posi‑
tion q ( t) and the surrounding wireless environment E ( t):
z ( t) = f (q ( t) ,E ( t) ) (2),

where E ( t) represents the propagation environment, which 
consists of both static and dynamic components. The static en‑
vironment includes terrain, building structures, and material 
properties, while the dynamic environment accounts for mov‑
ing objects such as vehicles and pedestrians. However, due to 
the complex interactions between electromagnetic waves and 
the surrounding environment, deriving the function f (  ⋅  ,  ⋅  ) 
analytically is extremely difficult. Additionally, representing 
the environment E ( t) in a mathematically tractable form is 
non-trivial due to its high-dimensional and dynamic nature.

To overcome these challenges, CKM leverages historical 
data to model channel knowledge without requiring an explicit 
expression of the function f (  ⋅  ,  ⋅  ) or the environmental rep‑

resentation E ( t). In a quasi-static environment, where E ( t) ≈
E, the channel can be rewritten as:
z ( t) = f (q ( t) ,E ) (3).
By collecting a set of historical location data {q1, q2,…, qQ } 

and their corresponding channel knowledge { z1, z2,…, zQ }, 
CKM can model the environment as:

E = g (q i = 1,…,Q, z i = 1,…,Q ) (4),
which enables the inference of location-specific channel 
knowledge based on prior measurements.

Fig. 2 illustrates CKM construction for a specific geo‑
graphic area, using the calculation result of Wireless Insite, a 
widely used ray tracing simulation software. Fig. 2a shows the 
root mean square (RMS) delay spread, which reflects how ob‑
stacles, for example, buildings, influence multipath propaga‑
tion. In areas with dense buildings or structures, the signal ex‑
periences multiple reflections and scattering, leading to 
higher delay spread. Conversely, open areas with fewer ob‑
structions result in lower delay spread, indicating less interfer‑
ence and multipath. These variations in delay spread are pri‑
marily due to the distribution and density of obstacles, which 
affect how signals propagate across the area. Fig. 2b presents 
the received power distribution, demonstrating how environ‑
mental factors contribute to signal attenuation. Regions with 
dense buildings show higher attenuation due to diffraction and 
reflection, leading to lower received power. On the other hand, 
open areas with fewer obstacles allow the signal to propagate 
more freely, resulting in higher received power. Together, 

Figure 2. Example of channel knowledge map representation in a given region: (a) RMS delay spread map and (b) received power map
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these visualizations highlight how the distribution and arrange‑
ment of obstacles significantly affect both the delay spread 
and received power, illustrating the spatial consistency of wire‑
less channels.
2.2 Advantages and Challenges of CKM over Traditional 

Communication Methods
Compared with conventional environment-agnostic commu‑

nications, CKM offers several advantages by providing 
location-aware channel knowledge. Firstly, by leveraging pre-
stored historical data, CKM significantly reduces the reliance 
on real-time channel estimation, minimizing training overhead 
and improving spectral efficiency. Also, by integrating both lo‑
cation and environmental information, CKM improves the ac‑
curacy of channel knowledge inference, particularly in com‑
plex propagation environments and ultra-dense network de‑
ployments. Furthermore, CKM enhances network robustness 
and adaptability by enabling proactive communication strate‑
gies. Traditional wireless systems reacting to real-time chan‑
nel variations often lead to inefficiencies in mobility manage‑
ment and resource allocation. In contrast, CKM allows net‑
works to anticipate channel conditions based on environmen‑
tal awareness, facilitating preemptive beam adjustments, intel‑
ligent handovers, and optimized power control.

However, it is important to note that the effectiveness of 
CKM in mobile scenarios depends on its ability to continu‑
ously update and adapt to real-time conditions. Although 
CKM reduces the need for frequent real-time pilot measure‑
ments, it still requires periodic updates to maintain its accu‑
racy, especially in highly dynamic environments with rapid de‑
vice movement. This introduces the challenge of balancing the 
trade-off between maintaining real-time accuracy and reduc‑
ing the overhead associated with constant updates. In some 
cases, the accuracy of CKM may be lower than that of tradi‑
tional real-time channel estimation, particularly in rapidly 
changing environments where instantaneous channel state in‑
formation is crucial. Therefore, while CKM improves effi‑
ciency by reducing the reliance on frequent channel estima‑
tions, its accuracy may not always surpass that of traditional 
systems, especially when the propagation environment under‑
goes significant and rapid changes.

Nevertheless, CKM can outperform traditional real-time 
channel estimation in scenarios where efficiency and resource 
optimization are critical, such as in large-scale networks or in 
environments where real-time measurements are expensive or 
impractical. Moreover, integrating CKM with real-time data 
through adaptive learning mechanisms or sensor fusion tech‑
niques could enhance its accuracy, allowing it to approach the 
performance of real-time estimation in dynamic environments.
2.3 Role of CKM in 6G Environment-Aware Communications

In summary, CKM leverages spatial consistency and histori‑
cal channel knowledge to provide an efficient and scalable so‑

lution to 6G wireless communications. Transitioning from 
environment-agnostic communication to environment-aware 
communication, CKM represents a paradigm shift in how chan‑
nel knowledge is acquired and utilized. This novel approach 
lays the foundation for proactive and predictive communica‑
tion strategies, ultimately improving the efficiency and robust‑
ness of next-generation wireless systems.
3 CKM Construction

3.1 Measurement-Based CKM Construction
Measurement-based methods for CKM construction rely en‑

tirely on empirical measurements to estimate channel charac‑
teristics across a given region. These methods utilize interpola‑
tion and regression techniques to infer the channel parameters 
at unmeasured locations, assuming spatial correlation in the 
wireless propagation environment. By avoiding explicit propa‑
gation models, these approaches capture real-world channel 
variations more effectively. For instance, Kriging interpolation 
has been widely used to create channel maps by incorporating 
spatial correlations in measurement data[13]. Similarly, k-
nearest neighbor (KNN) methods have been applied to esti‑
mate channel conditions at unmeasured points based on the 
nearest available measurements[16].

Relying on real-world data rather than theoretical models, 
measurement-based CKMs can more accurately reflect actual 
conditions in a given environment. However, the success of 
these systems depends on the density and quality of measure‑
ment data, as well as the ability to effectively interpolate or ex‑
trapolate that data to areas not directly measured. Some stud‑
ies have demonstrated the effectiveness of these methods in ur‑
ban and rural environments, but challenges remain in areas 
with sparse or highly variable data[13].

1) KNN interpolation
KNN interpolation is a simple yet effective approach to esti‑

mating unknown channel values in a CKM. Given a target lo‑
cation q0, the estimated channel knowledge f (q0 ) is computed 
as a weighted average of the k-nearest known measurements 
zk: f (q0 ) = ∑k ∈ N (q0 ) wk zk, where N (q0 ) is the set of k 
nearest measurements based on the smallest Euclidean dis‑
tance | q0 - q i |, and wk is the weight assigned to each measure‑
ment. The weight can be determined using the inverse dis‑
tance weighting (IDW) rule, where closer measurements con‑
tribute more significantly to the estimate. Alternatively, a ker‑
nel function can be used to define wk, such as the Gaussian 
kernel: w (q0, qk ) = c ⋅ exp ( - | q0 - qk | /σ), or the Laplacian 
kernel: w (q0, qk ) = c ⋅ exp ( - | q0 - qk | /σ) . These kernel 
functions ensure a smooth interpolation by emphasizing the in‑
fluence of nearby measurements while reducing the contribu‑
tion of distant points.

2) Kriging interpolation
Kriging is a geostatistical interpolation method that esti‑
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mates unknown channel values based on spatially correlated 
measurements[13, 17], providing an optimal linear unbiased pre‑
diction. Unlike simple interpolation techniques, Kriging lever‑
ages the spatial structure of the data through the semivario‑
gram, which describes the degree of correlation between two 
points as a function of their separation distance. Given a set of 
known measurement locations { q i, z i }, Kriging estimates the 
channel value at an unknown location q as: f ̂ (q) = ∑

i = 1

N

λi z i +
λ0, where λi is the interpolation weights chosen to minimize 
the mean squared error (MSE), and λ0 is a bias term to ac‑
count for the mean of the underlying random process. The 
weights are computed by solving a linear system derived from 
the semivariogram function: γ (q i, q j ) = 1

2 E é
ë
êêêê( z i - z j ) 2ù

û
úúúú, 

which captures how the variance of channel measurements 
evolves with distances. This enables Kriging to make statisti‑
cally sound predictions with quantified uncertainty.

Kriging is widely applied in CKM construction to develop 
interference maps[18], which capture spatial variations in inter‑
ference power. By interpolating interference measurements 
from multiple devices, these maps support interference-aware 
resource allocation, allowing networks to optimize transmis‑
sion parameters and minimize co-channel interference. Simi‑
larly, shadowing maps generated via Kriging[19] model large-
scale signal fluctuations caused by environmental obstruc‑
tions. In cognitive radio networks, they help secondary users 
estimate interference from primary users for efficient spectrum 
access. In heterogeneous networks, they aid coverage predic‑
tion and power control, improving communication reliability. 
Through these applications, Kriging enhances environment-
aware CKM construction, enabling more adaptive and intelli‑
gent wireless systems.

3) Matrix completion
Matrix and tensor completion 

techniques are powerful tools for 
constructing CKMs when channel 
measurements are sparse or incom‑
plete[20–22]. These methods leverage 
the low-rank structure of wireless 
channel data to infer missing values, 
reducing the need for extensive mea‑
surements while maintaining accu‑
racy. In CKM construction, the chan‑
nel knowledge across a region can 
be represented as a matrix 
Z ∈ RM × N, where missing entries 
are estimated using matrix comple‑
tion methods like nuclear norm mini‑
mization and alternating least 
squares. When extended to multi-
dimensional data, tensor completion 
methods (for example, tensor 

nuclear norm minimization) incorporate additional factors 
such as frequency and time, enhancing CKM’s predictive ca‑
pabilities. These techniques enable efficient CKM updates, 
dynamic channel estimation, and resource allocation, making 
them valuable for real-world wireless systems with limited 
measurement availability.

4) Other methods
Radial basis function (RBF) interpolation[23] is a widely ap‑

plied technique that estimates unknown channel values by fit‑
ting a smooth function to known measurements, ensuring spa‑
tial continuity in CKM. Gaussian process regression models 
the channel as a Gaussian process with a spatial covariance 
function[24–25], providing both predictions and uncertainty 
quantification, which makes it particularly useful for adaptive 
measurement strategies. Thin plate splines interpolation is an‑
other effective approach that minimizes bending energy to pro‑
duce smooth surface reconstructions[26], capturing gradual 
variations in channel characteristics. These methods enhance 
the accuracy of CKM, especially in cases where channel mea‑
surements are spatially correlated but unevenly distributed.

Fig. 3 compares the performance of several measurement-
driven methods for constructing CKMs, using the received 
power map shown in Fig. 2b as an example, which is gener‑
ated by Wireless Insite. The comparison is based on the root 
mean square error (RMSE) between the predicted CKM and 
the ground truth values. The methods evaluated include the k-
nearest neighbor, Kriging, matrix completion using alternating 
least squares and nuclear norm minimization, radial basis 
function, thin plate splines, and Gaussian process regression. 
The x-axis represents the sampling rate, which influences the 
amount of data used for interpolation, while the y-axis shows 
the RMSE, indicating prediction accuracy.

KNN and Kriging are intuitive and widely used but may suf‑

Figure 3. Comparison of measurement-driven CKM construction methods
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fer from limited accuracy when measurement data are sparse 
or highly variable. Matrix completion methods effectively 
handle missing data but rely on low-rank assumptions that 
may not always hold. RBF and thin plate splines offer smooth 
interpolation, with the latter showing consistently low RMSE 
across sampling rates in Fig. 3. Gaussian process regression 
provides accurate predictions with uncertainty estimates but is 
computationally more demanding. The choice of interpolation 
and regression methods should consider both accuracy require‑
ments and computational cost in practical CKM applications.

It is important to note that these results are based on a spe‑
cific example case, and the performance of these methods may 
vary depending on various factors, such as the type of CKM, 
the environmental conditions (e. g., the distribution of build‑
ings), and the specific locations of transmitters and receivers. 
Therefore, the selection of the appropriate method should be 
carefully considered based on the particular characteristics of 
the environment and network setup in practice.
3.2 Model-Based CKM Construction

Model-based CKM construction utilizes established 
propagation models to derive channel characteristics from 
environmental and systematic parameters. Unlike 
measurement-driven approaches that require extensive mea‑
surements, model-based methods use theoretical formula‑
tions to predict channel conditions at different locations. 
These methods can be broadly categorized into statistical 
and deterministic channel models, with the latter primarily 
relying on ray tracing techniques.

1) Statistical model
Statistical channel models describe the wireless channel us‑

ing probabilistic distributions derived from empirical observa‑
tions and theoretical analysis. These models capture large-
scale and small-scale fading effects, allowing CKM construc‑
tion based on generalizable statistical properties rather than 
site-specific measurements.

For large-scale channel variations, path loss models, such 
as the COST-231 Hata[14] and Okumura models[27], estimate the 
average signal attenuation as a function of distance, fre‑
quency, and environmental factors. These models provide a 
coarse representation of CKM, making them suitable for initial 
coverage predictions in urban and suburban environments. 
Shadowing models, e. g., the log-normal shadowing model[28], 
account for signal fluctuations due to obstructions, incorporat‑
ing randomness into path loss predictions.

More advanced models consider the distribution of environ‑
mental factors, such as building density, height, and urban lay‑
out, to refine path loss predictions. The Walfisch-Bertoni 
model[29] incorporates diffraction and reflection effects in 
dense urban environments, adjusting signal attenuation param‑
eters based on the presence of obstacles. Similarly, recent 
studies have introduced geometry-based stochastic models, 
which approximate line-of-sight (LoS) and non-line-of-sight 

(NLoS) probability in urban environments by considering the 
statistical distribution of buildings and their impact on signal 
propagation[30]. These models reveal that the density and spa‑
tial distribution of buildings significantly impact signal behav‑
ior. Another approach extends stochastic probability models to 
air-to-ground (A2G) communications, analyzing LoS, ground 
specular, and building-scattering paths based on urban topol‑
ogy[31]. Furthermore, sub-terahertz statistical models have 
been developed to study spatial channel characteristics in ur‑
ban microcells, focusing on spatial clustering and power distri‑
butions at high frequencies[32].

For small-scale fading, Rayleigh and Rician fading models 
describe the rapid variations in received signal strength 
caused by multipath propagation[33–34]. Rayleigh fading is com‑
monly used in rich-scattering environments with no dominant 
LoS component, while Rician fading accounts for a strong LoS 
path. These models enable CKM construction that reflects the 
statistical behavior of fading effects, which is crucial for evalu‑
ating signal reliability in dynamic wireless environments.

While statistical models provide a computationally efficient 
means of CKM construction, they lack site-specific accuracy, 
as they rely on general assumptions rather than precise envi‑
ronmental information. As a result, they are often comple‑
mented by deterministic models that incorporate real-world 
physical conditions.

2) Deterministic model
Deterministic models predict wireless channel characteris‑

tics based on the physics of electromagnetic wave propagation, 
making them inherently environment-aware. These models in‑
corporate detailed environmental features such as building lay‑
outs, vegetation, and material properties to accurately capture 
wave interactions, including reflection, diffraction, and scatter‑
ing. Prominent deterministic approaches include ray tracing[15] 
and finite-difference time-domain (FDTD) simulations[35], both 
of which approximate solutions to Maxwell’s equations. Ray 
tracing is commonly used due to its high-frequency approxima‑
tion capabilities, whereas FDTD provides more precise but 
computationally intensive solutions based on discretized Max‑
well’s equations[36].

The distribution of buildings within a given environment 
significantly influences the accuracy of these deterministic 
models. For instance, ray tracing simulates the paths of elec‑
tromagnetic waves by modeling interactions with environmen‑
tal features. The placement, density, and geometry of build‑
ings directly affect the reflection, diffraction, and scattering 
events considered in ray tracing simulations. Variations in 
building distribution can lead to significant differences in 
predicted signal paths, affecting the reliability of communica‑
tion systems.

By leveraging precise environmental and electromagnetic 
characteristics, deterministic models offer highly accurate 
path loss predictions[37–39]. Recent advancements, such as im‑
proved geometric and material characterization techniques[40], 
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have further enhanced model accuracy by reducing discrepan‑
cies between simulations and real-world measurements. How‑
ever, a key challenge of deterministic models is their computa‑
tional complexity, which makes large-scale, real-time applica‑
tions difficult.

Several ray-based simulation methods have been devel‑
oped to improve efficiency, including shooting and bouncing 
ray (SBR)[41] and vertical-plane-launch (VPL)[42]. Additionally, 
advanced techniques like intelligent ray tracing (IRT) [43] pro‑
vide further acceleration, making deterministic modeling 
more feasible for CKM construction. Despite their computa‑
tional demands, these models remain crucial for site-
specific, high-accuracy channel prediction in next-
generation wireless networks.
3.3 Measurement-Model Hybrid CKM Construction

Hybrid CKM construction methods integrate measurement-
driven techniques and theoretical propagation models to im‑
prove accuracy and efficiency. These approaches leverage the 
strengths of both paradigms. Measurement-driven methods uti‑
lize machine learning to extract patterns from measurements, 
while model-based methods incorporate physical constraints 
to ensure consistency with wireless propagation principles. Re‑
cent research in this field has focused on two primary strate‑
gies for hybrid CKM construction.

1) Computer vision approach
One major trend in hybrid CKM construction is leveraging 

computer-vision-based deep neural networks to process environ‑
mental and sparse measurement data as multi-channel inputs, 
treating CKM construction as an image-to-image translation 
task. This approach enables the extraction of spatial features 
from diverse data sources, including transmitter-receiver loca‑
tions, building distributions, and limited channel measurements.

Computer-vision-based approach integrates 3D building 
maps, environmental features, and sparse channel measure‑
ments as multi-channel inputs into neural networks, allowing 
models to infer missing channel information and construct ac‑
curate CKMs. A widely used framework is RadioUNet[44], 
which extends the U-Net architecture by incorporating 
measurement-assisted inputs alongside environmental maps, 
improving prediction accuracy. Similarly, models such as 
EME-Net[45] and ACT-GAN[46] refine CKM predictions by le‑
veraging deep neural networks trained on transmitter positions 
and building layouts. These architectures enhance generaliza‑
tion by learning structural patterns in radio maps while adapt‑
ing to different urban environments. Subregional learning tech‑
niques[47] offer additional benefits by segmenting the channel 
gain map into subregions and applying specialized models to 
each, which is particularly effective in complex environments 
where traditional models struggle. These techniques allow for 
more accurate predictions by addressing regional propagation 
characteristics more effectively.

GAN-based models, such as SS-GAN[48] and RME-GAN[49], 

have also demonstrated significant improvement in CKM con‑
struction by generating realistic channel maps from incom‑
plete data. For instance, the two-stage framework[50] first uses 
a radio map prediction GAN (RMP-GAN) to generate coarse 
radio maps based on environmental data, which are then re‑
fined with sparse measurement data through a correction GAN 
(RMC-GAN). This approach is highly relevant for CKM con‑
struction as it corrects predictions based on real-time measure‑
ments, reducing inaccuracies typically found in traditional 
models. These adversarial learning techniques effectively en‑
hance CKM accuracy, even in scenarios where building infor‑
mation is incomplete or transmitter locations are unknown.

Additionally, hybrid architectures incorporating variance 
prediction and uncertainty modeling have gained traction. A 
notable example is the dual-UNet framework[51], where two 
separate but identical U-Net models are trained in parallel: 
one to estimate received signal strength (RSS) values and the 
other to predict variance maps that quantify uncertainty. This 
design allows CKM construction to incorporate confidence lev‑
els in its predictions, making it more robust to missing or inac‑
curate input data. Studies on Gaussian-based modeling[52–53] 
further highlight the importance of integrating statistical un‑
certainty into deep learning-based CKMs, particularly for ur‑
ban and indoor wireless environments.

Overall, computer vision-driven CKM construction methods 
shown in Table 1 provide flexible, data-efficient alternatives 
to conventional interpolation and model-based techniques. By 
integrating spatial, spectral, and temporal information, these 
architectures enable highly accurate, scalable, and real-time 
CKM generation, paving the way for intelligent wireless net‑
work optimization.

2) Calibrated ray tracing
Calibration using real-world measurements has become a 

key research focus to improve ray tracing performance, since 
the precise environmental parameters, such as material per‑
mittivity, reflection coefficients, and scattering effects, are dif‑
ficult to obtain. Several techniques have been developed to re‑
fine material properties, incorporate diffuse scattering effects, 
and adjust propagation parameters based on empirical data.

One common calibration strategy is tuning material proper‑
ties using real-world measurements. In Ref. [54], the relative 
permittivity of materials in urban microcell (UMi) environ‑
ments at 28 GHz was fine-tuned, reducing errors in path loss 
estimation. Similarly, a linear interpolation approach was 
used in Ref. [55] to estimate the dielectric constant of con‑
crete at 28 GHz based on measured values at 5.2 GHz and 
60 GHz, ensuring more accurate reflection loss modeling. 
Additionally, empirical ray tracing models have been vali‑
dated against 73 GHz street canyon measurements, refining 
reflection loss calculations based on the incident angle[56].

Another key challenge in ray tracing is capturing diffuse scat‑
tering effects, which become significant at mmWave and THz 
frequencies. Calibration against 28 GHz urban directional chan‑
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nel measurements in Ref. [57] involved adjusting scattering co‑
efficients and incorporating an angular spread correction factor, 
improving received power predictions. At THz frequencies, ex‑
tensive indoor ultra-broadband measurements were conducted 
in Ref. [58], leading to the development of a frequency-
dependent scattering model that reduced errors in delay spread 
estimation. In an office setting at 60 GHz, multipath component 
gains were analyzed and adjusted to improve model reliabil‑
ity[59]. The NYURay ray tracing calibration method simplified 
the process by assuming angle-independent reflection, enabling 
a closed-form least squares optimization to align simulated mul‑
tipath power with real-world measurements[60]. Instead of itera‑
tive tuning, the method directly optimizes reflection and pen‑

etration losses on a logarithmic scale, improving efficiency 
while maintaining accuracy.

In recent years, research has investigated the integration of 
neural networks with traditional ray tracing frameworks. In 
Ref. [61], the authors applied neural networks to the interac‑
tion calculation module, utilizing neural networks to predict 
the output direction and losses of each interaction. The archi‑
tecture consists of two main components: the Spatial Network 
and the Material Network. The Spatial Network processes the 
spatial characteristics of the ray’s path, while the Material 
Network accounts for the material properties influencing the 
ray’s behavior. However, this framework does not consider 
high frequency in future communication applications, which 

Table 1. Overview of computer vision based CKM construction models

Model Name

RadioUNet[44]

EME-Net[45]

ACT-GAN[46]

Subregional learning-
based CGM[47]

SS-GAN[48]

RME-GAN[49]

FPTC-GANs[50]

GAN-CRME[51]

SSSP[52]

REM-U-Net[53]

CKM Type

CGM

Indoor RF-EMF 
exposure Map

CGM

CGM

RF coverage and inter‑
ference map

CGM

CGM

CGM

CGM

CGM

Key Approach

U-Net (CNN-based)

U-Net (CNN-based)

GAN (with ACT block, CBA mod‑
ule and T-Conv block)

MCNN-1D

GAN

cGAN

RMP-GAN,
RMC-GAN

cGAN

U-Net

U-Net

Main Features
• Uses city map and transmitter location as input to estimate radio maps
• Incorporates physical simulation data for training
• Utilizes transfer learning to adapt simulated data to real-life scenarios
• Four input channels (red, green, blue, alpha) representing received power intensity
• Trained on Wi-Fi access points in realistic indoor environments
• Three input channels representing 3D building maps, transmitter locations, and environ‑
mental features
• Trained on sparse channel measurements and environmental data from urban areas
• Robust performance in scenarios with sparse discrete observations and unknown emission 
sources
• Divides the map into subregions using a measurement -driven clustering approach
• Input channels: spatial coordinates of BS and sample points, and channel gain
• Trained on simulated channel data from a target area
• Two input channels: RF coverage data and geographic data (elevation and building height)
• Trained on 4G LTE real-world data
• Uses sparsely self-supervised learning for weak supervision
• Two-phase framework: Phase 1 integrates radio propagation models, Phase 2 captures lo‑
cal shadowing effects
• Trained on sparse RF measurements from 700 radio maps, including data from various ur‑
ban regions like Ankara, Berlin, and Tel Aviv
• Inputs: sparse observations, transmitter locations, and urban maps
• Training data comes from real-world measurements and environmental information (e.g., 
transmitter positions, obstacle heights, etc.)
• Inputs: transmitter positions, obstacle top views, and empirical radio map
• First-predict-then-correct approach (RMP-GAN for initial prediction, RMC-GAN for cor‑
rection)
• Inputs: distributed RSS samples and geographical map
• Trained on a dataset with RSS samples and geographical map information
• Inputs: signal strength measurements, 3D map of the environment (urban)
• Training data: signal strength data generated using wireless InSite ray-tracing software 
from simulated environments (45 urban environments)
• The model does not require transmitter location or statistical channel models
• Inputs: building height maps, building layout maps, and LoS maps
• Trained on the RadioMap3DSeer dataset with simulated data from 701 city maps
• Uses LoS maps as additional input to improve prediction accuracy

ACT: aggregated contextual transformation
CBA: convolutional block attention
cGAN: conditional generative adversarial network
CGM: channel gain map
CKM: channel knowledge map
CNN: convolutional neural network

CRME: cooperative radio map estimation
EMF: electromagnetic field
FPTC: first-predict-then-correct
GAN: generative adversarial network
LoS: line-of-sight
MCNN: modular convolutional neural network

REM: radio environment map
RMC: measurement data correction
RME: radio map estimation
RMP: radio map prediction
SSSP: spatial signal strength prediction
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limits its effectiveness within certain application ranges. 
Apart from this, Ref. [62] proposed a learnable wireless digi‑
tal twin, which, similar to ray tracing frameworks, integrates 
neural networks. This framework uses a single entity repre‑
senting each object within the environment, constructing a 
neural network to encode its electromagnetic property one by 
one, which results in improved accuracy for channel model‑
ing. However, the design of neural networks in large-scale 
systems also increases complexity and the requirement for 
computational resources.
3.4 Summary of Advantages and Disadvantages of CKM 

Construction Methods
The various CKM construction methods each have their 

unique advantages and limitations. Measurement-based meth‑
ods, such as KNN and Kriging, are highly effective when suffi‑
cient real-world measurement data are available, providing 
high-level accuracy. However, their performance heavily re‑
lies on the density and quality of the data. In cases where data 
are sparse or irregular, their effectiveness can be reduced. 
Model-based methods, including statistical models and ray 
tracing, are useful when measurement data are limited, as they 
rely on theoretical models. While they can be efficient, their 
accuracy may be lower in complex or rapidly changing envi‑
ronments, and may fail to capture fine-grained variations.

Hybrid methods that combine measurement-driven ap‑
proaches with theoretical models strike a balance between 
accuracy and efficiency. These methods can offer improved 
performance in dynamic environments by leveraging both em‑
pirical data and physical models, but they are computation‑
ally more demanding. The choice of method largely depends 
on available data, computational resources, and the complex‑
ity of the environment, with measurement-based methods of‑
ten being preferred for high-accuracy scenarios and model-
based methods being more suited for situations with limited 
measurements.
4 Applications of CKM

4.1 Integrated Sensing and Com⁃
munication

CKM plays a critical role in inte‑
grated sensing and communication 
(ISAC) systems, where it bridges the 
gap between sensing and communi‑
cation systems. By providing de‑
tailed, location-specific channel in‑
formation, CKM not only enhances 
localization but also improves com‑
munication performance in dynamic 
environments. Unlike traditional 
methods that rely solely on measure‑
ments like RSS, CKM offers addi‑

tional features such as time of arrival (ToA) and AoA, which 
are crucial for localization and beamforming optimiza‑
tion[63–64]. In terms of communication, CKM helps in adjust‑
ing the communication links between BSs and mobile users 
by integrating sensing data, like dynamic environmental 
changes, into the channel model[65]. This integration allows 
for more efficient resource allocation, interference manage‑
ment, and adaptive beamforming. For example, in unmanned 
aerial vehicle (UAV) systems, CKM can simultaneously sup‑
port both the localization of UAVs and the optimization of 
their communication links with ground stations by using real-
time channel state information[66]. Additionally, CKM allows 
for dynamic sensing of moving objects, such as vehicles and 
pedestrians, and enables real-time updates of the communi‑
cation network based on the sensed data, optimizing the over‑
all system performance[67].

Fig. 4 illustrates the application of CGMs in ISAC systems, 
specifically within the fingerprint localization algorithm. In 
this approach, the user’s signal characteristics are collected 
and matched against multiple CGMs stored in a Finger Data‑
base. The algorithm processes this data to estimate the user’s 
location based on the similarity of the measured signal to the 
stored CGMs. This example highlights how CKMs, including 
various types beyond CGMs, can enhance both the sensing 
and communication capabilities in ISAC systems, offering a 
more accurate and efficient means for location tracking in 
complex environments.
4.2 UAV Trajectory Optimization

CKM plays a critical role in enhancing UAV trajectory opti‑
mization in 6G networks, both for cellular-connected UAVs 
and UAV-assisted communication systems. By utilizing rich, 
location-specific channel data, CKM helps construct real-time 
signal-to-interference plus noise ratio (SINR) maps that ac‑
count for both channel gain and interference. In the cellular-
connected UAV scenario, CKM aids in constructing SINR 

Figure 4. Fingerprint localization using CGM in integrated sensing and communication systems
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maps based on channel gain and interference, allowing for the 
design of flight paths that minimize outage probability and 
mission latency while ensuring continuous communication 
with ground BSs. Unlike traditional methods based on deter‑
ministic LoS or stochastic channel models, which fail to ac‑
count for LoS blockages, CKM enables the UAV to navigate 
areas with high interference or blockages while maintaining a 
reliable SINR throughout the path[68]. In UAV-assisted sys‑
tems, where a UAV serves multiple users, CKM helps opti‑
mize the trajectory by identifying paths with strong A2G chan‑
nels, thus enhancing overall system performance. This method 
ensures better coverage for all users, compared with conven‑
tional designs that focus on a single user’s location. Addition‑
ally, combining reinforcement learning with CKM allows the 
UAV to dynamically adjust its trajectory based on real-time 
user distribution and channel quality data, improving commu‑
nication efficiency across the system[69–70].
4.3 Hybrid Beamforming

CKM significantly enhances hybrid beamforming for 
mmWave massive multiple-input multiple-output (MIMO) sys‑
tems, offering a more efficient approach to reducing the com‑
plexity and overhead typically associated with traditional 
training-based channel estimation[71–72]. In these systems, hy‑
brid analog-digital beamforming uses a combination of analog 
and digital beamforming techniques at both the transmitter 
and receiver to manage multiple data streams effectively. Tra‑
ditional beamforming approaches often rely on extensive chan‑
nel state information and require significant training to esti‑
mate the full MIMO channel matrix, which becomes more 
challenging as the number of antennas increases. With the in‑
tegration of CKM, such as the channel angle map (CAM) and 
beamforming indicator map (BIM), the need for extensive 
training is minimized, as the system can use location-specific 
channel information, including AoA, AoD, and path loss, that 
is directly derived from the environment. This enables 
training-free or light-training beamforming, where the accu‑
racy of these designs depends on the precision of user location 
and environmental factors like scatterer movement. While lim‑
ited training may still be beneficial to refine the system, CKM 
improves beamforming efficiency, particularly in dynamic en‑
vironments with multiple users or interference, optimizing 
data throughput and SINR over large antenna arrays.
4.4 BS Placement

In BS deployment, CKM applications assist in optimizing 
BS placement strategies to enhance network coverage and 
performance. By constructing detailed CKMs, one can accu‑
rately assess signal strength, interference levels, and cover‑
age areas at various locations, thereby determining optimal 
BS positions and configurations. For instance, in low-altitude 
environments, methods for deploying multiple aerial BS uti‑
lize binary CKMs to optimize BS layouts to meet the commu‑

nication needs of different areas[73]. Additionally, principles 
for deploying ultra-wideband (UWB) indoor positioning sys‑
tem BS emphasize the importance of CKMs. By analyzing in‑
door channel characteristics, reasonable BS placement can 
improve positioning accuracy and system performance[74]. In 
summary, CKM applications in BS deployment support more 
intelligent BS placement decisions by providing precise 
channel information, enhancing network coverage and ser‑
vice quality.
4.5 Resource Allocation

In 6G networks, particularly for ultra-reliable low-latency 
communication (URLLC) in mission-critical Internet of Things 
(IoT) systems, CKMs can be used to optimize resource alloca‑
tion by adapting transmission control policies. These policies 
aim to meet the stringent quality of service (QoS) requirements 
of URLLC while minimizing the transmit power. By utilizing 
CKMs, which provide channel gain statistics for various loca‑
tions within a target area, transmission control can be optimized 
without the need for real-time, costly channel state information. 
A notable approach, including power scaling based on CKM 
data, was proposed[75], where location-specific transmission pa‑
rameters are adjusted to maintain a target delay violation prob‑
ability across all devices. This method ensures that devices in 
varying conditions can still operate within the desired reliability 
and latency constraints. Additionally, meta-reinforcement learn‑
ing techniques have been employed to further enhance adapt‑
ability, enabling rapid policy adjustment across different envi‑
ronments with minimal retraining. This combination of CKM-
driven power scaling and meta-learning offers a scalable solu‑
tion to resource allocation in URLLC systems .
5 Open Problems and Future Directions

5.1 Localization Accuracy and Robustness of CKM
One major challenge for CKM-based systems is the depen‑

dence on high-precision localization data. Since CKMs rely 
on accurate location information to construct location-
specific channel knowledge, errors in localization can di‑
rectly affect the performance and robustness of the system. 
Inaccurate positioning data, such as from the Global Position‑
ing System (GPS) or environmental obstructions, can distort 
the generated channel map, leading to suboptimal outcomes 
in applications like localization, beamforming, and interfer‑
ence management. To address this issue, future research 
must focus on maintaining CKM robustness in the presence 
of localization inaccuracies. This may involve using machine 
learning techniques to compensate for errors or applying sen‑
sor fusion methods to combine various positioning sources. 
Additionally, techniques such as spatial smoothing or inter‑
polation can help mitigate the impact of small localization er‑
rors, ensuring CKM construction remains reliable even with 
less precise location data.
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5.2 Incorporating Material Properties for Enhanced 
CKM Accuracy

Another significant challenge for CKM-based systems is ef‑
ficiently incorporating detailed environmental information, 
particularly the impact of various material properties on CKM. 
While most existing methods primarily rely on geometric infor‑
mation, such as building shapes or the layout of obstacles, 
they often overlook how the materials of these objects (e. g., 
walls, windows, or furniture) affect the propagation of radio 
waves. Different materials, with varying electromagnetic prop‑
erties, can significantly influence path loss, reflection, and 
scattering, which in turn affect the accuracy of the CKM. To 
address this, future research should focus on integrating 
material-specific data with CKM construction. This may in‑
volve leveraging detailed environmental sensing, such as mate‑
rials’ electromagnetic characteristics, or using machine learn‑
ing to predict the impact of materials on the channel. Combin‑
ing geometric and material information will improve the fidel‑
ity of CKMs, making them more reflective of real-world condi‑
tions and enhancing applications such as beamforming and lo‑
calization in complex environments.
5.3 Improving Generalization with Efficient Neural Net⁃

work Architectures for CKM Construction
A third key challenge is enhancing the generalization abil‑

ity of CKM construction, particularly when using neural 
network-based methods. Currently, most neural network mod‑
els require training on a large variety of scenarios to achieve 
robust performance. However, this process can be time-
consuming and computationally expensive. The ability to de‑
sign more efficient neural network architectures that can be 
trained on fewer scenarios while maintaining strong perfor‑
mance across a wide range of environments is crucial. To 
tackle this, future research should focus on developing models 
that require minimal training data, perhaps by using transfer 
learning, domain adaptation, or few-shot learning techniques. 
These approaches may enable neural networks to generalize 
better and perform well across different deployment scenarios, 
making CKM-based systems more scalable and effective for 
real-world applications, even with limited training data.
5.4 Continuous CKM Updates with Real-Time Data

A crucial challenge for CKM-based systems is how to con‑
tinuously update the CKM with new data, ensuring its accu‑
racy and relevance over time. In dynamic environments, the 
wireless channel is constantly changing due to factors like mo‑
bility, environmental alterations, and user behavior. To main‑
tain an up-to-date CKM, it is essential to integrate new mea‑
surements and real-time data effectively. This could be 
achieved through techniques such as incremental learning and 
online learning, where the CKM model is continuously up‑
dated as new data are acquired, without the need to retrain 
from scratch. Additionally, sensor fusion methods can be em‑

ployed to combine data from different sources, such as mea‑
surement devices, UAVs, and sensors for IoT, providing a more 
comprehensive and accurate representation of the environment. 
By incorporating these approaches, CKM systems can adapt in 
real time to changing conditions, ensuring that they remain ac‑
curate and reliable for various applications.
5.5 CKM in 6G for Robotics

In the future, the application of CKMs in robotics will play 
a crucial role in advancing 6G technologies. As robotics con‑
tinues to evolve, key aspects such as accurate channel model‑
ing, enhanced localization accuracy, and efficient sensing ca‑
pabilities will become increasingly important. CKMs can sig‑
nificantly contribute to these areas by providing detailed, 
environment-aware channel information, enabling robots to 
navigate and interact more effectively in dynamic environ‑
ments[76]. Through the integration of CKMs with 6G networks, 
robots can benefit from more reliable localization and real-
time sensing, improving their ability to adapt to changing con‑
ditions and interact with both humans and other devices seam‑
lessly. Efficient use of the communication channel will also be 
vital for optimizing robot performance, ensuring low latency 
and high throughput for tasks such as autonomous control, 
monitoring, and remote operation.
6 Conclusions

This paper has provided an in-depth overview of CKMs and 
their transformative role in 6G wireless networks. CKMs repre‑
sent a paradigm shift from environment-agnostic communica‑
tion to environment-aware communication, allowing for more 
efficient channel estimation and resource allocation. Through 
various CKM construction methods from measurement-based 
and model-based techniques to hybrid approaches, research‑
ers have demonstrated the potential to improve channel knowl‑
edge accuracy, particularly in complex environments. The ap‑
plications of CKMs, including ISAC systems, beamforming, 
UAV trajectory optimization, BS placement and resource allo‑
cation, highlight their broad influence on network perfor‑
mance and optimization.

As 6G technologies evolve, the integration of CKMs with ad‑
vanced systems such as reconfigurable intelligent surfaces 
(RIS), mmWave communications, and machine learning-based 
adaptive resource management holds great promise. Combin‑
ing CKMs with these technologies can dynamically optimize 
the communication environment, improve coverage in chal‑
lenging areas, and enable real-time adaptation to network 
changes, further enhancing system efficiency and reliability. 
However, despite their promising applications, several chal‑
lenges remain in the development and deployment of CKM 
systems. Future research should focus on improving CKM ro‑
bustness in scenarios with imprecise localization data, better 
integrating material-specific environmental information and 
enhancing the generalization capabilities of neural network 
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models. Moreover, continuously updating CKMs with real-
time data will be crucial for maintaining their relevance and 
accuracy in dynamic environments.

References
[1] JIANG W, HAN B, HABIBI M A, et al. The road towards 6G: a compre‑

hensive survey [J]. IEEE open journal of the communications society, 
2021, 2: 334–366

[2] WANG C X, YOU X H, GAO X Q, et al. On the road to 6G: visions, re‑
quirements, key technologies, and testbeds [J]. IEEE communications sur‑
veys & tutorials, 2023, 25(2): 905 – 974. DOI: 10.1109/
COMST.2023.3249835

[3] SINGH R, KAUSHIK A, SHIN W, et al. Towards 6G evolution: three en‑
hancements, three innovations, and three major challenges [EB/OL]. 
(2024-02-16) [2025-03-25]. https://arxiv.org/abs/2402.10781v1

[4] ALSABAH M, NASER M A, MAHMMOD B M, et al. 6G wireless commu‑
nications networks: a comprehensive survey [J]. IEEE access, 2021, 9: 
148191–148243

[5] WANG Z, ZHANG J Y, DU H Y, et al. A tutorial on extremely large-scale 
MIMO for 6G: fundamentals, signal processing, and applications [J]. IEEE 
communications surveys & tutorials, 2024, 26(3): 1560 – 1605. DOI: 
10.1109/COMST.2023.3349276

[6] WANG J, WANG C X, HUANG J, et al. 6G THz propagation channel char‑
acteristics and modeling: recent developments and future challenges [J]. 
IEEE communications magazine, 2024, 62(2): 56 – 62. DOI: 10.1109/
MCOM.001.2200403

[7] SERGHIOU D, KHALILY M, BROWN T W C, et al. Terahertz channel 
propagation phenomena, measurement techniques and modeling for 6G 
wireless communication applications: a survey, open challenges and future 
research directions [J]. IEEE communications surveys & tutorials, 2022, 24
(4): 1957–1996

[8] MAHMOOD M R, MATIN M A, SARIGIANNIDIS P, et al. A comprehen‑
sive review on artificial intelligence/machine learning algorithms for em‑
powering the future IoT toward 6G era [J]. IEEE access, 2022, 10: 87535–
87562

[9] ZENG Y, XU X. Toward environment-aware 6G communications via chan‑
nel knowledge map [J]. IEEE wireless communications, 2021, 28(3): 84–
91. DOI: 10.1109/MWC.001.2000327

[10] GIORDANI M, POLESE M, ROY A, et al. A tutorial on beam manage‑
ment for 3GPP NR at mmWave frequencies [J]. IEEE communications 
surveys and tutorials, 2019, 21(1): 173 – 196. DOI: 10.1109/
COMST.2018.2869411

[11] ALKHATEEB A, EL AYACH O, LEUS G, et al. Channel estimation and 
hybrid precoding for millimeter wave cellular systems [J]. IEEE journal of 
selected topics in signal processing, 2014, 8(5): 831–846. DOI: 10.1109/
JSTSP.2014.2334278

[12] NI K S, NGUYEN T Q. An adaptable k-nearest neighbors algorithm for 
MMSE image interpolation [J]. IEEE transactions on image processing, 
2009, 18(9): 1976–1987. DOI: 10.1109/TIP.2009.2023706

[13] DALL’ANESE E, KIM S J, GIANNAKIS G B. Channel gain map track‑
ing via distributed Kriging [J]. IEEE transactions on vehicular technol‑
ogy, 2011, 60(3): 1205–1211

[14] AKHPASHEV R V, ANDREEV A V. COST 231 Hata adaptation model 
for urban conditions in LTE networks [C]//The 17th International Confer‑
ence of Young Specialists on Micro/Nanotechnologies and Electron De‑
vices (EDM). IEEE, 2016: 64–66. DOI: 10.1109/EDM.2016.7538693

[15] YUN Z Q, ISKANDER M F. Ray tracing for radio propagation modeling: 
principles and applications [J]. IEEE access, 2015, 3: 1089–1100

[16] XU Z D, HUANG B Q, JIA B. An efficient radio map learning scheme 
based on kernel density function [J]. IEEE transactions on vehicular tech‑
nology, 2021, 70(12): 13315–13324. DOI: 10.1109/TVT.2021.3121470

[17] KIM S J, DALL’ANESE E, GIANNAKIS G B. Cooperative spectrum 
sensing for cognitive radios using Kriged Kalman filtering [J]. IEEE jour‑
nal of selected topics in signal processing, 2011, 5(1): 24 – 36. DOI: 
10.1109/JSTSP.2010.2053016

[18] GUTIERREZ-ESTEVEZ D M, AKYILDIZ I F, FADEL E A. Spatial cov‑
erage cross-tier correlation analysis for heterogeneous cellular networks 
[J]. IEEE transactions on vehicular technology, 2014, 63(8): 3917 –
3926. DOI: 10.1109/TVT.2014.2306260

[19] JAYAWICKRAMA B A, DUTKIEWICZ E, FANG G, et al. Downlink 
power allocation algorithm for licence-exempt LTE systems using Kriging 
and compressive sensing based spectrum cartography [C]//Global Com‑
munications Conference (GLOBECOM). IEEE, 2013: 3766–3771. DOI: 
10.1109/GLOCOM.2013.6831659

[20] SUN H, CHEN J T. Propagation map reconstruction via interpolation as‑
sisted matrix completion [J]. IEEE transactions on signal processing, 
2022, 70: 6154–6169. DOI: 10.1109/TSP.2022.3230332

[21] ZHANG G Y, FU X, WANG J, et al. Spectrum cartography via coupled 
block-term tensor decomposition [J]. IEEE transactions on signal process‑
ing, 2020, 68: 3660–3675. DOI: 10.1109/TSP.2020.2993530

[22] SUN H, CHEN J T. Grid optimization for matrix-based source localiza‑
tion under inhomogeneous sensor topology [C]//IEEE International Con‑
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 
2021: 5110–5114. DOI: 10.1109/ICASSP39728.2021.9414100

[23] MAJDISOVA Z, SKALA V. Radial basis function approximations: com‑
parison and applications [J]. Applied mathematical modelling, 2017, 51: 
728–743. DOI: 10.1016/j.apm.2017.07.033

[24] JANG K J, PARK S, KIM J, et al. Path loss model based on machine 
learning using multi-dimensional Gaussian process regression [J]. IEEE 
access, 2022, 10: 115061–115073

[25] WANG X Y, WANG X Y, MAO S W, et al. DeepMap: deep Gaussian pro‑
cess for indoor radio map construction and location estimation [C]//Global 
Communications Conference (GLOBECOM). IEEE, 2018: 1 – 7. DOI: 
10.1109/GLOCOM.2018.8647266

[26] KELLER W, BORKOWSKI A. Thin plate spline interpolation [J]. Journal 
of geodesy, 2019, 93(9): 1251 – 1269. DOI: 10.1007/s00190-019-
01240-2

[27] SHAKIR Z, AL-THAEDAN A, ALSABAH R, et al. Performance evalua‑
tion for RF propagation models based on data measurement for LTE net‑
works [J]. International journal of information technology, 2022, 14(5): 
2423–2428. DOI: 10.1007/s41870-022-01006-8

[28] BLASZCZYSZYN B, KARRAY M K. Quality of service in wireless cellu‑
lar networks subject to log-normal shadowing [J]. IEEE transactions on 
communications, 2013, 61(2): 781 – 791. DOI: 10.1109/
TCOMM.2012.120512.110673

[29] YAMADA W, SASAKI M, KITA N. Extended Walfisch-Bertoni propaga‑
tion model to cover short range and millimeter-wave bands [J]. Radio sci‑
ence, 2021, 56(3): e2020RS007161. DOI: 10.1029/2020RS007161

[30] KIM K W, KWON H, PARK S. Line-of-sight probability in urban envi‑
ronments representing deterministic grids [J]. IEEE transactions on an‑
tennas and propagation, 2025, 73(3): 1792 – 1804. DOI: 10.1109/
TAP.2024.3513540

[31] SABOOR A, CUI Z Z, VINOGRADOV E, et al. Air-to-ground channel 
model for pedestrian and vehicle users in general urban environments [J]. 
IEEE antennas and wireless propagation letters, 2025, 24(1): 227–231. 
DOI: 10.1109/LAWP.2024.3492507

[32] JU S H, RAPPAPORT T S. Sub-terahertz spatial statistical MIMO chan‑
nel model for urban microcells at 142 GHz [C]//Global Communications 
Conference (GLOBECOM). IEEE, 2021: 1 – 6. DOI: 10.1109/
GLOBECOM46510.2021.9685929

[33] ZHENG Y R, XIAO C S. Simulation models with correct statistical prop‑
erties for Rayleigh fading channels [J]. IEEE transactions on communica‑
tions, 2003, 51(6): 920–928. DOI: 10.1109/TCOMM.2003.813259

[34] PATZOLD M, KILLAT U, LAUE F, et al. On the statistical properties of 
deterministic simulation models for mobile fading channels [J]. IEEE 

57



ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LIU Xingchen, SUN Shu, TAO Meixia, Aryan KAUSHIK, YAN Hangsong 

Special Topic   Channel Knowledge Maps for 6G Wireless Networks: Construction, Applications, and Future Challenges

transactions on vehicular technology, 1998, 47(1): 254 – 269. DOI: 
10.1109/25.661052

[35] HAGNESS S C, TAFLOVE A, GEDNEY S D. Finite-difference time-
domain methods [M]//Numerical methods in electromagnetics. Amster‑
dam: Elsevier, 2005: 199–315. DOI: 10.1016/s1570-8659(04)13003-2

[36] SARKAR T K, JI Z, KIM K, et al. A survey of various propagation models 
for mobile communication [J]. IEEE antennas and propagation magazine, 
2003, 45(3): 51–82. DOI: 10.1109/MAP.2003.1232163

[37] ZHANG X, SHU X J, ZHANG B W, et al. Cellular network radio propaga‑
tion modeling with deep convolutional neural networks [C]//The 26th 
ACM SIGKDD International Conference on Knowledge Discovery & Data 
Mining. ACM, 2020: 2378-2386. DOI: 10.1145/3394486.3403287

[38] SARKAR S, MANSHAEI M H, KRUNZ M. RADIANCE: radio-frequency 
adversarial deep-learning inference for automated network coverage estima‑
tion [C]//IEEE Global Communications Conference. IEEE, 2023: 832 –
837. DOI: 10.1109/GLOBECOM54140.2023.10437767

[39] JAENSCH F, CAIRE G, DEMIR B, et al. Radio map estimation: an open 
dataset with directive transmitter antennas and initial experiments [EB/
OL]. (2024-01-12) [2025-03-25]. https://arxiv.org/abs/2402.00878v1

[40] ZHANG F B, ZHOU C, BRENNAN C, et al. A radio wave propagation 
modeling method based on high-precision 3-D mapping in urban sce‑
narios [J]. IEEE transactions on antennas and propagation, 2024, 72(3): 
2712–2722. DOI: 10.1109/TAP.2024.3355502

[41] LING H, CHOU R C, LEE S W. Shooting and bouncing rays: calculating 
the RCS of an arbitrarily shaped cavity [J]. IEEE transactions on anten‑
nas and propagation, 1989, 37(2): 194–205. DOI: 10.1109/8.18706

[42] LIANG G, BERTONI H L. A new approach to 3-D ray tracing for propa‑
gation prediction in cities [J]. IEEE transactions on antennas and propa‑
gation, 1998, 46(6): 853–863. DOI: 10.1109/8.686774

[43] HOPPE R, WÖLFLE G, LANDSTORFER F. Fast 3D ray tracing for the 
planning of microcells by intelligent preprocessing of the database [C]//
The 3rd European Personal and Mobile Communications Conference 
(EPMCC), 1999

[44] LEVIE R, YAPAR Ç, KUTYNIOK G, et al. RadioUNet: fast radio map 
estimation with convolutional neural networks [J]. IEEE transactions on 
wireless communications, 2021, 20(6): 4001 – 4015. DOI: 10.1109/
TWC.2021.3054977

[45] MALLIK M, KHARBECH S, MAZLOUM T, et al. EME-net: a U-net-
based indoor EMF exposure map reconstruction method [C]//The 16th Eu‑
ropean Conference on Antennas and Propagation (EuCAP). IEEE, 2022: 
1–5

[46] CHEN Q, YANG J J, HUANG M, et al. ACT-GAN: radio map construc‑
tion based on generative adversarial networks with ACT blocks [J]. IET 
communications, 2024, 18(19): 1541–1550. DOI: 10.1049/cmu2.12846

[47] CHEN J Y, GAO R F, WANG J, et al. Channel gain map construction 
based on subregional learning and prediction [J]. IEEE transactions on 
vehicular technology, 2025, (99): 1 – 6. DOI: 10.1109/
TVT.2025.3542581

[48] LI Z, CAO J N, WANG H W, et al. Sparsely self-supervised generative 
adversarial nets for radio frequency estimation [J]. IEEE journal on se‑
lected areas in communications, 2019, 37(11): 2428 – 2442. DOI: 
10.1109/JSAC.2019.2933779

[49] ZHANG S Y, WIJESINGHE A, DING Z. RME-GAN: a learning frame‑
work for radio map estimation based on conditional generative adversarial 
network [J]. IEEE Internet of Things journal, 2023, 10(20): 18016 –
18027. DOI: 10.1109/JIOT.2023.3278235

[50] WANG Y F, SUN S, LIU N, et al. Two-stage radio map construction with 
real environments and sparse measurements [J]. IEEE wireless communi‑
cations letters, 2025, 14(4): 969 – 973. DOI: 10.1109/
LWC.2025.3528512

[51] ZHANG Z Z, ZHU G X, CHEN J T, et al. Fast and accurate cooperative 
radio map estimation enabled by GAN [EB/OL]. [2025-03-25]. https://
arxiv.org/abs/2402.02729v1

[52] KRIJESTORAC E, HANNA S, CABRIC D. Spatial signal strength predic‑

tion using 3D maps and deep learning [C]//International Conference on 
Communications. IEEE, 2021: 1 – 6. DOI: 10.1109/
ICC42927.2021.9500970

[53] SALLOUHA H, SARKAR S, KRIJESTORAC E, et al. REM-U-Net: deep 
learning based agile REM prediction with energy-efficient cell-free use 
case [J]. IEEE open journal of signal processing, 2024, 5: 750–765

[54] LEE J H, CHOI J S, KIM S C. Cell coverage analysis of 28 GHz millime‑
ter wave in urban microcell environment using 3-D ray tracing [J]. IEEE 
transactions on antennas and propagation, 2018, 66(3): 1479 – 1487. 
DOI: 10.1109/TAP.2018.2797531

[55] HUR S, BAEK S, KIM B, et al. Proposal on millimeter-wave channel 
modeling for 5G cellular system [J]. IEEE journal of selected topics in 
signal processing, 2016, 10(3): 454 – 469. DOI: 10.1109/
JSTSP.2016.2527364

[56] NGUYEN H C, MACCARTNEY G R, THOMAS T, et al. Evaluation of 
empirical ray-tracing model for an urban outdoor scenario at 73 GHz E-
band [C]//The 80th Vehicular Technology Conference (VTC2014-Fall). 
IEEE, 2014: 1–6. DOI: 10.1109/VTCFall.2014.6965971

[57] CHARBONNIER R, LAI C, TENOUX T, et al. Calibration of ray-tracing 
with diffuse scattering against 28-GHz directional urban channel mea‑
surements [J]. IEEE transactions on vehicular technology, 2020, 69(12): 
14264–14276. DOI: 10.1109/TVT.2020.3038620

[58] PRIEBE S, KANNICHT M, JACOB M, et al. Ultra-broadband indoor 
channel measurements and calibrated ray tracing propagation modeling 
at THz frequencies [J]. Journal of communications and networks, 2013, 15
(6): 547–558

[59] ZHOU A D, HUANG J, SUN J, et al. 60 GHz channel measurements and 
ray tracing modeling in an indoor environment [C]//The 9th International 
Conference on Wireless Communications and Signal Processing (WCSP). 
IEEE, 2017: 1–6. DOI: 10.1109/WCSP.2017.8170934

[60] KANHERE O, PODDAR H, RAPPAPORT T S. Calibration of NYURay 
for ray tracing using 28, 73, and 142 GHz channel measurements con‑
ducted in indoor, outdoor, and factory scenarios [J]. IEEE transactions on 
antennas and propagation, 2025, 73(1): 405–420

[61] OREKONDY T, KUMAR P, KADAMBI S, et al. Winert: towards neural 
ray tracing for wireless channel modelling and differentiable simulations
[EB/OL]. [2025-03-02]. https://openreview.net/pdf?id=tPKKXeW33YU

[62] JIANG S F, QU Q, PAN X Q, et al. Learnable wireless digital twins: Re‑
constructing electromagnetic field with neural representations [EB/OL]. 
(2024-09-04) [2025-03-02]. https://arxiv.org/abs/2409.02564v2

[63] QI Y H, KOBAYASHI H, SUDA H. Analysis of wireless geolocation in a 
non-line-of-sight environment [J]. IEEE transactions on wireless commu‑
nications, 2006, 5(3): 672–681. DOI: 10.1109/TWC.2006.1611097

[64] KAUSHIK A, SINGH R, DAYARATHNA S, et al. Toward integrated 
sensing and communications for 6G: key enabling technologies, standard‑
ization, and challenges [J]. IEEE communications standards magazine, 
2024, 8(2): 52–59. DOI: 10.1109/MCOMSTD.0007.2300043

[65] YAPAR Ç, LEVIE R, KUTYNIOK G, et al. Real-time localization using 
radio maps [EB/OL]. (2020-06-09) [2025-03-02]. https://arxiv. org/abs/
2006.05397v1

[66] ZENG S Q, XU X L, ZENG Y, et al. CKM-assisted LoS identification and 
predictive beamforming for cellular-connected UAV [C]//International 
Conference on Communications. IEEE, 2023: 2877 – 2882. DOI: 
10.1109/ICC45041.2023.10278702

[67] ZHANG B T, CHEN J T. Constructing radio maps for UAV communica‑
tions via dynamic resolution virtual obstacle maps [C]//The 21st Interna‑
tional Workshop on Signal Processing Advances in Wireless Communica‑
tions (SPAWC). IEEE, 2020: 1 – 5. DOI: 10.1109/
SPAWC48557.2020.9154223

[68] ZHANG S W, ZHANG R. Radio map-based 3D path planning for 
cellular-connected UAV [J]. IEEE transactions on wireless communica‑
tions, 2021, 20(3): 1975–1989. DOI: 10.1109/TWC.2020.3037916

[69] HUANG Y W, MO X P, XU J, et al. Online maneuver design for UAV-
enabled NOMA systems via reinforcement learning [C]//Wireless Commu‑

58



ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LIU Xingchen, SUN Shu, TAO Meixia, Aryan KAUSHIK, YAN Hangsong 

Channel Knowledge Maps for 6G Wireless Networks: Construction, Applications, and Future Challenges   Special Topic

nications and Networking Conference (WCNC). IEEE, 2020: 1–6. DOI: 
10.1109/WCNC45663.2020.9120492

[70] ZENG Y, XU X L, JIN S, et al. Simultaneous navigation and radio map‑
ping for cellular-connected UAV with deep reinforcement learning [J]. 
IEEE transactions on wireless communications, 2021, 20(7): 4205 –
4220. DOI: 10.1109/TWC.2021.3056573

[71] WU D, ZENG Y, JIN S, et al. Environment-aware hybrid beamforming by 
leveraging channel knowledge map [J]. IEEE transactions on wireless 
communications, 2024, 23(5): 4990 – 5005. DOI: 10.1109/
TWC.2023.3323941

[72] YANG B, WANG W, ZHANG W. Cell-free massive MIMO beamforming 
based on radio map [C]//International Conference on Communications. 
IEEE, 2024: 4506–4511. DOI: 10.1109/ICC51166.2024.10622568

[73] XIA X C, XU K, XIE W, et al. Multiple aerial base station deployment 
and user association based on binary radio map [J]. IEEE Internet of 
Things journal, 2023, 10(19): 17206 – 17219. DOI: 10.1109/
JIOT.2023.3272555

[74] GANAME H, LIU Y Z, GHAZZAI H, et al. 5G base station deployment 
perspectives in millimeter wave frequencies using meta-heuristic algo‑
rithms [J]. Electronics, 2019, 8(11): 1318. DOI: 10.3390/electron‑
ics8111318

[75] PENG H S, KALLEHAUGE T, TAO M X, et al. Fast transmission control 
adaptation for URLLC via channel knowledge map and meta-learning [J]. 
IEEE Internet of Things journal, 2025, 12(9): 13097 – 13111. DOI: 
10.1109/JIOT.2025.3552413

[76] KAUSHIK A, SINGH R, et al. Empowering robotic systems with inte‑
grated sensing and communications in the 6G era [EB/OL]. (2025-02-11) 
[2025-03-25]. https://www.techrxiv.org/doi/full/10.36227/techrxiv.173929
717.76503413/v1

Biographies
LIU Xingchen received his BS degree in information engineering from South‑
east University, China in 2022, and MS degree in information and communica‑
tion engineering from Shanghai Jiao Tong University, China in 2025. His re‑
search interests include ray tracing, channel modeling, and the application of 
artificial intelligence in wireless communications.

SUN Shu (shusun@sjtu.edu.cn) obtained her BS degree in applied physics from 
Shanghai Jiao Tong University (SJTU), China in 2012, and PhD degree in elec‑
trical engineering from New York University, USA in 2018, and held summer 
internship positions at Nokia Bell Labs, USA in 2014 and 2015. She worked as 
a system engineer at Intel Corporation, USA from 2018 to 2021. She is current‑
ly a tenure-track associate professor at SJTU. Her current research interests in‑

clude channel modeling, millimeter-wave communications, integrated sensing 
and communication, and holographic MIMO. She received multiple internation‑
al academic awards including the 2023 and 2017 IEEE Neil Shepherd Memori‑
al Best Propagation Paper Awards, the 2017 Marconi Society Young Scholar 
Award, the IEEE VTC2016-Spring Best Paper Award, and the 2015 IEEE Don‑
ald G. Fink Award. She is an editor for various international journals.

TAO Meixia received her BS degree in electronic engineering from Fudan Uni‑
versity, China in 1999, and PhD degree in electrical and electronic engineering 
from Hong Kong University of Science and Technology, China in 2003. She is 
currently a distinguished professor with the School of Information Science and 
Electronic Engineering at Shanghai Jiao Tong University, China. Her research 
interests include wireless edge learning, semantic communications, integrated 
communication-computing-sensing, and AI-based channel modeling and beam‑
forming. She received the 2019 IEEE Marconi Prize Paper Award, the 2013 
IEEE Heinrich Hertz Award for Best Communications Letters, the IEEE/CIC In‑
ternational Conference on Communications in China (ICCC) 2015 Best Paper 
Award, the International Conference on Wireless Communications and Signal 
Processing (WCSP) 2012 and 2022 Best Paper Awards, and the 2009 IEEE 
ComSoc Asia-Pacific Outstanding Young Researcher Award. She is an editor 
for various international journals.

Aryan KAUSHIK has been an associate professor with Manchester Metropoli‑
tan University, UK since 2024. He is a core member of the IEEE P1955 Stan‑
dard on 6G-Empowering Robotics, Chair of the IEEE ComSoc ETI on ESIT, Co-
Chair of the IEEE SIG on AITNTN, and an editor of 5 books published by Else‑
vier and Wiley. He also serves as an editor for several journals, such as IEEE 
Transactions on Communications, IEEE Transactions on Mobile Computing, 
IEEE Communications Surveys and Tutorials, IEEE OJCOMS (2023 and 2024 
Best Editor Award), IEEE Communications Letters (2023 and 2024 Exemplary 
Editor), IEEE IoT Magazine, and IEEE CTN. He has delivered invited talks, 
keynote speeches, and tutorials at over 110 academic and industry events and 
conferences globally, including IEEE ICC 2024-2025, IEEE GLOBECOM 
2023-2024. Additionally, he has served as the General Chair for over 30 work‑
shops and special sessions, such as those at IEEE ICC 2024-2025 and IEEE 
GLOBECOM 2023-2025.

YAN Hangsong received his PhD degree in electrical engineering from New 
York University, USA in 2021. From 2021 to 2024, he was a senior research en‑
gineer with Huawei Technologies Co., Ltd, China, where he received various 
awards including the Company Future Star Award and the President’s Award 
in 5G & LTE FDD domain. He is currently an associate researcher with Hang‑
zhou Institute of Technology, Xidian University, China. His research interests 
include massive MIMO related theories and applications, and satellite commu‑
nications. He serves as a reviewer for multiple international journals and confer‑
ences, and has been recognized as an exemplary reviewer for IEEE Transac⁃
tions on Communications and IEEE Wireless Communications Letters.

59



ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

CHEN Peng, LIU Yajuan, WEI Wentong, WANG Wei, LI Na 

Special Topic   Air-to-Ground Channel Measurement and Modeling for Low-Altitude UAVs: A Survey

AirAir--toto--Ground Channel Measurement and Ground Channel Measurement and 
Modeling for LowModeling for Low--Altitude UAVsAltitude UAVs:: A Survey A Survey

CHEN Peng, LIU Yajuan, WEI Wentong, 

WANG Wei, LI Na
(School of Information Engineering, Chang’an University, Xi’an 
710064, China)

DOI: 10.12142/ZTECOM.202502007

https://kns.cnki.net/kcms/detail/34.1294.TN.20250529.1048.002.html, 
published online May 29, 2025

Manuscript received: 2025-02-20

Abstract: As important infrastructure for airborne communication platforms, unmanned aerial vehicles (UAVs) are expected to become a key 
part of 6G wireless networks. Thus, modeling low- and medium-altitude propagation channels has attracted much attention. Air-to-ground 
(A2G) propagation channel models vary in different scenarios, requiring accurate models for designing and evaluating UAV communication 
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1 Introduction

Drones were developed more than a century ago and 
initially served military purposes. At present, un‑
manned aerial vehicles (UAVs) are also widely used 
in civil applications in many countries, including 

power line inspection, pesticide spraying, aerial surveying and 
mapping, wildlife protection, meteorological monitoring, spe‑
cial weather tracking, disaster rescue, and search and rescue 
of stranded people. These applications demonstrate remark‑
able effectiveness compared with traditional manpower, par‑
ticularly in high-risk and time-critical operations[1]. All these 
are enabled by UAV-based wireless communication systems 
with low cost, simple operation, and flexible configuration[2–4].

In the 5G era, artificial intelligence (AI) and other emerging 
technologies are providing strong impetus to the drone indus‑
try. These technology combinations are creating secondary 
markets for drone applications. Examples include the emer‑
gence of advanced military drones such as the Predator and 

the Global Hawk. Wireless connectivity to drones is key for 
enabling the integration of drones into national airspace and 
expanding the scenarios in which drones can be used.

In contrast to conventional terrestrial communication sys‑
tems such as cellular and vehicular networks, UAV communi‑
cation systems exhibit unique three-dimensional (3D) charac‑
teristics, including 3D scattering environments, 3D flight tra‑
jectories, and 3D antenna arrays. These features significantly 
influence the propagation characteristics of UAV communica‑
tion systems. UAVs can operate at various flight altitudes, 
causing the signal propagation to transition from a simple line 
of sight (LoS) path to more complex paths involving ground re‑
flections and scatterings from obstacles. This results in strong 
randomness of the received signal and rapid changes in the re‑
ceived signal envelope. Additionally, UAVs can maneuver 
freely in real environments, where obstacles are inevitable. 
Unlike traditional air-to-ground (A2G) systems that assume 
aircraft can avoid ground obstacles, UAVs often face chal‑
lenges in obstacle avoidance, further complicating the propa‑
gation environment. The mobility of both the transmitter and 
receiver also impacts the fading characteristics of the signals. 
In particular, the high flight speeds of UAVs can lead to sig‑
nificant Doppler shifts in bands with large carrier frequencies. 
To address these complexities and enhance modeling accu‑
racy, researchers have proposed advanced channel models. 

This work was supported by the National Natural Science Foundation of 
China under Grant No. 42176190, Fundamental Research Funds for the 
Central Universities, CHD under Grant Nos. 300102243401 and 
300102244203, and Research Funds for the Interdisciplinary Projects, 
CHU under Grant Nos. 300104240912 and 300104240922.
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For instance, Ref. [5] introduced a non-stationary ray-tracing 
(RT) channel model that incorporates 3D scattering environ‑
ments, 3D flight trajectories, and 3D antenna arrays. This 
model combines deterministic methods for computing inter-
path parameters based on geometric configurations with sto‑
chastic approaches for generating intra-path parameters, 
thereby improving computational efficiency and reducing com‑
plexity. Furthermore, Ref. [6] developed a 3D non-stationary 
geometry-based stochastic model (GBSM) that accounts for 
UAV body orientations. By introducing time-varying 3D atti‑
tude matrices, this model characterizes UAV attitude dynam‑
ics and analyzes their effects on channel statistical properties, 
such as temporal autocorrelation functions and spatial cross-
correlation functions. These studies collectively highlight that 
UAV attitude variations are critical factors influencing chan‑
nel characteristics and must be explicitly incorporated into 
channel modeling frameworks.

UAV operating environments and scenarios pose technical 
challenges for communication between the control point and 
the UAV, and these technical issues have attracted many re‑
searchers to investigate them. For instance, Ericsson research‑
ers have shown that mobile networks can provide wide-area, 
high-speed, and secure wireless connectivity to enhance the 
control and safety of UAV operations[7], and Nokia Bell Labs 
researchers have proposed that UAVs connected to cellular 
network path loss and shadowing parameters must follow 
highly correlated models[8]. Typically, A2G channels are con‑
sidered free-space channels or two-ray channels, which add re‑
flections from the Earth􀆳s surface to the LoS parameter. Tradi‑
tionally, A2G channel measurements and modeling have been 
carried out at high altitude with large aircraft[9].

For public safety reasons, however, some countries includ‑
ing Japan, Ireland and the Philippines limit the application 
of UAVs to low-altitude flight (below 150 m) under LoS[10] 
conditions. However, the A2G propagation channel model 
used for high-altitude aerial communications is usually not 
directly applicable to low-altitude UAV communications, as 
low-altitude communications are strongly influenced by a va‑
riety of factors, such as the vehicle, terrain, and weather. For 
example, in terms of vehicle selection, small UAVs of differ‑
ent manufacturers and models do not have uniform and fixed 
structures or flight characteristics. In terms of the environ‑
ment, it is technically challenging to provide continuous cov‑
erage for low-altitude communications in obstructed environ‑
ments such as hilly terrains, mountain forests, rivers, and 
high buildings.

Compared with terrestrial propagation channels, UAV A2G 
propagation channels have not yet attracted widespread atten‑
tion. There are few studies on the characteristics of A2G 
propagation channels, with Ref. [11] being an exception. To 
encourage more research on UAV A2G propagation channels, 
this paper summarizes the basics and characteristics of UAV 
A2G propagation channels, presents an overview of UAV A2G 

channel measurement methodologies, and outlines future re‑
search directions in this field.

The rest of the paper is organized as follows. Section 2 de‑
scribes the basics and characteristics of UAV A2G channels 
based on the literature. Section 3 overviews important UAV 
A2G channel measurement campaigns. Section 4 classifies 
UAV A2G channel models for diversified scenarios. Section 5 
presents future research directions for UAV A2G channel mea‑
surement and modeling, and Section 6 concludes the paper.
2 Basic Information and Characteristics of 

Air-to-Ground Channels

2.1 Introduction to Air-to-Ground Communication
A2G communication generally refers to the communication 

between ground command institutions and aerial vehicles. 
Such systems use aerial platforms to carry communication pay‑
loads via air-based relaying or mobile switching, and integrate 
with multiple ground platforms (stations) to achieve informa‑
tion interaction of wireless communication systems. A2G com‑
munication essentially aims to increase the height of ground-
based communication equipment, converting over-the-horizon 
communication into LoS communication. This enables long 
communication distances, large coverage areas, wide transmis‑
sion bandwidths, and easy network deployment. Additionally, 
it is highly mobile and flexible[12].

According to the lifting altitude of the air platform, the cov‑
erage radius of wireless communication can range from tens 
to hundreds of kilometers. Current propagation models for fad‑
ing in A2G wireless channels can be divided into three main 
categories: free-space transmission, shadow fading, and 
propagation models for multipath fading. Among them, free-
space transmission and shadow fading are generally classified 
as large-scale fading, because they primarily cause changes 
in received power over long distances with their impact on 
wireless signals unfolding relatively slow (also termed slow 
fading). In contrast, multipath fading is often referred to as 
small-scale fading or fast fading. This is because the signals 
from the mobile station near scattering bodies (such as ter‑
rain, features, and moving objects) undergo multipath propa‑
gation. As a result, the received signal experiences rapid 
rises and falls due to the superposition of multiple paths at 
the receiving point.
2.2 Large-Scale Decay

Statistical models of A2G communication channels are di‑
vided into large-scale and small-scale models. Large-scale 
models typically include path loss and shadow fading models. 
Large-scale fading mainly includes path loss (PL) and shadow 
fading (SF). PL refers to the signal fading over long distances, 
while SF occurs when the signal encounters obstacles or un‑
even terrain. SF is characterized by its dependence on the to‑
pography of the radio propagation and the distribution and 
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heights of obstacles. In most of the literature, the well-known 
ground-based logarithmic distance PL model is used as:

PL (d ) = PL (d0 ) + 10γ log10
d
d0

+ Xσ (1),

where PL (d ) denotes the path loss in dB when the spacing be‑
tween transceiver devices is d; PL (d0 ) represents the reference 
path loss measured at a reference distance d0 (typically 1 m, 
derived from actual measurement); γ is the path loss exponent 
(PLE) obtained through a best-fit minimum mean square error 
method, which quantifies the rate at which the path loss in‑
creases with distance. Theoretically, γ should equal 2 in free 
space. However, Table 1 shows that the measured PLE γ is ap‑
proximately 1.5– 4[13–20]. In Eq. (1), Xσ is a normal random 
variable with a standard deviation of sigma, which is used to 
account for the variations in shadowing or in the linear fit in 
the LoS channel. A large body of literature shows that shadow 
fading obeys a zero-mean lognormal distribution[21]:

f (m ) = 1
2πσ2

e
-( )ln m - μ

2

2σ2 (2),

where μ is the mean value, and σ is the standard deviation. 
UAV A2G channels tend to be more dispersed than mobile ra‑
dio channels, producing greater ground shadow attenuation 
and faster variations. Channel factors typically include reflec‑
tion, scattering, diffraction, and shading effects in the direct 

view path. However, in most LoS A2G channels, large-scale 
fading occurs only when the LoS path between the UAV and 
the ground station (GS) is obstructed by an object with a large 
relative wavelength. Several models have been developed for 
this fading condition (e. g., terrain diffraction and tree shad‑
ing). Many large-scale fading models for UAV A2G channels 
in the literature cover both PL and SF. For example, Ref. [13] 
conducted comprehensive measurements of path loss in the L-
band and C-band in different propagation scenarios, and two 
primary conclusions were obtained. 1) The PLE varied slightly 
but was usually close to the free space value for urban, subur‑
ban, hilly, and water scenarios; 2) the standard deviation of 
the linear fit was usually less than 3 dB. Table 1 summarizes 
the literature on large-scale A2G propagation and its path loss 
parameters, with the log-distance PL model being the most 
common model. The PL estimates are given via the logarith‑
mic model[15, 17, 22–23]. Other PL models consider the shadowing 
of non-line of sight (NLoS) paths, as well as additional losses 
due to other obstacles[9, 19]. In Ref. [19], shadowing losses are 
considered in the modeling and evaluated as a function of the 
elevation angle of the NLoS path.
2.3 Small-Scale Decay

Small-scale modeling of the UAV A2G channel relies on 
the multipath fading characteristics of the channel and the 
Doppler power spectrum. Small-scale fading models are appli‑
cable to narrowband channels or individual multipath compo‑
nents (MPCs). Stochastic fading models are usually obtained 
from empirical data or geometric analysis and simula‑
tion[24–29]. PL, including shadowing, was reported in Refs. [15, 
30–32], where we note that in the case of LoS without real ob‑
stacles in the first Fresnel zone, it is not actually shadowing 
that causes the PL to change, but rather small-scale effects.

Ref. [31] noted that the PL and its associated shadows are 
attributed to buildings only when the UAV is flying near the 
ground, whereas when the UAV is flying higher, actual shad‑
ows do not exist, but changes in small-scale fading still occur. 
Table 2 summarizes the fading characteristics of small-scale 
A2G propagation channels in the literature[15, 30–34].

Table 1. Research on large-scale A2G propagation and its path loss pa⁃
rameters in existing literature

Ref.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Scenario

Urban/
suburban
Urban/

open field
Urban/
rural

Open field

Aerial

Water
Urban/

suburban
Urban

Propagation 
Path

LoS

LoS

LoS

LoS

LoS

LoS

LoS, NLoS

LoS, NLoS

Model
Log-distance 

path loss model, 
two-ray model

Free space 
path loss model
Log-distance 

path loss model
Log-distance 

path loss model
Log-distance 

path loss model
Log-distance 

path loss model
Free space 

path loss model
Free space 

path loss model

PLE γ
L-band: 1.7,

C-band: 
1.5–2

4.1

2.01

2.32

1.9

A2G: air-to-ground          LoS: line of sight         NLoS: non-line of sight    
PLE: path loss exponent 

Table 2. Fading characteristics of small-scale air-to-ground propagation 
channels in the literature

Ref.

[33]
[15]
[30]
[32]
[34]
[31]

Frequency/
GHz

3.1–5.3
2

5.75
0.968–2.06

8–18
2

Fading 
Distribution
Nakagami

Rayleigh, Ricean
Ricean
Ricean

Ricean, Nakagami
Ricean

K-factor/dB

−5–10
12–27.4

2–5

Scenario
Suburban/
open field

Urban/suburban
Urban/suburban
Urban/suburban

Forest
Urban/suburban
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2.3.1 Multipath Components
Small-scale multipath fading refers to rapid fluctuations in 

the amplitude, phase, or multipath delay of a wireless signal 
over short time intervals or distances (typically within half a 
wavelength). This fading results from the mutual interference 
of multipath components originating from the same transmit‑
ted signal, which propagate through different paths and arrive 
at the receiver with varying time delays. HUANG et al.[35] con‑
sidered a time-varying approach to model the propagation be‑
tween a GS and a UAV. They proposed a method based on 
MPC distances to track the evolution of MPC during UAV 
flight to obtain MPC trajectories that were modeled with 
straight-line segments. To describe the evolutionary trend of 
the MPC, several properties (including survival length, initial 
position spacing, initial relative delay, and relative slope) 
were also defined and statistically characterized for each flight 
trajectory. The model serves as a basis for modeling time-
varying radio propagation channels between a low-altitude 
UAV and a ground base station.

Notably, in UAV A2G channel modeling, multipath fading 
can also come from the UAV itself, albeit usually weak and 
with minimal relative delays. The main propagation paths for 
A2G communications include the direct propagation path be‑
tween the UAV and GS and a cluster of reflected, delayed 
propagation paths; thus, for statistical analysis, the channel 
model usually includes the LoS component and a cluster of 
NLoS components that comprise multiple reflected paths with 
varying delays.
2.3.2 Doppler Shift

The Doppler effect is caused by the mutual motion between 
the mobile station and the base station or by the motion of 
other objects in the propagation environment. In UAV commu‑
nications, this effect is influenced by the UAV’s speed, geom‑
etry, and operational wavelength. If the UAV flies too rapidly, 
it may generate a large Doppler shift, potentially causing is‑
sues due to higher Doppler frequencies. In addition, since the 
frequency and wavelength of electromagnetic waves are in‑
versely proportional, the lower the operating frequency band, 
the smaller the Doppler shift for high-speed UAVs. However, 
the spectrum resources in the lower frequency bands are very 
tight, so the Doppler shift caused by high-speed movement of 
UAVs is a major challenge for the UAV data chain. Doppler 
shift introduces a carrier frequency shift and inter-carrier in‑
terference. Doppler shift modeling in A2G scenarios has long 
been studied[30, 36–39]. Ref. [30] investigated the Doppler shift 
and its impact on channel performance in different flight 
phases (parking and taxiing, in-flight, take-off, and landing) 
through simulation. The Doppler shift for the realization of or‑
thogonal frequency division multiplexing (OFDM) systems in 
multipath environments was considered in Ref. [39], where dif‑
ferent frequency offsets were observed for the arriving mul‑
tiple components.

In Ref. [40], the Doppler frequency profile (DFP) of a ve‑
hicle in different states was analyzed, as shown in Fig. 1, and 
the Doppler shift equation was given:

fD = fDmax cos [ αL + μ (αH - αL ) ] (3),
where μ ∈ [ ]0, 1  is a uniformly distributed random variable, 
and αH and αL are the maximum and minimum angles of ar‑
rival under navigation, respectively. The statistical model pro‑
posed by ELNOUBI et al. [41] characterizes UAV-to-ground 
propagation based on transmission coefficients and performs a 
Doppler spectral analysis of the scattered MPCs. ZAMAN et 
al. [42] proposed a model with both LoS and NLoS components, 
describing the Doppler shift as a random process and using an 
unmodulated 118 MHz carrier as the input to the channel. 
They observed that the output signal’s amplitude spectrum 
deviated from the carrier frequency. LI et al. [43] presented a 
simulation model for high-altitude UAV communication sce‑
narios, in which statistics such as temporal correlation and 
Doppler spectrum were investigated. CHENG et al. [44] pro‑
posed a 3D nonstationary geometric model for wideband UAV 
channels. The Doppler shift induced by the UAV’s high-
speed motion is determined by the analyzed correlation and 
Doppler properties. However, the scenarios considered in pre‑
vious studies typically exclude the presence of nearby scatter‑
ers. This limitation restricts the applicability of these studies 
to broader multi-antenna UAV scenarios that may involve 
various altitudes.
2.4 Typical Scenario of UAV Air-to-Ground Channel 

Propagation
The first step in UAV communication research is modeling 

the communication channel. However, A2G propagation chan‑
nel models developed for both traditional terrestrial and high-
altitude aerial communication systems are not directly appli‑
cable to low-altitude UAV communications. UAV communica‑
tion systems operate in more complex and variable environ‑
ments, often influenced by terrain, obstacles, and self-

Figure 1. Doppler shifts in different states of the aircraft

(b) Doppler shifts for the en-route scenario(a) Doppler shifts for the arrival and takeoff scenarios 

p( fD)

-fD max fD max fD max-fD max αH αL

p( fD)
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occlusion caused by the UAV itself. These factors make LoS 
connections infeasible in all scenarios, which needs to be con‑
sidered in UAV communication research. Fig. 2 illustrates a 
common A2G propagation scenario with ground obstacles, of‑
ten referred to as scatterers.
3 UAV Air-to-Ground Channel Model

3.1 Channel Modeling Based on Measured Data
UAV channel measurements have received increasing atten‑

tion over the past decade. Table 3 summarizes the literature 
on channel measurements via small rotor 
UAVs[8, 10, 16–17, 22, 33, 35, 45–56]. In Ref. [45], the channel mea‑
surement system consists of a six-rotor UAV, a cylindrical an‑
tenna, a Universal Software Radio Peripheral (USRP), and a 

Table 3. Summary of important A2G channel measurement research in the literature

Ref.

[33]
[45]
[46]
[47]
[48]
[8]

[49]
[35]
[50]
[22]
[16]
[51]
[17]
[52]
[53]
[54]
[55]
[56]
[10]

Frequency

3.1–5.3 GHz
2.585 GHz
2.585 GHz
1–24 GHz

1.2–4.2 GHz
800 MHz
5.8 GHz
2.5 GHz
2.5 GHz
2.4 GHz

5.24 GHz
0.915 GHz

2.4 GHz
5.76 GHz, 1.817 GHz

2.4 GHz
2.4 GHz
900 MHz
850 MHz
909 MHz

Bandwidth/
MHz
2 200

18
18
—

—

—

20
9

15.36
—

—

—

—

13.5
—

—

—

—

—

UAV

Quadcopter
Hexacopter
Hexacopter
Hexacopter
Hexacopter
Hexacopter
Octocopter
Hexacopter
Hexacopter
Quadcopter
Quadcopter
Quadcopter
Hexacopter
Hexacopter
Fixed wing
Hexacopter
Fixed wing
Quadcopter
Quadcopter

Maximum Flight
Altitude/m

16
100
300
24

100
120
165
105
105
120
110
—

20
50
75
40
—

120
100

Scenario
Open field,
suburban

Suburban, campus
Suburban, campus

Semi Urban
Semi Urban
Suburban

Uptown, montane
Suburban
Suburban

Open field, 
campus

Open field
Urban,

open field
—

Suburban
—

Laboratory,
outdoors

Rural
Suburban
Open field

Antenna

Dipole SISO
Quasi-omnidirectional-discone, 

SISO
Omni-directional,

SISO
Monopole, SISO

MIMO
Dipole, SISO

MIMO
Omni-directional, SISO

SISO
SISO

Dipole MIMO
Omni-directional, SISO

Inverted-FSISO
Three-leaf antenna, SISO
Omni-directional, MIMO
Omni-directional, MIMO

SISO
SISO

Dipole, SISO

Characteristics
PL, SF, TOA, PDP, CDF, 

RMS, BC
PL, SF, K-factor, DPP

PDP, RMS, CDF, K-factor
PL, SF

PL, K-factor
PL, SF

RMS, DC, CDF
MPC

PL, SF, DPP
PL, AO

PL, PAS, UDP, CDF
PL, RSSI

RSSI
PL, SF, PDP, K-factor, RMS,

CDF
AC

PL, PAS, K-factor, PDF
Pr

PL, SF
PL

A2G: air-to-ground
AC: antenna correlation
AO: antenna orientation
BC: bandwidth-coherence
CDF: cumulative distribution function
DC: direct current
DPP: Doppler power profile

FSISO: full-duplex single input single output
MIMO: multiple-input multiple-output
MPC: multipath component
PAS: power angle spectrum
PDP: power delay profile
PL: path loss
Pr: power-received

RMS: root mean square -delay spread
RSSI: received signal strength indicator
SF: shadow fading
SISO: signal input signal output
TOA: time-of-arrival
UAV: unmanned aerial vehicle
UDP: user datagram protocol

Figure 2. A typical scenario of UAV air-to-ground channel propagation
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laptop for controlling the USRP and connecting the laptop to a 
router. Measurements of five horizontal flights at different alti‑
tudes and five ascending flights at different horizontal dis‑
tances to the base station were carried out in the 2.585 GHz 
band, as shown in Fig. 2. This is a common experiment for 
UAV air-to-ground channel measurements.

In Ref. [46], a new channel modeling method was proposed 
based on a feature selection algorithm, an effective and funda‑
mental method for big data analysis. The measurement was 
conducted via a USRP-based channel sounder by transmitting 
a frequency modulated (FM) continuous wave with a center fre‑
quency of 5 760 MHz and a bandwidth of 16 MHz. Refs. [17, 
22, 33] also provided propagation measurement examples per‑
formed by a rotorcraft during both flight and hovering. These 
A2G propagation measurements were conducted at different 
UAV altitudes ranging from 16 m to 120 m.

However, the effect of UAV hovering on the received signal 
was not considered in these measurements. Ref. [47] investi‑
gated the multi-frequency A2G propagation channel of a low-
altitude UAV flying vertically. The basic parameters of large-
scale and small-scale channels, including path loss, autocorre‑
lation, shadowing and small-scale fading characteristics, were 
comprehensively analyzed and modeled. Moreover, Ref. [48] 
studied the variation in the propagation channel over the flight 
range of a small- to medium-sized UAV.

Measurements of different routes in a semi-urban complex 
environment have been carried out to obtain data at different 
locations. Analysis of the measurement results reveals that 
small-scale fading is more strongly influenced by the flight al‑
titude than by the elevation angle or distance. In Refs. [35, 
50], a height-dependent model was proposed for path loss and 
shadowing parameters. Measurements in Ref. [51] were con‑
ducted in open terrain to explore the feasibility of fixed cellu‑
lar networks for UAV telemetry and control, focusing on radio 
propagation, which is shorter in the air than on the ground. In 
addition to conventional A2G channel detection, such mea‑
surements can also leverage fixed cellular networks using the 
IEEE 802.11 standards with different protocol versions for in‑
direct UAV A2G channel measurements[13, 17, 22]. Specifically, 
Ref. [13] used a tracking algorithm based on multipath compo‑
nent distances and proposed a dynamic model that could de‑
scribe the time-varying radio propagation channel between a 
low-altitude UAV and a ground base station from identified 
time-varying trajectories.

Ref. [7] proposed a flyby communication scenario using an 
airborne UAV connected to a cellular network. The study 
tested several scenarios with different altitudes, orientations, 
and distances, and analyzed the performance of LTE networks 
in dynamic 3D environments. Simple extensions to the com‑
munication system are proposed to achieve quasi-isotropic ra‑
diation to provide uniform 3D connectivity.

Antennas are also key components that cannot be ignored 
in A2G communications. The number, type and orientation of 

antennas are all factors that affect the performance of an A2G 
link. Most A2G channel measurements use a standalone 
(single) antenna, and a multiple-input multiple-output 
(MIMO) antenna configuration is available in the literature 
for A2G propagation measurements[48, 53–54]. Antennas can be 
classified into two types based on their directionality: direc‑
tional antennas and omnidirectional antennas. Directional an‑
tennas, which provide significant gain in a specific direction, 
are suitable for long-distance communication. However, their 
performance is poor during movement due to their limited an‑
gular coverage. In contrast, omnidirectional antennas offer su‑
perior performance during movement because of their wide 
coverage area. This makes them particularly popular in ve‑
hicle communications.

The omnidirectional or directional orientation of the an‑
tenna affects the received signal strength and system through‑
put. Ref. [12] reported that the PLE of IEEE 802.11 communi‑
cation varies during UAV hovering and moving due to the dif‑
ferent orientations of vehicle-mounted antennas. Compared 
with the vertical-vertical orientation, the horizontal-horizontal 
orientation exhibits better throughput performance in Ref. 
[57]. In Ref. [58], the horizontal antenna orientation helps 
overcome the difference in yaw; similarly, the vertical orienta‑
tion performs better during UAV tilting. Therefore, antenna 
orientation maps may affect the true channel path loss charac‑
teristics, but eliminating their effects is not always easy.

Ref. [25] suggested the use of MIMO systems to improve the 
channel capacity of A2G propagation channels. Different val‑
ues of MIMO channel capacity are obtained by varying the cir‑
cular antenna array diameter and UAV flight altitude[59]. Omni‑
directional antennas are usually more suitable for UAVs than 
directional antennas due to the high maneuverability of UAVs 
during flight. In addition, the generated PL model is still use‑
ful for the particular UAV configuration used. However, owing 
to arbitrary mobility patterns and different types of communi‑
cation applications[60], UAV A2G communications face many 
other challenges.
3.2 Geometry-Based Random Channel Model

In recent years, geometry-based stochastic channel models 
have been widely used. They offer higher accuracy than statis‑
tical models and better integration with MIMO techniques, 
while requiring less computational effort than deterministic 
models. Any geometry-based model is determined by the posi‑
tion of the scatterer. In deterministic geometric methods (e.g., 
RT), the position of the scatterer is set in a database. In con‑
trast, the geometry-based stochastic channel model (GBSCM) 
generates the scatterer positions randomly according to a spe‑
cific probability distribution. The GBSCM can be further clas‑
sified into a regular-shaped GBSCM and an irregular-shaped 
GBSCM. For the former, the scatterer distribution, such as an 
ellipsoid, a cylinder, or a sphere, is ideal.

Overall, the main difference among regular-shaped GB‑
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SCMs is the locations and statistical distributions of scatter‑
ers, which leads to variability in the calculation results of 2D 
angular parameters. Table 4 presents the Angle-of-Arrival 
(AOA) distributions of common GBSCMs and compares differ‑
ent shape models[27, 44, 57, 61–65]. Among them, cylindrical and 
spherical channel models are currently the primary methods 
for UAV-based geometrically stochastic A2G channel model‑
ing. With the application of MIMO technology, an increasing 
number of stochastic channel models have incorporated 
MIMO capabilities. For example, Ref. [61] proposed a 3D 
hemispherical GBSM for UAV MIMO channels, which takes 
into account the non-smooth propagation environment due to 
the fast movement of UAVs and scattering clusters.

Ref. [66] modeled UAV rotation as a sinusoidal process and 
investigated the effect of UAV rotation on the MIMO channel 
characteristics of air-to-ground communication systems by 
considering the effective scatterers within the main flap of the 
directional antenna. Ref. [67] introduced a Gauss-Markov mo‑
bility model to describe the 3D arbitrary trajectories of UAVs 
and proposed a 3D cylindrical GBSM for UAVs with broad‑
band unsteady channels. Considering a uniform and two differ‑
ent propagation scenarios with variable speeds, the numerical 
results reveal that under the uniform speed condition, the ver‑
tical motion of the UAV has a greater effect on the time corre‑
lation function than does the horizontal motion. In contrast, 
when the UAV moves at a variable speed, the effect of the 
UAV on the correlation function at a constant speed disap‑
pears due to the randomness of maneuvering.

Ref. [64], with the same assumption as Ref. [24], proposed a 
3D columned GBSM for UAV-MIMO Rayleigh channels, as 
shown in Fig. 3, and investigated the effects of several UAV-
related parameters on the GBSM. The numerical results reveal 

that both the UAV 􀆳 s direction of motion and its position 
strongly influence the obtained correlations. They indicate that 
to maintain a stable UAV link, the UAV should move toward 
the ground mobile users, whereas for reliable MIMO perfor‑
mance, the UAV should move horizontally. Ref. [68] proposed 
a stochastic model for A2G channels based on 3D geometry. 
Moreover, a Gauss-Markov mobility model was used to gener‑
ate dynamic trajectories. According to different scattering envi‑
ronments, a reference model and a statistical simulation model 
of the A2G channel were developed. The dynamic motion sce‑
narios generated by the Gauss-Markov process were analyzed, 
along with their effects on the correlation of the A2G channel. 
Notably, the authors developed a statistical simulation model 

Table 4. Comparison of geometry-based stochastic channel models

Model

Cylindroid

Sphere

Cylinder

Ref.

[27, 62]

[61–63]

[57] (R=3 km, HC =300 m);
[64] (R=100 m);
[44] (R=500 m);

[65] (R=50 m, HC=700 m)
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Scenario

Highly accurate, but relies on geographic infor‑
mation and high computational complexity

Angular parameters can be abstracted to specific 
mathematical distributions, which can greatly 

simplify calculations

AOA: Angle of Arrival     EOA: Elevation over Angle

Figure 3. MIMO air-to-ground channel model of a UAV
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to reduce computational complexity. This is relatively rare.
3.3 UAV Channel Modeling Across Different Frequency 

Bands and Bandwidths
UAV communication systems are being explored across di‑

verse frequency bands and bandwidths to meet varied applica‑
tion requirements.

1) Sub-6 GHz frequency band
At sub-6 GHz frequencies, UAV channels exhibit character‑

istics similar to terrestrial channels, but feature enhanced 3D 
scattering and multipath effects due to the aerial nature of 
UAVs. Path loss and shadowing are significant, and the im‑
pact of terrain and urban structures on signal propagation 
must be carefully modeled. For instance, in urban environ‑
ments, signal reflections from buildings and the ground create 
complex multipath scenarios. Studies including Ref. [69] show 
that traditional PL models need adaptation for the higher el‑
evation angles typical in UAV communications.

2) Millimeter-wave (mmWave) frequency band
The mmWave frequency band offers large bandwidths for 

high data rate communications but suffers from higher path 
loss and sensitivity to blockage. UAV channels in this band 
are highly dependent on LoS conditions. The narrow beam‑
forming used in mmWave communications requires precise 
alignment between the UAV and GS, which is challenging due 
to the mobility of UAVs. Research in Ref. [70] indicates that 
unique 3D flight trajectories of UAVs necessitate advanced 
beam management and tracking algorithms to maintain reli‑
able connections.

3) Terahertz (THz) frequency band
The THz band promises ultra-high data rates and ultra-low 

latency, making it attractive for future 6G applications. How‑
ever, signal propagation in this band is severely affected by at‑
mospheric absorption and scattering, leading to significant 
path loss. UAV channel modeling in the THz band must incor‑
porate the effects of weather conditions and molecular absorp‑
tion. As highlighted in Ref. [71], the integration of ultra-
massive MIMO techniques is crucial to compensate for propa‑
gation losses in this band.

4) Impact of bandwidth on channel modeling
The increasing use of large bandwidths in higher frequency 

bands poses new challenges for channel modeling. Frequency-

selective fading and Doppler spread become more pro‑
nounced, requiring more sophisticated models to capture the 
dynamic nature of UAV channels. For example, in mmWave 
and THz bands, the channel model must account for the rapid 
changes in channel characteristics due to the high mobility of 
UAVs and the narrow beam widths used.
3.4 RT-Based Channel Model

In the A2G propagation channel of a UAV, MPCs appear 
due to reflections from the Earth’s surface, from ground ob‑
jects, and sometimes from the body of the UAV itself. The 
characteristics of the channel depend on the material, shape 
and size of the scattering object. In A2G propagation sce‑
narios, the strongest MPCs other than the LoS component are 
usually single reflections from the Earth’s surface. This gives 
rise to the well-known two-ray model shown in Fig. 4. Table 5 
summarizes the two-ray model for selected A2G chan‑
nels[13, 15, 17, 23, 32–33, 59, 72–74]. In two-ray PL modeling, there is a 
clear peak in the PL variation with distance due to the super‑
position of the dominant and surface-reflected components. In 
most of the PL models, PL variation is approximated as a log‑
normal random variable. This variation may be due to shadows 
from the UAV airframe or MPC from ground scatterers such as 
buildings[13, 19, 27, 72]. Ref. [73] presented path loss and shadow 

Table 5. Two-ray model for selected A2G channels
Ref.

[13, 23, 32, 72]
[15]
[33]
[17]
[59]

[73–74]

Frequency
0.968 GHz, 5.06 GHz

2.05 GHz
3.1–5.3 GHz

2.4 GHz
5.7 GHz

200 MHz–5 GHz

Bandwidth
5 MHz, 50 MHz

—

2.2 GHz
—

—

—

Transmit Power/dBm
40
—

−14.5
0

40
—

Channel Characteristics
PL, K-factor

MPC, K-factor, PL
PL, MPC

RSSI
PL

PL, SF
A2G: air-to-ground      MPC: multipath component      PL: path loss      RSSI: received signal strength indicator      SF: shadow fading

LoS: line of sight     RX: receiver
Figure 4. Two-ray model
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Reflection
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statistics functions related to elevation and height with PL ex‑
pressions through 3D RT experiments.

Ref. [73] modeled the LoS transmission probability based 
on the shape of the cell building and knife-edge diffraction 
theory. The model takes into account key statistical param‑
eters such as the building height, building size, building cov‑
erage, and street width. In Ref. [74], 3D RT experiments were 
conducted to characterize the height-dependent attenuation of 
A2G transmission in suburban environments. Al-HOURANI 
et al.[75–77] implemented environmental terrain based on simu‑
lations of statistical parameters recommended by the ITU.

In Ref. [76], a generic PL model was proposed for low-
altitude platforms in which the channel model parameters were 
estimated via 3D RT at 700 MHz, 2 000 MHz and 5 800 MHz. 
The simulation results show that the elevation angle has a sig‑
nificant effect on multipath path loss.

In the work of DANIEL et al.[74] and FENG et al.[73], channel 
models are limited to urban and suburban environments and 
are not generalizable for migration to other environments. In 
the work of Al-HOURANI et al. [75–76], the propagation condi‑
tions depend on the height and coverage radius of the UAV. 
The above three models are applied to different scenarios and 
have their own advantages and disadvantages, which are sum‑
marized in Table 6.

Although the statistical model based on the measured data 
has low computational complexity, random parameter-based 
modeling cannot meet the accuracy requirements of actual 
signal transmission, and the application range is limited to a 
large extent. The RT-based deterministic model requires pre‑
cise channel scene parameters to accurately restore the signal 
propagation process, but the computational effort is too large. 
The geometry-based stochastic model matches the actual 
channel scene, but it is difficult to reduce the computational 
complexity.
3.5 Technical Challenges and Solutions in UAV Channel 

Measurement
UAV channel measurement requires addressing a series of 

technical challenges, including low-power consumption and 
miniaturization, large-bandwidth high-frequency operations, 
transceiver synchronization, airframe shadowing and dynamic 
scenarios, as well as the integration of measurement hardware, 
protocols, and synchronization mechanisms.

1) Low power consumption and miniaturization

Channel measurement systems for UAVs must achieve strin‑
gent low-power operation and compact form factors to accom‑
modate deployment on small aerial platforms. Ref. [78] demon‑
strated that integrating efficient signal processing algorithms 
and lightweight hardware architectures can substantially re‑
duce both power consumption and physical dimensions. For 
instance, practical implementations utilize low-power RF 
front-ends and miniaturized antenna arrays to enable high-
precision channel characterization. Such designs adhere to 
UAV payload constraints while ensuring extended operational 
durations under limited power budgets.

2) Large bandwidth and high-frequency bands
UAV communications predominantly operate in high-

frequency bands such as mmWave spectra, which offer large 
bandwidth but impose stringent requirements on measurement 
systems. Ref. [79] addressed these challenges by deploying ad‑
vanced signal processing techniques to mitigate high-
frequency signal attenuation and noise interference. Key strat‑
egies include high-sampling-rate analog-to-digital converters 
(ADCs) and adaptive filtering algorithms to maintain signal in‑
tegrity across wide bandwidths. Furthermore, Ref. [80] pre‑
sented empirical results from low-altitude A2G channel mea‑
surements in the 915 MHz band, revealing significant spatial 
diversity even in sparse multipath environments. These in‑
sights highlight the potential for high-capacity UAV communi‑
cation links in practical deployments.

3) Transceiver synchronization
Accurate time and frequency synchronization between 

transceivers is critical for reliable UAV channel measure‑
ments. Ref. [16] emphasized the necessity of GPS-based tim‑
ing alignment and high-precision frequency references to 
minimize synchronization errors. For example, GPS synchro‑
nization during measurement campaigns reduces timing dis‑
crepancies by over 80%, enhancing data reliability. Comple‑
mentary work in Ref. [81] validated the use of GPS time‑
stamping to ensure temporal coherence in multi-device mea‑
surement systems.

4) Airframe shadowing and dynamic scenarios
UAV airframes and wings introduce signal shadowing and 

reflection effects, while environmental obstacles and rapid ter‑
rain variations further degrade channel stability. Ref. [82] pro‑
posed optimized measurement protocols, including multi-
antenna configurations and angular diversity techniques, to 
mitigate shadowing and environmental interference. For in‑
stance, deploying omnidirectional antennas reduces polariza‑
tion mismatch-induced path loss by 35% in scenarios with 
large roll angles. Additionally, Ref. [83] quantified the impact 
of UAV attitude dynamics on channel statistics, demonstrating 
that real-time attitude-aware data correction is essential for ac‑
curate measurements in dynamic flight conditions.

5) Integrated measurement systems
The complexity of UAV channel measurements demands 

holistic solutions integrating hardware innovation, protocol 

Table 6. Comparison of the models proposed in Refs. [73–76]

Model
Measurement-based model

Ray-tracing-based model
Geometric random channel 

model

Advantage
Matching actual channel 

scenarios
Discriminating multipath 

in the channel
Matching actual channel 

scenarios

Disadvantage
Single application scenario

High computational vol‑
ume and complexity

More complex calculations
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optimization, and synchronization frameworks. Ref. [16] in‑
troduced an FPGA-based real-time processing algorithm for 
extracting channel impulse responses (CIRs), compensating 
for system response distortions, recovering power loss, and 
adaptively identifying MPCs. This approach reduces data 
storage requirements by 60% while improving processing ef‑
ficiency. Parallel work in Ref. [81] developed a dedicated 
channel-sounding system for low-altitude A2G measure‑
ments, achieving sub-nanosecond timing resolution through 
optimized antenna configurations and adaptive measurement 
protocols. These integrated methodologies not only capture 
the time-varying and spatially diverse nature of UAV chan‑
nels, but also provide robust datasets for next-generation 
channel modeling.
4 UAV Air-to-Ground Channel Measure⁃

ments in Different Scenarios
As with terrestrial cellular channels, the classification of 

the various A2G channel types[84] exhibits ambiguity and over‑
lap. The measurement activities of different A2G propagation 
channels can be broadly categorized based on terrain, terrain 
coverage, and sounding signal characteristics. The representa‑
tive environments include deserts, rural areas (plains), forests, 
suburban areas, and urban neighborhoods. However, these 
classifications are not always disjoint or exhaustive. In this 
chapter, we provide a brief overview and comparison of mea‑
surement activities in different environments.
4.1 Urban and Semi-Urban Environments

In urban and semi-urban environments, A2G channels are 
significantly affected by the dense network of buildings and in‑
frastructure. Signals often encounter multiple reflections and 
scatterings from these structures, leading to complex multi-
path effects and shadowing. Ref. [85] performed a model-
based fading statistical analysis of a narrowband UAV propa‑
gation channel in an urban area, with the UAV flying at low el‑
evation angles (1° to 6°) and altitudes of 100 m to 170 m. The 
study used a 2 GHz continuous wave signal in an urban area 
with an average building height of 22 m. These data represent 
the received signal distribution through second-order statis‑
tics, power spectral density, and an autocorrelation function 
with a strong coherent component plus a diffuse reflection con‑
tribution under Ricean assumptions. This work is unique be‑
cause second-order channel fading statistics for A2G propaga‑
tion via UAVs are rarely available in the literature. The au‑
thors of Ref. [85] concluded that the partial shadowing model 
is best suited for characterizing the dynamics of low-altitude 
links located between pure terrestrial and land mobile satel‑
lite channels. Using the partial shadowing model as a starting 
point, they developed a narrowband time series generator ca‑
pable of reproducing the observed signal dynamics, which con‑
sists of two main modules: one generating the diffuse reflec‑
tance component and the other generating the direct/coherent 

signal. They also proposed a narrowband channel estimator ca‑
pable of reproducing the dynamic characteristics of the signal.

The authors of Ref. [20] conducted some related measure‑
ment campaigns using a similar device to simulate urban area 
path loss models for flight altitudes between 150 m and 300 m. 
They used a new methodology to simulate urban area path loss 
models. In addition, they obtained measurements in urban 
and forested areas[31, 85] for the research of spatial diversity 
techniques and concluded that heavily wooded areas achieved 
greater diversity gains than open sites. However, at lower el‑
evation angles, the open sites presented significant gains in di‑
versity. Compared with the diversity gain in the urban areas 
studied in Ref. [85], this gain is approximately 4% lower.

Ref. [13] reported broadband A2G propagation channel 
measurements in L-band and C-band urban areas. It is ob‑
served that the reflection-guided root mean square (RMS) de‑
lay extension increases in high-rise buildings. Ref. [86] per‑
formed channel measurements using continuous waves with a 
center frequency of 2 GHz. Received power was measured in 
different propagation environments, including woods, and sig‑
nificant differences were observed between shadowing effects 
in the woods and uban buildings.

Studies have shown that the PLE in urban environments 
typically ranges from 2.5 to 3.5, which is higher than that in 
other scenarios. For example, measurements in urban areas at 
2.4 GHz reveal a PLE of 3.2, indicating increased signal at‑
tenuation compared to free space. These conditions necessi‑
tate robust channel models that can capture the dynamic 
changes in signal propagation, making them essential for reli‑
able communication system design.
4.2 Suburban Environment

In the suburban environment, A2G channels exhibit a 
blend of LoS and NLoS signal paths due to the mix of open 
spaces and scattered obstacles like trees and low-rise build‑
ings. Measured PLE values here are moderate, typically be‑
tween 2.0 and 2.5. CAI et al.[52] investigated the scenario of a 
low-altitude A2G UAV wireless channel on the outskirts of 
Madrid, Spain. Field experiments of UAVs flying above a 
cluster of containers with a carrier frequency of 5.76 GHz 
were conducted, and both narrowband and broadband mea‑
surements were performed, as shown in Fig. 5. In the vertical 
flight test, the UAV flew up and down from 0 to 50 m in alti‑
tude, while the UAV performed the horizontal test at a dis‑
tance of 210 m. The authors investigated the large-scale fad‑
ing effect in the UAV propagation channel and proposed an 
improved PL model and power delay profile (PDP). They also 
computed the PLE in the horizontal and vertical directions 
using the logarithmic distance path and the double-slope 
loss model, as shown in Eq. (4). They reported that for a 
UAV’s performance in a particular environment, the delay 
dispersion increased with height as the UAV rised above the 
metal structure.
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+ Xσ,  d > d1
(4),

where d1 is the fitted slope of the distance range between the 
two links separated by the threshold, αd1 is the slope of the fit 
for the two link distance ranges separated by the threshold, βd1 is the intercept, and Xσ is the random variable representing 
the variation in the fit. CHU et al. [79] conducted RT simula‑
tions in a simplified environment at ultralow altitudes (0 –
100 m) to analyze A2G channels with path loss, K-factors, 
multipaths, and delay extensions at 1.2 GHz and 4.2 GHz. 
The K factor denotes the power ratio of the LoS path to that of 
the other paths, as shown in Eq. (5).

K = PLoS
PNLoS

(5).

The RMS delay spread is calculated using Eq. (6):
στ = τ̄ - -τ2 (6).
Experiments show that the multipath component decreases 

with increasing altitude and eventually stabilizes at high alti‑
tude, which can be used to design wireless communication sys‑
tems for mainstream small UAVs that are restricted to flying 
at specific altitudes. Ref. [58] presented a detailed measure‑
ment analysis of the A2GMIMO propagation channel. It was 

observed that the spatial decorrelation of the received signals 
at the GS is quite high due to the interaction of the non-planar 
wavefront resulting from the near-field effects of the measure‑
ment vehicles fitted with the GS antennas. More significant 
near-field effects are expected from more conventional aerial 
platforms. Interestingly, the authors suggested that at higher 
elevation angles, the placement of scatterers near the GS 
could produce greater spatial diversity.

In Ref. [86], MIMO system performance was tested in differ‑
ent scenarios in outdoor environments, including urban, rural, 
open field, and forest environments. The effect of terrain cover‑
age on the received power was analyzed for these different sce‑
narios. The results revealed that ground reflections play a cen‑
tral role in affecting the propagation channel model, whereas 
in forested areas, tree reflections and shadows are the primary 
factors influencing the propagation channel characteristics. Al‑
though there are differences between rural and urban environ‑
ments, reflections from the walls and surfaces of buildings 
play an important role. In Ref. [87], a flight measurement cam‑
paign was described for an L-band A2G channel with a center 
frequency of 970 MHz, and the aerial measurements consid‑
ered a rural environment similar to an airport, featuring a mix 
of large and small buildings and open grassy areas.
5 Research Directions for Future UAV Air-

to-Ground Channel Modeling
In this chapter, we discuss possible future research direc‑

tions for currently available A2G channel measurements and 
models. Our goal is to promote more comprehensive propagation 

Figure 5. Measurement scenarios and equipment

RX: receiver      TX: transmitter      USRP: Universal Software Radio Peripheral
(a) Narrow band measurement scenario (b) Broadband measurement scenario
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channel models for future UAV communication applications.
5.1 UAV Millimeter-Wave Channel Modeling

UAV mmWave communication, as a promising future com‑
munication technology, has received increasing attention in 
fields such as air base stations, wireless relays, emergency 
communications, and battlefield communications. UAVs often 
have LoS paths in the communication process due to their 
higher flight altitude, while the mmWave frequency band ex‑
hibits higher path loss and lower scattering characteristics, 
leading to higher requirements on LoS propagation conditions 
for mmWave communication systems. Therefore, UAVs can be 
an excellent platform for mmWave communication technology. 
However, there are currently few actual measurement cam‑
paigns for UAV A2G channels in the mmWave band. Ref. [69] 
presented a path loss model for mmWave channels based on 
measured data in the 28 GHz frequency band, but it did not 
consider the characteristics of small-scale fading. In UAV 
communication scenarios, the changes of channel characteris‑
tics are extremely sensitive to the variations in narrow beam 
pointing, and the cluster fading phenomenon is also more obvi‑
ous, which significantly increases the difficulty and complex‑
ity of UAV channel modeling.

Ref. [70] discussed the delay power spectrum and signal 
angle distribution of UAV mmWave channels by reconstruct‑
ing city, hill, forest, and ocean scenarios with the RT method. 
Compared with other types of channel models, the RT-based 
model has the advantages of high flexibility in scene construc‑
tion and lower cost of data acquisition, but it faces challenges 
in analyzing small-scale fading.

Obtaining channel parameters for actual propagation sce‑
narios is one of the key techniques for the accurate operation 
of UAV mmWave channel models. Although the RT-based 
prediction of mmWave propagation parameters is accurate, it 
is difficult to reflect the randomness and non-stationarity of 
the fast time-varying environment of UAVs. For UAV 
mmWave channels, the changes in channel characteristics 
caused by new scenarios are currently unknown. In the future, 
a large number of channel data can be generated using actual 
measurements or simulations, and the analysis of large-scale 
channel data using machine learning methods should be able 
to make better use of the spatial and angular information of 
the MPCs and the intrinsic correlation between the model pa‑
rameters to discover new characteristics.

Combining the analysis with machine learning methods may 
be an effective means of investigating the stochastic and non-
stationary nature of UAV channels. In conclusion, it is certain 
that the future development of UAV communication will be 
characterized by multi-scene applications, high mobility, high 
frequency, and multi-antenna technologies. Therefore, the es‑
tablishment of suitable UAV mmWave channel modes plays 
an important role in the scheme design, performance optimiza‑
tion and evaluation verification of future UAV mmWave com‑

munication systems. Moreover, Ref. [88] upgraded the existing 
UAV channel model to an ultra-large-scale MIMO mmWave-
terahertz oriented channel model, which is an important re‑
search direction in the future. The mmWave-terahertz commu‑
nication can utilize the huge communication bandwidth to 
meet the application requirements of high-rate transmission 
and ultra-low latency.

However, the signal wavelength in the mmWave-terahertz 
band is extremely short. To mitigate this, Ref. [89] used beam‑
forming to achieve high gain and combined it with massive 
MIMO technology to compensate for the high propagation loss 
of terahertz signals in practical applications. Currently, a 3D 
mmWave-terahertz channel model to support hyperscale 
MIMO wireless communication systems has been initially pro‑
posed in Ref. [90], in which the evolution of clusters in the 
spatial domain and the actual discrete phase shifts were taken 
into account.
5.2 Ultra-Wideband Technology

In addition to mmWave, ultra-wideband (UWB) technology 
is a research priority for future UAV A2G communication sys‑
tems. The ability of UWB signals to capture MPC with good 
temporal resolution makes UWB an attractive technology for 
developing broadband propagation models. The large band‑
width of UWB also promotes high data rates, better penetra‑
tion through materials, and coexistence with narrowband net‑
works for UAV A2G communications. Although the UAV 
propagation channel has been studied in the literature, most of 
the existing work focuses on the path loss characteristics of 
the A2G channel, and there are almost no comprehensive and 
dedicated UWB channel models for UAV A2G propagation 
channels. KHAWAJA et al. developed random path loss and 
multipath channel models to characterize the A2G UWB 
propagation channel based on measured data[33]. However, the 
maximum altitude of UAV flight is only 16 m, and the commu‑
nication range is short.

Meanwhile, current UWB propagation channel models de‑
veloped for other scenarios[85, 91] cannot be applied to UAV 
A2G channels due to different propagation environments. 
Therefore, establishing a suitable UAV UWB channel model 
requires prior A2G channel measurements.
5.3 Advanced Modeling and Integration Strategies

Beyond mmWave and terahertz channel modeling, several 
other promising directions deserve attention. AI and ma‑
chine learning can enhance the accuracy and efficiency of 
channel modeling by analyzing large datasets from measure‑
ment campaigns. This can help discover new characteristics 
of UAV channels and improve the predictive capabilities of 
channel models. Additionally, the integration of advanced 
antenna technologies like ultra-massive MIMO and intelli‑
gent reflecting surfaces (IRS) can significantly improve com‑
munication performance and optimize UAV communication 
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systems. Dynamic and adaptive channel models that incorpo‑
rate the mobility of UAVs and the time-varying nature of the 
propagation environment are also crucial for providing more 
accurate predictions. Furthermore, exploring the integration 
of UAV communication systems with other technologies such 
as satellite communications and IoT networks can enhance 
the overall communication infrastructure and enable more di‑
verse applications.
6 Conclusions

This paper comprehensively reviews the fundamentals and 
characteristics of UAV A2G channels, emphasizing their 
unique aspects compared to terrestrial channels, such as fully 
3D scattering environments, flight trajectories, and body shad‑
owing effects. We discuss the challenges of UAV channel 
measurement, including low-power and miniaturized environ‑
ments, high-frequency bands with large bandwidths, trans‑
ceiver synchronization, airframe shadowing, and dynamic sce‑
narios. Additionally, we overview UAV channel measure‑
ments across different frequency bands and bandwidths and 
classify UAV A2G channel models based on various environ‑
ments. Finally, we explore future research directions, includ‑
ing the potential of mmWave and terahertz technologies, ultra-
wideband technologies, and the integration of advanced mod‑
eling strategies with machine learning to improve UAV chan‑
nel modeling accuracy.
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1 Introduction

The 6G wireless communication network is envisioned to 
revolutionize the telecommunication landscape by in‑
corporating a wide range of advanced communication 
capabilities. These enhancements are expected to sup‑

port enriched and immersive experiences, ensure ubiquitous 
and seamless coverage, and enable innovative collaboration[1]. 
One of the primary catalysts is incorporating technologies 
driven by artificial intelligence (AI). By harnessing AI, 6G aims 
to overcome the limitations of current networks, offering ultra-
reliable and low-latency communication, extensive connectivity 
for massive IoT devices, and significantly improved mobile 
broadband services[2]. This integration will facilitate ground-
breaking applications such as holographic telepresence, tactile 
internet, intelligent autonomous systems, and smart cities. By 
leveraging AI, 6G networks will not only optimize performance 
and enhance data processing efficiency but also ensure adap‑
tive, secure, and robust communication environments[3–5]. The 
synergy between AI and 6G will pave the way for unprec‑
edented connectivity and intelligent communication solutions, 
fundamentally transforming industries and society as a whole.

Although AI has exhibited great potential in reshaping the 
next generation of wireless networks, deploying it in practical 
communication scenarios remains challenging[6–8]. Fig. 1 shows 
the 6G communication scenarios with AI integration. These chal‑
lenges arise primarily due to several factors, as outlined below.

1) Robustness: Current AI models often struggle to maintain 
performance in dynamic and unpredictable environments with 
varying data distributions[9]. In practical wireless networks, 
user mobility, signal condition changes, and interference can 
cause significant variations in the data fed into AI models. 
This lack of robustness can lead to substantial performance 
degradation, making it difficult to ensure reliable operation[6]. 
For instance, an AI model trained under certain static condi‑
tions may fail to adapt when deployed in a real-world setting 
where wireless parameters continuously change. Addressing 
this issue requires the development of adaptive AI models that 
can learn and generalize from a wide range of conditions and 
data patterns.

2) Interpretability: The black-box nature of many AI algo‑
rithms poses significant challenges in understanding and ex‑
plaining their decision-making processes[7]. This lack of inter‑
pretability raises concerns about the safety, transparency, and 
fairness of AI-driven solutions in communication systems. In 
wireless networks, where decisions can impact a wide range of 
users and services, it is crucial to ensure that AI models make 
decisions that are understandable and justifiable. For ex‑
ample, in the context of spectrum resource allocation in com‑
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munications, the AI system should make fair and efficient de‑
cisions. Enhancing the interpretability of AI models involves 
developing methods to provide insights into the inner working 
and decision criteria of the models.

3) Complexity: AI models, particularly deep learning archi‑
tectures, require substantial computational resources and com‑
plex infrastructure for training and deployment. Training deep 
neural networks can be computationally intensive and time-
consuming, often necessitating specialized hardware such as 
graphics processing units (GPUs) or tensor processing units 
(TPUs). Moreover, the deployment of these models in practical 
wireless networks must contend with constraints such as lim‑
ited bandwidth, low latency requirements, and the need for 
real-time processing[8]. This high complexity hinders their 
practical implementation, especially in edge computing sce‑
narios where computational resources are limited. Simplifying 
AI models and optimizing their performance to run efficiently 
on resource-constrained devices are critical areas of research.

Addressing these challenges is crucial for the successful 
integration of AI into next-generation wireless networks, pav‑
ing the way for more reliable, transparent, and efficient com‑
munication systems. Overcoming these hurdles will allow AI 
to revolutionize wireless communication, enhancing user ex‑
periences and network performance and enabling innovative 
applications and services. In this article, we provide an over‑
view of the recently proposed liquid neural networks (LNNs)
[10–12], which are designed from first principles to be robust, 
interpretable, and resource-efficient, making them well-
suited for the dynamic and complex nature of wireless com‑
munication environments. We explore the opportunities that 
LNNs bring to future wireless networks and discuss the chal‑
lenges and design directions for their implementation.

The rest of this paper is organized as follows. Section 2 pro‑
vides an overview of traditional neural networks and their limi‑
tations. Section 3 describes the design of LNNs, and Section 4 
presents the features and benefits of LNNs. The opportunities 
that LNNs bring to the future wireless networks are explored 
in Section 5. Section 6 discusses the main challenges associ‑
ated with LNN-based communication systems and outlines po‑
tential future research directions. Case studies are presented 
in Section 7 to verify the performance of LNNs. Finally, Sec‑
tion 8 concludes the paper.
2 Overview of Traditional Neural Networks

Traditional neural networks are fundamental in the develop‑
ment of AI technologies, each offering unique strengths for 
various applications. Below, we discuss four primary types of 
traditional neural networks: feedforward neural networks 
(FNNs), convolutional neural networks (CNNs), recurrent neu‑
ral networks (RNNs), and ordinary differential equation neural 
networks (ODE-NNs).
2.1 Feedforward Neural Networks

FNNs are the simplest type of artificial neural network archi‑
tecture. In FNNs, the information moves in one direction: from 
input nodes, through hidden nodes (if any), to output nodes[13]. 
There are no cycles or loops in the network. This structure 
makes FNNs suitable for simple pattern recognition tasks, such 
as image classification or function approximation. However, 
they may struggle with tasks requiring memory or temporal de‑
pendencies due to their lack of internal hidden states.
2.2 Convolutional Neural Networks

CNNs are specialized for processing structured grid data 

Figure 1. 6G communication scenarios with AI integration

AI: artificial intelligence      BS: base station

Data collection， training and inference Central server

Rural farm

Space-ground integrated 
networks

AI-empowered BS

Enhanced signal quality Reduced interference Improved energy efficiency
Meta-surface

Interference

Urban city

77



ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

ZHU Fenghao, WANG Xinquan, ZHU Chen, HUANG Chongwen 

Review   Liquid Neural Networks: Next-Generation AI for Telecom from First Principles

like images. They utilize convolutional layers that apply filters 
to the input data to capture spatial hierarchies of features[14]. 
CNNs are highly effective in image and video recognition, ow‑
ing to their ability to learn spatial hierarchies and patterns. 
The architecture includes convolutional layers, pooling layers, 
and fully connected layers. CNNs are known for their robust‑
ness in handling variations in image data, such as shifts, 
scales, and distortions.
2.3 Recurrent Neural Networks

RNNs are designed to handle sequential data and capture 
temporal dependencies. Unlike FNNs, RNNs have connections 
that form directed cycles, allowing information to persist across 
different steps in the sequence. This makes RNNs powerful for 
tasks like time series data, natural language processing, and 
speech recognition[15]. However, traditional RNNs may suffer 
from vanishing and exploding gradients, which hinders their 
performance on long sequences. To address these issues, vari‑
ants such as long short-term memory (LSTM) networks and 
gated recurrent units (GRUs) are developed. LSTMs introduce 
gating mechanisms to manage long-term dependencies, while 
GRUs simplify the architecture for computational efficiency. 
Despite these improvements, both LSTMs and GRUs have limi‑
tations, including the inability to model continuous-time dynam‑
ics and reduced robustness in highly dynamic environments[16].
2.4 Ordinary Differential Equation Neural Networks

ODE-NNs are designed to model continuous-time dynam‑
ics, addressing limitations of traditional RNNs[17]. Continuous-
time recurrent neural networks (CT-RNNs) and ODE-LSTM 
networks are key examples. CT-RNNs use ordinary differential 
equations (ODEs) to capture continuous-time sequences, mak‑

ing them suitable for irregular time intervals, but they are com‑
putationally intensive due to the need for numerical solvers. 
ODE-LSTMs integrate continuous-time modeling into the LSTM 
framework, enhancing their ability to handle continuous depen‑
dencies. Despite these improvements, ODE-LSTMs and CT-
RNNs face challenges such as increased computational com‑
plexity and potential training instability, which can limit their 
effectiveness and robustness in highly dynamic environments.
3 Design of LNNs

LNNs are uniquely designed based on first principles, fun‑
damentally differing from other models in neuron operation[10]. 
First principles derive properties and behaviors directly from 
fundamental laws of nature, ensuring that the design is 
grounded in the most essential elements. Inspired by the dy‑
namic and adaptive nature of biological neural systems, LNNs 
mimic the information transmission mechanisms observed at 
synapses in the nematode Caenorhabditis elegans. This ap‑
proach enables LNNs to emulate the flexibility and resilience 
of natural neural networks. Unlike static architectures, LNNs 
exhibit dynamic adaptability through continuous self-
reconfiguration in real-time input scenarios, maintaining high 
performance and robustness in dynamic and unpredictable en‑
vironments. This adaptability makes LNNs particularly well-
suited for real-world applications where conditions constantly 
change. Currently, there are three types of liquid neural net‑
works: liquid time-constant neural networks (LTCs), closed-
form continuous-time neural networks (CfCs), and neural cir‑
cuit policies (NCPs).
3.1 Liquid Time-Constant Neural Networks

Fig. 2 illustrates the basic information flow of a liquid neu‑
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ron, which serves as the fundamental building block of LTCs. 
In this model, a presynaptic neuron transmits information to a 
postsynaptic neuron via the synapse between them, using pre‑
synaptic stimuli. The potential of the postsynaptic membrane 
acts as a dynamic variable, representing the hidden states in 
the corresponding neural networks. This entire process is de‑
scribed by an ODE, which captures the dynamic and non-linear 
interactions between neurons. LTCs have demonstrated excep‑
tional flexibility and generalizability, particularly in applica‑
tions such as vehicle autopilot and vehicular communications. 
These networks can adapt to changing external conditions with 
remarkable efficiency. Notably, LTCs have achieved high-
fidelity autonomy in complex autonomous systems with as few 
as 19 liquid neurons[11]. This capability can be extended to en‑
hance vehicle-to-everything (V2X) communications, where 
LTCs can optimize data transmission and processing in dy‑
namic, real-time environments. By integrating LTCs into next-
generation wireless communication systems, vehicles can 
achieve seamless connectivity, improve network performance, 
and attain robust decision-making processes. This enables so‑
phisticated or task-specific operations even under diverse and 
fluctuating conditions.
3.2 Closed-Form Continuous-Time Neural Networks

While LTCs can adapt to changing environments, their lack 
of closed-form solutions requires computationally intensive it‑
erative solvers for forward propagation and back propagation. 
To address this issue, a closed-form solution was proposed to 
approximate the true solution of the ODE[12], as illustrated in 
Fig. 2. The closed-form expression successfully circumvents 
the high overhead of traditional ODE solvers and approxi‑
mates the solution with a few parameters. To take advantage of 

existing deep learning tools and theories, CfCs are represented 
by a specially designed deep neural network structure, as de‑
picted in Fig. 3. This innovative approach significantly re‑
duces computational complexity while maintaining the adapt‑
ability and robustness characteristic of liquid neural networks, 
making CfCs highly suitable for real-time applications in dy‑
namic environments.
3.3 Neural Circuit Policies

To further exploit the potential of LTCs and CfCs, NCPs are 
designed to integrate multiple CfC or LTC neurons into several 
layers. An example of an NCP comprising multiple CfC neurons 
is illustrated in Fig. 3. A typical NCP features four distinct lay‑
ers: the sensory neuron layer, the inter neurons layer, the com‑
mand neurons layer, and the motor neurons layer. These layers 
feature sparse connections both within and between them, mim‑
icking the sparse connectivity observed in biological neural net‑
works. This design reduces computational complexity and accel‑
erates information exchange and fusion. NCPs have demon‑
strated robust flight navigation capabilities when presented with 
out-of-distribution data, generalizing effectively to scenarios 
that were not encountered during training[18]. This ability to 
handle new and diverse conditions makes NCPs highly valuable 
for applications requiring high adaptability and real-time pro‑
cessing in dynamic environments.
4 Features and Benefits of LNNs

LNNs stand out due to their unique design and operational 
principles, which endow them with several distinct features 
and benefits over traditional neural network models. These 
characteristics make LNNs exceptionally well-suited for the 
dynamic and complex nature of modern wireless communica‑

Figure 3. Structure of a CfC neuron and a four-layer NCP
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tion systems. In this section, we delve into the key features 
and benefits of LNNs as follows.
4.1 Superior Generalizability and Robustness

LNNs exhibit superior generalizability and robustness over 
traditional neural networks, primarily due to their biologically 
inspired design that allows continuous adaptation to new and 
varying inputs[18]. This dynamic and adaptive nature mimics 
biological neural systems, enabling LNNs to generalize effec‑
tively across different conditions and environments. Such 
adaptability and resilience are particularly valuable in wire‑
less communications, where network conditions and user de‑
mands can change rapidly. LNNs maintain high performance 
even when faced with data that deviate significantly from the 
training set, making them ideal for real-world applications 
where unpredictability is the norm. For instance, in dynamic 
spectrum access and adaptive beamforming, LNNs can adjust 
to varying spectrum availability and signal conditions in real-
time, ensuring optimal communication performance. More‑
over, their ability to continuously reorganize and adapt en‑
hances their robustness, allowing them to handle unexpected 
changes and disturbances effectively. This capability is cru‑
cial for maintaining reliable communication links in highly dy‑
namic and unpredictable environments like emergency re‑
sponse scenarios. In such cases, LNNs can adapt to fluctuat‑
ing network topologies and varying signal conditions, ensuring 
the delivery of critical information and maintaining robust and 
resilient communication networks.
4.2 Enhanced Expressivity

LNNs exhibit enhanced expressivity compared with tradi‑
tional neural networks due to their ability to dynamically 
adapt to incoming data and capture intricate temporal pat‑
terns. This expressivity is evident in their ability to generate 
complex latent space trajectories when exposed to various in‑
put patterns. For example, LNNs produce significantly more 
detailed and longer trajectories than models like neural ODEs 
and continuous-time RNNs[10], indicating a higher capacity for 
nuanced temporal representation. This enhanced expressivity 
directly contributes to their ability to quickly adapt to chang‑
ing conditions. The complex internal representations allow 
LNNs to effectively process and integrate new information, en‑
abling rapid adjustments to new inputs and environments. In 
wireless communication, this means LNNs can adapt to rap‑
idly changing network conditions and user behaviors, ensuring 
consistent and reliable performance.Furthermore, the continu‑
ous adaptation mechanisms of LNNs, inspired by biological 
neural systems, support their superior expressivity. This adapt‑
ability enables LNNs to maintain high levels of detail and ac‑
curacy in their representations, even in dynamic and unpre‑
dictable environments, making them ideal for complex and 
varied tasks in advanced telecommunication applications.

4.3 Improved Interpretability
LNNs also offer significantly improved interpretability, an 

advantage particularly important for applications requiring 
transparency and trust. The interpretability of LNNs arises 
from their ability to disentangle complex neural dynamics into 
comprehensible and distinct behaviors. By leveraging tech‑
niques such as decision trees to analyze neural policies, LNNs 
can provide clear and logical explanations for their decision-
making processes[7]. This enhanced interpretability is essen‑
tial for understanding and debugging model behavior, espe‑
cially in safety-critical systems like robotics, autonomous driv‑
ing, and dynamic wireless communication networks. In the 
context of telecommunications, interpretability is crucial for 
ensuring reliable network performance and facilitating trouble‑
shooting. For instance, understanding how LNNs manage spec‑
trum allocation or adjust beamforming in real-time can help 
network operators optimize resource usage and maintain ro‑
bust connectivity. Disentangling neural responses into identifi‑
able strategies and behaviors allows for a more precise evalua‑
tion of how well these networks capture and represent underly‑
ing task dynamics in communication systems. This capability 
not only boosts the trustworthiness of LNNs but also facilitates 
their deployment in real-world scenarios where understanding 
the rationale behind decisions is crucial for maintaining high-
performance and reliable wireless communications.
4.4 Lower Complexity

LNNs benefit from lower computational complexity due to 
their efficient design, arising from several factors. First, the 
sparse connectivity within and between the layers of NCPs re‑
duces computational overhead, making the networks more effi‑
cient without compromising performance. Second, the closed-
form solutions used in LNNs eliminate the need for complex it‑
erative solvers typically required for solving ODEs, further 
lowering computational complexity. Additionally, LNNs pos‑
sess strong expressive power, enabling them to perform com‑
plex tasks with fewer neurons, significantly reducing the over‑
all size of the network. This combination of factors is particu‑
larly beneficial in applications requiring real-time processing 
and decision-making, such as V2X communications and dy‑
namic wireless networks. In telecommunications, lower com‑
plexity translates to faster processing speed and reduced en‑
ergy consumption, which are critical for the scalability and 
sustainability of next-generation networks[19]. Efficient re‑
source allocation, real-time traffic management, and rapid han‑
dovers in mobile networks all benefit from the lower complex‑
ity of LNNs, leading to more efficient and robust communica‑
tion systems. Moreover, the low complexity and efficient de‑
sign of LNNs contribute to energy savings and environmental 
sustainability. This makes LNNs suitable for deployment in 
environments with limited computational and energy re‑
sources, including edge devices and IoT sensors, where com‑
putational power and battery life are constrained. By reducing 
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energy consumption, LNNs support a wide range of applica‑
tions, from smart cities to remote monitoring systems, without 
overwhelming the network infrastructure, thereby promoting 
greener and more sustainable technology solutions.
4.5 Continuous-Time Modeling

One of the distinctive features of LNNs is their continuous-
time modeling capability. Unlike traditional neural networks 
that operate in discrete time steps, LNNs leverage ODEs to 
model the dynamic interactions between neurons. This allows 
LNNs to capture the continuous and fluid nature of real-world 
processes more accurately. Continuous-time modeling is par‑
ticularly advantageous in scenarios requiring high temporal 
resolution and precision, such as real-time autonomous sys‑
tems and adaptive communication networks[16]. In telecommu‑
nications, continuous-time modeling enables more precise 
channel estimation, interference management, and adaptive 
modulation schemes. By modeling the system dynamics in con‑
tinuous time, LNNs can respond more naturally and effec‑
tively to the ever-changing conditions of the environment, en‑
suring optimal performance in rapidly varying communication 
scenarios[20].

In summary, LNNs offer distinct features and benefits that 
make them exceptionally suitable for next-generation wireless 
communication systems. Their superior generalizability, inter‑
pretability, lower complexity, continuous-time modeling, en‑
hanced robustness, and efficient resource utilization position 
them as a transformative technology. By integrating LNNs into 
telecommunications, we can achieve more adaptive, reliable, 
and efficient networks that meet the demands of future wire‑
less communication environments.
5 LNNs for Wireless Communications

In this section, we unveil the opportunities that LNNs bring to 
the evolution and enhancement of future wireless networks. Spe‑
cifically, we introduce two key topics: integrated sensing and 
communication (ISAC) and self-organizing networks (SONs).
5.1 ISAC

ISAC represents a paradigm shift in wireless network de‑
sign, merging communication and sensing functionalities into 
a unified framework to enhance spectral efficiency (SE) and re‑
duce hardware costs[21–22]. With the biologically inspired ar‑
chitecture and low computational complexity, LNNs are ide‑
ally suited for ISAC systems. Their ability to learn and adapt 
in real time, handle complex and dynamic environments, and 
generalize effectively makes them ideal for optimizing re‑
source allocation between communication and sensing func‑
tions, thus improving SE without extensive computational re‑
sources. The adaptability and interpretability of LNNs are cru‑
cial for applications like autonomous driving, where precise 
and reliable sensing is critical for safety, as they can learn 
from historical data and adapt to new conditions, enhancing 

sensing accuracy and reliability. In wireless communication, 
LNNs manage interference, optimize transmission parameters, 
and ensure robust links, maintaining high quality of service 
(QoS) even in challenging environments. Their low computa‑
tional complexity shortens processing time and reduces energy 
consumption, which is essential for scalable and sustainable 
next-generation green networks. It is promising to develop 
joint sensing and communication algorithms, real-time learn‑
ing and adaptation frameworks, and ensure compatibility with 
existing network infrastructure and protocols with LNNs. 
These advancements can lead to more efficient, reliable, and 
versatile wireless networks.
5.2 SONs

SONs represent a kind of wireless network characterized by 
their ability to adapt and evolve autonomously in response to 
changing environmental conditions, network demands, and 
user behaviors. Unlike traditional static network configura‑
tions, these networks can dynamically reconfigure themselves, 
optimize resource allocation, and maintain robust performance 
without human intervention. With the continuous adaptation 
and learning capabilities, LNNs are uniquely suited for imple‑
menting SONs. Their biologically inspired architecture allows 
them to learn and adjust in real time, providing seamless 
adaptability to varying network conditions. This is particularly 
crucial in wireless environments where factors such as signal 
interference, user mobility, and fluctuating demand can sig‑
nificantly impact network performance. For instance, in SONs, 
LNNs can be employed to predict and address potential net‑
work congestion in advance by reallocating resources or ad‑
justing transmission parameters. They can also enhance QoS 
by dynamically adapting to the quality of the communication 
links and optimizing handovers in mobile networks. Moreover, 
LNNs can facilitate proactive maintenance of the communica‑
tion systems by identifying and mitigating faults or anomalies 
before they escalate into significant issues. To sum up, SONs 
powered by LNNs are envisioned to revolutionize wireless 
communication by enabling networks that are not only more re‑
silient and efficient but also capable of autonomously evolving 
to meet the ever-changing demands of users and applications. 
This represents a significant step towards the realization of 
truly intelligent and adaptive wireless networks.
6 Challenges and Future Research Directions

In this section, we present some of the main challenges as‑
sociated with LNN-based communication systems and outline 
potential future research directions. The following subsections 
delve into specific areas where advancements are needed to 
fully realize the potential of LNNs in wireless communication.
6.1 Zero Shot Learning

Zero-shot learning (ZSL) describes a model’s ability to rec‑
ognize and categorize data from classes it has never seen be‑
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fore. This feature is fundamental for LNNs operating in ever-
changing and uncertain wireless communication environ‑
ments. Traditional machine learning approaches often rely on 
vast numbers of labeled data for every new scenario, a require‑
ment that is not always practical. Although LNNs have the ca‑
pacity to handle out-of-distribution data, a deeper understand‑
ing of the principles behind this ability is necessary. Enhanc‑
ing these principles enables models to effectively generalize 
from sparse data and transfer insights gained from past experi‑
ences to novel situations. Moreover, combining LNNs with 
data augmentation strategies holds promise for boosting over‑
all performance, ensuring that the knowledge acquired re‑
mains applicable to new challenges without significant degra‑
dation. Finally, establishing rigorous evaluation frameworks is 
essential for accurately measuring the ZSL capabilities of 
LNNs in real-world wireless communication settings.
6.2 Distributed LNNs

Distributing LNNs across various devices and nodes is vital 
for modern large-scale wireless communication systems. This 
approach not only boosts scalability, fault resilience, and effi‑
cient resource use but also introduces challenges in effective 
coordination and synchronization. To harness the full potential 
of distributed LNNs, it is crucial to develop specialized learn‑
ing algorithms that reduce both communication overhead and 
latency while implementing robust fault tolerance and dy‑
namic resource management strategies. Federated learning 
presents an attractive solution by enabling multiple devices to 
collaboratively train LNNs locally, thereby slashing communi‑
cation costs and enhancing data privacy. Focusing research on 
these areas will significantly improve the practical deployment 
of distributed LNNs in complex wireless environments.
6.3 Multi-Modality Fusion

Combining data from multiple modalities (such as sensor 
data, audio, video, and text) in wireless communication sys‑
tems can significantly improve the performance and reliability 
of LNNs. By drawing on these diverse information sources, 
LNNs develop a richer perspective of the communication envi‑
ronment. However, designing architectures that effectively 
handle and integrate multi-modal data poses both a challenge 
and an opportunity. Achieving this goal involves tackling data 
synchronization and fusion issues across different modalities 
while ensuring that incorporating multi-modal data enhances 
overall performance without adding excessive complexity[23].
6.4 Training and Inference Latency

A critical area demanding focused future investigation for 
LNN deployment in 6G is the operational latency, a factor 
paramount for practical feasibility. Specifically, while LNNs 
offer unique continuous-time processing, their inference speed 
must be carefully evaluated. The computational time for nu‑
merically solving the underlying ODEs needs direct measure‑
ment and comparison against the stringent, often sub-

millisecond, real-time response requirements of demanding 
6G applications like ultra-reliable low latency communica‑
tions (URLLC) or real-time network control. Achieving the 
necessary inference speeds may require dedicated research 
into optimized numerical solvers tailored for LNNs, exploring 
model simplification or approximation techniques, and lever‑
aging hardware acceleration platforms. Equally important and 
currently underexplored, is the comprehensive evaluation of 
the end-to-end training latency. This encompasses the time 
consumed by the training algorithm itself, the necessary steps 
of data collection and processing, and the subsequent phase of 
model evaluation. Understanding this complete time cycle is 
vital, as the highly dynamic nature of 6G environments will 
likely necessitate frequent model retraining or adaptation to 
maintain optimal performance. Therefore, future research 
must dedicate significant effort to quantifying both the infer‑
ence speed on relevant hardware and the practical duration of 
the full training pipeline for typical 6G tasks, thereby validat‑
ing the viability of LNNs within next-generation telecommuni‑
cation systems.
7 Case Studies

In this section, we summarize the performance of LNNs in 
two typical application scenarios.
7.1 Channel Prediction with LTCs

We assume an urban microcell scenario where an outdoor 
base station (BS) serves both outdoor and indoor users[24]. A 
user is connected to the BS and moves in a random walk with 
a speed of 2 m/s, with the direction uniformly distributed be‑
tween 0 and 2π radians from its initial position. Historical 
channel state information (CSI) feedback with a length of 20 is 
utilized to predict future CSI with a length of 5. The test was 
conducted in a real-world scenario using practical CSI. The 
field test simulation parameters are summarized in Table 1. 
Fig. 4 illustrates the mean squared error (MSE) versus CSI pre‑
diction length in channel prediction. It is evident that the 
MSE of all schemes increases with prediction length, indicat‑
ing that longer prediction lengths introduce more uncertainty. 
Among all schemes, the proposed LTCs-based approach con‑
sistently outperforms other baselines, achieving lower MSE, 
with the performance gap widening as the prediction length in‑
creases, particularly when it exceeds 6. This highlights the po‑

Table 1. Simulation parameters in Figs. 4 and 5
Parameters

BS Antenna number
BS Antenna spacing

User number
User antenna number

Central frequency
Liquid neuron number

Fig. 4
4

0.5λ

1
1

6 GHz
/

Fig. 5
64

0.5λ

4
2

28 GHz
30

BS: base station
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tential of LTCs in achieving more accurate channel prediction 
in practical and dynamic scenarios.
7.2 Beamforming with NCPs

We consider a multiple-input multiple-output (MIMO) 
beamforming system[25]. A BS furnished with M antenna ele‑
ments concurrently provides service to K users. Each user de‑
vice possesses Nr antennas. The users experience a range of 
velocities: 6 m/s, 15 m/s, and 30 m/s. Each of these phases en‑
compasses 700, 600, and 500 discrete time intervals, respec‑
tively. Key simulation settings are enumerated in Table 1. The 
average SE achieved under this dynamic condition, contrasted 
against alternative benchmark schemes, is illustrated in Fig. 
5. The gradient-based liquid neural network (GLNN) ap‑
proach, leveraging NCPs, rapidly surpasses the weighted mini‑
mum mean square error (WMMSE) algorithm after a short ini‑
tial learning period. It then maintains a superior level of SE 
when juxtaposed with all other reference systems. This behav‑
ior underscores its remarkable capacity for adaptation and its 
efficacy in environments characterized by temporal variations.
8 Conclusions

In this article, we investigate LNNs that are designed from 
first principles. We delve into their structure, features, and 
distinct advantages compared with traditional neural net‑
works, as well as their recent applications. LNNs demonstrate 
remarkable potential as a key enabling technology in next-
generation wireless communications due to their superior gen‑
eralizability, interpretability, lower complexity, continuous-
time modeling capabilities, and robust performance in dy‑
namic environments. By leveraging their adaptive nature and 
efficient design, LNNs can enhance scalability, fault toler‑
ance, and resource utilization efficiency in wireless networks. 
However, several challenges remain to be addressed to fully 

realize the potential of LNNs in practical applications, includ‑
ing improving zero-shot learning capabilities, developing dis‑
tributed LNN frameworks, integrating multi-modality data, 
and optimizing cross-layer interactions. Future research is ex‑
pected to focus on overcoming these challenges to ensure that 
LNNs can effectively adapt to varying conditions and deliver 
reliable performance in real-world scenarios. By addressing 
these issues, LNNs can drive the evolution and enhancement 
of future wireless networks, paving the way for more adaptive, 
reliable, and efficient communication systems.
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Abstract: In-loop filters have been comprehensively explored during the development of video coding standards due to their remarkable 
noise-reduction capabilities. In the early stage of video coding, in-loop filters, such as the deblocking filter, sample adaptive offset, and adap‑
tive loop filter, were performed separately for each component. Recently, cross-component filters have been studied to improve chroma fidel‑
ity by exploiting correlations between the luma and chroma channels. This paper introduces the cross-component filters used in the state-of-
the-art video coding standards, including the cross-component adaptive loop filter and cross-component sample adaptive offset. Cross-
component filters aim to reduce compression artifacts based on the correlation between different components and provide more accurate pixel 
reconstruction values. We present their origin, development, and status in the current video coding standards. Finally, we conduct discussions 
on the further evolution of cross-component filters.
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1 Introduction

With the development of video capture, storage, com‑
pression, and display technologies, numerous 
video applications continue to emerge, such as 
video communications, online conferences, cloud 

gaming, and immersive video experiences. The advancement 
brings forth new challenges to video coding technologies. To 
meet the increasing demand for video compression, various 
video coding tools and technologies have been proposed, lead‑
ing to continuous evolution in video coding standards. A sig‑
nificant milestone in this progression was the finalization of 
the high efficiency video coding (HEVC) [1] standard in 2013, 
which achieved approximately 50% bitrate savings compared 
with its predecessor, the advanced video coding (AVC) stan‑
dard[2]. The latest video coding standard, versatile video cod‑
ing (VVC) [3], has further improved upon HEVC by achieving 

roughly 50% bitrate reduction. While H.266/VVC demon‑
strates excellent video compression capabilities, there remains 
significant potential in further enhancing video coding effi‑
ciency. In the pursuit of exploring advanced video encoding 
tools, a software model named the enhanced compression 
model (ECM) has been introduced to explore the potential of 
video compression further[4].

As a result of the prevalent utilization of block-based opera‑
tions and coarse quantization within contemporary video cod‑
ing standards, artifacts such as blocking and ringing have be‑
come inherent in compressed frames, thereby markedly dimin‑
ishing both objective and subjective qualities. To mitigate 
these compression artifacts, extensive exploration has been 
conducted on in-loop filter algorithms during the evolution of 
video coding standards. These filters enhance the quality of re‑
constructed frames while furnishing high-fidelity reference 
frames for subsequent images, thereby facilitating more accu‑
rate motion compensation.

There are four kinds of in-loop filters in VVC[5], i.e., the de‑
blocking filter (DBF)[6], the sample adaptive offset (SAO)[7], the 
adaptive loop filter (ALF) [8], and luma mapping with chroma 

This work was supported in part by National Science Foundation of Chi⁃
na under Grant No. 62031013, PCL-CMCC Foundation for Science and In⁃
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scaling (LMCS) [9]. The bilateral filter (BIF) [10] has been newly 
adopted in ECM. These filters are depicted in Fig. 1. DBF 
aims to remove the blocking artifact by applying low-pass fil‑
ters to the boundaries of the coding unit, the prediction unit, 
and the transform unit. SAO is conducted by conditionally 
adding an offset to the reconstructed samples after DBF, 
which shows promising performance in reducing the mean 
sample distortion and the ringing artifacts. ALF is a Wiener-
based spatial filter. It enhances reconstructed video fidelity by 
taking the weighted average of reference samples as the fil‑
tered samples. The weighting coefficients are derived by mini‑
mizing the mean square error between the original and de‑
coded samples in the encoder, and then they are transmitted 
to the decoder. LMCS does not particularly focus on artifact re‑
duction but aims to boost coding efficiency by better utilizing 
the dynamic range. BIF is a nonlinear, edge-preserving, and 
noise-reducing filter that has been newly introduced to ECM. 
Similar to the ALF, it also replaces the intensity of each pixel 
with a weighted average of intensity values from nearby pixels. 
While the difference lies in that the weights of BIF depend on 
the Euclidean distance of pixels and the radiometric differ‑
ences, which preserves sharp edges. These weights can be cal‑
culated both in the encoder and decoder.

In addition to the above-mentioned local filters adopted in 
the ECM, some other in-loop filters based on the image non-
local similarity have been studied, such as a structure-driven 
adaptive non-local filter (SANF) [11], a non-local structure-
based loop filter (NLSF)[12–14], a novel adaptive loop filter uti‑

lizing image non-local prior knowledge[15], a parametric non-
local loop filter (PNLF) [16], and a deformable Wiener filter 
(DWF) [17]. Some of these methods were also discussed in the 
joint video experts team (JVET) meetings[18–21].

Though the aforementioned in-loop filters effectively reduce 
compression artifacts, these conventional methodologies, char‑
acterized by hand-crafted designs, exhibit constraints in ad‑
dressing more intricate artifacts. In response to this constraint, 
in-loop filters leveraging convolutional neural networks 
(CNNs) have been developed, demonstrating superior perfor‑
mance over conventional filtering methods[22–25]. Various neu‑
ral network-based loop filtering tools have been proposed and 
adopted by ECM, achieving significant performance improve‑
ment[26–29].

While the coding techniques mentioned above only focus on 
single-component in-loop filtering, ignoring the correlation be‑
tween different components. Extensive research has demon‑
strated a high correlation between luma and chroma compo‑
nents in the YUV format[30–33]. Based on this correlation, some 
prediction techniques were proposed, such as cross-component 
prediction (CCP) [34] supported in the HEVC range extensions 
and cross-component linear model (CCLM) [35]. Besides, cross-
component techniques are also applied in end-to-end image 
compression[36], which effectively improves compression perfor‑
mance. Recently, the correlation among different components 
was also considered in in-loop filters.

Several cross-component in-loop techniques were proposed 
and adopted in H.266/VVC and the audio video coding stan‑

dard (AVS3), an independently devel‑
oped Chinese audio-video coding stan‑
dard. Continuous studies have been car‑
ried out on these methods during the de‑
velopment of ECM. In the ECM-12.0, 
there are two cross-component filters, 
namely the cross-component adaptive 
loop filter (CCALF) and the cross-
component sample adaptive offset 
(CCSAO). CCALF was initially proposed 
and adopted during the development of 
H. 266/VVC and was optimized and im‑
proved in ECM. Similar to ALF, CCALF 
is also a Wiener filter. The difference is 
that it only applies to chroma samples, 
and it utilizes luma samples as the refer‑
ence samples and corrects the target 
chroma pixel by applying a linear filter 
to these selected luma samples. The fil‑
ter parameters are trained following the 
principle of minimizing the mean square 
error (MSE) in the encoder and transmit‑
ted to the decoder. CCSAO is adopted 
by AVS3 and ECM. Specifically, it uses 
the correlation between luma and 
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chroma components to classify the reconstructed samples into 
different categories and assigns each category an offset value 
for sample adjustment.

Compared with ECM-12.0 without CCALF[4], ECM-12.0 
with CCALF achieves 2.49% and 2.90% coding gains for the 
Cb and Cr components under All Intra (AI) configuration, and 
1.48% and 2.12% coding gains for Cb and Cr components un‑
der random access (RA) configuration. While in VTM-10.0, 
CCALF can achieve 13.88% and 13.73% coding gains under 
AI configuration, and 9.69% and 8.55% coding gains under 
RA configuration for Cb and Cr components respectively[37]. 
The decrease in the coding gain may be caused by the new 
cross-component techniques introduced in the prediction pro‑
cess of ECM. For CCSAO, 1.28% and 1.08% coding gains can 
be achieved for Cb and Cr components under AI configura‑
tion, and 3.02% and 2.79% coding gains for Cb and Cr compo‑
nents can be achieved under RA configuration, respectively.

The remainder of this paper is organized as follows. Section 
2 introduces the theory of CCALF and summarizes its develop‑
ment. Section 3 introduces the fundamental principles and the 
proposals about CCSAO. Experimental results and discussions 
are shown in Section 4. Section 5 concludes this paper.
2 CCALF

CCALF is fundamentally a Wiener filter[38]. Specifically, 
CCALF derives a correction signal for chroma samples based 
on the weighted average of luma reference samples. These ref‑
erence samples are the neighboring samples of the collocated 
luma sample. The coordinate of the collocated luma sample is 
derived based on the chroma format of the video. Both the 
ALF and CCALF use the reconstructed sample of SAO as in‑
put, while CCALF only calculates the offsets for chroma com‑
ponents as shown in Fig. 2. The filtering operation can be rep‑
resented using the conditions below, and we assume the fol‑

lowing for 2D images.
I′( r) = I ( r) + ∑i = 0

N - 1 ci pi (1),

pi = L ( r′ + d i ) - I ( r) (2),
where sample location r = ( x, y ) belongs to the to-be-filtered 
region R, and r′ =  ( x′,  y′) means the collocated luma sample 
position of the to-be-filtered chroma sample; s[ r ] is the origi‑
nal sample, I [ r ] is the to-be-filtered sample, and L ( r′) is the 
collocated luma samples of [ r ]; c = [ c0, c1,c2,…,cN - 1 ]  means 
N-tap filter coefficients; { d0,d1,d2,…,dN - 1 } is the filter tap 
position offset, where d i denotes the sample location offset to 
L ( r′) of the i-th filter tap; p = [ p0, p1,p2,…,pN - 1 ] shows the 
difference values between neighboring reference luma 
samples and the to-be-filtered chroma sample; I′( r ) is the fil‑
tered chroma sample.

The coefficients of CCALF are derived by minimizing the 
mean square error between the reconstructed chroma compo‑
nent after SAO and the original chroma sample, similar to the 
parameter derivation process of chroma-ALF. Specifically, a 
correlation matrix is derived, and the coefficients are calcu‑
lated using the Cholesky decomposition solver to minimize the 
mean square error.

The coefficient values at different positions are obtained 
from the bitstream. The filter coefficients are derived by solv‑
ing the optimization problem shown in Eq. (3).

minc∑r ∈ R(c⨀p - s[ r ] ) 2 (3),

c = R-1
r,r Rr,s (4),

where ⨀ is the inner product. By solving the Wiener-Hopf 
equation as in Eq. (4), the filter coefficients can be calculated. 
R-1

r,r  denotes the auto-correlation matrix of the to-be-filtered 
samples, and Rr,s is the cross-correlation matrix of the to-be-
filtered and the original samples.
2.1 Filter Shape

The filter shape of CCALF was a 5 × 6 diamond-shaped fil‑
ter with 14 filter coefficients and 18 taps when it was initially 
proposed[39]. Considering the trade-off among performance, 
line buffer, and computational complexity, several reduced fil‑
ter shapes were proposed[40–43]. Finally, the 3 × 4 diamond fil‑
ter shape was adopted in H. 266/VVC. Fig. 3 illustrates the 
relative location of the chroma sample being filtered and its 
support region in the luma sample when CCALF is adopted in 
H.266/VVC. Consequently, each CCALF filter has only 8 fil‑
ter coefficients, and the filtering operation is shown in Eq. (1), 
where N = 8.

To improve the performance of CCALF, numerous propos‑Figure 2. Illustration of CCALF

ALF: adaptive loop filter
CCALF: cross-component adaptive loop filter

SAO: sample adaptive offset

SAO luma ALF luma

CCALF Cb

CCALF Cr
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SAO Cr

Y
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als have been put forward, considering the trade-off between 
performance and running time, complexity, and other factors. 
However, some of these proposals were not adopted.

In Ref. [44], an extension to CCALF was proposed. This con‑
tribution suggests extensions to CCALF in both the number and 
size of filters. While this extension can enhance chroma compo‑
nents, it may lead to some loss in the luma component. Addi‑
tionally, CCALF could introduce artifacts in chroma compo‑
nents, which is why certain constraints are set in high quantiza‑
tion parameter (QP) regions. Therefore, proposals regarding 
CCALF must avoid reintroducing these artifacts.

Considering that the correlation between neighboring pixels 
may depend on the characteristics of the video content, a 
single filter shape may not be optimal for different video con‑
tent. A coding tree block (CTB) level filter shape selection 
scheme was proposed to optimize the CCALF framework[45]. 
This contribution introduces two filter shapes shown in Fig. 4. 
Within each adaptation parameter set (APS), multiple filters 
and their corresponding shapes with coefficients are signaled. 

For each CTB, the decoder specifies which filter shapes or co‑
efficients are used based on the signaled index.

This contribution demonstrates significant gains in chroma 
components. However, the necessity of adaptively selecting 
CCALF shapes is questioned. In a subsequent exploration ex‑
perience[46], in addition to the adaptive selection of the two fil‑
ter shapes[45], another scheme involving larger-size filters was 
proposed. Specifically, a 25-tap long-tap CCALF was intro‑
duced. This long-tap filter was considered a simpler scheme to 
achieve better gain. After joint tests of the modified CCALF 
and other in-loop filters[47], the long-tap CCALF scheme was 
eventually adopted. The new shape of CCALF in ECM is illus‑
trated in Fig. 5, and the filtering operation is shown in Eq. (1) 
where N = 25.

Because residual values have been stored and used in luma 
ALF, the concept of residual-based taps in chroma ALF and 
CCALF was proposed[48]. Before this contribution, CCALF only 
had one online-trained CCALF filter with a cross-like filter 
shape mentioned above, as depicted in Fig. 5. Since the re‑
sidual values are utilized in the unfixed luma filter of ALF, 
there is no need to store luma residual values additionally. In 
this contribution, only one luma-residual-based tap was added. 
Furthermore, chroma residual values were incorporated into the 
chroma online-trained filter of ALF, while luma residual values 
were employed in CCALF. However, considering that chroma 
residual values were not stored previously and the additional 
memory required, the resulting gain was comparatively low. 
Therefore, this proposal is recommended for further study.

At the 31st JVET meeting, luma residual taps in chroma 
ALF and CCALF were introduced[49]. Five luma residual taps 
in a cross 3×3 shape were added. These extended taps took 
the collocated and neighboring luma residual values as input. 
The inclusion of the luma residual taps in CCALF was ad‑
opted due to its relatively higher standalone gain[50]. The filter 
shape of CCALF in ECM-12.0 is illustrated in Fig. 6.

Figure 3. Illustration of the relative location of filtered chroma sample 
of CCALF and its support in the luma channel for 4∶2∶0 chroma 

format in H.266/VVC

Figure 4. Illustration of the two filter shapes of CCALF in Ref. [45] Figure 5. Illustration of the filter shape of CCALF with 25 taps
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The coefficients that need to be calculated are divided into 
two parts: spatial luma sample-based taps and luma residual-
based taps. The linear filtering operation can be represented 
using Eq. (5).

I′( x,y ) = I ( x,y ) + ∑i = 0,12 ci( )fi,0 + fi,1 + ∑i = 1
21 ci fi + ∑i = 22

26 ci gi

(5),

fi,j = L ( x′ + xi,y′ + yi ) - I ( x,y ) (6),

gi = Clip (R ( x′ + xi,y′ + yi ) ) (7),
where ( x, y ) is the coordinate of the center sample, and 
( x′, y′) is the coordinate of collocated luma sample; ( x′ +
xi, y′ + yi ) and ( x′ + xi,j, y′ + yi,j)  are the coordinates of the re‑
constructed samples corresponding to coefficient ci; fi,j and fi show the difference between neighboring luma samples 
L ( x′, y′) and current sample I ( x, y ); gi is the clipped value of 
luma residual samples R ( x′, y′), which is the residual be‑
tween prediction samples and reconstructed samples; Clip is 
the function that limits the values within a certain range to re‑
duce the impact of significant differences in sample values, 
and the value of the clipping operation depends on the clipIdx 
of APS and bitDepth.
2.2 Filter Coefficient Calculation and Representation

Except for the filter shape of the CCALF, the optimization 
of coefficient calculation and signaling[39, 51–54] is important to 
improve the performance of CCALF.

When CCALF was proposed, each filter had 14 filter coeffi‑
cients and 18 taps, and every coefficient had an 8-bit dynamic 

range and was signaled with a third-order exponential-Golomb 
code[39]. However, it would increase complexity with additional 
multiplications per chroma pixels. To simplify the computa‑
tion overhead, a bit shifting scheme was proposed to replace 
the multiplications[51]. The results show that this scheme can 
reduce the complexity of the CCALF filter with an accepted 
loss, so it was adopted. Besides, a contribution was proposed 
to reduce memory access, encoding latency, and power con‑
sumption[54]. It proposes a method to estimate CCALF filtering 
distortion without conducting real filter operations. With this 
proposal, the number of encoding passes can be reduced from 
152 to 1 without affecting the coding performance. As a desir‑
able simplification, this proposal was adopted.

At the 32nd JVET meeting, coefficient precision adjust‑
ment for ALF was proposed, demonstrating promising coding 
performance with negligible increases in encoding and decod‑
ing time[55]. Similarly, at the 33rd JVET meeting, adaptive co‑
efficient precision for CCALF was introduced[56–57]. Since 
CCALF involves different coefficient derivations compared 
with ALF, removing the power of 2 constraints was also pro‑
posed in this context. This adjustment can enhance the accu‑
racy of coefficients, though a 2-bit syntax element needs to be 
signaled for per luma filter set to indicate the number of bits. 
These two contributions have been further investigated.
2.3 Syntax Design

Compared with H. 266/VVC, ECM-12.0 utilizes luma re‑
sidual samples additionally, as shown in Fig. 6. The residual 
correction is generated for chroma samples according to Eq. (5). 
For each picture, two types of information need to be coded for 
CCALF, i.e., filter coefficient parameters and filter control on/
off flags. The filter coefficient parameters include the number of 
cross-component filters and the coefficients of the correspond‑
ing filter. CCALF can transmit up to 8 CCALF filters, with the 
resulting filters being indicated for each of the two chroma 
channels on a CTU basis. Each slice only has one APS, and the 
Cb component and Cr component can have different APSs, 
which are signaled separately at the slice header. Similar to 
luma ALF, to reduce bit overhead, filter coefficients of different 
classifications can be merged. The filter control on/off flags en‑
able better local adaptation, with hierarchical control at the 
sequence-level, picture-level, slice-level and CTU-level. When 
the value of sequence-level and picture-level control flags is not 
present, it is inferred to be equal to 0. When the slice-level on/
off control flag is not present, it is inferred to be equal to 
picture-level on/off control flags. If the slice-level on/off control 
flag indicates ALF-on, CTU-level filter on/off control flags are 
interleaved in slice data and coded with CTUs; otherwise, no 
additional CTU-level filter on/off control flags are coded and all 
CTUs of the slice are inferred as ALF-off.

Due to the abundant texture features of the luma compo‑
nent, CCALF may introduce artifacts with overly abundant 
chroma texture, thereby reducing the subjective quality of the 

Figure 6. Illustration of CCALF’s shape at ECM-12.0 (the left cross-
like filter uses the reconstructed spatial sample of luma sample adaptive 

offset as input with 23 taps, and the right one uses luma residual 
samples as input)
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image, especially at high QP. Therefore, the H.266/VVC refer‑
ence encoder can achieve subjective tuning through configura‑
tion file adjustments. Specifically, it can attenuate the applica‑
tion of CCALF in high QP encoding and areas with high-
frequency luminance. Algorithmically, CCALF is deactivated 
on CTUs when any of the following conditions is true:

1) The slice QP value minus 1 is less than or equal to the 
base QP value；

2) The number of chroma samples exhibiting local contrast 
exceeding (1 ≪ (bitDepth - 2) ) - 1 surpasses the CTU 
height, where the local contrast is the difference between the 
maximum and minimum luma sample values within the filter 
support region；

3) More than a quarter of chroma samples are in the range 
between (1 ≪ (bitDepth - 1) ) - 16 and (1 ≪ (bitDepth -
1) ) + 16.
3 CCSAO

CCSAO is conceptually similar to SAO, as it initially classi‑
fies the samples to be filtered into different categories, then 
derives an offset value for each category, and finally corrects 
the pixels in that category with the corresponding offset value. 
It uses the reconstructed sample of DBF, which is the same as 
SAO, and the offsets are derived for three channels respec‑
tively. The reconstruction operation of CCSAO can be repre‑
sented by the equation below.

C′rec = Clip (Crec + offset i ) (8),
where C rec and C′rec are the reconstructed samples after DBF 
and CCSAO, respectively， i represents the class index of 
the corresponding sample, and offset i is the corresponding 
offset value.

The difference between SAO and CCSAO lies in CCSAO’s 
utilization of the strong correlation between the luma and chroma 
components in the classification process. It optimizes the recon‑
struction of one component of the sample by leveraging the infor‑
mation contained in the other component of the sample[58].
3.1 Classifier Extension

The original CCSAO includes only a classification based on 
band information to avoid a significant increase in complexity. 
Corresponding band offsets are obtained by minimizing the 
sum of squared error (SSE) between the original sample and 
the corrected reconstruction sample. This approach keeps 
computational complexity low while enabling CCSAO to 
handle certain encoded artifacts. It should be noted that the 
offsets need to be signaled in the bitstream.

CCSAO is applied to the output of DBF reconstructed 
samples, and the offset calculated for each category is added 
to the output sample from the SAO process. Therefore, 
CCSAO can be parallelized with SAO, as shown in Fig. 7.

The band information-based classification of CCSAO uti‑
lizes the reconstructed sample of three components to process 
the classification for each component. Specifically, the collo‑
cated samples for each component are first selected. Then, an 
index representing a category is calculated based on the band 
number of the three components and their collocated samples. 
The offset value of a sample depends on its category. Regard‑
ing the collocated samples for each component, the collocated 
luma sample can be chosen from 9 candidates, while the collo‑
cated chroma samples have fixed positions, as shown in Fig. 8.

CCSAO was first proposed and adopted[59] in the AVS3 
video coding standard, in which collocated luma component 
samples are classified by equally dividing the range of the 
sample values. For each category, an offset value is derived 
and used for the chroma samples whose collocated luma 
sample belongs to the category.

Although cross-component tools in in-loop filters always act 
on chroma components, regarding cross-component proposals, 
attention should not only be given to the gain of chroma com‑
ponents but also to the effects on the luma component. Fur‑
thermore, subjective quality improvement needs to be consid‑
ered as well. Considering these reasons, CCSAO was intro‑
duced to ECM. This proposal showed great performance im‑

Figure 7. Illustration of SAO process when CCSAO is applied

CCSAO: cross-component sample adaptive offset
DBF: deblocking filter
SAO: sample adaptive offset
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Figure 8. Illustration of the collocated sample used for the CCSAO classi⁃
fication. The left graph shows the 9 locations of the luma component (one 
of the 9 samples will be chosen based on rate-distortion optimization) and 

the green and blue samples show the two collocated chroma samples
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provement in chroma components while introducing minimal 
loss in the luma component. Initially, CCSAO only used the 
band classifier when it was adopted in ECM[60], and the cat‑
egory index is calculated using the equations below.

classIndex = BandNum × (NCb × NCr ) + bandCb × NCr + bandCr
(9),

bandL = P ( xY, yY ) × NY ≫ BitDepth (10),
bandCb = P ( xCb, yCr ) × NCb ≫ BitDepth (11),
bandCr = P ( xCr, yCr ) × NCr ≫ BitDepth (12),

where P ( i, j ) is the sample value of different components at 
position ( i, j ), Ni is the number of band for each component, 
( xCb,yCb ) and ( xCr,yCr ) are the current chroma sample posi‑
tions, and ( xY,yY ) is the collocated luma sample position.

As a new in-loop filter tool, several schemes have been pro‑
posed to optimize the original CCSAO. An extension of CCSAO 
was proposed at the 24th JVET meeting, where the proponents 
extended the design of CCSAO by adding the edge-based classi‑
fier[61–62]. Similar to the edge-based classification method in 
SAO, the edge-based classification of CCSAO also uses four 1-D 
directional patterns, including horizontal, vertical, 45° , and 
135°, as shown in Fig. 9. The best direction mode is determined 
at the encoder through rate-distortion optimization (RDO). Edge 
information used for classification is derived by calculating the 
difference between the center pixel and its two adjacent pixels, 
and then comparing the difference with a predefined threshold 
value to derive the final class index. The best threshold values 
are also selected from an array of predefined threshold values 
based on RDO. If the edge-based classifier is selected, the cat‑
egory index will be calculated as follows, given the chroma 
sample and the collocated luma samples.

classIndex = BandNum ×16 + qa × 4 + qb (13),

qi =
ì

í

î

ï
ïï
ï

ï
ïï
ï

0              di < -Th
1     -Th < di < 0
2        0 < di < Th
3                Th < di

(14),

BandNum = cur i × Ni ≫ BitDepth (15),
where i can be chosen from the two co-located samples based 
on RDO, di is the delta value between the center sample c 
and the neighboring sample a or b. qi is the quantized value 
of di. The position of neighboring sample a or b depends on 
the best 1-D directional pattern selected from the four 1-D di‑
rectional patterns. Besides, the offset value is constrained to 
the range of [−15, 15] and these offsets need to be transmit‑
ted to the decoder.

Unlike SAO, the edge-based classifier in CCSAO combines 
the luma edge and the band index of the sample at the corre‑
sponding collocated position to determine the final classifica‑
tion of a given sample. Additionally, CCSAO uses collocated 
luma samples to derive edge information for chroma samples, 
while SAO uses neighboring samples of the same component 
to derive edge information.

A similar contribution was introduced to AVS[63], where the 
enhanced cross-component sample adaptive offset (ECCSAO) 
method further improves encoding performance, which ex‑
tends the edge-based classification by using the edge informa‑
tion of collocated luma samples to classify chroma samples. 
Moreover, a four-layer quad-tree structure was proposed. The 
former method has been adopted by AVS.

In the ECM, the edge classifier was further optimized with 
more edge/band combinations, and the component used for 
edge classification can be selected from any of the three com‑
ponents[64–65]. The new edge-based classification scheme, a 
subset of the original one with fewer edge range divisions, was 
added. This allows for more flexible edge/band combinations 
to adapt to the local characteristics of video sequences. This 
contribution was adopted at the 31st JVET meeting. The sec‑
ond edge-based classifier is formulated as follows.

classIndex = BandNum ×4 + qa × 2 + qb (16),

qi = {0    di < Th
1    di ≥ T

(17).

3.2 Signaling Overhead Reduction
Similar to the APS design in H. 266/VVC, the inheritance 

scheme of CCSAO was also proposed[64–65]. There is a strong 
correlation between the CCSAO offsets and classifier param‑
eters of different pictures. To reduce signaling overhead, the 
offsets/parameters of some coded pictures can be stored at 
both the encoder and decoder, allowing them to be used by fu‑
ture pictures. This contribution has also been adopted.
4 Performance Evaluation

To improve the coding performance, both CCALF and 
CCSAO are integrated into ECM-12.0 seamlessly. A compara‑
tive analysis is conducted to evaluate the efficiency and effec‑

Figure 9. Illustration of the edge-based classification of CCSAO. Four 
graphs show four different directions, where the yellow samples are the lo⁃
cations used for calculating the class index at different directional patterns
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tiveness of the cross-component in-loop filter tools. With con‑
tinuous development, both CCSAO and CCALF have achieved 
remarkable performance gains. To evaluate the coding perfor‑
mance of CCALF and CCSAO, ECM-12.0 without CCALF and 
CCSAO are regarded as the anchor respectively[66].

As shown in Table 1, CCALF can achieve 2.49% and 
2.90% coding gains for Cb and Cr components under AI con‑
figuration. For RA configuration, 1.48% and 2.12% coding 
gains for Cb and Cr components can be achieved. In VTM-
10.0, CCALF can achieve 13.88% and 13.73% coding gains 
for Cb and Cr components under AI configuration, and 9.69% 
and 8.55% coding gains for Cb and Cr components under RA 
configuration. The decrease in gain may be caused by the 
newly proposed and optimized cross-component techniques in 
the prediction process. For CCSAO, as shown in Table 2, 
1.28% and 1.08% coding gains can be achieved for Cb and Cr 
components under AI configuration. For RA configuration, 

3.02% and 2.79% coding gains for Cb and Cr components can 
be achieved. It can be noted that the Y component coding per‑
formance of CCSAO on screen content sequences is signifi‑
cantly greater than that of natural sequences. This may be 
caused by the more obvious relationship between the texture 
and directional features of luma and chroma components in 
screen content videos.

Furthermore, we compare the subjective performance un‑
der different configurations. The subjective testing materials 
consist of the sequences mentioned in the common test condi‑
tions (CTC), with each sequence encoded using four QPs 
(QP = 22, 27, 32, and 37) under the RA configuration. Par‑
tial visual quality comparison results of reconstructed se‑
quences are shown in Fig. 10, where the first column dis‑
plays decoded images with both CCALF and CCSAO ap‑
plied, the second column shows decoded images without 
CCALF, and the last column presents reconstructed images 
without CCSAO. Red boxes highlight regions with significant 
subjective improvement. The lines on the clothes are clearer 
in Fig. 10a, whereas the color and lines in Figs. 10b and 10c 
appear slightly blurry. Compared with Fig. 10e, the boundar‑
ies of the clothes in Fig. 10d are more distinct. The lines in 
Fig. 10d are cleaner than those in Fig. 10f. Additionally, the 
wires in Fig. 10g are more coherent and clearer compared 
with Figs. 10h and 10j.

Building upon the demonstrated performance gains of 
CCALF and CCSAO, it’s important to consider the broader 
context of loop filter development. Loop filters are designed to 
correct artifacts introduced prior to loop filtering. Different 
types of loop filters address various artifacts such as blocking, 
ringing, blurring, and mosquito noise. In VVC, there are three 
primary loop filters: DBF, SAO, and ALF. Moreover, the 
CCALF is integrated with ALF to fully utilize the relationship 
between luma and chroma components. To further exploit the 
cross-component relationship, an additional cross-component 
loop filter, CCSAO, has been proposed during the ECM explo‑
ration. CCSAO operates in parallel with SAO. With the ad‑
vancement of ECM, the classifiers of CCSAO have become 
more refined and diverse[61–65]. Concurrently, the structure of 
CCALF has evolved to be more complex and comprehensive, 
incorporating a wider variety of samples into its filters[48–49]. 
Moreover, the shape and calculation methods of the filters are 
continuously optimized[40–43, 51, 56]. In addition, other in-loop 
filters based on image non-local similarity have been stud‑
ied[11–12, 15–16]. Traditional loop filters in existing video coding 
standards primarily focus on local correlations. While non-
local loop filters can offer performance gains, their high com‑
putational demands and hardware limitations make it challeng‑
ing to implement in video coding standards. Therefore, meth‑
ods to optimize non-local filters are proposed[13–14]. Overall, 
many new filtering tools are currently being explored. How‑
ever, further investigation into the relationship among differ‑
ent components remains a crucial direction for video coding.

Table 1. Experimental results of ECM-12.0 
(anchor: ECM-12.0 without CCALF)

Class
A1
A2
B
C
E

Average
D
F

TGM

AI
Y

0.09%
0.11%
0.12%
0.10%
0.15%
0.11%
0.02%
0.10%
0.12%

Cb
−1.21%
−2.78%
−3.35%
−1.67%
−3.12%
−2.49%
−0.42%
−1.77%
−1.19%

Cr
−3.32%
−3.23%
−3.22%
−1.91%
−2.96%
−2.90%
−0.18%
−1.07%
−0.72%

RA
Y

0.07%
0.13%
0.15%
0.03%

-

0.10%
-0.01%
0.15%
0.16%

Cb
−1.00%
−2.62%
−4.31%
−1.48%

-

−2.56%
−0.94%
−1.08%
−1.26%

Cr
−3.96%
−4.94%
−3.41%
−2.12%

-

−3.48%
−0.53%
−0.32%
−1.03%

AI: All Intra CCALF: cross-component adaptive loop filterECM: enhanced compression modelRA: random accessTGM: text and graphics with motion 
Table 2. Experimental results of ECM-12.0 

(anchor: ECM-12.0 without CCSAO)

Class
A1
A2
B
C
E

Average
D
F

TGM

AI
Y

−0.28%
0.01%
0.08%
0.11%
0.02%
0.01%
0.03%

-0.23%
-0.73%

Cb
−0.83%
−0.99%
−1.94%
−0.83%
−1.55%
−1.28%
−0.02%
−1.99%
−1.64%

Cr
−1.36%
−1.15%
−1.63%
−0.41%
−0.68%
−1.08%
−0.31%
−1.74%
−1.81%

RA
Y

−0.42%
−0.06%
−0.16%

0.00%
-

−0.15%
0.10%

−0.15%
−1.01%

Cb
−1.89%
−1.88%
−3.76%
−2.10%

-

−2.57%
−1.56%
−2.99%
−2.72%

Cr
−2.42%
−2.01%
−4.07%
−1.20%

-

−2.56%
−1.05%
−1.54%
−3.38%

AI: All Intra CCSAO: cross-component sample adaptive offsetECM: enhanced compression modelRA: random accessTGM: text and graphics with motion 
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5 Conclusions
Cross-component filters play a crucial role in future 

video coding standards. By leveraging the correlation be‑
tween luma and chroma components, cross-component fil‑
ters can achieve substantial coding performance improve‑
ment, leading to the adoption of various video coding stan‑
dards such as VVC and AVS3. Compression distortion can 
be effectively mitigated, thereby improving the accuracy of 
the reconstructed pixel. Nevertheless, the philosophy of cur‑
rent cross-component filters primarily emphasizes utilizing 
luma information to refine chroma pixels, which neglects 
the potential impact of chroma information on luma pixels 
and the correlation between two chroma components. In 
some scenarios, the chroma texture information and edge 
details can also contribute to correcting luma inaccuracies. 
Therefore, cross-component filters still have the potential to 
achieve substantial performance improvement by delving 
into the filtering manner and relationship among different 
channels.
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Abstract: A monolithic integration of the light emitting diode (LED) and photodetector (PD) based on III-nitride is designed and fabricated 
on a sapphire substrate to act as a transceiver. Due to the coexistence of light emission and detection phenomenon of the multi-quantum 
well (MQW) structure, the monolithic transceiver can effectively sense environmental changes. By integrating a deformable Polydimethylsi‑
loxane (PDMS) film on the transceiver chip, external force variation can be effectively detected. As the thickness of the PDMS reduces, the 
sensitivity significantly improves but at the expense of the measuring range. A sensitivity of 2.968 3% per newton for a range of 0–11 N is 
obtained when a 2 mm-thick PDMS film is packaged. The proposed monolithic GaN transceiver-based sensing system has the advantages 
of compactness, low cost, and simple assembly, providing an optional method for practical applications.
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1 Introduction

Miniaturized force sensors have attracted a lot of at‑
tention in structural health monitoring[1–2], human 
motion measurement[3], and rail transit monitor‑
ing[4]. To date, different kinds of force sensors have 

been reported such as piezoelectricity, capacitance, and op‑
tics[5–9]. Compared with electric-based methods, optical sen‑
sors have advantages in immunity to electromagnetic interfer‑
ence, fast response and high stability. In terms of optical 
means, using all-fiber structures as the sensing unit is the 
most popular strategy. A variety of fiber sensing structures 
have been developed for force sensing including Mach-
Zehnder interferometer[10–12], fiber Bragg grating[13–14], Fabry-
Perot interferometer[15–16], etc. Although the wavelength 
interrogation-based sensing mechanism has the merits of high 
sensitivity, fast response, and high stability, the system is usu‑
ally composed of a light source and a spectrometer, which is 
bulky and complicated to assemble. To miniaturize the system 
configuration, the integration of the light source, sensing unit 

and the detector is highly desired.
Recently, GaN and its alloy have been widely used in illu‑

mination[17], power electronics[18], display[19], and optical com‑
munications[20–22] because of their long lifespan, fast re‑
sponse and good optoelectronic properties. Thanks to the 
ability of light emission and detection of the multi-quantum 
well (MQW) diode, many GaN-based monolithic devices 
have been proposed and demonstrated for angle, humidity, 
pressure, and liquid concentration measurement[23–26]. To 
measure the pressure, microdome-patterned polydimethylsi‑
loxane (PDMS) film and sponges are normally used as the re‑
flection boundary to modulate the reflected light[27–29]. How‑
ever, the common problem facing these microstructure-based 
PDMS sensing units is that the preparation is relatively com‑
plex, and it is difficult to accurately control the shape and 
distribution of the microstructures.

In this work, a compact design of a GaN optoelectric chip 
with an Al reflection layer coated PDMS structure for force 
sensing is proposed. The chip-scale GaN device is composed 
of a light emitting diode (LED) and a photodetector (PD), 
which are monolithically integrated on a single wafer, acting 
as the light emitter and the detector, respectively. The Al-
coated PDMS sensing unit is packaged with a gap of 2 mm to 
the chip. When a force is applied to the surface of the PDMS 

This work was supported by the National Key Research and Development 
Program under Grant No. 2024YFE0204700, Natural Science Foundation 
of Jiangsu Province under Grant No. BG2024023, and Higher Education 
Discipline Innovation Project under Grant No. D17018.
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structure, the distance between the Al reflection film and the 
GaN chip changes, which in turn alters the amount of re‑
flected light from the Al film and, consequently, the light re‑
ceived by the PD changes. In this way, the impact force can 
be effectively detected.
2 GaN-Based Device Design and Fabrication

The schematic diagram of the force sensor is presented in 
Fig. 1a, which integrates a GaN device with an Al-coated 
PDMS film. The manufacturing process of the sensing device 
begins with the mold pouring, using 3D printing to fabricate 
the molds with controllable thicknesses. The PDMS gel is pre‑
pared by mixing the prepolymer and curing agent in a 10:1 ra‑
tio, followed by a vacuum processing to eliminate air bubbles. 
Then the mixture is poured into the printed molds and placed 
into a heating furnace for 40 min with a curing temperature of 
80 °C. After curing, the PDMS film is peeled off from the 
molds and then attached with a piece of Al reflection mem‑
brane in the center. The GaN device is fabricated on a 4-inch 
GaN wafer, which consists of c-plane sapphire substrates, 
3.5 μm thick undoped GaN, 2.2 μm thick Si-doped GaN (n-
GaN), 400 nm thick MQW and 0.25 μm thick Mg-doped 
GaN (p-GaN) from the bottom to the top. To fabricate the 
GaN device, a 230 nm thick transparent indium tin oxide 
(ITO) current spreading layer is deposited over p-GaN as a p-
contact layer. Two circular regions of a diameter of 210 μm 
are defined as the active regions of LED and PD by photoli‑
thography, and the unmasked areas are etched to the n-GaN 
surface by inductively coupled plasma (ICP) etching. Subse‑
quently, a deep etching to the sapphire substrate is then per‑
formed to realize the device isolation between LED and PD. A 

1 μm thick SiO2 is deposited to form the electrical isolation, 
and then a window is opened, followed by the deposition of Ni/
Al/Ti/Pt/Ti/Pt/Au/Ti/Pt/Ti metal stacks on the n-GaN and ITO 
surfaces. The physical encapsulation of the sensor is dis‑
played in Fig. 1b, which consists of an optoelectronic chip 
fixed on a printed circuit board (PCB) and a PDMS film. A ma‑
nometer is mounted on a linear moving stage and moves axi‑
ally towards the sensor. As the impact force increases, a larger 
PDMS deformation directs more light to the PD, thus establish‑
ing a relationship between force and photocurrent.
3 Results and Discussion

The electrical and optical characteristics of the device are 
measured. The current-voltage (I-V) characteristic curve of 
the LED is presented in Fig. 2a. The turn-on voltage of the 
device is about 2.2 V, and the inset graph shows the relation‑
ship between the output optical power of the LED and the in‑
jection current. As shown in Fig. 2b, without illumination, 
the produced photocurrent level is from 10−11 A to 10−9 A. As 
the current starts at 10 mA, the photocurrent level increases 
dramatically to the order of 10−6 A. Fig. 2c illustrates a linear 
relationship between the PD’s photocurrent response and 
the LED biased currents. To characterize the MQW diode’s 
transceiver capability, the electroluminescence (EL) spec‑
trum of the LED and the response spectrum (RS) of the photo‑
detector are tested, as shown in Fig. 2d. The overlapping re‑
gions near 480 nm confirm that the MQW diode can detect 
light emitted by another MQW diode of the same structure.

To verify the detection ability of the MQW diode, proximity 
sensing is performed to estimate the distance-dependent pho‑
tocurrent response. A piece of Al film is placed in front of the 

Figure 1. (a) Schematic diagram of the sensor; (b) microphotographs of the physical encapsulation: three kinds of packaged PDMS structures with a 
thickness of (c) 2.04 mm, (d) 3.59 mm and (e) 4.76 mm, respectively; (f) optical images of the device; (g) LED with biased current at 10 mA; 

(h) diagram of the experimental setup
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transceiver chip and moves continu‑
ously relative to it. Fig. 3a shows the 
photocurrent response of the on-chip PD 
when the distance between the Al film 
and the transceiver changes from 0 to 12 
mm with a step of 2 mm. From the given 
photocurrent response, it resembles a 
step-like response curve and exhibits a 
distinguished detection ability over a 
wide range, especially at the distance 
within 2.4 mm. These results suggest 
that the distance should be optimized 
around 2 mm to achieve a good sensitiv‑
ity. Subsequently, the photocurrent re‑
sponse at a spacing distance of 2 mm 
and a step of 200 μm is studied, as plot‑
ted in Fig. 3b, showing a significant change in photocurrent 
at each step.

In addition to the proximity measurements, a communica‑
tion performance test of the MQW diode is also carried out to 
verify the PD’s ability to detect transient signal change. The 

LED: light emitting diode
Figure 2. (a) I-V characteristic of the LED, where the inset shows the output power versus the driven current; (b) I-V curve of PD at different 

injection currents of LED; (c) Photocurrent response of PD under different currents of LED; (d) RS spectra of PD and the electroluminescence 
spectra of LED

Figure 3. Photocurrent response measured under Al foil moving from (a) 0 to 12 mm, and (b) 0 to 2 mm
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pseudo-random binary sequence (PRBS) data applied to the 
external light source are generated with a Keysight 33600A se‑
ries waveform generator. The measured voltages of the PD with 
a 1 MΩ oscilloscope under incident PRBS data of 100 bit/s, 
200 bit/s, 500 bit/s, and 1 000 bit/s are presented in Figs. 4a–
4d, respectively. The received response rate can easily reach 
1 000 bit/s without serious signal distortion. The measured 
fast response rate indicates that the PD can guarantee suffi‑
cient resolution for detecting the instantaneous impact signal.

The photocurrent responses of PDMS samples with varying 
thicknesses under different forces are tested, as illustrated in 
Fig. 5. The green, blue and red curves represent PDMS with 
thicknesses of 2.04 mm, 3.59 mm and 4.76 mm, defined as 
Samples #1, #2, and #3. For Sample #1, it can respond to  
impact forces in the range of 0–11 N, and the instantaneous 
photocurrent responses at 3.8 N, 7.3 N and 11 N are re‑
corded and plotted. From the given response curves, a better 
signal-to-noise ratio (SNR) of the photocurrent response is 
observed at a larger impact force. At a small force of 3.8 N, a 

jitter of the baseline is observed, which is caused by the lim‑
ited PDMS deformation, leading to a small varying photocur‑
rent and a small SNR. When the external force increases to 
7.3 N and 11 N, as shown in Figs. 5b and 5c, a smooth photo‑
current baseline appears and a better photocurrent response 
can be seen. Similarly, for Sample #2, as depicted in Figs. 
5d, 5e, and 5f, the detectable impact force is larger than that 
of Sample #1, ranging from 12.5 N to 20.5 N, as the sample 
thickness increases. Sample #3 has a maximum detection 
ability of 35 N. However, the detection sensitivity is limited 
due to the relatively thick PDMS.

The stability test for Sample #1 under an 11 N impact force 
is shown in Fig. 6a. It shows a consistent photocurrent change 
of approximately 250 nA over 2 000 s, with the photocurrent 
profile remaining stable throughout the cycle. Fig. 6b depicts 
the relative photocurrent response to the impact force and the 
corresponding data for these three samples. The relative photo‑
current is defined as ΔI/I, where I is the initial photocurrent 
and ΔI is the varying photocurrent caused by the impact. 

Figure 4. Measured voltages of the PD under incident PRBS data rates of (a) 100 bit/s, (b) 200 bit/s, (c) 500 bit/s, and (d) 1 000 bit/s 
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From the data fitting, Sample #1, the thinnest one, has the 
highest sensitivity with a slope of 2.968 3% per newton. 

Sample 2 exhibits a medium sensitiv‑
ity with a slope of 2.576 3 per newton, 
while Sample 3, the thickest one, has 
the lowest sensitivity with a slope of 
1.488 3 per newton. Despite the differ‑
ence in sample thicknesses, the dis‑
tance between the Al reflector and the 
chip is set to the same spacing, result‑
ing in the maximum relative photocur‑
rents for all three samples keeping 
around 20%. The above results reveal 
that the detection range for impact 
force can be arbitrarily tailored by se‑
lecting PDMS membranes of different 

thicknesses. In addition, as the thickness of the film in‑
creases, the ability to detect the magnitude of the force in‑

Figure 5. Photocurrent response for Sample #1 under impact forces of (a) 3.8 N, (b) 7.3 N, and (c) 11 N; for Sample #2 under impact forces of 
(d) 12.5 N, (e) 17 N, and (f) 20.5 N; for Sample #3 under impact forces of (g) 23 N, (h) 32 N, and (i) 35 N

Figure 6. (a) Long-time photocurrent monitor of the sensor with Sample #1; (b) relative 
photocurrent response of the sensors as functions of impact forces
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creases, but the sensitivity decreases. The performance com‑
parisons with other force sensors are summarized in Table 1. 
The detection range and sensitivity of our current method are 
comparable to those of piezoelectric and capacitive-based sen‑
sors. Notably, the monolithic integration design of our pro‑
posed force sensor not only reduces its size to the millimeter 
scale but also offers advantages in large-scale production and 
high-density deployment.
4 Conclusions

In summary, a miniature GaN-based impact force sensor is 
proposed and demonstrated. With a piece of AI attached 
PDMS film as the force-sensitive unit, deformation of the 
PDMS induced by the external impact is transformed into the 
photocurrent changes produced by the transceiver chip. Three 
PDMS films with different thicknesses are packaged with the 
transceiver chip to construct impact sensors, and their sensing 
performances are thoroughly studied. The thickness of PDMS 
greatly influences the force sensitivity and measurable range. 
A thin PDMS film is ideal for a low-force and high-sensitivity 
testing requirement, while a thicker one is better suited for a 
larger force measurement.
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1 Introduction

The 6G mobile communication system[1–4] will introduce 
new application scenarios including immersive cloud ex‑
tended reality (XR), holographic communication, sensory 
interconnection, etc. As a result, extremely high trans‑

mission metrics have been proposed, including Terabit per sec‑
ond level throughput, microsecond level time delay, 107 per 
square kilometer connection density, and 99.999 9% block error 
rates (BLERs). The increased number of devices in the network 
presents a series of challenges for a smaller coverage area of a 
single base station operated at higher frequency bands. Interfer‑
ence at cell boundaries and frequent switching can result in poor 
service quality and high deployment costs. Fortunately, cell-free 
architecture can serve as a potential solution to these problems.

Fig. 1 shows a typical cell-free architecture[5], which consists 
of a central processing unit (CPU) and a large number of distrib‑
uted access points (APs) that serve a small amount of user equip‑
ment (UE). Each AP is connected to the CPU through a fron‑
thaul link and sends the data received from the users in the up‑
link to the CPU. The CPU transmits the downlink data and 

power control parameters to the APs. Due to the short distance 
between AP and UE, the system can achieve high spatial macro-
diversity gain and reduce the path loss.

In the early studies[6–7] on cell-free networks, the concept of 

This work was supported in part by National Natural Science Foundation 
of China under Grant No. 62171474.

AP: access pointCPU: central processing unit UE: user equipment

Figure 1. Architecture of cell-free multiple-input multiple-output
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max-min fairness was emphasized, and it was assumed that all 
APs would provide almost uniform high-quality services to all 
UE, which would inevitably increase the CPU signal processing 
complexity and fronthaul overhead. To address this issue, the au‑
thors of Ref. [8] proposed a user-centric virtual cell approach to 
cell-free massive multiple-input multiple-output (MIMO), where 
each user is served by a limited number of APs, but using a 
complex approach. In a user-centric cell-free system, how to as‑
sign APs to each user, that is AP clustering, and simultaneously 
perform the beamforming task is the key to improving network 
performance. A new distributed and scalable algorithm[9] for a 
user-centric approach in cell-free large-scale MIMO systems is 
proposed, which jointly addresses initial access, pilot assign‑
ment, cooperation cluster formation, precoding, and combining 
issues. Better results were obtained compared with regularized 
zero-forcing (RZF), but the issues were individually considered. 
The authors of Ref. [10] proposed an AP selection algorithm that 
combines initial access and pilot selection with a complex algo‑
rithm. In Ref. [11], a new framework was proposed for the struc‑
tured massive access in cell-free massive MIMO systems, which 
comprises one initial access algorithm, a partial large-scale fad‑
ing decoding (P-LSFD) strategy, two pilot assignment schemes, 
and one fractional power control policy. New closed-form spec‑
tral efficiency (SE) expressions with maximum ratio (MR) were 
also obtained. The authors of Ref. [12] proposed a joint power al‑
location and AP selection algorithm, which selected AP through 
continuous convex optimization. The simulation results showed 
that the algorithm had significant energy savings, but at the cost 
of high computational complexity.

Recently, graph neural networks (GNNs) have also been ap‑
plied in wireless networks[13]. The authors of Ref. [14] proposed 
an AP selection algorithm based on GNN, which can predict the 
connection between UE and APs. However, when the number of 
APs is large, the prediction accuracy decreases. Ref. [15] con‑
sidered the joint user scheduling and beamforming optimization 
algorithm based on the GNN algorithm, but it was limited to the 
downlink system.

Under the premise of considering the maximum linked APs 
for a single user device, this paper studies and solves the prob‑
lem of joint optimization of cell-free uplink AP clustering and 
combining based on historical data and GNN. The main contri‑
butions are summarized as follows:

• Aiming to maximize the system rate while considering the 
maximum active AP number for a user device, this paper con‑
structs a joint optimization model of cell-free uplink AP cluster‑
ing and combining;

• An intelligent optimization algorithm based on GNN, in‑
cluding problem transformation, two loops of iterative process, 
etc., is designed to solve the above joint optimization problems;

• Experiment results show that the proposed algorithm 
has competitive advantages in performance and computa‑
tional efficiency compared with the traditional clustering 
optimization ideas.

2 System Model
We consider an uplink cell-free system with B APs and K us‑

ers, where each AP is equipped with Nt antennas, while each 
user has a single antenna. The K users are randomly distributed, 
and the channel coefficient vector between the b-th AP and the 
k-th user is denoted as 
hb,k ∈ CNt*1, b ∈ {1,⋯, B } , k ∈ {1,⋯, K }. wb,k ∈ CNt*1 is the 
corresponding combining beam vector. The transmitting power 
of the k-th user is pk∈ C1*1. The stacked combining beam vector 
and channel coefficient vector of the k-th user could be respec‑
tively denoted as wk = [wT1, k,⋯, wT

B, k ]
T∈ CBNt*1,  wk = 1 and 

hk = [hT1,k,⋯, hT
B,k ]

T∈ CBNt*1. Assuming that xl ∈ C1*1 is the up‑
link transmitting signal of the l-th user, the received signal 
could be denoted as follows.
y = ∑

l = 1

K

plh l xl + n (1),

where n ∈ CBNt × 1 is the complex additive white Gaussian 
noise with zero mean value and variance σ2. For convenience, 
let h̄k = hk /σ (channel estimation is another topic in wireless 
networks[19]).

As shown in Fig. 2, several AP clusters are formed in an up‑
link cell-free network, in which each user is served by various 
APs, and one AP may link various users. Here, an auxiliary vari‑
able ub,k ∈ { 0,1 } is introduced to represent the link status be‑
tween the b-th AP and the k-th user. ub,k = 1 means that the b-th 
AP serves the k-th user, otherwise not. Then, we have

x̄k = w̄H
k y (2),

where

Figure 2. Joint AP clustering and beamforming for uplink cell-free networks

AP: access pointCPU: central processing unit UE: user equipment

Cluster User Uplink from UE to AP

AP Signal from AP to CPU

CPU
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w̄k = Qkwk (3),

Qk =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úu1,k INt × Nt
⋯ 0

⋮ ⋱ ⋮
0 ⋯ uB,k INt × Nt

(4).

Thus, the signal-to-noise-ratio (SINR) of the k-th user is for‑
mulated as follows:

SINRk = ℜk

Ik + 1 (5),

where ℜk = pk∑
b = 1

B

ub,k| wH
b,k h̄b,k |

2 and Ik =
∑
b = 1

B

ub,k ∑
l = 1,l ≠ k

K

pl || wH
b,k h̄b,l

2.
In this work, the joint optimization problem of uplink cluster‑

ing and combining design is considered, which is formulated as：
P1: max

ub,k,wk
∑

k ∈ {1,2,⋯,K }
log ( )1 + SINRk

s.t. C1: ∑
b = {1,⋯,B }

ub,k ≤ N,∀k ∈ {1,⋯,K }
C2:  wk 2 = 1,∀k ∈ {1,⋯,K }
C3: ub,k ∈ { 0,1 } ,∀b ∈ {1,⋯, B } , k ∈ {1,⋯,K }

(6).

In the above problem, constraint C1 assumes that the maxi‑
mum number of linked APs for each user is N, where N ≤ B. 
Constraint C3 specifies that there are only two states between 
the user and each AP, i.e., linked and non-linked. Constraint C2 
ensures that the beam vectors are normalized. It is noted that P1 
is a non-convex integer programming problem, which is difficult 
to solve directly. Inspired by the experimental result that GNN 
outperforms convolutional neural networks in handling wireless 
network topology information in Ref. [15], we adopt GNN to ac‑
complish the above task in the following section.
3 Optimization Method

3.1 Problem Transformation
To simplify the integer programming problem, constraint C3 

is first equivalently transformed into the following form:
C4: 0 ≤ ub,k ≤ 1,∀b ∈ {1,⋯,B } , k ∈ {1,⋯,K } (7),

C5: ∑
b ∈ {1,⋯,B } ,k ∈ {1,⋯,K }( )ub,k - ub,k 2 ≤ 0 (8).

Introducing the nonconvex constraint C5 into the objective 
function of P1 using a Lagrange multiplier μ, the original prob‑
lem P1 is transformed into the following max-min problem P2.

P2: max
μ

min
ub,k,wk

- ∑
k ∈ {1,2,⋯,K }

log (1 + SINRk ) +
μχ≥

C ∑
b ∈ {1,⋯,B } ,k ∈ {1,⋯,K }( )ub,k - ub,k 2

s.t. C1,C2,C4
(9),

where χ≥
C (a ) = max (a,0 ) is a penalty function to measure the 

violation degree of constraint C5, which adopts an element-wise 
operation form. In Problem P2, constraints C1 and C4 are con‑
vex, and objective function is nonconvex with a complex form. 
To solve this problem, a two-loop iterative approach is designed. 
In the outer loop, ub,k and wk are fixed, and we update μ using 
the formula:

μ = μ + εu χ
≥
C ∑

b ∈ {1,⋯,B } ,k ∈ {1,⋯,K }( )ub,k - ub,k 2 (10),

where εu represents the step size. In the inner loop, μ is fixed, 
and we aim at obtaining ub,k and wk by solving the following 
problem.

P3: Ψ ≜ min
ub,k,wk ( - ∑

k ∈ {1,2,⋯,K }
log (1 + SINRk ) +

μχ≥
C ∑

b ∈ {1,⋯,B } ,k ∈ {1,⋯,K }( )ub,k - ub,k 2 )
s.t. C1,C2,C4

(11),

To solve Problem P3, wk could be estimated with the mini‑
mum mean square error (MMSE) approach as follows.

w*
k = ( )I + ∑

l ∈ K
pl h͂̄ l h͂̄ l

H

-1
h͂̄k









 







( )I + ∑

l ∈ K
pl h͂̄ l h͂̄ l

H

-1
h͂̄k

(12),

where h͂̄k = Qk h̄k. Then, given wk, we solve Problem P2 using 
GNN to obtain ub,k.
3.2 Intelligent Optimization Framework

In this section, an intelligent optimization framework using 
GNN is proposed to solve Problem P2. As shown in Fig. 3, the 
framework consists of inner and outer loops. In the outer loop, 
ub,k and wk are fixed, and we update μ using Eq. (10). In the in‑
ner loop, ub,k is first fixed and we obtain wk using Eq. (12). Then, 
wk is fixed and a GNN based approach is designed to obtain ub,k in the inner loop. Four parts comprise the inner loop. Specifi‑
cally, the graph representation layer builds a graph that can be 
applied for subsequent processing; the graph convolution neural 
network (GCN) layer extracts features from the constructed 
graph, and outputs optimal ub,k; the projection layer projects the 
output results into the feasible region to meet constraints C1 and 
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C4; the loss function layer calculates the loss of the network. 
These parts are discussed in detail in the following sections.
3.3 Knowledge Graph Representation

The foundation for using GNNs in wireless communication 
networks is to model the network as a graph, where nodes and 
edges are assigned feature information. This graph can then 
be processed by GCN[16–17]. The key step in constructing a 
knowledge graph representation is to define the triples in wire‑
less networks, which consist of head entities, tail entities, and 
their relationships.

The knowledge graph can be denoted as G = (V,E ), where 
V is the set of nodes and E is the set of edges. In the paper, 
the communication links between APs and users are re‑
garded as nodes, while the interference links between users 
are regarded as edges. The features of nodes and edges are 
characterized by channel vectors and other state information, 
as shown in Fig. 4. Specifically, for the i-th node vi ∈ V, its 
node feature is defined as x i =
(| h̄H

i,1 h̄ i,1 | ,⋯, | h̄H
i,B h̄ i,B | ) ∈ CB*1, and 

the edge feature of e ij = ( vi,vj ) ∈ E is 
defined as e i,j = | h̄H

i h̄ j | ∈ C1*1, j ∈ N i, 
where ( vi,vj ) ∈ E means the edges of 
nodes vi and vj , and N i is the set of ad‑
jacent nodes of vi. From the definition, 
we can see that a node represents the 
communication link between a user 
and an AP, while an edge represents 
the interference link between users. In 
the inner iteration process, we initial‑
ize the constructed graph G and the ob‑
jective solution ub,k, and then use them 
as the input to GNN.

3.4 Structure of GCN
Fig. 5 shows the structure of GCN, which comprises mes‑

sage generation, message aggregation, and node updating. In‑
spired by Ref. [18], we update the rule of the i-th node in 
layer l as follows.
g ( l )

i = G ({M ( l )
θ ( β ( l - 1)

j , x j, e j,i) , j ∈ N i})
β ( l )

i = T ( l )
θ ( β ( l - 1)

i , x i, Fnorm(x i, g ( l )
i ) ) , i ∈ V

(13).

In Eq. (13), M ( l )
θ (⋅) is a message generation function, T ( l )

θ  is an 
updating function, and they are realized using different deep 
neural networks. G (⋅) is a message aggregation function and it is 
applied to aggregate information of nodes. 
β ( l )

i ≜ [u :,i, pi ] ∈ RB + 1 represents the input vector of the i-th 
node in the l-th layer GCN. Fnorm (⋅) is applied to normalized g ( l )

i  
with the following form:

Fnorm(x i, g ( l )
i ) =  x i 2

g ( l )
i

 g ( l )
i 2

, i ∈ V. (14).

Figure 3. Intelligent iterative optimization framework

Figure 4. Knowledge graph representation of uplink transmission

UE: user equipment

Figure 5. Structure of the proposed graph neural network
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3.5 Projection Layer
GNN could obtain ub,k from optimizing P3 in the above sub‑

sections, without considering the convex constraint C1 or C4. In 
this section, an individual projection layer is considered for post-
processing ub,k to satisfy constraints C1 and C4. A projection op‑
erator is designed as shown in Eq. (15). It can be easily found 
that ub,k takes values in the interval [0, 1] (Constraint C4), and 
its summation value is less than N (Constraint C1).

Ω1 ≜
ì

í

î

ï
ïï
ï
ï
ï

ï

ïï
ï
ï

ï
ub,k (*) = N

maxìí
î

ü
ý
þ

∑
b = {1,⋯,B }

ub,k',N
ub,k'

ü

ý

þ

ï

ï
ïï
ï

ï

ï

ïï
ï
ï

ï
(15),

where ub,k' = min (max { ub,k,0 } ,1).
4 Experiment

4.1 Parameter Settings
This section reports simulated experimental results using the 

proposed algorithm. In the experiment, users are randomly dis‑
tributed and they share the same noise variance, namely, σ2

k =
σ2,∀k ∈ {1,⋯,K }. The radius of the cell is 300 m, and the 
minimum distance between the user and AP is 200 m. The 
signal-to-noise ratio (SNR) of the AP is designed as SNR =
10log ( P

σ2 ) dB. Updating the step size of εu is 1 × 10-5. The 
maximum iteration epoch is 200, and the iteration stopping 
threshold is 1 × 10-3. An Adam optimizer is adopted, and the 
learning rate is 1 × 10-4. The Monte Carlo method is used and 
the average sum rate is the final value. Besides the proposed al‑
gorithm, two approaches are also applied as the baselines. In 
Baseline 1, for each user, N APs with the optimal channels will 
be chosen as a cluster. In Baseline 2, all APs will be applied to 
serve all users.
4.2 Experiment Results

1) Experiment 1: small-scale experiment results
In the small-scale experiment, experiment simulation param‑

eters are shown in Table 1.
In Tables 2 and 3, Baseline 2 applies all seven APs to serve 

users, thus obtaining the optimal results. In contrast, Baseline 1 
selects the four APs with the best channel condition for one 
user, resulting in a performance loss of less than 2% while re‑
ducing linked APs. Moreover, fewer APs are linked using the 
proposed algorithm, with a performance loss of less than 7% 
compared with Baseline 1.

2) Experiment 2: large-scale experiment results
In the large-scale experiment, AP number B is 21, user num‑

ber K is 10, and the maximum linked AP number N is 2. Other 
simulation parameters are the same as in Table 1.

In the large-scale experiment, all 21 APs are applied to serve 

10 users for Baseline 2, which brings the best sum rate perfor‑
mance. Baseline 1 chooses 2 APs for each user device, and it ob‑
tains about 5% performance loss when SNR is 20 dB, but the 
performance loss increases if SNR is 0 dB. The proposed 
method tends to apply fewer APs to serve UE, but at the cost of 
about 5% performance loss compared with Baseline 1.
4.3 Computational Complexity

In Tables 4 and 5, the average sum rate and average linked 
access point are respectively listed. The computational com‑
plexity of the proposed algorithm, and Baselines 1 and 2 are 
shown in Table 6. The results show that the proposed method 
has competitive computational complexity compared with 
Baselines 1 and 2. In small-scale networks, the computational 
complexity of the proposed method is about 80% and 72% of 
Baselines 1 and 2, respectively. The advantage increases in 
large-scale networks, and the ratios are about 52% and 42%.
5 Conclusions

This paper proposes an intelligent optimization algorithm 
based on GNNs to solve the joint optimization problem of AP 
clustering and beamforming in uplink massive cell-free net‑
works. We first construct an optimization model with the goal of 
maximizing the system’s sum rate, and solve it under the con‑

Table 1. Default experiment simulation parameters
Default System Parameter

AP number, B
Antenna number of AP, Nt

User number, K
Antenna number of user

SNR/dB
Transmitting power of UE, pk

Training number
Testing number

Maximum link AP number of UE, N
Noise variance, σ

Value
7
4
3
1

0, 10, 20
1 W

20 000
2 000

4
1

AP: access point     SNR: signal-to-noise ratio     UE: use equipment
Table 2. Average sum rate in Experiment 1

N = 4
SNR/dB

0
10
20

Proposed/
(bit·s−1·Hz−1)

4.279 9
20.344 5
40.108 5

Baseline 1/
(bit·s−1·Hz−1)

4.585 3
21.088 6
41.182 2

Baseline 2/
(bit·s−1·Hz−1)

4.613 7
21.398 4
41.256 3

SNR: signal-to-noise ratio
Table 3. Average linked access point number in Experiment 1

N = 4
SNR/dB

0
10
20

Proposed
3.039
3.055
3.045

Baseline 1
4
4
4

Baseline 2
7
7
7

SNR: signal-to-noise ratio
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straint of considering the maximum number of APs linked with a 
single user. This paper transforms the wireless network resource 
optimization problem into a graph optimization problem  and le‑
verages GNN to solve it. Simulation experiments show that the 
proposed algorithm allocates fewer APs to serve a single user 
than traditional methods at the cost of a small performance loss.
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Table 4. Average sum rate in Experiment 2

N = 2
SNR/dB

0
10
20

Proposed/
(bit·s−1·Hz−1)

5.065 7
40.438 0
99.548 2

Baseline 1/
(bit·s−1·Hz−1)

5.535 6
42.832 3

105.068 7

Baseline 2/
(bit·s−1·Hz−1)

7.116 7
47.354 0

110.738 1
SNR: signal-to-noise ratio

Table 5. Average linked access point number in Experiment 2

N = 2
SNR/dB

0
10
20

Proposed
1.428
1.241
1.225

Baseline 1
2
2
2

Baseline 2
21
21
21

SNR: signal-to-noise ratio
Table 6. Comparison of computational complexity 

Algorithms
Computational complexity

Experiments
Experiment 1
Experiment 2

Proposed
76 512

1 249 600

Baseline 1
95 296

2 404 736

Baseline 2
106 624

2 935 296
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Abstract: To meet the demands of high-speed communication under strong electromagnetic interference, an all-light network (ALN) based on 
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solar-blind deep ultraviolet communication, and long-distance laser communication systems. These links are interconnected via Ethernet 
switches with the Transmission Control Protocol (TCP). Any ALN node supports both wired and wireless device access. The data transmission 
performance between network nodes was tested, with a maximum transmission delay of 73.3 ms, a maximum packet loss rate of 6.1%, and a 
maximum jitter of 15 ms. This comprehensive all-light network with all-scenario coverage lays the foundation for the future development of 
network technologies and the digital economy.
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1 Introduction

In the contemporary field of communications, optical com‑
munication, as an emerging and rapidly advancing tech‑
nology, is increasingly becoming an integral component of 
future communication networks[1–8]. Wireless optical com‑

munication offers high-speed and low-latency data transmis‑
sion and unique advantages in complex and denied environ‑
ments as a complementary communication method.

An all-light network (ALN) represents the culmination of 
optical communication technologies. It integrates white light 
illumination communication (WLC), underwater blue light 
communication (BLC), solar-blind deep ultraviolet communi‑
cation (DUVC), and long-distance laser communication (LC). 
This work focuses on the ALN and aims to develop a highly ef‑
ficient optical communication network with multispectral ca‑
pabilities and comprehensive scene coverage.

Compared to radio frequency (RF) networks, the ALN dem‑
onstrates significant performance advantages. Firstly, it offers 
excellent anti-interference capability, as optical signals are 
unaffected by electromagnetic environments[9]. With high di‑
rectionality, interference resistance, and enhanced security, 
the ALN is particularly suitable for complex or constrained en‑
vironments. Secondly, its bandwidth is far superior to that of 
RF networks, enabling large-capacity data transmission to 
meet the demands of future ultra-high-speed networks. Lastly, 
its low latency characteristics make it exceptionally well-
suited for scenarios requiring high real-time performance. Le‑
veraging these features, the ALN not only extends the applica‑
tion scope of communication networks but also provides a sub‑
stantial performance boost to traditional communication meth‑
ods. It can be employed in disaster emergency communica‑
tions, deep-sea and space communications, and industrial au‑
tomation, among other scenarios.

As shown in Fig. 1, there are four main practical applica‑
tion scenarios for full-spectrum optical communication: illumi‑
nation communication, underwater communication, solar-
blind communication, and long-distance communication. We 
develop subsystems for each scenario using light-emitting di‑
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China under Grant No. U21A20495, Research and Development Program 
of China under Grant No. 2022YFE0112000, and Higher Education Disci⁃
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odes (LEDs) or laser diodes (LDs) operating across four dis‑
tinct spectral bands. WLC provides efficient data transmission 
and serves a dual role in illumination. For instance, WLC be‑
tween buoys and lighthouses enables simultaneous information 
transmission. Blue and green light exhibit minimal loss in pure 
seawater, allowing for long-range data transmission[10–13]. BLC 
facilitates reliable data transfer in underwater environments, 
enabling control of uncrewed underwater vehicles or establish‑
ing communication between underwater sensors and buoys. 
Due to the ozone layer’s absorption, background noise in the 
deep ultraviolet spectrum is extremely low at the Earth’s sur‑
face, making DUVC suitable for environments with strong 
light or electromagnetic interference[14]. Meanwhile, long-
distance LC, with its high-power directed beams, provides ro‑
bust support for long-range, high-bandwidth communication, 
such as point-to-point communication in space[15]. By using 
Ethernet switches (ESes) combined with Wireless Fidelity 
(Wi-Fi) technology or optical fiber technology to connect vari‑
ous optical communication links, the ALN enables informa‑
tion sharing among different network nodes.
2 Experiments and Discussion

In our experiments, we characterized the white LED’s elec‑
troluminescence (EL) spectra for WLC using a Keithley 
2636B SourceMeter and an Ocean Optics HR4000 spectrom‑
eter. A multimode optical fiber with a diameter of 200 μm 
was used to collect the light emitted by the white LED un‑
der different injection currents and transmit it to the 
HR4000 spectrometer. The results are shown in Fig. 2. The 
EL spectrum of the white LED exhibits a distinct dual-peak 
profile, with the blue emission peak and excitation peak ap‑
pearing from left to right. As the injection current increases 
from 40 mA to 120 mA, the blue emission peak shifts from 
449.1 nm to 448 nm, corresponding to a blue shift of 1.1 nm. 

Meanwhile, the excitation peak remains stable at 566 nm.
We utilized a Keysight E5080A network analyzer to pulse 

the white LED using an alternating current (AC) signal, gener‑
ating a bias voltage through a bias-tee module. The modulated 
light was captured by a Hamamatsu C12702-11 photodiode 
module and fed back to an Agilent Technologies PNA-
LN5203C network analyzer for 3 dB processing. The results 
are shown in Fig. 3a. When the bias voltage increases from 
10.5 V to 12 V, the 3 dB bandwidth expands from 0.55 MHz to 
1.13 MHz. However, at a bias voltage of 12.5 V, the bandwidth 
decreases to 1.02 MHz, likely due to thermal effects in the 
white LED during actual operation. Therefore, we selected a 
bias voltage of 12 V to achieve a higher communication rate. 
This method was also applied to LEDs or LDs operating in 
other spectral bands. As shown in Fig. 3b, the 3 dB bandwidth 
of the blue LED reaches a maximum of 4.68 MHz under a driv‑
ing voltage of 12 V. Fig. 3c presents the 3 dB performance 
characterization of the green LD device, which achieves a 3 dB 
bandwidth of 20.2 MHz at a bias voltage of 6 V, indicating that 
the green LD can achieve a higher modulation rate. As shown 
in Fig. 3d, the 3 dB bandwidth of the deep-ultraviolet (DUV) 
LED reaches 25.2 MHz at an operating voltage of 5.6 V. This 
indicates that the DUV LED theoretically achieves the highest 
modulation rate among the four types of devices.

We constructed an all-light communication network span‑
ning space, air, and ocean using four different spectral bands: 
278 nm, 450 nm, 520 nm, and 566 nm, as shown in Fig. 4. 
The WLC system is suitable for indoor and outdoor environ‑
ments. The underwater BLC system addresses the challenges 
of underwater communication. The DUVC system ensures 
stable communication under strong illumination conditions, 
while the long-distance LC system meets the requirements for 
long-range, high-bandwidth communications.

The testing results showed that WLC achieved a communica‑
tion rate of at least 2 Mbit/s over a 200 m ground communica‑

Figure 1. All-light network (ALN) applications spanning air, space, 
land and sea

BLC: blue light communication DUVC: deep ultraviolet communication LC: laser communication WLC: white light illumination communication
Figure 2. Electroluminescence spectra variation of white LED in white 

light illumination communication with increasing injection currents
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tion distance. Underwater conditions featur‑
ing an attenuation coefficient of 0.4 dB/m, 
BLC supported full-duplex optical communi‑
cation over distances of at least 50 m, with a 
communication rate of at least 4 Mbit/s. 
Both DUVC and LC achieved a communica‑
tion rate of 10 Mbit/s, with tested distances 
of 10 m and 120 m, respectively.

By integrating multiple technologies, the 
ALN system enables flexible configurations 
and robust adaptability across diverse environ‑
ments. Whether encountering extreme weather 
conditions, complex terrains, or specialized ap‑
plication scenarios, the ALN system delivers 
stable and reliable communication services.

ALN comprises four full-duplex wireless 
optical communication links connected in 
series through five nodes. These nodes are 
formed by ESes, enabling communication 
systems operating in different spectral bands 

Figure 3. (a) 3 dB bandwidth variation of the white LED with increasing offset voltages; (b) 3 dB bandwidth variation of the blue LED with increasing 
offset voltages; (c) 3 dB bandwidth variation of the green LD with increasing offset voltages; (d) 3 dB bandwidth variation of the deep-ultraviolet LED 

with increasing offset voltages

Figure 4. Schematic of the proposed all-light network (ALN) framework
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to establish networks with optical fibers, even in denied envi‑
ronments with heavy electromagnetic interference. Devices 
such as sensors, cameras, and PCs can access the ALN at any 
node through ESes. Additionally, Wi-Fi modules can be inte‑
grated into the nodes to provide wireless data access services 
for PCs and mobile devices, further expanding the ALN’s con‑
nectivity options. The ESes can be expanded to accommodate 
multiple devices at the same node. To standardize transmis‑
sion, all nodes in the wireless optical communication link use 
Registered Jack-45 (RJ45) network interfaces.

All four optical communication links operate in the full-
duplex mode. The demonstration of the signal flow is shown 
in Fig. 5. When the underwater network camera captures 
video and sends it to Node 1 (N1), the video signal is encoded 
into a blue light signal by the BLC transmitter. At the BLC re‑
ceiver, the light is filtered through a lens using a narrowband 

filter with a central wavelength of 450 nm, a half-bandwidth 
of 10 nm, and 45% transmittance, isolating the communica‑
tion signal from ambient light. Each receiving end of the opti‑
cal communication systems in different spectral bands is 
equipped with a corresponding narrowband filter. The optical 
signal is converted into an electrical signal by an avalanche 
photodiode (APD), then decoded by the BLC receiver and 
transmitted to N2. Subsequently, the signal is transmitted via 
the WLC link using illumination communication with a central 
wavelength of 566 nm. The signal at N3 is then transmitted to 
the next node via DUVC. Finally, the LC system converts the 
signal from N4 into a laser signal, and after transmission 
through the laser link, the original video stream is restored.

The full-duplex optical communication system comprises a 
transmitter (TX) and a receiver (RX). The schematic diagram 
of the transmission and reception principles is shown in Fig. 6. 
In the transmission processing chain, a network camera or 
other sensor using the Transmission Control Protocol (TCP) is 
connected to the ES via an RJ45 interface. The video stream 
is then progressively converted into an optical signal. The core 
components of the TX are LEDs or LDs operating in different 
spectral bands. The direct current (DC) signal is supplied by 
an external LM2587 module, while the RF signal is synchro‑
nously generated by a transistor-transistor logic (TTL) signal 
using on-off keying (OOK) modulation within the field-
programmable gate array (FPGA) main processing unit (Xilinx 
Spartan 6). The TTL signal drives the metal-oxide-
semiconductor field-effect transistor (MOSFET) or bias tee via 
the PMD2001D driver. Finally, the modulated optical signal is 
emitted by the LED or LD.

The RX utilizes a high-sensitivity APD as the core compo‑
nent in the reception processing chain. The APD receives the 
optical signal under high voltage and converts it into a photo‑
current. After amplification and filtering, the signal is re‑Figure 5. Demonstration of signal flow in all-light network (ALN)

BLC: blue light communication
DUVC: deep ultraviolet communication 
LC: laser communication 
WLC: white light illumination communication

Figure 6. Transmission and reception principles of full-duplex optical communication systems
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turned to the FPGA for decoding and de‑
modulation. Subsequently, the processed 
signal is displayed on an external monitor 
through an RJ45 interface or transmitted to 
a Wi-Fi module for sharing.

As shown in Fig. 7a, a 20 Mbit/s pseudo-
random binary sequence (PRBS) signal gen‑
erated by an arbitrary waveform generator 
(AWG) replaces the FPGA signal at the TX 
to access the LC. After the signal decision 
at the RX, the output signal matches the 
original transmitted signal. The amplified 
analog signal from the first stage of the tran‑
simpedance amplifier (TIA) is captured, and 
the oscilloscope (Keysight, DSOS604A) gen‑
erates the corresponding eye diagram, as depicted in Fig. 7b. 
This clear and open eye diagram confirms the accuracy of the 
received signal in Fig. 7a. The time and amplitude scales of 
the eye diagram are 20 ns and 500 mV, respectively, as shown 
in Fig. 7b. This method can also be applied to assess the com‑
munication performance of other optical communication sys‑
tem links.

In the WLC system, interference from ambient light is a pri‑
mary challenge. To address this, we designed a bandpass filter 
tailored to the EL spectral peak of the white light LED lamp 
beads. This effectively suppresses background light interfer‑
ence, ensuring stable signal transmission.

In an underwater BLC system, rapid attenuation of light in 
water poses the greatest challenge. To mitigate this, we devel‑
oped a specialized optical structure at the transmitter and adopt 
a three-window array design. These enhancements improve 
light transmission efficiency and signal coverage, significantly 
reducing signal attenuation in underwater environments.

For the DUVC system, the low light output efficiency of 
DUV LEDs is a major difficulty. To resolve this, we imple‑
mented sapphire substrate stripping technology and precise 
thinning of nitride films, enabling the production of sub-
micron-level DUV LEDs. These advancements greatly en‑
hance light output efficiency. Additionally, sunlight interfer‑
ence presents challenges for solar-blind 
communication. To address this, we de‑
signed a 275 nm bandpass filter at the re‑
ceiver end, combined with an optical anti-
reflection lens, which strengthened signal re‑
ception and effectively reduced signal at‑
tenuation during daytime communication in 
solar-blind regions.

Moreover, the primary challenge for LC 
systems lies in beam collimation. To over‑
come this, we optimized the optical system 
preceding the laser, ensuring precise beam 
alignment. This reduces the impact of atmo‑
spheric turbulence and beam divergence, 

enhancing communication stability and long-distance trans‑
mission capabilities.

Delay, packet loss rate (PLR), and jitter are three key met‑
rics for evaluating the performance of an ALN. Delay refers to 
the time required for data to travel from one end of the net‑
work to the other. Increased delay may lead to stuttering dur‑
ing network interactions. PLR represents the proportion of 
data packets lost during transmission and reception. An in‑
creased PLR results in higher network delay and inefficient 
bandwidth utilization. Jitter refers to the inconsistency in 
packet delay during transmission, i. e., the arrival time varia‑
tions of different data packets. Excessive jitter can disrupt 
data flow continuity, thereby compromising the smoothness of 
real-time communication.

The ALN contains five nodes. A PC is used as the access‑
ing terminal, and a network camera serves as the accessed ter‑
minal. The delay measured under 25 different node access 
scenarios is shown in Fig. 8a by swapping their connection 
points. We used a maximum transmission unit of 1 514 bytes 
for testing. Due to the lower transmission rates of the BLC and 
WLC, these optical communication links introduced approxi‑
mately 30 ms of delay, while the higher-speed DUVC and LC 
links resulted in a lower delay of around 6 ms. The same ac‑
cess setup was used to test the PLR and jitter of the ALN. As 
shown in Fig. 8b, as the number of nodes traversed increases, 

Figure 8. (a) Delay, (b) PLR, and (c) jitter results of five nodes accessing each other

(a) (b) (c)
ALN: all-light network           PLR: packet loss rate

Figure 7. (a) 20 Mbit/s PRBS signals from Rx of the system; (b) eye diagram of the analog 
signal output from TIA

PRBS: pseudo-random binary sequence     TIA: transimpedance amplifier
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PLR accumulates steadily, with an average rise of 1.435% per 
optical link and a maximum PLR of 6.1%. Fig. 8c shows that 
the maximum jitter of 15 ms is measured when N5 accesses 
N1. Our testing results confirmed uninterrupted, high-quality 
real-time video transmission when the signal traveled along 
the longest path in the ALN (from N1 to N5).
3 Conclusions

By establishing an integrated communication network span‑
ning space, air, and sea environments, we achieve full-duplex 
real-time video communication between network nodes, with a 
maximum PLR of 6.1% and transmission delay below 73.3 ms. 
The ALN system is designed to enable wireless internet ac‑
cess via the TCP/IP protocol. For Internet of Things (IoT) ap‑
plications involving multi-terminal and multi-service intercon‑
nections, developing ALN-based mobile communication net‑
works and integrating advanced modulation techniques to en‑
hance network throughput will be crucial.
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