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Abstract: The mobile Internet and Internet of Things are considered the main driving forc‑
es of 5G, as they require an ultra-dense deployment of small base stations to meet the in‑
creasing traffic demands. 5G new radio (NR) access is designed to enable denser network
deployments, while leading to a significant concern about the network energy consump‑
tion. Energy consumption is a main part of network operational expense (OPEX), and base
stations work as the main energy consumption equipment in the radio access network
(RAN). In order to achieve RAN energy efficiency (EE), switching off cells is a strategy to
reduce the energy consumption of networks during off-peak conditions. This paper intro‑
duces NR cell switching on/off schemes in 3GPP to achieve energy efficiency in 5G RAN,
including intra-system energy saving (ES) scheme and inter-system ES scheme. Addition‑
ally, NR architectural features including central unit/distributed unit (CU/DU) split and
dual connectivity (DC) are also considered in NR energy saving. How to apply artificial in‑
telligence (AI) into 5G networks is a new topic in 3GPP, and we also propose a machine
learning (ML) based scheme to save energy by switching off the cell selected relying on
the load prediction. According to the experiment results in the real wireless environment,
the ML based ES scheme can reduce more power consumption than the conventional ES
scheme without load prediction.
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1 Introduction

To cope with expected drastic data traffic growth, 5G
new radio (NR) is designed to enable denser network
deployments, while the densification of networks has
implied higher energy expenditure. In a typical radio

access network (RAN), most energy is consumed by base sta‑
tions. However, with the foreseen NR deployment of more
base stations with massive multiple-input multiple-output (MI‑
MO), energy efficiency (EE) in NR becomes even more urgent

and challenging.
Energy consumption (EC) is a main part of operational ex‑

pense (OPEX). The telecommunication operators are seeking
for a better way to expand market shares while energy con‑
sumption in networks can be decreased to lower their OPEX.
Energy efficiency in NR networks is also a significant re‑
search topic in 3GPP. Switching off cells is a widely used
strategy to reduce the energy consumption of networks during
off-peak conditions. Thus network elements with low power
consumption become more and more important and the shut‑
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down of unused capacity cells is also valuable. The important
aspect of RAN energy efficiency is, during the network run‑
ning, how to ensure cell switching-off without affecting the
customer satisfac e.g.，calls dropped; quality of service (QoS)
degraded. A typical energy saving (ES) scenario is that capaci‑
ty booster cells are deployed under the umbrella of cells pro‑
viding basic coverage and that the capacity booster cells can
be switched off to enter into the dormant mode when its capac‑
ity is no longer needed and to be reactivated on a need basis.
This paper introduces the 3GPP schemes for switching on/off
NR cells to achieve energy efficiency in 5G networks, includ‑
ing the 5G intra-system energy saving scheme and 4G/5G in‑
ter-system energy saving scheme involving different core net‑
works (CN), e. g., evolved packet core (EPC) and 5G core
(5GC) networks. We also propose a machine learning (ML)
based scheme to save energy by switching off the cell selected
relying on load prediction. According to the experiment re‑
sults in the real wireless environment, the ML based ES
scheme can reduce more power consumption than the conven‑
tional ES scheme without load prediction.

2 Cell Switch on/off for Energy Saving
An NR cell, which acts as a capacity booster, may be

switched off and enter into the ES dormant state if there is radio
coverage by another cell. Fig. 1 shows an example of the next-
generation Node B (gNB) capacity booster cell fully overlaid by
a coverage providing cell. The gNB is a node providing the NR
user plane and control plane with protocol terminations towards
user equipment (UE), and connected to the 5GC via the next-
generation (NG) interface. In the figure, Cell A is deployed to
provide continuous coverage of the area, while Cell B provides
more capacity only for special sub-areas, such as hot spots. The
ES activation procedure of Cell B may be triggered in case that
light traffic in Cell B is detected. Then the cell will be switched
off and enter into the ES dormant state; if there are some users
in service in Cell B, the cell will be switched off only after the
handover actions to offload its traffic to Cell A is completed.
The ES activation of Cell B may be triggered, that is, the cell is

switched on again, when the traffic of the ES area (measured by
Cell A) resumes to a high level[1].
In real network deployment, ES can be divided into central‑

ized ES and distributed ES. For the distributed ES, the NR ca‑
pacity booster cell may decide to switch off when it detects
that its traffic load is below a certain threshold, and its cover‑
age can be provided by the coverage providing cell. The cover‑
age providing cell decides to reactivate the NR capacity boost‑
er cell when it detects additional capacity is needed. For the
centralized ES, a centralized entity, such as the operation and
maintenance (O&M) entity, collects the traffic load perfor‑
mance measurements from the NR capacity booster cell and
coverage providing cells, and may request a NR capacity
booster cell to switch off when its traffic is below certain
threshold.
In general, NR energy saving solutions include the 5G intra-

system energy saving scheme and 4G/5G inter-system energy
saving scheme, involving different core networks (CN), such as
EPC and 5GC. Additionally, NR architectural features includ‑
ing central unit/distributed unit (CU/DU) split and dual connec‑
tivity (DC) are also considered in NR energy saving. We will
discuss these NR ES scenarios in the following sections.

3 5G Intra-System Energy Saving

3.1 Scenarios
In a 5G network, a next-generation RAN (NG-RAN) node is

either a gNB or a next-generation evolved Node B (ng-eNB),
providing Long Term Evolution (LTE) services or Evolved Ter‑
restrial Radio Access Network (E-UTRAN) services towards
the UE. The gNB provides services of the NR user plane and
control plane; the ng-eNB provides the E-UTRA user plane
and control plane with protocol terminations towards the UE,
and connected to the 5GC via the NG interface. The gNBs and
ng-eNBs are inter-connected with each other by means of the
Xn interface, while they are connected to the 5GC by means of
the NG interfaces. The scenarios for NR intra-system energy
saving are summarized in Table 1.

In 5G intra-radio access technology
(Intra-RAT) ES cases (Scenario 1; Sce‑
nario 2), some gNB (or ng-eNB) cells are
deployed to provide basic coverage,
while the other gNB (or ng-eNB) cells
boost the capacity (Fig. 2). Therefore,
the coverage provider and the capacity
provider are using the same RAT, e. g.,
5G NR or LTE, to provide NR services or
LTE/E-UTRAN services to UE. The NG-
RAN cell providing the capacity booster
can decide to switch off autonomously;
the switch-off decision may also be taken
by the O&M entity that will inform the

eNB: evolved Node B ES: energy saving gNB: next-generation Node B UE: user equipment
▲Figure 1. Capacity booster cell overlaid by coverage providing cell
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neighbor NG-RAN cell about its deactivation action over the
Xn Application Protocol (XnAP). On the other hand, the NG-
RAN node providing the basic coverage can request to reacti‑
vate the switched-off booster cell over XnAP.
In 5G inter-radio access technology (Inter-RAT) ES cases

(Scenario 3; Scenario 4), some gNB (or ng-eNB) cells are de‑
ployed to provide basic coverage, while the other ng-eNB (or
gNB) cells boost the capacity (Fig. 3). Obviously, the booster
cells and coverage cells are in different RAT networks. That
is, the booster cells are in NR RAT while the coverage cells in
LTE RAT, or the booster cells are in LTE RAT while the cov‑
erage cells in NR RAT. The Xn signaling support for inter-
RAT ES is the same as that for intra-RAT ES.

3.2 Signaling Support
The Xn signaling support for both the intra-RAT ES and in‑

ter-RAT ES scenarios is same. As shown in Fig. 4, NG-RAN
Node 1 that owns a capacity booster cell and can autonomous‑
ly decide whether to switch off this cell based on cell load in‑
formation, while the switch-off decision may also be taken by
the O&M entity. All neighbor NG-RAN nodes are informed by
the NG-RAN Node 1 owning the concerned cell about the
switch-off actions over the Xn interface, by means of the NG-
RAN node configuration update message.
The purpose of the cell activation procedure is to enable

an NG-RAN node to request the neighboring NG-RAN node
to switch on one or more cells that are previously reported as

inactive due to energy saving reasons.
As shown in Fig. 5, if the basic cover‑
age is ensured by NG-RAN node cells,
the NG-RAN node owning non-capacity
boosting cells may request a reactiva‑
tion over the Xn interface via the cell
activation procedure if needed. Upon re‑
ceipt of a cell activation request mes‑
sage, the booster NG-RAN node acti‑
vates the cells indicated in the message
and these cells are also indicated in the
cell activation response message when
the request is fulfilled.
3.3 Intra-System Energy Saving for

Multi-Radio Dual Connectivity
In order to implement multi-radio

(MR) dual connectivity (DC), UE may be
configured to utilize the resources provid‑
ed by two different nodes, one providing
NR access and the other one providing
either E-UTRA or NR access. One node
acts as the master node (MN) and the oth‑
er as the secondary node (SN). The MN
and SN are connected via an Xn or X2
interface and at least the MN is connect‑
ed to a core network. In 3GPP Release
15, the MR DC energy saving is already
supported, which is intra-system ES.
When the MN is connected to the

5GC, the DC cases include NG-RAN E-
UTRA-NR dual connectivity (NGEN-
DC), NE-NR-E-UTRA dual connectivi‑
ty (DC) and NR-NR dual connectivity
(NR-DC):
• NGEN-DC: one ng-eNB is connected
with the 5GC and acts as an MN, while
one gNB acts as an SN;
• NE-DC: one gNB is connected with the
5GC and acts as an MN, and one ng-eNB

5GC

Scenario 2

ng‑eNB

Capacitybooster cells
ng‑eNB

ng‑eNB
ng‑eNB

Scenario 1

gNB

Capacitybooster cells
gNB

gNB
gNB

Capacitybooster cells
gNB

gNB
gNB

5GC: 5G core networkgNB: next-generation Node BLTE: Long Term Evolution
ng-eNB: next-generation evolved Node BNR: new radioRAT: radio access technology

▲Figure 2. 5G Intra-RAT energy saving

5GC

LTE RAT
NR RAT

Capacitybooster cells
ng‑eNB

ng‑eNB
ng‑eNB

5GC: 5G core networkeNB: evolved Node B ES: energy savinggNB: next‑generation Node B ng‑eNB: next-generation evolved Node BRAT: radio access technology

5G Intra-System ES Scenario

1
2

3

4

Coverage Provider

gNB connected with 5GC
ng-eNB connected with 5GC

gNB connected with 5GC

ng-eNB connected with 5GC

Capacity Booster Provider

gNB connected with 5GC
ng-eNB connected with 5GC

ng-eNB connected with 5GC

gNB connected with 5GC

Description

intra-RAT ES

inter-RAT ES

▼Table 1. 5G intra-system energy saving scenarios (only connected with 5GC)

5GC: 5G core networkgNB: next-generation Node BLTE: Long Term Evolution
ng-eNB: next-generation evolved Node BNR: new radioRAT: radio access technology

▲Figure 3. 5G Inter-RAT energy saving
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acts as an SN;
• NR-DC: one gNB is connected with the 5GC and acts as an
MN, and another gNB acts as an SN.
The energy saving scheme for the above cases is similar to

5G intra-system ES (Section 3.1), where the SN can act as a
capacity booster provider and MN provides continuous cover‑
age of the area. The SN can autonomously decide to switch off
cell(s) based on cell load information or the switch-off deci‑
sion is taken by O&M; it then informs the MN about the cell
deactivation action over XnAP. The MN can request to reacti‑
vate the switched-off booster cell at the SN over XnAP. The
Xn ES Signaling support for MR DC with 5GC is the same
with 5G Intra-system ES Signaling described in Section 3.2.
In the case that the MN is connected to the EPC, that is E-

UTRA-NR dual connectivity (EN-DC), one eNB acts as an
MN and one en-gNB acts as an SN. The eNB is connected to
the EPC via the S1 interface and to the en-gNB via the X2 in‑
terface. The EN-DC scenario is shown in Fig. 6.
The EN-DC configuration update procedure and EN-DC cell

activation procedure are used to support EN DC for intra-sys‑
tem energy saving over the X2 interface. The EN-DC configura‑
tion update procedure can be used to exchange updated cell sta‑
tuses of eNB and en-gNB over the X2 interface. The EN-DC
cell activation procedure enables an eNB to request the neigh‑
boring en-gNB to switch on one or more cells that are previous‑
ly reported as inactive due to energy saving reasons. Upon re‑
ceipt of this message, the en-gNB should activate the cell/s indi‑
cated both in the cell activation request message and in the EN-
DC cell activation response message sent after the activation re‑
quest is fulfilled. Fig. 7 shows the detailed signaling flows.

4 Inter-System Energy Saving of 4G and 5G
Systems

4.1 Scenarios
As shown in Fig. 8, 3G users continued to move to 4G from

2009 to Q3, 2018. Although 4G users kept growing steadily,
the number of 2G and 3G users could not be ignored for a long
time yet[2].
Similar to what happened in the 4G era shown in Fig. 8, it

▲Figure 4. NG-RAN node informs the neighbor NG-RAN node about
cell status over Xn

NG-RAN: next-generation radio access network O&M: operation and maintenance

NG-RAN node configuration update(with updated cell status)
NG-RAN node configuration updateacknowledgement

NG‑RAN node 2

NG‑RAN node 2NG‑RAN node 1

NG‑RAN node 1

It decides to switch off cell(s) or the swith‑offdecision is taken by O&M, and informs thecoverge provider about the updated cell status

▲Figure 5. Coverage NG-RAN node requests to activate booster cells
over Xn

NG-RAN: next-generation radio access network NR: new radio

Booster NG‑RAN node

Booster NG‑RAN node

Coverage NG‑RAN node

Coverage NG‑RAN node

Cell activation request
Cell activation response

The coverage provider decides to acti‑vate the neighbour NR cell, andsends an activation request

EPC

EN‑DC ES case

eNB

Capacitybooster cells

en‑gNB
en‑gNB

en‑gNB

▲Figure 6. EN-DC energy saving

eNB: evolved Node BEN-DC: E-UTRA-NR dual connectivityen-gNB: next-generation Node B in EN-DC
EPC: evolved packet core networkES: energy saving

Capacitybooster cells

en‑gNB
en‑gNB
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▲Figure 7. EN-DC energy saving signaling over X2
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can be predicted that 4G users of operators will gradually de‑
crease when 5G networks are deployed, but 4G networks will
coexist with 5G networks for a long time. Therefore, inter-sys‑
tem energy saving solutions to 4G and 5G coexisting scenarios
(Table 2) should be considered.
For the inter-system ES cases (Scenario 1 and Scenario 2

in Table 2), the NG-RAN node (a gNB, providing NR servic‑
es; or an ng-eNB, providing E-UTRAN services) owns a ca‑
pacity booster cell and can autonomously switch off this cell
to the dormant state. The switch-off decision is typically
based on cell load information, but may also be taken by the
O&M entity. The NG-RAN node indicates the switch-off ac‑
tion to the eNB over the NG and S1 interfaces. The NG-RAN
node could also indicate the switch-on action to the eNB over
the NG and S1 interfaces. The eNB providing basic coverage
may request an NG-RAN node’s cell reactivation based on
its own cell load information or neighbor cell load informa‑
tion, and the switch-on decision may also be taken by O&M.
The eNB requests an NG-RAN node’s cell reactivation and
receives the NG-RAN node’s cell reactivation reply from the
NG-RAN node over the S1 and NG interfaces. The scenarios
in Table 2 are shown in Fig. 9, where the E-UTRAN cell as‑
sociated eNB and the NR-RAN cell associated gNB are con‑
nected to the EPC and the 5GC.
4.2 Signaling Support
3GPP Release15 (R15) defines signaling for cell activation/

deactivation over X2 and Xn interfaces for intra-system ener‑

gy saving. However, the signaling defined by R15 fails to sup‑
port inter-system energy saving scenarios (Fig. 10[3]) without a
direct interface between the eNB and gNB/ng-eNB. The cover‑
age eNB cannot directly send a request to reactivate the
switched-off NR booster cell.
Therefore, NG and S1 interfaces are enhanced in 3GPP Re‑

lease 16 (R16) to support the inter-system scenarios. Specifi‑
cally, when the NR capacity booster cell is switched off, the
LTE eNB for basic coverage should be informed by the gNB
via the NG/S1 message; when the LTE eNB is going to acti‑

▼Table 2. The inter-system ES scenarios of 4G and 5G systems (involv⁃
ing EPC and 5GC)

Scenario

1
2

Coverage Provider

eNB connected with EPC
eNB connected with EPC

Capacity Booster Provider

gNB connected with 5GC
ng-eNB connected with 5GC

5GC: 5G core networkeNB: evolved Node BEPC: evolved packet core network
ES: energy savinggNB: next-generation Node Bng-eNB: next-generation evolved Node B

▲ Figure 8. Users in China continued to move from 2G and 3G net⁃
works to 4G networks
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▲Figure 9. Inter-system energy saving of 4G and 5G systems

Scenario 1

eNB

Capacitybooster cells

gNB
gNB

gNB Capacitybooster cells

gNBgNB
gNB

Scenario 2

eNB

Capacitybooster cells

ng‑eNB
ng‑eNB

ng‑eNB Capacitybooster cells

ng‑eNBng‑eNB
ng‑eNB

EPC

EPC

5GC

5GC
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vate the NR cell, the gNB should be in‑
formed by the LTE eNB via the NG/S1
message. In R16, the inter-system Self-
Organizing Network (SON) configuration
transfer Information Element (IE) is in‑
troduced over both the S1 and NG inter‑
faces in the following messages:
• eNB Configuration Transfer (TS36.413[4]);
• Mobility Management Entity (MME)
Configuration Transfer (TS36.413[4]);
• Uplink RAN Configuration Transfer
(TS38.413[5]);
• Downlink RAN Configuration Transfer
(TS38.413[5]).
The messages of SON configuration

transfer procedures, e. g., the eNB/MME
configuration transfer message over S1
and uplink/downlink RAN configuration
transfer message over NG, can be re-
used for R16 inter-system energy saving,
as the inter-system SON Information IE
in such messages is extended to support
inter-system cell status transfer and cell
activation request and response between
the eNB and NG-RAN node. The de‑
tailed signaling flows are shown in Figs.
11 and 12 respectively.
In Fig. 11, the NG-RAN node owns a

capacity booster cell and can autono‑
mously switch off this cell to the dormant
state. The switch-off decision is typically
based on cell load information and con‑
sistent with the configured information.
This decision may also be taken by the
O&M entity. The NG-RAN node indi‑
cates either the switch-off or switch-on
actions to the eNB over the NG and S1
interfaces.
In Fig. 12, the eNB providing basic

coverage may request an NG-RAN node’
s cell reactivation based on its own cell
load information or neighbor cell load in‑
formation, and the switch-on decision
may also be taken by O&M. The eNB re‑
quests an NG-RAN node’s cell reactiva‑
tion and receives the NG-RAN node’s
cell reactivation reply from the NG-RAN
node over the S1 and NG interfaces.

5 Energy Saving in CU/DU Split Architecture
For the intra-system ES described in Section 3 and inter-

system ES described in Section 4, if a gNB is deployed with

CU/DU split architecture, the F1 interface shall be enhanced
to support the cell reactivation procedure and cell status ex‑
change (Fig. 13).
When the booster gNB with CU/DU split decides to switch

eNB

eNB

▲Figure 12. LTE eNB connected with EPC requests to activate an NR CELL connected with 5GC

AMF: Access & Mobility Management FunctioneNB: evolved Node BgNB: next-generation Node BLTE: Long Term Evolution

MME: Mobility Management EntityRAN: radio access networkSON: Self-Organizing Network

Downlink RAN configuration trans‑fer (with cell activation request ininter‑system SON information)

Uplink RAN configuration transfer(with activation response in in‑ter‑system SON information)
MME configuration transfer(with activation response in in‑ter‑system SON information)

eNB configuration transfer(with cell activation request ininter‑system SON information)
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▲Figure 11. Next-generation radio access network (NG-RAN) node connected with 5GC informs
cell status to Long Term Evolution (LTE) eNB connected with evolved packet core (EPC) network
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off cell(s) to the dormant state, the deci‑
sion is typically made by the gNB-DU
based on cell load information or by the
O&M entity. Before the cell in the gNB-
DU enters into the dormant mode, the
gNB-DU will send the gNB-DU configura‑
tion update message to the gNB-CU to in‑
dicate that the gNB-DU will switch off the
cell after some time. During the switch-off
period, the gNB-CU shall offload the UE
to a neighboring cell and simultaneously
not accept any incoming UE towards this
switch-off ongoing cell. After the cell at
gNB-DU enters into the dormant mode,
the gNB-DU sends a new gNB-DU config‑
uration update message to inform the“in‑
acitve”status of this cell to the gNB-CU.
The gNB-CU needs to inform the updated
cell status to the coverage provider node.
When the gNB-CU receives the cell

activation request/EN-DC cell activa‑
tion request from a coverage provider
node over the Xn or X2 interface, or the
gNB-CU decides to activate the dor‑
mant cell by itself, it will trigger the
gNB-CU configuration update message
to the gNB-DU with a list of the cells to
be activated.

6 Energy Efficiency KPI
EE Key Performance Indicator (KPI) shows data energy effi‑

ciency in NG-RAN. The EE KPI is defined as the data volume
(in kbits) divided by energy consumption (in kWh) of the con‑
sidered network elements. The unit of this KPI is bit/J[6].
EE =∑Samples(DRB.PdcpSduVolumnUL + DRB.PdcpSduVolumnDL )∑Samples

PEE.Energy
(for non-split gNBs). (1)

EE =
∑Samples

[ (F1uPdcpSduVolumeUL + XnuPdcpSduVolumeUL +
X2uPdcpSduVolumeUL ) + (F1uPdcpSduVolumeDL +
XnuPdcpSduVolumeDL + X2uPdcpSduVolumeDL ) ]∑Samples

PEE.Energy
(for split gNBs). (2)

For non-split gNBs (the gNBs without CU/DU split), the
defined DRB.PdcpSduVolumnUL in Eq. (1) is the measured
data volume of Packet Data Convergence Protocol (PDCP)
Service Data Unit (SDU) of a DRB in the uplink, delivered
from the PDCP layer to Service Data Adaptation Protocol
(SDAP) layer; DRB.PdcpSduVolumnDL in the equation is the

measured data volume of PDCP SDU of a DRB in the down‑
link, delivered to the PDCP layer. The total data volume (in
kbit) is obtained by measuring the amount of uplink and
downlink PDCP SDU bits of all DRBs of the non-split gNBs
over the measurement period.
For gNBs with CU/DU split, the defined F1uPdcpSduVol⁃

umeUL in Eq. (2) is the measured data volume of PDCP SDU
in the uplink, delivered to gNB-CU-UP (gNB-CU-User Plane
entity) from gNB-DU via F1-U (F1 User plane interface),
XnuPdcpSduVolumeUL is that in the uplink delivered from ex‑
ternal gNB-CU-UP via Xn-U (Xn User plane interface), and
X2uPdcpSduVolumeUL is that in the uplink delivered from ex‑ternal eNB via X2-U; the defined F1uPdcpSduVolumeDL inthe equation is the measured data volume of PDCP SDU in the
downlink, delivered from GNB-CU-UP to GNB-DU via F1-U,
XnuPdcpSduVolumeDL is that in the downlink delivered to ex‑
ternal gNB-CU-UP via Xn-U, and X2uPdcpSduVolumeDL isthat in the downlink delivered to external eNB via X2-U. The
total data volume (in kbit) is obtained by measuring the
amount of uplink and downlink PDCP SDU bits of all interfac‑
es (F1-U, Xn-U and X2-U) of the split gNBs over the measure‑
ment period.
The energy consumption (in kWh) is obtained by measuring

the Power, Energy and Environmental (PEE) of the considered
network elements over the same period of time.

▲Figure 13. CU/DU energy saving signaling support over F1 interface
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cell switching on/off in ultra-dense networks. However, the tra‑
ditional cell switching on/off relying on real-time load informa‑
tion is not accurate enough, the inappropriate switching-off of
the cells may seriously deteriorate network performance be‑
cause other active cells have to serve some extra traffic. In or‑
der to solve the potential issues of existing ES methods and to
achieve intelligent ES, we propose a machine learning (ML)
based scheme that relies on the load prediction to save energy
by switching off the selected cell[7]. As the data used for load
prediction have various features, such as the current and histo‑
ry load and the neighbor cells’load, different techniques are
used for the different features of load prediction. The auto-re‑
gression integrated moving average (ARIMA), Prophet, Ran‑
dom Forest (RF), Long Short-Term Memory (LSTM), ensemble
learning model, and linear regression are used as the input
models for load prediction in this paper.
1) ARMIA: It is a time series analysis model, which is fitted

to time series data either for better understanding the data or
for predicting future points in the time series. When the trend
change (T), cyclic change (C), seasonal change (S) and irregu‑
lar change (I) are used to characterize the time features, the
time sequences can be described as
Yt = f (Tt,Ct, St, It ) = Tt + Ct + St + It. (3)
As the ARIMA model has certain requirements for data sta‑

bility, if considerable changes happen in the load distribution,
the model may cause the forecast deviation. Hence, the data
could be filtered based on the data stability, so as to select the
cells with better response to ARIMA, thereby improving the
accuracy of prediction. ARIMA is generally denoted as
ARIMA( p, d, q ), p, q ∈ { 0,1,2,3 } , d ∈ { 0,1 }, (4)

where p is the order of the autoregressive model, q is the order
of the moving-average model, p and q are determined by the
lowest Bayesian information criterion (BIC), and d is the de‑
gree of differentiation to make the data stationary.
2) Prophet: The Prophet model, which is similar to ARIMA

mode, is expressed as
Yt = f (gt, st, ht, et ), (5)

where gt denotes non-periodic changes, such as linear growth
or logical growth; st is cyclic changes, like seasonality; ht is ir‑regular changes caused by users; et is the error used to de‑scribe the abnormal changes in the model.
3) RF: The preliminary of the random forest prediction model

is the decision tree learning that segments the features based on
their characteristics. Combining the random subspace method
with the decision tree, the RF model selects the features to en‑
hance the prediction, increasing the correlation among the se‑

lected features. The model exploits the historical loads to pre‑
dict future loads; in this way, loads in the past and neighbor
loads are taken into consideration when constructing the model.
4) LSTM: It is an artificial recurrent neural network (RNN)

architecture used in the field of deep learning. Different from
the standard convolution neural network, LSTM could process
the single data points like images, as well as sequences of da‑
ta such as video or speech. The prediction system in this pa‑
per is composed of three layers, two LSTM layers and one ful‑
ly connection layer.
5) Ensemble learning: This mode combines multiple learn‑

ing algorithms to achieve better performance for a particular
intelligence problem. In other words, ensemble learning can
combine several weak models that get poor prediction to pro‑
duce a strong learning model. While some simple models only
learn part of the data, the ensemble method can strategically
divide the data set into small data sets, train them separately,
and then combine them with certain strategy.
In order to compare the algorithms mentioned above, the

mean absolute error (MAE) is used to measure the difference
between the forecast and the real load. It can be described as

MAE =∑i = 1
N || Pi - Ri

N
=∑i = 1

N || ei
N

, (6)

where N is the number of points, P is the predicted load out‑
put by an algorithm, and R is the real load. The intuitive mean‑
ing of the function MAE is quite clear: the greater the distance
between the predicted value P and the true value R, the larger
the loss, and vice versa.
6) Linear regression: It is a linear algorithm to map the rela‑

tionship between a scalar response and one or more explanato‑
ry variables. In the linear regression, unknown model parame‑
ters are also estimated from the data. If the goal is to predict
or forecast the state, the linear regression is able to fit a pre‑
dictive model to an observed data. Given a data set
{ yi, xi1,..., xip} ni = 1, the linear regression model can be ex‑pressed as:
yi = β0 + β1xi1 + ... + βp xip + εi = xTiβ + εi, i = 1,..., n, (7)

where T denotes the transpose, xTiβ is the inner product be‑tween vectors x i and β .
Fig. 14 compares the load prediction in one cell with differ‑

ent prediction models. The simulation results of load predic‑
tion are based on the physical resource block (PRB) utilization
in 50 cells. It can be seen that the ensemble learning model
has further improved the prediction accuracy compared to
each independent sub-model. The average MAE of the ensem‑
ble learning method is reduced by an average of 0.008.
The comparison and analysis results of the machine learn‑

ing models mentioned above is listed in Table 3. These differ‑
ent load prediction models are suitable for dealing with differ‑
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3) RF: The preliminary of the random forest prediction model
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their characteristics. Combining the random subspace method
with the decision tree, the RF model selects the features to en‑
hance the prediction, increasing the correlation among the se‑
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loads are taken into consideration when constructing the model.
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architecture used in the field of deep learning. Different from
the standard convolution neural network, LSTM could process
the single data points like images, as well as sequences of da‑
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per is composed of three layers, two LSTM layers and one ful‑
ly connection layer.
5) Ensemble learning: This mode combines multiple learn‑

ing algorithms to achieve better performance for a particular
intelligence problem. In other words, ensemble learning can
combine several weak models that get poor prediction to pro‑
duce a strong learning model. While some simple models only
learn part of the data, the ensemble method can strategically
divide the data set into small data sets, train them separately,
and then combine them with certain strategy.
In order to compare the algorithms mentioned above, the
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between the forecast and the real load. It can be described as
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where N is the number of points, P is the predicted load out‑
put by an algorithm, and R is the real load. The intuitive mean‑
ing of the function MAE is quite clear: the greater the distance
between the predicted value P and the true value R, the larger
the loss, and vice versa.
6) Linear regression: It is a linear algorithm to map the rela‑

tionship between a scalar response and one or more explanato‑
ry variables. In the linear regression, unknown model parame‑
ters are also estimated from the data. If the goal is to predict
or forecast the state, the linear regression is able to fit a pre‑
dictive model to an observed data. Given a data set
{ yi, xi1,..., xip} ni = 1, the linear regression model can be ex‑pressed as:
yi = β0 + β1xi1 + ... + βp xip + εi = xTiβ + εi, i = 1,..., n, (7)

where T denotes the transpose, xTiβ is the inner product be‑tween vectors x i and β .
Fig. 14 compares the load prediction in one cell with differ‑

ent prediction models. The simulation results of load predic‑
tion are based on the physical resource block (PRB) utilization
in 50 cells. It can be seen that the ensemble learning model
has further improved the prediction accuracy compared to
each independent sub-model. The average MAE of the ensem‑
ble learning method is reduced by an average of 0.008.
The comparison and analysis results of the machine learn‑

ing models mentioned above is listed in Table 3. These differ‑
ent load prediction models are suitable for dealing with differ‑
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ent radio access networks.
We evaluate the application of ma‑

chine learning techniques with real sce‑
narios，and time efficiency is taken in‑
to account, ARIMA is implemented in
our ML based ES scheme. There are 1
089 cells and 329 base stations (BSs) in
the test area. Different switch-off strate‑
gies including the symbol switch-off,
channel switch-off and carrier switch-
off are applied for different groups of
the measured BSs. A cell is considered
as the switch-off as the cell carrier(s) is/
are all switched-off, and the BS shall in‑
dicates the switch-off action to the BS
providing basic coverage. In the real de‑
ployment, different BS types may cause
different power consumption, so power
saving would be averaged to all cells of
the measured BS groups. As expected,
the artificial intelligence (AI) energy
saving scheme predicts load accurately
and switch off the cell in time to
achieve better performance on energy
saving. In addition, the actual energy
saving of each cell per day is also signif‑
icantly increased. Fig. 15 shows that
the AI based power saving could reach
up to 1.24 kWh each cell per day, and
no matter what switch-off strategy is
used, AI based ES is a better solution to
power saving.

Table 4 shows the power consump‑
tion and electricity charge saving with
different kinds of ES methods and with‑
out ES. We can see that the power con‑
sumption is totally 25 988 kWh every
week if any ES method is not used,
while the power consumption with the
AI ES methods is 22 304 kWh. Electric‑
ity charge saving with the AI ES meth‑
ods increases more than that with the

▼Table 3. Comparison and analysis of the machine learning models
Model

ARIMA
Prophet
LSTM
RF

Ensemble

Accuracy

Medium
Medium
High
High
High

Speed

Fast
Fast
Slow
Slow

Extremely slow

Complexity

Low
Low
High
High
High

ARIMA: auto-regression integrated moving average LSTM: Long Short-Term Memory RF: Random Forest

▼Table 4. Comparison of power consumption and electricity charge saving with/without ES methods

Switch-off
Strategy

Carrier

Carrier+symbol

Channel

Channel+symbol

Total

Number of Mea⁃
sured Cells

8
7
633
327
975

Power Consumption of Measured Cells (kWh/Week)

No ES

382
366
16 853
8 387
25 988

Conventional ES

377
344
16 265
7 541
24 527

AI ES

364
305
15 872
6 555
22 304

Electricity Charge Saving of Measured Cells (CNY/Week)

Conventional ES

5
22
588
846
1 461

AI ES

18
61
981
1 832
3 684

Increase

13
39
393
986
2 223

AI: artificial intelligence ES: energy saving

▲Figure 14. Load prediction by using different models

ARIMA: auto-regression integrated moving averageLSTM: Long Short-Term Memory Real: The true measured loadRF: Random Forest
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▲Figure 15. Statistics of the power saving (kWh)
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conventional ES, and the saving is totally increased by 2 223
CNY every week.

8 Conclusions and Future work
In this paper, we introduce the 3GPP energy saving

schemes by switching on/off cells in ultra-dense networks. In
order to achieve intelligent ES, we also propose a machine
learning based ES scheme by switching off the cell selected
based on load prediction. How to apply AI into the 5G net‑
work is a new topic for 3GPP and future works might focus on
potential solutions to smart energy saving based on AI and the
corresponding 3GPP standard impacts on data collection and
interface between NG-RAN nodes.
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