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Special Topic
Machine Learning at Network Edges

Editorial
TAO Meixia, HUANG Kaibin

Enabling Intelligence at Network Edge:
An Overview of Federated Learning

A comprehensive introduction of federated learning is delivered. Specif‑
ically, the authors first survey the basis of federated learning, including
its learning structure and the distinct features from conventional ma‑

chine learning models. They then enumerate several critical issues asso‑
ciated with the deployment of federated learning in a wireless network,
and show why and how technologies should be jointly integrated to facil‑
itate the full implementation from different perspectives, ranging from
algorithmic design, on-device training, to communication resource man‑
agement. Finally, the paper is concluded by shedding light on some po‑

tential applications and future trends.
Howard H. YANG, ZHAO Zhongyuan, Tony Q. S. QUEK

Scheduling Policies for Federated Learning in
Wireless Networks: An Overview

A new distributed training framework called federated learning (FL)
has emerged and attracted much attention from both academia and in‑
dustry. In FL, participating devices iteratively update the local models
based on their own data and contribute to the global training by up‑

loading the model updates until the training converges. Therefore, the
computation capabilities of mobile devices can be utilized and the da‑

ta privacy can be preserved. The authors first introduce the back‑
grounds and fundamentals of FL. Then, the key challenges in deploy‑
ing FL in wireless networks are discussed, and several existing solu‑
tions are reviewed. Finally, the authors highlight the open issues and

future research directions in FL scheduling.
SHI Wenqi, SUN Yuxuan, HUANG Xiufeng, ZHOU Sheng, NIU Zhisheng

Joint User Selection and Resource Allocation
for Fast Federated Edge Learning
By periodically aggregating local learning updates from edge users,
federated edge learning (FEEL) is envisioned as a promising means to
reap the benefit of local rich data and protect users’privacy. Howev‑
er, the scarce wireless communication resource greatly limits the num‑
ber of participated users and is regarded as the main bottleneck which
hinders the development of FEEL. To tackle this issue, the authors
propose a user selection policy based on data importance for FEEL
system. In order to quantify the data importance of each user, they
first analyze the relationship between the loss decay and the squared
norm of gradient and then formulate a combinatorial optimization prob‑
lem to maximize the learning efficiency by jointly considering user se‑
lection and communication resource allocation. By problem transfor‑
mation and relaxation, the optimal user selection policy and resource
allocation are derived, and a polynomial-time optimal algorithm is de‑
veloped. Finally, the authors deploy two commonly-used deep neural
network (DNN) models for simulation.
JIANG Zhihui, HE Yinghui, YU Guanding

Communication-Efficient Edge AI Inference
over Wireless Networks
The principles of efficient deployment of model inference at network
edge to provide low-latency and energy-efficient AI services are present‑
ed. This includes the wireless distributed computing framework for low-

latency device distributed model inference as well as the wireless coop‑
erative transmission strategy for energy-efficient edge cooperative model
inference. The communication efficiency of edge inference systems is
further improved by building up a smart radio propagation environment
via intelligent reflecting surface.
YANG Kai, ZHOU Yong, YANG Zhanpeng, SHI Yuanming
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Knowledge Distillation for Mobile Edge
Computation Offloading

Edge computation offloading allows mobile end devices to execute com‑
pute-intensive tasks on the edge servers. End devices can decide wheth‑
er the tasks are offloaded to edge servers, cloud servers or executed local‑
ly according to current network condition and devices’profile in an on‑
line manner. The authors propose an edge computation offloading frame‑
work based on deep imitation learning (DIL) and knowledge distillation
(KD), which assists end devices to quickly make fine-grained decisions
to optimize the delay of computation tasks online. The authors formalize
computation offloading problem into a multi-label classification problem.
Training samples for our DIL model are generated in an offline manner.
After the model is trained, the authors leverage KD to obtain a light‑

weight DIL model, by which they further reduce the model’s inference
delay. Numerical experiment shows that the offloading decisions made
by the proposed model not only outperform those made by other related
policies in latency metric, but also have the shortest inference delay

among all policies.
CHEN Haowei, ZENG Liekang, YU Shuai, CHEN Xu

Joint Placement and Resource Allocation for
UAV⁃Assisted Mobile Edge Computing

Networks with URLLC
An unmanned aerial vehicle (UAV) assisted mobile edge computing
(MEC) network with ultra-reliable and low-latency communications

(URLLC) is investigated, in which a UAV acts as an aerial edge server to
collect information from a set of sensors and send the processed data to

the corresponding actuators. In particular, the authors focus on the
round-trip URLLC from the sensors to the UAV and to the actuators in
the network. By considering the finite block-length codes, the authors’

objective is to minimize the maximum end-to-end packet error rate
(PER) of these sensor-actuator pairs, by jointly optimizing the UAV’s
placement location and transmitting power allocation, as well as the us‑
ers’block-length allocation, subject to the UAV’s sum transmitting

power constraint and the total block-length constraint. Although the max‑
imum-PER minimization problem is non-convex and difficult to be opti‑
mally solved, the authors obtain a high-quality solution to this problem

by using the technique of alternating optimization.
ZHANG Pengyu, XIE Lifeng, XU Jie

Adaptive and Intelligent Digital Signal
Processing for Improved Optical Interconnection
To pursue the improved interconnection performance of capacity, ener‑
gy efficiency and simplicity, effective approaches are demonstrated in‑
cluding particularly advanced digital signal processing (DSP) methods.
The authors present a review about the enabling adaptive DSP methods
for optical interconnection applications, and a detailed summary of the
recent and ongoing works in this field. In brief, the works focus on deal‑
ing with the specific issues for short-reach interconnection scenarios
with adaptive operation, including signal-to-noise-ratio (SNR) limita‑
tion, level nonlinearity distortion, energy efficiency consideration and
the decision precision.
SUN Lin, DU Jiangbing, HUA Feng, TANG Ningfeng, HE Zuyuan

Crowd Counting for Real Monitoring Scene
Crowd counting is a challenging task in computer vision as realistic
scenes are always filled with unfavourable factors such as severe occlu‑
sions, perspective distortions and diverse distributions. Recent state-of-
the-art methods based on convolutional neural network (CNN) weaken
these factors via multi-scale feature fusion or optimal feature selection
through a front switch-net. L2 regression is used to regress the density
map of the crowd, which is known to lead to an average and blurry re‑
sult, and affects the accuracy of crowd count and position distribution.
To tackle these problems, the authors take full advantage of the applica‑
tion of generative adversarial networks (GANs) in image generation and
propose a novel crowd counting model based on conditional GANs to
predict high-quality density maps from crowd images. Furthermore, they
innovatively put forward a new regularizer so as to help boost the accu‑
racy of processing extremely crowded scenes. Extensive experiments on
four major crowd counting datasets are conducted to demonstrate the
better performance of the proposed approach compared with recent
state-of-the-art methods.
LI Yiming, LI Weihua, SHEN Zan, NI Bingbing
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TAO Meixia, HUANG Kaibin

EditorialEditorial:: Special Topic onSpecial Topic on
Machine Learning at Network EdgesMachine Learning at Network Edges

TAO Meixia is currently a professor with the De‑
partment of Electronic Engineering, Shanghai Jiao
Tong University, China. She received the B. S. de‑
gree in electronic engineering from Fudan Universi‑
ty, China in 1999, and the Ph. D. degree in electri‑
cal and electronic engineering from Hong Kong Uni‑
versity of Science and Technology，China in 2003.
Her current research interests include wireless
caching, edge computing, physical layer multicast‑
ing, and resource allocation. She has published

over 200 peer-reviewed IEEE journal and conference papers. Dr. TAO
is the recipient of the 2019 IEEE Marconi Prize Paper Award and the
2013 IEEE Heinrich Hertz Paper Award. She also receives the IEEE/
CIC ICCC 2015 Best Paper Award and the WCSP 2012 Best Paper
Award. She served as a member of the Executive Editorial Committee
of IEEE Transactions on Wireless Communications during 2015–2019.
She was also on the Editorial Board of several other journals as Editor
or Guest Editor, including IEEE Transactions on Communications and
IEEE Journal on Selected Areas in Communications. She served as Sym‑
posium Oversight Chair of IEEE ICC 2019, Symposium Co-Chair of
IEEE GLOBECOM 2018, the TPC Chair of IEEE/CIC ICCC 2014 and
Symposium Co-Chair of IEEE ICC 2015. She is a Fellow of IEEE.

HUANG Kaibin received the B. Eng. (first-class
honors) and the M. Eng. from the National Univer‑
sity of Singapore, respectively, and the Ph. D. de‑
gree from The University of Texas at Austin (UT
Austin), USA, all in electrical engineering. Present‑
ly, he is an associate professor in the Department of
Electrical and Electronic Engineering at The Uni‑
versity of Hong Kong, China. He has served on the
editorial boards of numerous IEEE journals includ‑
ing IEEE Transactions on Green Communications

and Networking, IEEE Transactions on Wireless Communications, IEEE
Journal of Selected Areas in Communication, and IEEE Wireless Commu⁃
nications Letters. Dr. HUANG received several awards from IEEE
Communication Society including the Best Tutorial Paper Award in
2019, two Asia Pacific Outstanding Paper Awards in 2015 and 2019,
and Best Paper Awards from IEEE GLOBECOM 2006 and IEE/CIC
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search Achievements from China Ministry of Education in 2018, an
Outstanding Teaching Award from Yonsei University, and a University
Continuing Fellowship from UT Austin. He is named a Highly Cited
Scientist by Clarivate Analytics in 2019.

With the proliferation of end devices, such as smart‑
phones, wearable sensors and drones, an enor‑
mous amount of data is generated at the network
edge. This motivates the deployment of machine

learning algorithms at the edge that exploit the data to train ar‑
tificial intelligence (AI) models for making intelligent deci‑
sions. Traditional machine learning procedures, including
both training and inference, are carried out in a centralized da‑
ta center, thus requiring devices to upload their raw data to
the center. This can cause severe network congestion and also
expose users’private data to hackers’attacks. Thanks to the
recent development of mobile edge computing (MEC), the
above issues can be addressed by pushing machine learning
towards the network edge, resulting in the new paradigm of
edge learning. The notion of edge learning is to allow end de‑
vices to participate in the learning process by keeping their
data local, and perform training and inference in a distributed
manner with coordination by an edge server. Edge learning
can enable many emerging intelligent edge services, such as
autonomous driving, unmanned aerial vehicles (UAVs), and
extended reality (XR). For this reason, it is attracting growing

interests from both the academia and industry.
The research and practice on edge learning are still in its in‑

fancy. In contrast to cloud-based learning, edge learning fac‑
es several fundamental challenges, including limited on-de‑
vice computation capacities, energy constraints, and scarcity
of radio resources. This special issue aims at providing a time‑
ly forum to introduce this exciting new area and latest ad‑
vancements towards tackling the mentioned challenges in
edge learning.
To begin with, the first paper“Enabling Intelligence at Net‑

work Edge: An Overview of Federated Learning”by YANG et
al. serves as a comprehensive overview of federated learning
(FL), a popular edge learning framework, with a particular fo‑
cus on the implementation of FL on the wireless infrastructure
to realize the vision of network intelligence.
Due to the salient features of edge learning (notably, FL),

such as the non independent and identically distributed (i. i.
d) dataset and a dynamic communication environment, device
scheduling and resource allocation should be accounted for in
designing distributed model training algorithms. To this end,
the second paper“Scheduling Policies for Federated Learning
in Wireless Networks: An Overview”by SHI et al. provides a
comprehensive survey of existing scheduling policies of FL in
wireless networks and also points out a few promising relevantDOI: 10.12142/ZTECOM.202002001

http://kns.cnki.net/kcms/detail/34.1294.tn.20200522.1032.002.html,
published online May 22, 2020

Guest EditorGuest Editor
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Enabling Intelligence atEnabling Intelligence at
Network EdgeNetwork Edge::
An Overview of Federated LearningAn Overview of Federated Learning

Howard H. YANG1, ZHAO Zhongyuan2, Tony Q. S. QUEK1

(1. Singapore University of Technology and Design, Singapore 487372, Singapore；
2. Beijing University of Post and Telecommunication, Beijing 100876, China)

Abstract: The burgeoning advances in machine learning and wireless technologies are forg‑
ing a new paradigm for future networks, which are expected to possess higher degrees of in‑
telligence via the inference from vast dataset and being able to respond to local events in a
timely manner. Due to the sheer volume of data generated by end-user devices, as well as
the increasing concerns about sharing private information, a new branch of machine learn‑
ing models, namely federated learning, has emerged from the intersection of artificial intelli‑
gence and edge computing. In contrast to conventional machine learning methods, federated
learning brings the models directly to the device for training, where only the resultant param‑
eters shall be sent to the edge servers. The local copies of the model on the devices bring
along great advantages of eliminating network latency and preserving data privacy. Never‑
theless, to make federated learning possible, one needs to tackle new challenges that require
a fundamental departure from standard methods designed for distributed optimizations. In
this paper, we aim to deliver a comprehensive introduction of federated learning. Specifical‑
ly, we first survey the basis of federated learning, including its learning structure and the
distinct features from conventional machine learning models. We then enumerate several
critical issues associated with the deployment of federated learning in a wireless network,
and show why and how technologies should be jointly integrated to facilitate the full imple‑
mentation from different perspectives, ranging from algorithmic design, on-device training,
to communication resource management. Finally, we conclude by shedding light on some po‑
tential applications and future trends.
Keywords: federated learning; edge intelligence; learning algorithm; communication effi‑
ciency; privacy and security

Citation (IEEE Format): H. H. Yang, Z. Y. Zhao, and T. Q. S. Quek,“Enabling intelligence at network edge: an overview of federated
learning,”ZTE Communications, vol. 18, no. 2, pp. 02–10, Jun. 2020. doi: 10.12142/ZTECOM.202002002.

1 Introduction

The networking system is experiencing a paradigm shift
from a conventional cloud computing architecture that
aggregates the computational resources at a data cen‑
ter, to mobile edge systems which largely deploy com‑

putational power to the network edges to meet the demands
from mobile applications—which are most thriving today—
and support resource-constrained nodes reachable only over
unreliable network connections[1]. Moreover, along with the
burgeoning progress of machine learning research, it is expect‑

DOI: 10.12142/ZTECOM.202002002

http://kns.cnki.net/kcms/detail/34.1294.
TN.20200610.1007.002.html, published
online June 10, 2020

Manuscript received: 2020-02-10
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ed that by integrating machine learning algorithms to the
edge nodes, future networks will be able to utilize local data
to conduct intelligent inference and control on many activi‑
ties, e. g., learning activities of mobile phone users, predict‑
ing health events from wearable devices, or detecting burglar‑
ies within smart homes[2].
However, as the data is usually generated at the end-user

devices, the sheer volume of the dataset as well as the rising
concerns about sharing private information often makes the us‑
ers reluctant to send their raw data to the edge server for the
training of any model—even that can eventually benefit them
in return. In response to this dilemma, a new machine learn‑
ing model has emerged, namely federated learning, that allows
decoupling of data acquisition and computation at the central
unit[3–5]. Specifically, rather than collecting all the data to a
central unit for training, federated learning brings the models
directly to the end-user devices for training, where only the re‑
sultant parameters shall be sent to the edge servers that reside
in an edge node. This salient feature of on-device training
brings along great advantages of eliminating the large commu‑
nication overheads as well as preserving data privacy, and
hence making federated learning particularly relevant for mo‑
bile applications. These properties also identify the federated
learning as one of the most promising factors to an intelligent
mobile edge network[6–9].
Nevertheless, in order to deliver a successful deployment of

federated learning, one also needs to tackle new challenges
that require a fundamental departure from the standard meth‑
ods designed for distributed optimization[3],[10]. Particularly, un‑
like many traditional machine learning models, where an algo‑
rithm runs on a large dataset partitioned homogeneously
across multiple servers in the cloud, the federated learning of‑
ten operates in a mobile edge system, in which a server orches‑
trates the training with a union of end-user devices, which
have non independent and identically distributed (i. i. d.) and
unbalanced dataset, and communicate over a resource-limited
spectrum[11–12]. In that regard, the staleness becomes more par‑
amount to the training process[13] and security issues also arise
that make the learning architecture vulnerable[14]. Addressing
these issues requires joint studies from many aspects, includ‑
ing the learning algorithm, system design, and communication
and information theory[15–16]. In response, Ref. [10] discussed
the possible directions to improve the training efficiency when
encountering with heterogeneous datasets. Moreover, Ref. [6]
investigated the end-to-end latency, reliability, and scalability
of a federated learning empowered edge network. In the partic‑
ular context of deep learning, Ref. [8] explored the challenges
and approaches to integrate the learning algorithm into net‑
work edge via a federated approach; Ref. [9] discussed a num‑
ber of guidelines for the implementation of federated learning
with the wireless channels. With these efforts, the results are
fruitful: As will be detailed in Section 4, there are numerous
applications that can benefit a lot by adopting federated learn‑

ing. To that end, the central thrust of this paper is to deliver a
comprehensive introduction to the federated learning system
as well as to appeal for more research devoted into this emerg‑
ing field. It is also noteworthy that while a few surveys on the
topic of federated learning have been now available, our work
puts a particular focus on the integration of the wireless infra‑
structures (such as the mobile edge network) as a supporting
platform and the federated learning as an operation system,
which ultimately achieves the network intelligence by jointly
running them together.
The remainder of this paper is organized as follows. In Sec‑

tion 2, we introduce the basic structure and the defining char‑
acteristics of a federated learning model. The techniques to
the core of a practical implementation of the federated learn‑
ing system are elaborated in Section 3. Section 4 discusses the
potential applications and future trends of federated learning,
followed by the conclusion remarks in Section 5.

2 Federated Learning: Basis and Properties
In this section, we detail the basic architecture of a federat‑

ed learning model running on the mobile edge system. A num‑
ber of key features associated with such a setting will also be
presented.
2.1 Basic Architecture
As illustrated in Fig. 1[17], the network elements involved in

the federated learning include a central unit, e. g., the edge
server that resides at a base station or access point and a num‑
ber of end-user devices, in which they collaboratively learn a
statistical model. The model is typically devised by a model
engineer for a particular application, with which the server
then orchestrates the training process with the end-user devic‑
es by repeating the following steps[3–4].
1) Client selection: The server selects from a subset of its

clients, namely the end-user devices, which meet the eligibili‑
ty requirements, e. g., mobile phones or tablets that currently
have a wireless connection, for one round of training.
2) Broadcast: The selected clients download the current

model, including the weights and a training program, from the
server for local computing.
3) End-user computation: Each selected device performs a

local computation, usually in the form of stochastic gradient
descend (SGD), for a given period, and uploads the resultant
parameters to the server.
4) Update aggregation: The server collects the updates from

the end-user devices—in the form of either trained parameters
or gradients—and aggregates, in general by a weighted aver‑
age, the collected results.
5) Model update: The server locally updates the shared

model based on the aggregated update computed from the cli‑
ents that participated in the current round.
After a sufficient number of training and update exchanges
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(usually termed as communication rounds) between the server
and the clients, the global statistical model is able to converge
to its optimal and the end users can benefit from a collabora‑
tively learned model.
1) The advantage: By training via federated learning, end

users are able to directly download the model, perform com‑
puting on the devices, and send back the resultant trained pa‑
rameters; in this way, the end users decouple the necessity of
sharing local data and hence reserves privacy. Additionally,
the local training also abbreviates the upload of raw data,
which can be very large in size and consume a lot of energy for
the upload. To that end, the federated learning is particularly
relevant to wireless applications.
2) The challenge: The potential drawback of federated learn‑

ing is also obvious. As the training is at a large scale amongst
heterogeneous entities, e. g., different end terminals can have
various processing power and communication conditions, the
learning efficiency can be much lower than that in a data cen‑
ter. On top of this, the communication is often unreliable in
the federated learning environment and security issue is more
paramount under such a setting.
In the sequel, we will point out the possible directions to

overcome the crux and finally realize the potential of federated
learning. Before that, let us pause a while and clarify the most
distinguishing features of such a learning model.
2.2 Distinguishing Features
At the first sight, it might seem that the federated learning

is simply another format of distributed learning. These two ma‑
chine learning models share several properties in common; for

instance, the computing is carried
out by a number of end terminals
and the terminals iteratively col‑
laborate via a central entity. How‑
ever, there are many more fea‑
tures that distinguish the federat‑
ed learning from those more con‑
ventional models. We highlight
the key features of federated
learning as follows.
• Non-i. i. d. dataset: The most

distinct feature of federated learn‑
ing is that the dataset of each end-
user device is highly personalized
and hence the dataset is usually
non-i.i.d. across users. The sourc‑
es of the dependence and non-
identicalness are due to the fact
that data collected at each device
corresponds to a particular user, a
particular geographic location,
and/or a particular time period.
As such, unlike situations in the

conventional setup where the dataset is completely shuffled
and i. i. d., in federated learning, the non-i. i. d. structure may
lead to the local minimum of each device diverting from the
global minimum, and requires a rethinking of learning model
to take into account such differences in the process.
• Unbalanced data size: Aside from being non-i.i.d. distrib‑

uted, the dataset of each end-user device also differs in size.
Therefore, the training procedure at each end terminal can be
highly unbalanced, because some terminals that have small
datasets can complete the training in a short period of time,
while those with large dataset sizes may take a longer time to
complete the local training. Moreover, due to the unbalanced
nature, some devices, e.g., those with a large dataset, may con‑
tribute more to the overall model than others, and hence how
to account for such difference in the learning algorithm is also
important.
• Limited communication resources: As the communications

between end-user devices and a central entity often take place
at the network edge, where spectrum is the medium to conduct
communications, the transmissions are by nature unreliable.
Moreover, as the wireless resources are usually limited, it is
necessary to select the appropriate number of users each round
for the communication. All these can impose more significant
impact of staleness on the overall training efficiency.
• Privacy/security issues: Whilst learning under the federat‑

ed setting abbreviates the sharing of local data, it does not
promise a perfect protection of privacy. In fact, one can still
extract leaky information from upload parameters and retrieve
the original information to an approximation extend[11]. More‑
over, under the federated setting, the end-devices are more

▲Figure 1. Illustration of the network architecture, in which a mobile edge system is integrated with fed⁃
erated learning.
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vulnerable to malicious attacks in this case and it is easily for
some adversary users to inject malicious information into the
system.
Note that a marked property of many of the features/prob‑

lems discussed above is that they are inherently interdisci‑
plinary and solving them likely requires not just machine
learning, but also techniques from distributed optimization,
security, differential privacy, fairness, compressed sensing,
systems, information theory, statistics and more. In fact,
many of the hardest problems are at the intersections of these
areas and hence a cross-area study/collaboration is essential
to ongoing progress.

3 Towards Practical Implementation
As mentioned in the previous section, despite the potentials

to endow the mobile edge network with a higher degree of in‑
telligence via federated learning, it requires a full cooperation
between computing and communication to realize the full po‑
tential of such a scheme. In this section, we elaborate several
key aspects that we believe to be lying at the core of achieving
the final goal.
3.1 Efficient Learning Algorithms
The primary factor to the implementation of federated

learning is an efficient algorithm. Due to the non-i.i.d. nature
of the dataset, a model training process of the federated
learning can be very different from the conventional counter‑
parts. In particular, unlike scenarios under the distributed
computing, where each end terminal possesses a statistically
identical model (namely the empirical loss function), in the
federated learning, each end-user device can have very dif‑
ferent empirical loss due to the personalized dataset. As
such, the local minimum may differ from the global minimum
and the learning algorithm shall be reengineered to account
for this fact[10]. Besides, as the communication resource is
limited, the edge server can only choose a subset of users for
the update in each round of communication. Therefore, how
to select users appropriately also plays a critical role in the
overall learning efficiency[12].
3.1.1 Optimization and Model Aggregation
Because of the non-i. i. d. nature of user dataset, treating

all samples equivalently at the global model may not make a
solid sense. Therefore, how to craft a more appropriate objec‑
tive function is an important aspect to research. Besides, the
current state-of-the-art training is mostly SGD-base, which
is well-known for slow converging. Therefore, how to devel‑
op more effective algorithm will also determine the efficien‑
cy of federated learning. Moreover, owing to the vast num‑
ber, each device is likely to participate only a few rounds in
the training of a global model, so stateless algorithms are
necessary to investigate.
In the aggregation stage, the common approach is the Feder‑

ated Averaging algorithm, an adaption of parallel SGD that
takes a weighted average of the collected parameters accord‑
ing to their dataset size. While the effectiveness of such an ap‑
proach has been demonstrated in different models, it is still
unknown whether this is the optimal way of aggregating param‑
eters and further investigation is necessary.
3.1.2 Sampling and Client Selection
Due to the unbalanced structure of datasets as well as the

limited bandwidth, the sampling, of not just the data points for
computing but also the clients to conduct local trainings in
each communication round, plays a critical role that deter‑
mines the overall learning efficiency. In particular, as each
end-user device may correspond to a specific local minimum
of empirical loss, spending a lot of time on the local training
may bear the risk of leading the parameters to diverge from
the global minimum. On the other hand, as the global commu‑
nication can take up a much longer period than the local com‑
puting, it is also desirable to reduce the communication
rounds. As such, how to strike a balance between local com‑
puting and global communication is important to the efficien‑
cy of federated learning. In response, it is suggested that the
sampling data size of each local training shall be adaptively
adjusted across the global learning period.
On top of the sampling of dataset for local training, in the

global aggregation stage, the edge server can only select a por‑
tion of users out of the total due to the limited bandwidth avail‑
able. Therefore, for the client, i.e., end-user device, selection
is also critical for the performance of federated learning. In
the context of mobile edge system, it has been shown that by
taking the channel quality into consideration and selecting the
end-user devices with the best channel qualities, the learning
efficiency can be effectively boosted up[12], as demonstrated in
Fig. 2. Besides, it is also important to take into account the
staleness and the significance of updates in the client selec‑
tion stage[17].
3.2 Model Compression
Although the processing power of mobile devices has

surged over the last decade by the hardware revolution, these
terminals are still subject to power and storage constraints,
making it problematic to deploy the federated learning toward
a deep and large scale. The difficulty mainly attributes to two
reasons. One is that a deep neural network often consists of an
abundant amount of activation units and interconnecting
links, and hence training such a model will inevitably incur
excessive energy consumption and, if not worse, memory occu‑
pation. The other is that, even the task of model training can
be accomplished at the user side, sending the resultant param‑
eters, which are generally high dimension vectors, to the serv‑
er requires not just high transmit power but also wide mobile
spectrum, which imposes very high communication cost. None‑
theless, this does not mean one has no hope to adopt the most

UE1 UE2
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takes a weighted average of the collected parameters accord‑
ing to their dataset size. While the effectiveness of such an ap‑
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limited bandwidth, the sampling, of not just the data points for
computing but also the clients to conduct local trainings in
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end-user device may correspond to a specific local minimum
of empirical loss, spending a lot of time on the local training
may bear the risk of leading the parameters to diverge from
the global minimum. On the other hand, as the global commu‑
nication can take up a much longer period than the local com‑
puting, it is also desirable to reduce the communication
rounds. As such, how to strike a balance between local com‑
puting and global communication is important to the efficien‑
cy of federated learning. In response, it is suggested that the
sampling data size of each local training shall be adaptively
adjusted across the global learning period.
On top of the sampling of dataset for local training, in the

global aggregation stage, the edge server can only select a por‑
tion of users out of the total due to the limited bandwidth avail‑
able. Therefore, for the client, i.e., end-user device, selection
is also critical for the performance of federated learning. In
the context of mobile edge system, it has been shown that by
taking the channel quality into consideration and selecting the
end-user devices with the best channel qualities, the learning
efficiency can be effectively boosted up[12], as demonstrated in
Fig. 2. Besides, it is also important to take into account the
staleness and the significance of updates in the client selec‑
tion stage[17].
3.2 Model Compression
Although the processing power of mobile devices has

surged over the last decade by the hardware revolution, these
terminals are still subject to power and storage constraints,
making it problematic to deploy the federated learning toward
a deep and large scale. The difficulty mainly attributes to two
reasons. One is that a deep neural network often consists of an
abundant amount of activation units and interconnecting
links, and hence training such a model will inevitably incur
excessive energy consumption and, if not worse, memory occu‑
pation. The other is that, even the task of model training can
be accomplished at the user side, sending the resultant param‑
eters, which are generally high dimension vectors, to the serv‑
er requires not just high transmit power but also wide mobile
spectrum, which imposes very high communication cost. None‑
theless, this does not mean one has no hope to adopt the most
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fruitful achievement of machine learning, namely the deep
neural network, in the federated setup. Two powerful ap‑
proaches shed the light for overcoming the setbacks:
1) Architecture compression: This approach aims to save

the cost from the computing perspective of neural network via
pruning the connecting links and shrinking the size of the net‑
work[7]. The idea of link pruning stems from the fact that the
majority of links connecting different layers of neurons are
usually associated with very small weights. In order words, the
most effective component of a neural network is architectural‑
ly sparse. Therefore, it is feasible to mute a number of links
that have small weights—so as to skimp on the caching memo‑
ry—without affecting the overall accuracy. Moreover, despite
the unprecedented success brought by deep learning, there
are many applications in which using a small neural network
is able to achieve as good the performance as a large one. As
such, directly reducing the size of neural network at the user
side is also an appropriate choice to attain marked savings in
both energy and memory consumption.
2) Gradient compression: This approach tackles the issue

from the perspective of communication, by trading the estima‑
tion accuracy for better communication efficiency. In particu‑
lar, by noticing that practical applications of machine learning
often do not require very high accuracy, one can compress the
high-dimension trained gradients (which can include millions
of coefficients) into low dimension surrogates via different lev‑
els of quantization[18–19]. As a result, the packet size to encap‑
sulate the trained results can be significantly reduced, which
not only saves the radiated power at each device, but also fa‑
cilitates the decoding process at the server. It is noteworthy
that to balance the tradeoff between communication cost and
training accuracy, the level of quantization shall be adapted to

the particular location of a user. For instance, for users locat‑
ed in proximity to the edge node, they can conduct less quanti‑
zation and maintain the high accuracy of the results, while for
those located far away, they shall compress the trained results
more aggressively in order to succeed the communication and
engage in the training process.
A complete process of model compression is illustrated in

Fig. 3; we can see that it is feasible to remove a number of
links with small weights in the neural network. Moreover,
some neurons with only a few connections can also be muted.
The architecture compression can thus transform the learning
model into a sparse version, which can achieve almost the
same performance as the original neural network. Another part
is associated with the gradient compression, as the generated
forms of parameters are often continuous with long digits,
which are not suitable for the transmissions via wireless chan‑
nels. By using appropriate quantization methods, the data vol‑
ume of the update results can be significantly reduced, which
not only saves the power consumption of end-user devices, but
also facilitates the decoding procedure at the server side. To
mitigate the impact of quantization noise, sophisticated param‑
eter strategies are also necessary to minimize the model accu‑
racy loss. It is worthwhile to mention that due to potential fail‑
ure and retransmissions, the weights before and after the en‑
coding/decoding process may appear in different orders. None‑
theless, the server can still leverage the sequential number to
rearrange the weights before the global aggregation.
3.3 Advanced Communication and Networking Techniques
It has become a consensus that the communication efficien‑

cy is also one of the first-order concerns of federated learning,
particularly due to the fact that the training involves a vast

number of end-user device communications
through a limited wireless bandwidth. In that
respect, the technologies that enhance the spec‑
tral efficiency can be a critical solution to this
dilemma. Specifically, the development of new
technologies, e. g., the massive multiple input
multiple output (MIMO), full duplex or non-or‑
thogonal multiple access (NOMA), that are able
to support more channel accesses over the
same bandwidth will facilitate the deployment
of federated learning. For instance, by deploy‑
ing an excessive number of antennas at the
base station, multiple devices can be simulta‑
neously selected for parameter update in each
round of communication, which, as demonstrat‑
ed by a number of literatures, can help acceler‑
ate the convergence of federated learning algo‑
rithm. In a similar spirit, one can also leverage
the techniques from full duplex or NOMA to in‑
crease the number of updates collectible in
each global aggregation and hence speedup the▲Figure 2. Test accuracy of federated learning under different scheduling policies.
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training process. Besides, the ultra-reliable low latency com‑
munication (URLLC) that reduces the latency in the transmis‑
sion is also a good candidate for more real-time learning tasks.
A joint design that takes in the processing power and commu‑
nication capability from both sides will also enhance the oper‑
ation efficiency[15–16], [20–22].
Aside from communication efficiency, advanced networking

technology is also important for the federated learning. In gen‑
eral, the federated learning involves a central server that or‑
chestrates the training process and receives the contributions
of end-user devices. Being as a central player, the server also
represents a potential point of great failure[10]. As such, even
though large companies or organizations can take this role in
certain applications, a reliable and powerful central server
may not always be available in more collaborative learning
scenarios. Moreover, the server may even become a bottleneck
when the number of clients is very large. To that end, it is sug‑
gested to replace communication with the server by a more dis‑
tributed manner, namely peer-to-peer communication between
individual devices. For that reason, advanced device-to-de‑
vice (D2D) communication and interference management
schemes can be a dominant factor to the overall performance.
The self-organized networking techniques may have signifi‑
cant influence on the performance.
3.4 Privacy Preserving Technologies
Despite the raw data is not explicitly shared in the context

of federated learning, it is still possible for adversaries to re‑
trieve the original information to an approximation extend, es‑

pecially when the learning architecture and parameters are
not completely protected. In fact, due to the share nature of
wireless medium, the intermediate results such as parameter
update from an optimization algorithm are exposed during the
transmission, which may leak out private information. More‑
over, the existence of malevolent users may incur further secu‑
rity issues. Therefore, the design of federated learning into a
mobile edge system needs further protection of parameters as
well as investigations on the tradeoffs between the privacy se‑
curity-level and the system performance[23].
In the federated learning process, there exists several fatal

points that have privacy and security issues. We enumerate
them into the following categories[14].
3.4.1 Privacy Protection at User Side
In a federated learning algorithm, end users need to itera‑

tively upload their learning results to the edge server for glob‑
al aggregation, but these users may not trust the server since a
curious entity might take a look at the uploaded parameter to
infer the underlined information. To address this concern, the
end users can employ some privacy-preservation technologies
as follows.
1) Perturbation: The idea of perturbation is adding noise to

the uploaded parameters by clients. This line of work often us‑
es differential privacy[24] to obscure certain sensitive attributes
until the third party is not able to distinguish the individual,
thereby making the data impossible to be restored so as to pro‑
tect user privacy.
2) Dummy: The concept of dummy method stems from the

▲Figure 3. Basic flow of model compression in the federated learning system.
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location privacy protection. By sending dummy model parame‑
ters along with the true one to the server, the end users can
thus hide their contribution during training. Because of the ag‑
gregation processed at the server, the system performance can
still be guaranteed.
3.4.2 Privacy Protection at Server Side
After collecting the updated parameters from the end-user

devices, the server generally performs a weighted average to
produce a new model. However, when the server broadcasts
the aggregated parameters back to the users, the information
may leak out as there may exist eavesdroppers. Thus, protec‑
tions at the server side are also of significance.
1) Privacy-enabled aggregation: While the general purpose

of aggregation at the server side is to produce an improved
learning model, it is possible to scramble parameters before
aggregating or enlarging the set of collected clients, which can
prevent the adversaries or untrusted server from inspecting cli‑
ent information according to the aggregated parameters.
2) Secure multi-party computation (SMC): The central idea of

SMC is to use encryption to increase protection of user updates,
instead of only revealing the sum after a sufficient number of
updates. Specifically, SMC is a four-round interactive protocol
optionally enabled during the reporting phase of a given com‑
munication round. In each protocol round, the server gathers
messages from all devices, and then uses the set of device mes‑
sages to compute an independent response and return to each
device. The third round constitutes a commit phase, during
which devices upload cryptographically masked model updates
to the server. Finally, there is a finalization phase during which
devices reveal sufficient cryptographic secrets to allow the serv‑
er to unmask the aggregated model update.
3.4.3 Security Protection for Learning Framework
This aspect mainly considers the model stealing

attacks. In particular, any participant in the train‑
ing process may introduce hidden backdoor func‑
tionality into the global model, e.g., to ensure that
an image classifier assigns an attacker-chosen la‑
bel to images with certain features, or that a word
predictor completes certain sentences with an at‑
tacker. Consequently, there are also some protect‑
ing measures on the security design for this.
1) Homomorphic encryption: Homomorphic en‑

cryption aims to protect the parameter exchange
process via encryption mechanism, by means of en‑
coding the parameters before upload, and to trans‑
mit along with the public-private decoding keys for
the intended entity to decipher.
2) Back-door defender: This is a crucial issue

with the federated learning, as a malicious user
may act as an innocent user but injecting certain
parameters to pollute the global parameter. In con‑

sequence, other end-user devices may encounter severe mal‑
functioning and breakdown. Therefore, effective approaches
shall be developed to protect the users from these attacks.
In order to illustrate the impact of malicious attacks on the

performance of federated learning, we carry out an experiment
(Fig. 4[14]). Particularly, a convolutional neural network (CNN)
is set up with 30 end-user devices participated in, whereas the
malicious clients will upload fake values of parameters in
each communication round. It can be seen that the system per‑
formance can significantly curtail by malicious attacks, and
even enter a breakdown when there are too many malicious cli‑
ents participating in. As such, security is of significant to the
performance of federated learning.
While we have listed out several concerns on the implemen‑

tation of federated learning and the approaches to address
these issues, another important practical consideration for fed‑
erated learning is the composability of these methods. The
schemes of tackling each of these aspects shall not be devised
in isolation but need to be combined with each other. For in‑
stance, the efficient learning algorithm will need to be de‑
signed in consideration of learning efficiency as well as priva‑
cy preserving. Also, the model compression shall also be con‑
tended with privacy preserving.

4 Potential Applications and Future Trends
The future trends of mobile edge networks are to integrate

the supply and demand of services, being able to identify a
particular application to the network and respond promptly.
By employing the federated learning as an operational system
to the network architecture, a more intelligent network system
can be foreseen in the future[2].

▲Figure 4. Performance of federated learning with different malicious users.
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From the perspective of network architecture, the federat‑
ed learning can be integrated with content caching and edge
computing at the edge of a mobile network to reduce back‑
haul traffic loads. The general idea of caching at the network
edge is, when availed with a priori information of each indi‑
vidual preference distributions, to optimally place the de‑
sired content resource in the edge server so as to respond to
user request more swiftly. It thus simultaneously enhances the
energy efficiency, reduces the service latency, and relieves
the backhaul load. Despite such benefits, the gain from cach‑
ing alone is only pronounced when the users’preference dis‑
tributions are a priori and highly homogeneous, i.e., the users
tend to request the same contents. These two constraints, how‑
ever, are less likely to be satisfied in next-generation wire‑
less applications that possess a higher degree of heterogene‑
ity. On one hand, the users’preference distributions vary
drastically across time and space, thus making them extreme‑
ly difficult to be estimated and tracked, especially when the
number of mobile devices becomes large. On the other hand,
in practice, the users’preference distributions are highly di‑
verse due to the personality differences. Therefore, conven‑
tional model-base designs may not be suitable for such a task
because it is not capable of considering multitude of factors
that influence content popularity. Moreover, directly access‑
ing the privacy-sensitive user data for content differentiation
may not be possible in practice. Federated learning with the
premise of utilizing the locally trained models rather than di‑
rectly accessing the user data seems to be a match made in
heaven for content popularity prediction in proactive caching
in wireless networks. For instance, in augmented reality
(AR), federated learning can be used to learn certain popular
elements of the augmentations from the other users without
obtaining their privacy-sensitive data directly. This popular
information is then pre-fetched and stored locally to reduce
the latency.
From the perspective of resource management[6], the feder‑

ated learning paradigm can be used to improve the spectrum
sensing efficiency, and thus fl exible and adaptive sharing
and reuse strategies can be implemented to the communica‑
tion system. Apart from the radio access, the next-generation
network needs to deal with more volatile traf fi c conditions.
Along with the warp speed of progress of mobile applica‑
tions, different types of traf fi c, which may be bursty, long-
lasting, or with short packet size, coexist in the network. Con‑
sequently, centralized strategies, where information about
traffic pattern is gathered in the database of a server to infer
the circumstance, may not always be appropriate. Therefore,
the future of network traffic management will be dependent
on the decentralized training approaches such as the federat‑
ed learning. In this context, the on-device training can pro‑
vide more real-time reaction to schedule the traffic of the
most appropriate users. A specific instance of application is
the coexistence of dedicated short-range communication and

cellular-connected vehicle-to-everything in the same intelli‑
gent transport systems.
Finally, from the perspective of end user applications, fed‑

erated learning is expected to find many landing grounds.
For instance, by equipping sensors with federated learning
algorithms, one can construct a local Internet-of-Things (IoT)
network with intelligent monitoring system that can quickly
identify certain events and quickly respond to them. Hospi‑
tals, if endowed with a federated learning system for disease
monitoring, might increase the doctors’intention to share in‑
formation and prevent certain catastrophe in the early stage.
In the area of retailing, the federated learning system can le‑
verage data from a wild range of entities to increase the accu‑
racy of prediction on demands, and thus help providers/own‑
ers prepare supplies in a proper manner. In self-driving cars,
information related to traffic can be learned through vehicles
on the road using federated learning and stored in the road-
side units, which facilitates the efficiency of an autonomous
driving operation system.
Notably, a number of future studies immediately follow

from the above discussions. For instance, one can investi‑
gate how to adopt the federated learning to inference the dis‑
tribution of local demand so as to provide appropriate guid‑
ance on the allocation of caching contents on the network
edge that can reduce communication burden. In the context
of mobile resource management, how to leverage the federat‑
ed learning to extract the individual traffic distributions to
further benefit the allocation of global spectral resources is
also a concrete direction. To sum up, the integration of feder‑
ated learning and mobile edge network can provide a unified
platform to support a variety of applications, and we also ad‑
vocate for subsequent studies to build up the federated intel‑
ligence ecosystem.

5 Conclusions
In this paper, we provided an overview to the federated

learning system. Specifically, we elaborated the basic architec‑
ture of the federated learning model and the salient features,
in particular the non-i.i.d. and unbalanced dataset, unreliable
and limited communication resource, as well as privacy and
security issues, that distinguish it from the conventional ones.
Furthermore, we presented a number of practical approaches
that enable the implementation of federated learning into a mo‑
bile edge system. Among them, we emphasized the importance
from aspects of algorithm design, model compression and com‑
munication efficiency. Lastly, we presented several applica‑
tions that are most foreseeable to benefit from applying feder‑
ated learning. In summary, we believe that federated learning
is one of the building blocks in achieving an intelligent net‑
work and we expect that more interesting research issues will
appear in this area.

09



Special Topic Enabling Intelligence at Network Edge: An Overview of Federated Learning

Howard H. YANG, ZHAO Zhongyuan, Tony Q. S. QUEK

ZTE COMMUNICATIONS
June 2020 Vol. 18 No. 2

References
[1] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the
communication perspective [J]. IEEE communications surveys & tutorials,
2017, 19(4): 2322–2358. DOI: 10.1109/comst.2017.2745201

[2] LETAIEF K B, CHEN W, SHI Y M, et al. The roadmap to 6G: AI empowered
wireless networks [J]. IEEE communications magazine, 2019, 57(8): 84–90

[3] KONEČNÝ J, MCMAHAN H B, YU F, et al. Federated learning: strategies for
improving communication efficiency [EB/OL]. (2016‑10‑18) [2019‑09‑17]. https:
//arxiv.org/abs/1610.05492

[4] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication ‑ efficient
learning of deep networks from decentralized data [EB/OL]. (2016‑02‑17) [2019‑
09‑17]. https://arxiv.org/abs/1602.05629

[5] SMITH V, FORTE S, MA C X, et al. CoCoA: a general framework for communi‑
cation ‑ efficient distributed optimization [J]. Journal of machine learning re‑
search, 2018, 18(230): 1–49

[6] PARK J, SAMARAKOON S, BENNIS M, et al. Wireless network intelligence at
the edge [J]. Proceedings of the IEEE, 2019, 107(11): 2204– 2239. DOI:
10.1109/jproc.2019.2941458

[7] ZHAO Z Y, FENG C Y, YANG H H, et al. Federated‑learning‑enabled intelli‑
gent fog radio access networks: fundamental theory, key techniques, and future
trends [J]. IEEE wireless communications, 2020, 27(2): 22–28. DOI: 10.1109/
mwc.001.1900370

[8] ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artifi‑
cial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107
(8): 1738–1762. DOI: 10.1109/jproc.2019.2918951

[9] ZHU G X, LIU D Z, DU Y Q, et al. Toward an intelligent edge: wireless commu‑
nication meets machine learning [J]. IEEE communications magazine, 2020, 58
(1): 19–25. DOI: 10.1109/mcom.001.1900103

[10] KAIROUZ P, MCMAHAN H B, AVENTET B, et al. Advances and open prob‑
lems in federated learning [EB/OL]. (2019‑12‑10) [2019‑09‑17]. https://arxiv.
org/abs/1912.04977

[11] WANG S Q, TUOR T, SALONIDIS T, et al. Adaptive federated learning in re‑
source constrained edge computing systems [J]. IEEE journal on selected areas
in communications, 2019, 37(6): 1205–1221

[12] YANG H H, LIU Z, QUEK T Q S, et al. Scheduling policies for federated
learning in wireless networks [J]. IEEE transactions on communications, 2020,
68(1): 317–333

[13] DAI W, ZHOU Y, DONG N Qet al. Toward understanding the impact of stale‑
ness in distributed machine learning [C]//International Conference for Learn‑
ing Representations (ICLR). New Orleans, Louisiana, 2019: 1–6

[14] MA C, LI J, DING M, et al. On safeguarding privacy and security in the frame‑
work of federated learning [J]. IEEE network, 2020: 1– 7. DOI: 10.1109/
mnet.001.1900506

[15] TRAN N H, BAO W, ZOMAYA A, et al. Federated learning over wireless net‑
works: optimization model design and analysis [C]//IEEE Conference on Com‑
puter Communications (INFOCOM). Paris, France, 2019. DOI: 10.1109/info‑
com.2019.8737464

[16] CHEN M Z, YANG Z H, SAAD W, et al. A joint learning and communications
framework for federated learning over wireless networks [EB/OL]. [2019 ‑09 ‑
17]. https://arxiv.org/pdf/1909.07972

[17] YANG H H, ARAFA A, QUEK T Q S, et al. Age‑based scheduling policy for
federated learning in mobile edge networks [C]//IEEE International Confer‑
ence on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain,
2020. DOI: 10.1109/icassp40776.2020.9053740

[18] DU Y Q, YANG S, HUANG K B. High‑dimensional stochastic gradient quanti‑
zation for communication‑efficient edge learning [J]. IEEE transactions on sig‑
nal processing, 2020, 68: 2128–2142.

[19] ZHU G X, DU Y Q, GÜNDÜZ D, et al. One‑bit over‑ the‑air aggregation for
communication‑efficient federated edge learning: design and convergence anal‑
ysis [EB/OL]. [2020‑01‑16]. https://arxiv.org/pdf/2001.05713

[20] ZHU G X, WANG Y, HUANG K B. Broadband analog aggregation for low‑la‑

tency federated edge learning [J]. IEEE transactions on wireless communica‑
tions, 2020, 19(1): 491–506. DOI: 10.1109/twc.2019.2946245

[21] YANG K, JIANG T, SHI Y M, et al. Federated learning via over‑the‑air compu‑
tation [J]. IEEE transactions on wireless communications, 2020, 19(3): 2022–
2035. DOI: 10.1109/twc.2019.2961673

[22] AMIRI M M, GUNDUZ D. Machine learning at the wireless edge: distributed
stochastic gradient descent over‑ the‑air [J]. IEEE transactions on signal pro‑
cessing, 2020, 68: 2155–2169

[23] PHONG L T, AONO Y, HAYASHI T, et al. Privacy ‑preserving deep learning
via additively homomorphic encryption [J]. IEEE transactions on information fo‑
rensics and security, 2018, 13(5): 1333–1345. DOI: 10.1109/tifs.2017.2787987

[24] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in
private data analysis [M]//Theory of cryptography. Berlin, Heidelberg, Germany:
Springer Berlin Heidelberg, 2006: 265–284. DOI: 10.1007/11681878_14

Biographies

Howard H. YANG received the B. Sc. degree in communication engineering
from Harbin Institute of Technology (HIT), China, in 2012, the M.Sc. degree in
electronic engineering from Hong Kong University of Science and Technology
(HKUST), China, in 2013, and the Ph.D. degree in electronic engineering from
Singapore University of Technology and Design (SUTD), Singapore, in 2017.
His background also features appointments at the University of Texas at Austin,
USA and Princeton University, USA. His research interests cover various as‑
pects of wireless communications, networking and signal processing, currently
focusing on the modeling of modern wireless networks, high dimensional statis‑
tics, graph signal processing and machine learning. He received the IEEE WC‑
SP 10-Year Anniversary Excellent Paper Award in 2019 and the IEEE WCSP
Best Paper Award in 2014.

ZHAO Zhongyuan (zyzhao@bupt. edu. cn）received the B. S. and Ph. D. de‑
grees from Beijing University of Posts and Telecommunications (BUPT), China,
in 2009 and 2014, respectively. He is currently an associate professor with
BUPT. His research interests include mobile cloud and fog computing and net‑
work edge intelligence. Dr. ZHAO serves as an editor of IEEE Communications
Letters (since 2016). He was the recipient of the Best Paper Awards at the IEEE
CIT 2014 and WASA 2015. He was also the recipient of Exemplary Reviewers-
2017 of IEEE Transactions on Communications, and Exemplary Editor Award
2017 and 2018 of IEEE Communication Letters.

Tony Q. S. QUEK received the B.E. and M.E. degrees in electrical and elec‑
tronics engineering from Tokyo Institute of Technology, Japan. At MIT, USA, he
earned the Ph.D. in electrical engineering and computer science. Currently, he
is the Cheng Tsang Man Chair Professor with Singapore University of Technolo‑
gy and Design (SUTD). He also serves as the acting head of Information System
Technology and Design (ISTD) Pillar, sector lead for SUTD AI Program, and the
deputy director of SUTD-ZJU IDEA. He is currently serving as an editor for the
IEEE Transactions on Wireless Communications, the chair of IEEE VTS Techni‑
cal Committee on Deep Learning for Wireless Communications as well as an
elected member of the IEEE Signal Processing Society SPCOM Technical Com‑
mittee. He received the 2008 Philip Yeo Prize for Outstanding Achievement in
Research, the 2012 IEEE William R. Bennett Prize, the 2016 IEEE Signal Pro‑
cessing Society Young Author Best Paper Award, 2017 CTTC Early Achieve‑
ment Award, 2017 IEEE ComSoc AP Outstanding Paper Award, and 2016-
2019 Clarivate Analytics Highly Cited Researcher. He is a Distinguished Lec‑
turer of the IEEE Communications Society and a Fellow of IEEE.

10



ZTE COMMUNICATIONS
June 2020 Vol. 18 No. 2

Scheduling Policies for FederatedScheduling Policies for Federated
Learning in Wireless NetworksLearning in Wireless Networks::

An OverviewAn Overview

SHI Wenqi, SUN Yuxuan, HUANG Xiufeng, ZHOU Sheng, NIU Zhisheng

(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)

Abstract: Due to the increasing need for massive data analysis and machine learning model
training at the network edge, as well as the rising concerns about data privacy, a new distrib‑
uted training framework called federated learning (FL) has emerged and attracted much at‑
tention from both academia and industry. In FL, participating devices iteratively update the
local models based on their own data and contribute to the global training by uploading mod‑
el updates until the training converges. Therefore, the computation capabilities of mobile de‑
vices can be utilized and the data privacy can be preserved. However, deploying FL in re‑
source-constrained wireless networks encounters several challenges, including the limited
energy of mobile devices, weak onboard computing capability, and scarce wireless band‑
width. To address these challenges, recent solutions have been proposed to maximize the
convergence rate or minimize the energy consumption under heterogeneous constraints. In
this overview, we first introduce the backgrounds and fundamentals of FL. Then, the key
challenges in deploying FL in wireless networks are discussed, and several existing solu‑
tions are reviewed. Finally, we highlight the open issues and future research directions in
FL scheduling.
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1 Introduction

With the deployment of deep learning algorithms on
Internet-of-Things (IoT) devices at the network
edge[1] and the explosive growth of mobile data[2],
technologies like edge learning[3] emerge and focus

on running deep learning algorithms at the wireless access net‑

work. To ensure the performance of deep learning in practical
scenarios, such as auto-driving and user preference predic‑
tion, efficient training of the learning model with the data gen‑
erated at the network edge is necessary. However, transmis‑
sion of massive training data from edge devices to servers is
challenging due to limited wireless communication resources,
as well as the privacy requirement, which makes it difficult to
exploit centralized training for updating the learning model.
To solve this problem, federated learning (FL) [4] is proposed,
which exchanges learning models rather than raw data be‑
tween edge devices and edge servers by deploying the training
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algorithms on edge devices. Since mobile devices will con‑
sume their limited computation and communication resources
when participating in FL, mobile devices may not be willing to
contribute. Therefore, some incentives have been introduced,
such as the access to the high-quality models trained by FL,
as well as some payment after participating in the FL training.
In a typical FL system, there is an edge server and several

edge devices, which collaboratively train a learning model.
The architecture of FL system is shown in Fig. 1. In each it‑
eration (also known as communication round), the edge serv‑
er aggregates the local models from edge devices in order to
update the global model. Then the edge server broadcasts
the newest model to edge devices for model training in the
next round. After receiving the newest model, each edge de‑
vice improves this model based on its own data to obtain a
new local model. This process goes on until the global model
converges. When aggregating the local model, each device
can send the gradient of the local model back to the edge
server as well as the whole local model. Compared with send‑
ing the whole model, sending gradients can reduce the infor‑
mation loss under the constraint of signal-to-noise ratio
(SNR) and thus perform better than sending the whole model
in analog aggregation (refer to Section 2.2 for details), be‑
cause the norm of the gradient is smaller than the model gen‑
erally. Except for analog aggregation, aggregating gradients
and models are equivalent from the scheduling point of
view, thus we consider that edge devices upload their updat‑
ed local models rather than model gradients in the following
parts of this paper unless otherwise specified. Fig. 1 shows
two different model aggregation schemes, analog aggregation

and digital aggregation. In the analog aggregation scheme,
edge devices send local models to the sever simultaneously
and the aggregation is performed in the wireless channel ac‑
cording to the waveform-superposition property. In this way,
the system can reduce the transmission latency since the
transmission latency will not scale linearly with the number
of devices. However, stringent synchronization between de‑
vices is needed during the model uploading, and the aggre‑
gation is vulnerable under the attack of third-party devices.
In the digital aggregation, the model can be encoded for
compression, encryption, and other purposes, which pre‑
vents the model from being aggregated in the wireless chan‑
nel and is not suitable for analog aggregation. Although the
digital aggregation is more convenient than the analog aggre‑
gation, long transmission latency will be introduced when
the number of devices is large.
By distributing model training to the edge devices, FL miti‑

gates the problem of privacy leaks caused by sending the raw
training data from devices to the server. With the advantage of
protecting data privacy, FL has been applied in some data sen‑
sitive scenarios, such as health artificial intelligence (AI) [5].
However, some studies show that the learning model can still
result in privacy leaks[6]. To solve this problem, differential pri‑
vacy-based methods[7–8], collaborative training-based meth‑
ods[9–10] and encryption-based methods[11–12] are proposed,
which can protect the privacy of parameters of learning model.
Another advantage of FL is saving the communication cost

of transmitting a large amount of training data. However, FL
meets some new challenges. The training of the learning mod‑
el is distributed to edge devices that may have non-indepen‑

Model aggregation

Edge device

Send local model Mi

Broadcast global model M

Training dataset Edge server

M= 1
N∑i = 1

N Mi

…

Train model

Analog aggregation

Edge device

Train model

Training dataset

Send local model Mi

Broadcast global model M
Edge server

Model aggregation
M= 1

N∑i = 1
N Mi

…

Digital aggregation

▲Figure 1. Architecture of federated learning system.

12



Scheduling Policies for Federated Learning in Wireless Networks: An Overview Special Topic

SHI Wenqi, SUN Yuxuan, HUANG Xiufeng, ZHOU Sheng, NIU Zhisheng

ZTE COMMUNICATIONS
June 2020 Vol. 18 No. 2

dent and identically distributed (non-i.i.d.) training dataset[13],
which results in bad performance (such as low accuracy) of
the learning model. Also, due to the different computation ca‑
pabilities of devices, the FL system should consider the syn‑
chronization of the model updates from devices, and to ad‑
dress the straggler issues. In practical scenarios, the wireless
resources of the FL system are usually limited, and thus the
edge server may not be able to receive the local models from
all the edge devices. To solve this problem, one direction of re‑
search is reducing the cost of transmitting the local model for
every edge device, including model compression by quantiza‑
tion[14] and only updating the model for the edge server when
the models have significant improvement[15]. Another research
direction is the scheduling of devices, where the edge server
needs to schedule a subset of edge devices to send the model
update. The device scheduling can reduce the communication
cost but may result in slower convergence rate of the model
training. Given the constrained wireless resources, scheduling
policies for FL are proposed to maximize the convergence
rate[16] of the learning model or to minimize the energy con‑
sumption[17] of the whole system.
There are some existing surveys on FL and edge machine

learning[18–21]. In Ref. [18], the authors provide a general over‑
view on FL and its challenges in implementation, but do not
consider specific issues of deploying FL in wireless networks.
The architecture of deep learning and the process of training
and inference in the context of edge computing are studied in
Ref. [19]. However, the authors of Ref. [19] place more empha‑
sis on optimizing the FL algorithm itself rather than the sched‑
uling policies for FL. The authors of Ref. [20] focus on commu‑
nication-efficient FL in mobile edge computing platforms,
rather than the scheduling policies that maximize the conver‑
gence rate of FL under resource constraints. In Ref. [21], the
authors discuss potential FL applications in mobile edge com‑
puting, the resource allocation problems and data privacy
problems in FL. Nevertheless, the authors of Ref. [21] have
not provided an in-depth survey on the scheduling policies ac‑
cording to the model aggregation technique of FL in wireless
networks, which can greatly affect the design of the schedul‑
ing policies.
In summary, none of the existing work has studied the FL in

wireless networks from a scheduling perspective. Therefore,
we provide a taxonomy on the aggregation methods used in
FL, and discuss scheduling policies that can optimize the
training performance under resource constraints for both digi‑
tal‑aggregation-based and analog ⁃ aggregation ⁃based FL. The
rest of this paper is organized as follows. In Section 2, we first
introduce FL systems with analog⁃transmission⁃based aggrega‑
tion, and then several scheduling policies designed for the an‑
alog⁃aggregation⁃based FL are discussed. The scheduling poli‑
cies designed for the digital ⁃aggregation ⁃based FL are intro‑
duced in Section 3. Section 4 gives the conclusion of this pa‑
per and the future directions of federated learning.

2 Analog Aggregation
In a conventional wireless system, a base station needs to de‑

code (deliver) the individual information from (to) each user.
Accordingly, digital communications and orthogonal multiple
access techniques have been developed and widely used. How‑
ever, a key difference in the FL system is that, while aggregat‑
ing the local models, the server is not interested in the individu‑
al parameters of edge devices, but their average. Note that the
waveform-superposition property adds all the signals in a wire‑
less multiple access channel, using analog transmission for
global model aggregation, which is a more communication-effi‑
cient strategy[22–27]. Edge devices synchronize with each other
and transmit their local models concurrently. Then the wireless
channel carries out the summation over the air, and the server
receives the desired values, i.e., the average of the local mod‑
els, after dividing the received signal by the number of devices
involved. Analog aggregation is also called over-the-air compu‑
tation and it can further support more flexible functions such as
weighted summation via power allocation, so that the server can
receive the weighted average of local parameters. Some recent
papers are summarized in Table 1.
2.1 Device Scheduling for Analog Aggregation
A key issue of analog aggregation is how to schedule devic‑

es based on their channel states and power constraints. In the
t-th round, each device n observes the channel state hn,t, andthen aligns the transmission power pn,t, to ensure that the serv‑er can receive its desired value. The power alignment equa‑
tion is given by

pn,t =
ì

í

î

ïï
ïï

at
hn,t
, || hn,t

2 > hth
0, otherwise

, (1)

Technology

Power alignment

Sparsification and
error accumulation

Data redundancy

Highlights

· Fundamental tradeoffs under Rayleigh fad‑
ing channel

· Online energy-aware dynamic device sched‑
uling policy

· Device scheduling for multi-antenna ana‑
log aggregation

· Gradient sparsification and error accu‑
mulation

· Device scheduling policy under average
power constraint

· Introducing data redundancy to deal with
non-independent and identically distribut‑
ed (non-i.i.d.) data

Related Works

Ref. [23]

Ref. [24]

Ref. [25]

Refs. [26–27]

Ref. [24]

▼Table 1. Summary of recent papers on analog aggregation
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where at is a power scalar that determines the received SNR atthe server side, as well as the energy consumption at the de‑
vice side. Parameter hth is called the power-truncation thresh‑old, i.e., a device can be scheduled only if its current channel
state is better than the threshold. Parameters at and hth shouldbe carefully selected in order to optimize the training perfor‑
mance for FL.
In Ref. [23], two fundamental tradeoffs, namely the SNR-

truncation tradeoff and reliability-quantity tradeoff, are rigor‑
ously characterized. Under the assumption of Rayleigh fad‑
ing, the relation between the received SNR and power-trunca‑
tion threshold is studied. The SNR-truncation tradeoff is
then revealed: increasing hth can improve the received SNRat the server, at the cost of truncating more devices which
cannot satisfy the channel quality requirement. Moreover,
the received SNR is limited by the furthest device with larg‑
est path-loss. Followed by this observation, a cell-interior
scheduling policy is proposed, where only the devices within
a distance threshold rth can be scheduled in each communica‑tion round. Parameter rth balances the tradeoff between com‑munication reliability and data quantity: larger rth enablesthe server to schedule more devices and exploit more data for
training, while it degrades the received SNR and leads to a
noisier version of the average of local models. An alternating
scheduling policy is proposed, where the server alternates be‑
tween the cell-interior scheduling policy and all-included
scheduling policy. Finally, theoretical analysis indicates that
the communication latency of analog aggregation can be re‑
duced by O (N/log2N) compared to its digital counterpart,
where N is the number of devices.
Removing the Rayleigh fading constraint, an online ener‑

gy-aware dynamic device scheduling policy is proposed in
Ref. [24]. Since the explicit mapping between the loss func‑
tion of the FL task and the set of devices scheduled in each
round remains unknown, an alternative objective function that
maximizes the average number of scheduled devices is consid‑
ered. The long-term average energy constraint (which is equiv‑
alent to power constraint) of each device is transformed to a
virtual energy deficit queue based on Lyapunov optimization.
In each communication round, each device acquires the cur‑
rent channel state hn,t and decides whether to update its localmodel individually by considering the value of the virtual
queue and the required energy consumption. The proposed de‑
vice scheduling policy works in an online fashion, without re‑
quiring any information of the channel states in the future. It
also works well if the channel states are non-i.i.d across time.
A multi-antenna analog aggregation FL system is consid‑

ered in Ref. [25], where the number of scheduled devices is
maximized under the mean-square-error (MSE) constraint. Sat‑
isfying the MSE requirement can limit the transmission error,
and thus it guarantees the accuracy of the aggregated learning
model parameters. In order to improve the efficiency of the de‑
vice scheduling policy, a sparse and low-rank approach is in‑

troduced.
2.2 Sparsification and Error Accumulation
The neural networks to be trained for FL tasks usually have

huge dimensions, with thousands to millions of parameters.
However, the wireless bandwidth is in general limited, and
thus the communication latency scales up with the dimension
of local models. To further reduce the communication cost for
model aggregation, gradient sparsification techniques are in‑
troduced in Refs. [26] and [27]. Note that transmitting local
gradients rather than local models can improve the power effi‑
ciency of analog aggregation, because all the power is used to
transmit the information unknown to the server. Therefore, all
the devices update their gradients rather than the up-to-date
models.
To reduce the dimension of local gradients, a random linear

projection is first employed, inspired by compressive sensing.
In particular, each local model is multiplied by a random ma‑
trix, where each entry follows Gaussian distribution. The ran‑
dom matrix is shared by the devices and the server. Then each
device only retains k entries with largest absolute values,
which can be regarded as the most important parameters of
the gradients, while setting all the other gradients to zero.
Here, k is a design parameter which balances the tradeoff be‑
tween communication reliability and distortion: with smaller k,
each entry can be transmitted in a higher power, so that the
SNR at the server is higher. However, more information of the
local gradient is lost due to the sparsification, degrading the
accuracy of the neural network as well as the convergence rate
of training.
Instead of discarding all the lost information due to sparsifi‑

cation, a more efficient way is to do error accumulation at the
device side. In particular, in each round, the device calculates
the differences between the sparse gradients and the original
gradients, and adds these differences to the gradients obtained
in the next round before employing sparsification. In this way,
the error due to sparsification is accumulated by workers, and
the training accuracy can be improved according to the experi‑
mental results.
Device scheduling policies are also designed for analog ag‑

gregation with gradient sparsification and error accumulation.
In Ref. [26], additive white Gaussian noise (AWGN) channel
is considered, and both equal and unequal power allocation
policies are designed. The unequal policy puts more power to
the initial rounds, motivated by the fact that the variance of
the gradients diminishes across time. Ref. [27] further consid‑
ers Rayleigh fading channels. Extensive experiments show
that compared to the digital aggregation, analog aggregation
can improve the convergence rate of training, particularly at
low bandwidth and stringent power regimes.
2.3 Non-IID Training Data
The non-i. i. d. data, i. e., the different distributions of data
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samples at devices, is also a major bottleneck for FL. It is
shown in Ref. [28] that high non-i.i.d. data reduces the accura‑
cy of the neural network by 11% under the Modified National
Institute of Standards and Technology (MNIST) dataset, and
by over 50% under CIFAR-10 dataset. The non-i. i.d. level of
data refers to the difference of local data distribution and glob‑
al data distribution, which can be characterized by the earth
mover’s distance, a measurement of the distance between two
distributions. To reduce the non-i. i.d. level and thus improve
the training accuracy, the server collects some sharable data
samples from the devices and disseminates the data to the
whole FL system.
Non-i.i.d. data is still a key issue in analog aggregation FL

systems. In Ref. [24], data redundancy is introduced to reduce
the non-i.i.d. level of data samples, which can be obtained by
exchanging data between a group of devices or collecting data
with overlapped coverage in IoT networks. Fig. 2 illustrates
the analog aggregation for FL systems with data redundancy.
Workers 1 and 2, 3 and 4 exchange their local datasets with
each other, and the redundancy level of the system, i.e., how
many devices store each data sample, is two. The experiment
results with non-i.i.d. data using MNIST dataset are shown in
Fig. 3, where -E is the average energy constraint (in J),“dyn”
is the proposed online energy-aware dynamic device schedul‑
ing policy, and“myopic”is a benchmark policy where devic‑
es can use as much energy as -E in each round. Parameter r de‑
notes the redundancy level, and -E = ∞ refers to the case
where devices have infinite energy, so that all of them can be
scheduled in each round. We can see that the proposed dy‑

namic device scheduling policy outperforms the myopic
benchmark, and data redundancy can improve the training ac‑
curacy significantly. In particular, when -E = 5, increasing re‑
dundancy from r = 1 to r = 2 can achieve an improvement of
10% in training accuracy.

3 Digital Aggregation
In many other studies, the FL systems are deployed in exist‑

ing wireless networks (e. g., cellular network or Wi-Fi net‑
work), where orthogonal-access schemes such as orthogonal
frequency division multiple access (OFDMA) are used for
model aggregation. To distinguish them from analog aggrega‑
tion approaches, we categorize these approaches into digital
aggregation. In digital aggregation, the participating devices
need to share the scarce wireless bandwidth to upload the up‑
dated local models, making the global aggregation very time-
consuming. Further, the limited energy and computing re‑
sources of participating devices make it more challenging to
deploy FL in real wireless networks. Therefore, various sched‑
uling policies have been proposed to address these challenges.
These scheduling policies can be divided into the following
three categories: aggregation frequency adaptation, local accu‑
racy tuning, and device scheduling. Table 2 summarizes the
highlights of recent papers on digital aggregation.
3.1 Aggregation Frequency Adaptation
In FL, the local update consumes computing resources of

devices and the global aggregation consumes the bandwidth
resources. Since FL iterates between local updates and global

▲Figure 2. Analog aggregation for federated learning with data redundancy.
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aggregations, the frequency of global aggregations (i.e., the re‑
ciprocal of the number of local updates between two adjacent
global aggregations) should be carefully tuned to balance the
consumption of computing and bandwidth resources. In Ref.
[29], the authors first analyze the convergence bound of FL
with respect to (w.r.t) the number of local updates between two
adjacent global aggregations. The bound shows that a higher
global aggregation frequency can speed up the FL conver‑
gence, while the drawback is consuming more wireless re‑
sources for global aggregation. Then a scheduling policy that
adapts the frequency of global aggregations in real time to
maximize the convergence rate of FL is derived based on the
derived convergence bound. The proposed scheduling policy
is applicable to non-i.i.d. data distributions and heterogeneous
resource constraints of participating devices. Their simulation

results show that adaptively adjusting the global
aggregation frequency can greatly improve the con‑
vergence rate of FL, compared with fixed global
aggregation frequency counterparts. Further, the
authors of Ref. [30] extend the scheduling policy
proposed by Ref. [29] into a client-edge-cloud hi‑
erarchical system. In the client-edge-cloud hierar‑
chical FL system, each edge server is allowed to
perform partial aggregation that aggregates the up‑
dated local models of the edge devices within its
communication range. While for the cloud-based
global aggregation, the partially aggregated mod‑
els at edge servers are aggregated through the
backbone network by the centralized cloud server.
The aggregation frequencies of two levels of model
aggregation (i. e., edge-based partial aggregation
and cloud-based global aggregation) are optimized
to minimize the global loss function value under a
constrained number of total local updates.
3.2 Local Accuracy Tuning
The tradeoff between computation and commu‑

nication is balanced through optimizing the aggregation fre‑
quency in aggregation frequency adaptation. Alternatively,
some researchers balance this tradeoff via tuning the accuracy
level of the local models. In general, increasing local model
accuracy requires more computation, while fewer communica‑
tion rounds are needed for more accurate local models to
achieve a fixed global accuracy.
In Ref. [31], the authors refer to an upper bound for the

number of communication rounds w.r.t. global accuracy and lo‑
cal accuracy, which is applied to strong convex loss functions
for designing the scheduling policy. They adopt time division
multiple access (TDMA) for media access control (MAC) layer
and dynamic voltage and frequency scaling (DVFS) for devic‑
es’CPUs. Thus the frequencies of devices’CPUs, the com‑
munication latency of local model uploading and the local ac‑
curacy are jointly optimized to minimize the weighted sum of
training latency and device energy consumption. As a result,
both the computation-communication tradeoff and the device
energy consumption-FL training latency tradeoff can be char‑
acterized. The overall non-convex optimization problem is de‑
coupled into convex sub-problems, and the closed-form opti‑
mal solutions to the sub-problems are illustrated by extensive
numerical results. While in Ref. [32], the authors consider a
similar FL system but with frequency division multiple access
(FDMA). Therefore, the bandwidth allocated to each devices
should be jointly optimized with the communication latency,
the CPU frequency and the local accuracy. Due to the compli‑
cated nature of the problem, the authors of Ref. [32] proposed
an iterative algorithm. Their simulation results show that up to
25.6% latency reduction and 37.6% energy reduction can be
achieved compared to conventional FL.

Technology

Aggregation fre‑
quency adaption

Local accuracy
tuning

Device scheduling

Highlights

· Global aggregation frequency adaption un‑
der given resource constraints.

· Extending Ref. [29] into a client-edge-
cloud hierarchical FL system

· Tuning local model accuracy to balance
the tradeoff between local update and
global aggregation

· Energy- and convergence-aware resource
allocation

· Energy- and convergence-aware joint
scheduling and resource allocation

·Consider unreliable wireless transmissions
· Maximize the convergence rate with re‑
spect to time

Related Works

Ref. [29]

Ref. [30]

Refs. [31–32]

Ref. [17]

Refs. [35–36]

Refs. [16] and [37]

▼Table 2. Summary of recent papers on digital aggregation

▲Figure 3. Training accuracy of dynamic device scheduling policy in Ref. [24] under in⁃
dependent and identically distributed (i.i.d.) and non-i.i.d. data.
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3.3 Device Scheduling
Due to the limited wireless resources and stringent train‑

ing delay budget, only a portion of devices are allowed to up‑
load local models in each round in real FL systems[33]. Thus
the device scheduling policy is critical to FL and will affect
the convergence performance in the following two aspects.
On one hand, the server needs to wait until all scheduled de‑
vices have finished updating and uploading their local mod‑
els in each round. Therefore, scheduling more devices per
round can significantly slow down the model aggregation, be‑
cause of the reduced bandwidth allocated to each device and
the higher probability of having a straggler device (i. e., the
device with limited computation capabilities or bad wireless
channel). On the other hand, scheduling more devices per
round increases the convergence rate (w. r. t. the number of
rounds) [34] and can potentially reduce the number of rounds
required to attain the same accuracy. To this end, the sched‑
uling policy should carefully balance the latency and learn‑
ing efficiency per round.
Recently, device scheduling problems in FL have received

many research efforts. The authors of Ref. [17] consider a joint
scheduling and radio resource allocation problem for FL. In
Ref. [17], OFDMA is used for model uploading, where band‑
width allocation can be optimized to reduce the energy con‑
sumption. To further characterize the convergence perfor‑
mance, they assume that the convergence rate linearly increas‑
es with the number of scheduled devices. Therefore, the opti‑
mization objective is set to be the weighted sum of the energy
consumption and the number of scheduled devices with a pre-
determined tradeoff factor, so as to balance the energy con‑
sumption and convergence rate. After relaxing the integer con‑
straint for the device scheduling as the real-value constraint,
the optimization problem is solved by iteratively solving the
bandwidth allocation and scheduling sub-problems.
Furthermore, some recent studies consider the unreliable

wireless transmissions. In Ref. [35], the authors propose to de‑
ploy FL in cellular networks where inter-cell interference can
affect the transmissions of model aggregation. For the trans‑
mission quality, only if the received signal-to-interference-
plus-noise ratio (SINR) exceeds a threshold, the received local
models can be successfully decoded. The convergence rate of
FL under such settings, accounting for effects from both sched‑
uling and interference, is then derived. Furthermore, three ba‑
sic scheduling policies, namely the random scheduling, round-
robin and proportional fair, are compared in terms of FL con‑
vergence rate. Their results show that the proportional fair pol‑
icy performs better under a high SINR threshold, while round-
robin is suitable for a low SINR threshold. However, the au‑
thors of Ref. [36] consider OFDMA for model aggregation and
use the packet error rate to capture the unreliability of the
wireless transmission. In Ref. [36], a convergence rate bound
w.r.t. packet errors is first derived, given the transmitting pow‑
er of devices, OFDMA resource block allocation and device

scheduling policy. Then, the authors formulate an optimization
problem to maximize the convergence rate by jointly optimiz‑
ing the transmitting power allocation, resource block alloca‑
tion and scheduling policy. The optimization problem is
solved in a two-step manner: first obtaining the optimal trans‑
mitting power of each device given the device scheduling and
resource block allocation; then using the Hungarian algorithm
to find the optimal device scheduling and resource block allo‑
cation. As shown by simulations, the proposed method can re‑
duce up to 10% and 16% loss function value, compared to: 1)
optimal device scheduling with random resource allocation; 2)
random device scheduling and random resource allocation, re‑
spectively.
However, the convergence rate w.r.t. time, which is critical

for real-world FL applications, has not been addressed by
aforementioned works. To accelerate the FL training, the au‑
thors of Ref. [37] propose to maximize the number of sched‑
uled devices in a given time budget for each round, while the
stragglers are discarded to avoid slowing down the model ag‑
gregation. The proposed greedy scheduling policy iteratively
schedules the device that consumes the least time in model
updating and uploading, until reaching the time budget. Al‑
though the proposed scheduling policy is simple, their experi‑
ments show that it is efficient and applicable to both non-i.i.d.
data distributions and heterogeneous devices.
Nevertheless, the time budget is chosen through experi‑

ments and can hardly be adjusted under highly-dynamic FL
systems. To overcome this drawback, Ref. [16] proposes a
joint scheduling and resource allocation policy with fast con‑
vergence for FL. Specifically, a latency-optimal bandwidth al‑
location policy for local model updating and uploading is first
derived. Then given the set of scheduled devices and the laten‑
cy-optimal bandwidth allocation, based on a known upper
bound of the number of required rounds to attain a fixed glob‑
al accuracy, an upper bound of the time required to attain a
fixed global accuracy is derived. Finally, an iterative schedul‑
ing policy is proposed that iteratively schedules the device
that minimizes the approximate time upper bound until the ap‑
proximate upper bound begins to increase (i. e., scheduling
more devices makes the convergence time longer). Fig. 4
shows the highest achievable accuracy within a total training
time budge that equals to 300 seconds under different sched‑
uling policies, including fast converge scheduling policy[16],
random scheduling policy with empirically optimal number of
scheduled devices (random-opt), client selection policy[37], and
proportional fair policy[35]. The experiments are conducted us‑
ing non-i. i. d. distributed MNIST dataset, and it is assumed
that all devices are randomly located in a cell. With different
cell radius, the simulation results show that the fast converge
scheduling policy always outperforms other scheduling poli‑
cies in terms of the convergence rate w.r.t. time, and is appli‑
cable to non-i.i.d. data.
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4 Conclusions and Future Directions
This paper presents a brief introduction of FL in wireless

networks and in particular an overview on the scheduling poli‑
cies for wireless FL. Firstly, the motivation of deploying FL in
wireless networks and the fundamentals of FL systems are in‑
troduced. Then, a series of works in the FL systems with ana‑
log aggregation are discussed, including device scheduling,
model sparsification and data redundancy. Afterwards, we pro‑
vide an overview on another series of works in FL systems
with digital aggregation, including aggregation frequency adap‑
tation, local accuracy tuning and device scheduling. However,
apart from the aforementioned works, there are still some chal‑
lenges and future research directions in deploying FL in wire‑
less networks:
1) Delayed CSI: In the existing works on analog aggrega‑

tion, power alignment is based on perfect CSIs of devices.
While in practice, the server only has delayed CSIs of devices,
and how to align the transmission power of devices to mini‑
mize the distortion of the aggregated model under delayed CSI
remains an open problem. To address this challenge, using the
recurrent neural network to predict instantaneous CSI accord‑
ing to the historical CSI estimations may be a future direction.
2) Non-i.i.d. data distribution: Since the data distributions

of different devices are usually non-i. i. d. in practical wire‑
less FL applications, it is crucial to design non-i.i.d. data dis‑
tribution-aware scheduling policies. Although the non-i. i. d.
issue in FL systems with digital aggregation has been consid‑
ered in Refs. [16], [29–30] and [37], none of them has pro‑
posed any method to alleviate the accuracy degradation
caused by non-i.i.d. data. In the future, the data redundancy
introduced in Ref. [24] and the communication-efficient data
exchange technologies between different devices can be con‑

sidered in FL systems with digital aggregation to
address the non-i.i.d. issue.
3) Convergence guarantee: FL is actually a dis‑

tributed optimization algorithm that cannot always
guarantee to converge. Although most FL algo‑
rithms empirically converge and several existing
works have provided convergence analysis for FL
with convex or strongly convex loss functions. The‑
oretical analysis and evaluations on the conver‑
gence of FL with generally non-convex loss func‑
tions are still open problems.
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Abstract: By periodically aggregating local learning updates from edge users, federated
edge learning (FEEL) is envisioned as a promising means to reap the benefit of local rich da‑
ta and protect users’privacy. However, the scarce wireless communication resource greatly
limits the number of participated users and is regarded as the main bottleneck which hin‑
ders the development of FEEL. To tackle this issue, we propose a user selection policy
based on data importance for FEEL system. In order to quantify the data importance of each
user, we first analyze the relationship between the loss decay and the squared norm of gradi‑
ent. Then, we formulate a combinatorial optimization problem to maximize the learning effi‑
ciency by jointly considering user selection and communication resource allocation. By
problem transformation and relaxation, the optimal user selection policy and resource alloca‑
tion are derived, and a polynomial-time optimal algorithm is developed. Finally, we deploy
two commonly used deep neural network (DNN) models for simulation. The results validate
that our proposed algorithm has strong generalization ability and can attain higher learning
efficiency compared with other traditional algorithms.
Keywords: data importance; federated edge learning; learning accuracy; learning efficien‑
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1 Introduction

With the explosive growth of data generated by mo‑
bile devices and the remarkable breakthroughs
made in artificial intelligence (AI) in recent years,
the combination of AI and wireless networks is at‑

tracting more and more interests[1]. To leverage the abundant
data, which are unevenly distributed over a large number of

edge devices, and to train a high quality prediction model, the
traditional scheme is to do centralized learning by transmit‑
ting the raw data to the data center. However, this scheme has
two drawbacks. On the one hand, the privacy of users may be
divulged when the data center suffers from malicious attacks.
On the other hand, the communication latency is long since
the volume of data is large and the communication resource is
limited. To overcome these two issues, a new framework,
namely federated edge learning (FEEL), has been recently pro‑
posed in Ref. [2]. This framework makes a collaboration of the
distributed learning framework, named federated learning (FL)
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[3] and mobile edge computing (MEC)[4], which not only ensures
users’privacy but also exploits the computing resource of
both edge devices and edge servers.
In the FEEL system, edge devices need to interact with the

edge server constantly to train a global model. Thus, communi‑
cation cost is one of the major constraints of model training
since the wireless communication resource is limited. Recent‑
ly, several works have investigated accelerating the training
task by reducing the communication overhead[5–6]. To achieve
a low-latency FEEL system, the authors in Ref. [5] propose a
broadband analog aggregation scheme by exploiting over-the-
air computation and derive two communication-and-learning
tradeoffs. In Ref. [6], the authors propose a new protocol to re‑
duce the communication overhead and improve the training
speed by selecting devices as many as possible based on their
channel state information (CSI). Besides, energy-efficient FL
over wireless networks has been investigated in Refs. [7] and
[8]. In Ref. [7], energy-efficient strategies are proposed for
joint bandwidth allocation and energy-and-learning aware
scheduling with less energy consumption. The authors in Ref.
[8] propose an iterative algorithm to achieve the tradeoff be‑
tween latency and energy consumption for FL. Moreover, sev‑
eral recent works focus on the problem of user selection for FL
over wireless networks[9–12]. In Ref. [9], the authors derive a
tradeoff between the number of scheduled users and subchan‑
nel bandwidth under fixed amount of available spectrum. To
improve the running efficiency of FL, the authors in Ref. [10]
propose a scheduling policy by exploiting the CSI, i.e., the in‑
stantaneous channel qualities. In Ref. [11], the authors consid‑
er a user selection problem based on packet errors and the
availability of wireless resources, and a probabilistic user se‑
lection scheme is proposed to reduce the convergence time of
FL in Ref. [12].
However, the aforementioned works ignore the fact that the

process of model training is time-consuming as well. Accord‑
ing to Ref. [13], different training samples are not equally im‑
portant in a training task. Therefore, faced with the massive
data, the topic of selecting important data to further accelerate
the training task deserves to be studied. Several recent works
have studied on this topic. In Refs. [14] and [15], data impor‑
tance is quantified by the signal-to-noise ratio (SNR) and data
uncertainty measured by the distance to the decision bound‑
ary. Based on this, the authors propose a data importance
aware retransmission protocol and a user scheduling algo‑
rithm, respectively.
As we have mentioned before, some works have already in‑

vestigated the acceleration of the training task based on data
importance. However, this topic has not been investigated in
the FEEL system yet, which is a distributed edge learning sys‑
tem. Inspired by this, we consider an FEEL system, where the
learning efficiency of the system is improved by user selection
based on data importance. First, we analyze the relation be‑
tween the loss decay and the learning update information

(LUI), i.e., the squared norm of the gradient, and derive an in‑
dicator to quantify the data importance. Then, an optimization
problem to maximize the learning efficiency of the FEEL sys‑
tem is formulated by joint user selection and communication
resource allocation. The closed-form solution for optimal user
selection policy and communication resource allocation is de‑
rived by problem transformation and relaxation. Based on this,
we develop a polynomial-time algorithm to solve this mixed-in‑
teger programming problem. Finally, we verify the generaliza‑
tion ability and the performance improvement of our proposed
algorithm by extensive simulation.
The rest of this paper is organized as follows. In Section 2,

we introduce the FEEL system and establish the deep neural
network (DNN) model and communication model. In Section
3, we propose an indicator to quantify the data importance, an‑
alyze the end-to-end latency in each communication round,
and formulate the optimization problem to maximize the learn‑
ing efficiency. The optimal solution and the optimal algorithm
are developed in Section 4. Simulation results are presented
in Section 5 and the whole paper is concluded in Section 6.

2 System Model
In this section, we will first introduce the FEEL system

model. Then, both the DNN model and communication model
are introduced.
2.1 Federated Edge Learning System
We consider an FEEL system as shown in Fig. 1, which

comprises an edge server and K distributed users, denoted by
K = {1,2,...,K }. Each user utilizes its local dataset to train
the local DNN model. Let Dk = {(x1,y1 ),..., (xNk,yNk ) } denote
the local dataset of user k, where xi is the training sample, yi isthe size of the corresponding ground-true label, and Nk is thesize of dataset. During each communication round, users first
upload their gradients to the edge server. Then, the edge serv‑
er collects the local gradients from users and aggregates them
as the global gradient. Users update their local models by the
global gradient broadcast by the edge server. Ultimately, users
are supposed to collaborate with each other in training a
shared global model. Therefore, users’privacy is protected
since the raw data are not transmitted to the edge server. How‑
ever, due to the limited wireless communication resource, the
number of users participated in the training task is restricted.
To tackle this issue, we intend to propose a user selection poli‑
cy by jointly considering the LUI and CSI of each user. During
each communication round, users’data are not of equal im‑
portance. So we only select part of users to upload their local
gradients based on data importance and channel data rate.
The following seven steps are defined as a communication
round.
1) Calculate local gradient. In the n-th communication

round, each user utilizes its local dataset to train its local mod‑
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el. Denote θ as the parameter set of the DNN model. The local
gradient vector G θ

k [ n ] can be calculated by the backpropaga‑tion algorithm. Note that the local model and the local gradi‑
ent are different among users since different users may have
different datasets.
2) Upload the squared norm of local gradient. After obtain‑

ing the local gradient vector G θ
k [ n ], each user calculates the

squared norm of local gradient  G θ
k [ n ] 2

2 and transmits it tothe edge server. Here,  ⋅ 2 is the L2 norm.
3) Select User. The edge server receives the squared norm

of local gradients from all users. Based on data importance
and channel data rate, the edge server will determine which
users are going to be selected to participate in the training
task.
4) Upload local gradient of selected users. In this step,

those selected users upload their local gradients to the edge
server via the time division multiple access (TDMA) method
without loss of generality.
5) Aggregate global gradient. The edge server receives the

local gradients of all selected users and then aggregates them
as the global gradient, which can be expressed as
Gθ [ n ] = 1

||∪k akDk

∑
k = 1

K

ak ||Dk G
θ
k [ n ] , (1)

where ak ∈ {0, 1} indicates whether user k is selected, i. e.,

ak = 1 if user k is selected and ak = 0 otherwise.6) Broadcast global gradient. After finishing the global gra‑
dient aggregation, the base station (BS) broadcasts the global
gradient to all the users.
7) Update local model. After the global gradient is received,

each user updates its local model, as
θ [ n +1] = θ [ n ] - ξ [ n ]Gθ [ n ] , (2)

where ξ [ n ] is the learning rate of the n-th communication
round.
The above seven steps are periodically performed until the

global model converges. During the training process, the local
gradient and the CSI of users are different in each communica‑
tion round. Therefore, the edge server should run the optimal
algorithm to select users in each communication round.
2.2 DNN Model
In this work, all users adopt the same DNN model for train‑

ing. To evaluate the error between the learning output and the
ground-true label yi , we define the loss function of trainingsamples as l (θ,x i,yi ). Thus, the local loss function of user k
and the global loss function can be represented as
Lk (θ,Dk ) = 1

||Dk

∑
(xi,yi ) ∈ Dk

l (θ,x i,yi ), (3)

▲Figure 1. Seven steps in each communication round.
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User 1

User 2

…

User K DK

D2

D1

2. Upload the squared norm of local gradient  G θk [ n ] 2
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3. Select user ak∈ { 0,1 }
5. Aggregate global gradient
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6. Download global gradient
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Gθ [ n ] = 1
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∑
k = 1

K
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θ
k [ n ] ,
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L (θ) = 1
||∪k akDk

∑
k = 1

K

ak ||Dk Lk (θ,Dk ), (4)

respectively. In the course of training, the global loss function
L (θ) is the objective function to be minimized. In our scheme,
we aim to accelerate the training task and train a high quality
global model. Without loss of generality, we utilize stochastic
gradient descent (SGD) as the optimal algorithm. Then, the lo‑
cal gradient vector of user k is given by
G θ
k = ∇Lk (θ,Dk ), (5)

where ∇ implies the gradient operator.
2.3 Communication Model
As described above, distributed users and the edge server

need to exchange data from each other in each communication
round. In our scheme, two frequently-used approaches of data
transmission are adopted, named TDMA and broadcasting.
First, those selected users upload their local gradients to

the edge server via the TDMA method. Specifically, a time
frame is divided into n time slots. Each user transmits its data
on its own time slot. According to Ref. [16], the length of each
time frame in LTE standards is 10 ms. Actually, the transmis‑
sion delay of the gradients is on the scale of second, which is
far larger than the length of a time frame[17]. Therefore, we can
use the average uplink channel capacity, rather than the in‑
stantaneous channel capacity, to evaluate the data rate of user
k[18], which can be expressed as

RUk = WEh{log2 (1 + pUk || hUk
2

N0 )}, (6)

where hUk is the uplink channel power gain of user k, pUk is thecorresponding transmission power, Eh is the expectation overthe uplink channel power gain, W is the system bandwidth,
and N0 is the noise power.After the global gradient aggregation is finished, the BS will
broadcast the global gradient to all users. In this way, all users
are able to receive the global gradient synchronously. Let hDkdenote the downlink channel power gain of user k and pD de‑
note the transmission power for all users. Thus, the downlink
data rate is given by

RD = W min
k ∈ K {Eh{log2 (1 + pD || hDk

2

N0 )}}. (7)

3 Problem Formulation
In this section, we will first propose an indicator to quantify

the data importance of users. Then, we analyze the end-to-end
latency in each communication round and formulate the opti‑

mization problem to maximize the lower bound of the system
learning efficiency.
3.1 Importance Analysis
In each communication round, only part of users is select‑

ed to participate in the training task because of the limited
wireless communication resource. According to Ref. [13],
different training samples do not equally contribute to the
model training. Consequently, we intend to select users
based on the level of data importance as well as the channel
data rate. To quantify the data importance, we define the
loss decay function as
ΔL [ n ] = L (θ [ n - 1]) - L (θ [ n ]). (8)
The loss decay function ΔL [ n ] indicates the decrease of

the loss in the n-th communication round. From Eq. (8), in the
same period of time, the larger the loss decays, the faster the
training speed is. In other words, the loss decay reflects the da‑
ta importance to some extent.
According to Ref. [19], the loss decay is proportional to the

squared norm of the gradient. Thus, the lower bound of the
loss decay in the n-th communication round is given as
ΔL [ n ] ≥ β Gθ [ n ] 2

2, (9)
where β is a constant determined by the learning rate and the
specific DNN model. Therefore, we can further link the data
importance with the squared norm of the gradient vector. With
the above discussions, we can quantify the data importance of
user k by the squared norm of its local gradient, which can be
represented as
ρk = β G θ

k [ n ] 2
2, ∀k ∈ K . (10)

Therefore, the lower bound of the global loss decay in a
communication round can be expressed as
ΔL =∑

k = 1

K

ak ρk . (11)

3.2 End-to-End Latency Analysis
As mentioned before, our goal is to improve the learning ef‑

ficiency of the FEEL system. Thus, the end-to-end latency of
one communication round should be optimized. The detailed
analysis of latency in one communication round is given as fol‑
lows.
1) Calculate local gradient. The latency of local training for

user k is denoted by T L
k .2) Upload local gradient of selected users. As we mentioned

before, only those selected users upload their local gradients
to the edge server via TDMA. So the average transmission de‑
lay of user k can be expressed by
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T T
k = ak V

τkRUk
, ∀k ∈ K , (12)

where τk is the proportion of the time slot for user k in a timeframe and V is the volume of the gradient, which is a constant
for all users.
3) Broadcast global gradient. For all users, the latency of

downloading the global gradient is given by
TD = V

RD
. (13)

4) Update local model. Let us denote T U
k as the delay ofmodel updating for user k.

Since the squared norm of local gradient and the value of akare small enough, the corresponding transmission delay can
be neglected. Besides, the edge server has powerful comput‑
ing capacity in general. Therefore, the aggregation delay can
also be neglected.
Then we provide further analysis to obtain the whole laten‑

cy of one communication round. Note that all users receive the
global gradient and start to update the local model synchro‑
nously. However, the delay of model updating and training var‑
ies since users may have different computing power. Hence,
users are only allowed to upload the squared norm of local gra‑
dient to the edge server until they all finish model updating
and training. In addition, the edge server should begin to ag‑
gregate the global gradient until those selected users have up‑
loaded their local gradients. Based on the above analysis, the
end-to-end latency of the FEEL system in one communication
round is given by
T = max

k ∈ K {T U
k + T L

k } + maxk ∈ K T
T
k + TD. (14)

3.3 Problem Formulation
In this work, we aim to improve the learning efficiency of

the FEEL system by jointly considering user selection and
communication resource allocation. According to Ref. [20], we
adopt the following criterion to evaluate the training perfor‑
mance of the FEEL system.
Definition 1: The learning efficiency of the FEEL system

can be defined as
E = ΔL

T
. (15)

Remark 1: The definition of the learning efficiency implies
the decay rate of the global loss in a given time period T. The
improvement of the learning efficiency means the acceleration
of the training task. Therefore, it is appropriate to evaluate the
training performance of the FEEL system by the learning effi‑
ciency. In our work, we aim to reduce the communication de‑
lay of each communication round. Besides, we maximize the
lower bound of the system learning efficiency. Consequently,

the learning efficiency of the FEEL system can be improved.
Based on the above analysis, the optimization problem can

be mathematically formulated as

P1: max{ ak,τk,T }E =
ΔL
T
=∑k = 1

K

ak ρk

T
, (16a)

s.t. max
k ∈ K {T U

k + T L
k } + T T

k + TD ≤ T, ∀k ∈ K , (16b)

∑
k = 1

K

τk ≤ 1, (16c)

ak ∈ {0,1}, ∀k ∈ K , (16d)

τk, T ≥ 0, ∀k ∈ K , (16e)
where the constraint (16b) indicates that the end-to-end laten‑
cy of each user in one communication round is no more than
the end-to-end latency of the FEEL system and the constraint
(16c) represents the uplink communication resource limita‑
tion. For description convenience, we rewrite max

k ∈ K {T U
k +

T L
k } + TD as TC in the following sections.

4 Optimal Solution

4.1 Problem Transformation
It is evident that the optimization problem P1 is a mixed-in‑

teger programming problem. Since the objective function of
P1 is non-convex, it is rather challenging to directly solve it.
Combining Eqs. (12) and (16b), we notice that T is relevant to
ak and τk. When ak and τk are fixed, the variable T must beminimized to maximize the learning efficiency. Therefore, the
optimal solution to problem P1 can be obtained when“ ≤”in
the constraint (16b) is set to“=”, i.e. τk = ak V RUk (T - TC ).
However, problem P1 is still hard to solve due to the inte‑

ger constraint (16d). Therefore, we relax the integer constraint
ak ∈ { 0,1 } to the real-value constraint ak ∈ [ 0,1 ]. Problem
P1 can then be relaxed into problem P2, which is given by

P2: max
{ }ak,T

∑
k = 1

K

ak ρk

T
, (17a)

s.t.∑
k = 1

K akV
RUk

≤ T - TC, (17b)
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ak ∈ [ 0,1 ], ∀k ∈ K , (17c)

T ≥ 0. (17d)
In the following sections, we first obtain the optimal solu‑

tion to problem P2 with fixed T. Then, we continue to solve
the problem P2 with varying T, and the optimal solution to
problem P1 is finally derived.
4.2 Optimal User Selection
We now solve the problem P2. When T is given, problem

P2 can be converted to a standard convex optimization prob‑
lem since the objective function is concave and all constraints
are convex. Thus, we can derive the optimal solution to P2
with fixed T.
Theorem 1: The optimal solution to problem P2 with fixed

T is given as follows.
1) If ρkRUk < λ*, a*k = 0;2) If ρkRUk > λ*, a*k = 1;3) If ρkRUk = λ*, 0 ≤ a*k ≤ 1,where λ* is the optimal value of the Lagrange multiplier satis‑

fying the constraint (17b). Particularly, the real-value of a*k de‑pends on the constraint (17b) if ρkRUk = λ*.Proof: See Appendix A.
Remark 2 (Optimal user selection policy): According to

Theorem 1, λ* can be regarded as the threshold which deter‑
mines whether to select the user. Besides, the selection priori‑
ty of user k depends on the product of its data importance ρkand the uplink data rate RUk . On the one hand, a user withmore important data contributes more to the global model
training. On the other hand, the transmission delay can be
shortened by selecting users with higher uplink data rates.
Thus, the system prefers to select users with larger values of
ρkRUk . By doing so, the learning efficiency of the FEEL systemcan be improved.
4.3 Optimal System Latency and Communication Re⁃

source Allocation
In this part, we proceed to obtain the optimal system laten‑

cy and develop the optimal communication resource allocation
to further improve the learning efficiency of the FEEL system.
So far, we have obtained the optimal user selection strategy
when the system latency is invariant. Based on this, the opti‑
mal system latency must be obtained when“≤”in the con‑
straint (17b) is set to“=”, i.e., T =∑k = 1

K akV RUk + TC. In or‑
der to develop the optimal T and τk, we introduce the followingtheorem.
Theorem 2: The optimal solutions to problem P2 and prob‑

lem P1 are exactly the same.
Proof: See Appendix B.
Remark 3 (Optimal system latency and communication re‑

source allocation)：Theorem 2 indicates that the optimal solu‑

tion of ak to problem P2 must be an integer solution. Based onthis, the range of feasible solutions to problem P2 can be re‑
duced greatly. Thus, we only need to compare the learning effi‑
ciency of the FEEL system when the total number of selected
users varies. Here, users in the system are selected by the opti‑
mal user selection policy as aforementioned. So T * that
achieves the maximum learning efficiency is the optimal sys‑
tem latency to both problems P2 and P1, which can be ex‑
pressed as
T * =∑

k = 1

K a*kV
RUk

+ TC. (18)

As we have indicated before, when“≤”in the constraint
(16b) is set to“=”, the solution must be the optimal solution of
problem P1. Consequently, we can obtain the optimal commu‑
nication resource allocation by simple mathematical calcula‑
tion, as
τ*k = a*k V

RUk (T * - TC ) . (19)

The result in Eq. (19) shows that a less time slot is allocated
for the user with a higher uplink data rate.
4.4 Optimal Algorithm for Problem P1
Thus far, we have obtained the optimal solution to prob‑

lem P1. In this part, we intend to develop an optimal algo‑
rithm for problem P1 based on the above analysis. As men‑
tioned before, in order to obtain the optimal solution to
problem P1, all selection cases should be compared. How‑
ever, this would become very time-consuming as the num‑
ber of users increases. Therefore, a low computational com‑
plexity algorithm is required. We define EM, M ∈ {1, 2,...,K}
as the learning efficiency of the FEEL system when M users
are selected. To better fit the practical systems, we have the
following theorem.
Theorem 3: EM increases first and then decreases with theincrease of M.
Proof: See Appendix C.
Remark 4: Theorem 3 indicates that the learning efficiency

EM has only one global optimal. Therefore, we can select userssuccessively by the optimal user selection policy until the
learning efficiency of the FEEL system begins to decrease. By
doing so, we are able to find the optimal solution to problem
P1. According to the above analysis, the optimal algorithm for
problem P1 is shown in Algorithm 1. We can easily find that
the computational complexity of this algorithm is determined
by the sort operation. Therefore, the computational complexity
is O (K log K ). With regard to mixed-integer programming
problems, it is acceptable to find the optimal solution with a
polynomial-time complexity, indicating that this algorithm can
be applied to practical systems.
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Algorithm 1: The optimal algorithm for problem P1
1: Calculate ρkRUk , ∀k ∈ K .2: Sort ρkRUk in descending order.3: Select user successively by ρkRUk and calculate the learn‑ing efficiency EM of the FEEL system.4: For M = 1 to K, do
5: if M = 1, then
6: Emax = EM.7: else
8: if EM < Emax, then9: break.
10: else
11: Emax = EM.12: End
13: Calculate the corresponding {a*k , T *, τU*k }with Emax.
14: Output the optimal solution {a*k , T *, τU*k }.

5 Simulation Results
In this section, we test the performance of the proposed al‑

gorithm by simulation and validate the performance improve‑
ment by comparing with other traditional algorithms.
5.1 Simulation Settings
In the FEEL system, K users are stochastically distributed

over the coverage of the BS. The coverage area of the BS is a
circle with a radius of 500 m. All users are connected with the
BS by wireless channels. The channel gains are generated by
the pass loss model, 128.1+37.6log(d [km]), while the small-
scale fading obeys the Rayleigh distribution with uniform vari‑
ance. The noise power spectral density is −174 dBm/Hz and
the system bandwidth is 5 MHz. The uplink and downlink
transmit powers are both 24 dBm.
We utilize the dataset CIFAR-10 as the local dataset of all

users to train model. The dataset is composed of 60 000 32×32
color images in 10 classes, which includes 50 000 training im‑
ages and 10 000 test images. We shuffle all training samples
first, divide them into K parts equally and then distribute them
to all users, respectively. Two common DNN models, Mobile‑
NetV2 and ResNet18，are deployed for image classification.
Since it is time-consuming to restart training, we utilize the pre-
trained model to reduce the model convergence time.
5.2 Tests of Generalization Ability
The generalization ability refers to the adaptability of algo‑

rithms to different DNN models. To test the generalization
ability of our proposed algorithm, we implement it on the two
DNN models as mentioned before when there are K = 14 us‑
ers in the FEEL system. Meanwhile, we make comparisons
with the performance of proposed algorithm and the baseline
algorithm where all users are selected with equal communica‑
tion resource allocation. The simulation results of the test ac‑
curacy and the global training loss are shown in Figs. 2 and 3,

respectively. From the figures, the proposed algorithm can
achieve a high learning accuracy and a fast convergence rate
for different DNN models. The result shows that our proposed
algorithm has excellent generalization ability and can be wide‑
ly implemented in practical systems. Moreover, the perfor‑
mance of our proposed algorithm is similar to that of the base⁃
line algorithm with the increase of communication round rath‑
er than training time. It is reasonable since our proposed algo‑
rithm aims to reduce the communication delay in each commu‑
nication round, rather than the number of communication
rounds. Besides, this result demonstrates that our proposed al‑
gorithm can achieve the similar training speed by only select‑
ing partial users in the FEEL system.
5.3 Performance Comparison Among Different Algorithms
In this part, we compare the performance of our proposed al‑

gorithm with other conventional algorithms to verify its superi‑
ority. The two benchmark algorithms are described as follows.
• Baseline algorithm: In each communication round, all users

▲Figure 3. The global training loss versus communication round.

▲Figure 2. The test accuracy versus communication round.
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in the FEEL system participate in the training task with equal
communication resource allocation, i.e., τk = 1 K, ∀k ∈ K .
• All selected algorithm: In each communication round, all

users in the FEEL system participate in the training task with
optimal communication resource allocation based on Eq. (19).
Here we use the pre-trained ResNet18 model to test the per‑

formance of the three algorithms in an FEEL system with K =
14 users. The test accuracy versus training time with different
algorithms is shown in Fig. 4. From the figure, it can be seen
that our proposed algorithm achieves the highest test accuracy
among all algorithms. The reason is that our proposed algo‑
rithm not only selects users based on data importance but also
makes the optimal communication resource allocation. By do‑
ing so, only users with more important data and higher uplink
data rate participate in the training task. Thus, the communi‑
cation latency is reduced and the global loss decay rate in‑
creases, which eventually improves the learning efficiency of
the system. The gap between the baseline algorithm and the
all selected algorithm demonstrates the gain obtained by the
optimal communication resource allocation. The gap between
the all selected algorithm and the proposed algorithm demon‑
strates the gain obtained by the optimal user selection. In con‑
clusion, our proposed algorithm accelerates the training task
and improves the learning efficiency of the FEEL system by
jointly considering user selection and communication resource
allocation.
To further verify the applicability and effectiveness of our

proposed algorithm, we select one communication round ran‑
domly to obtain more simulation results. Figs. 5 and 6 illus‑
trate the results of user selection and communication re‑
source allocation for our proposed algorithm in the communi‑
cation round we selected, respectively. From Fig. 5, we can
observe that user k is selected only when the product of its
data importance and uplink data rate, i. e., ρkRUk , is no lessthan the selection threshold, which is consistent with Theo‑
rem 1. Moreover, in order to clearly present the relationship
between the communication resource allocation and the up‑
link data rate, we plot the corresponding uplink data rate for
all users in Fig. 7. Combining Fig. 6 with Fig. 7, it can be ob‑
served that a selected user with a higher uplink data rate is
allocated with less communication resource, which is consis‑
tent with Eq. (19).
In the end, we further study how the number of users im‑

pacts the training performance of the FEEL system. The test
accuracy versus training time with different numbers of users
is shown in Fig. 8. From the figure, it can be seen that our pro‑
posed algorithm achieves the highest system learning efficien‑
cy when K = 6. The reasons can be explained as follows. The
number of time slot allocated to the selected user is large
when the number of users is small. Consequently, the commu‑
nication latency greatly reduces, and the learning efficiency of
the FEEL system significantly improves in this scenario. More‑
over, the number of selected users is limited by the scarce

wireless communication resource when the number of users is
too large. Therefore, the learning efficiency of the FEEL sys‑
tem does not improve with user number when too many users
in the system.
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6 Conclusions
In this paper, we aim to accelerate the training task and

improve the learning efficiency of the FEEL system by pro‑
posing an optimal user selection policy based on data impor‑
tance and CSI. After analyzing the data importance of users
and the end-to-end latency of the FEEL system, we formulate
an optimization problem to maximize the learning efficiency
of the FEEL system. By problem transformation and relax‑
ation, we first develop the optimal user selection policy.
Based on this, the optimal communication resource alloca‑
tion is developed in closed-form. We further develop a poly‑
nomial-time algorithm to solve this mixed-integer program‑
ming problem and prove its optimality. Finally, the simula‑
tion results show that our proposed algorithm has strong gen‑
eralization ability and can significantly improve the learning
efficiency of the FEEL system.
Our work has demonstrated that the learning efficiency of

the FEEL system can be further improved by user selection

based on data importance and wireless resource allocation.
However, some assumptions have been made to gain insight‑
ful results. In the future, we will make further investigation
to better fit the practical systems. First, we have assumed
that there is no inter-cell interference in the uplink. In the
future, the FEEL system with inter-cell interference de‑
serves further investigation. Second, the local gradient re‑
ceived by the edge server may contain data errors, which
may affect the training performance of the FEEL system.
Therefore, our future work can further study the impact of
those errors. Last but not the least, it is meaningful to extend
our proposed algorithm to the FEEL system, where orthogo‑
nal frequency-division multiple access (OFDMA) is adopted
for data transmission.

Appendix A
Proof of Theorem 1
We apply the Lagrangian method to obtain the optimal solu‑

tion to problem P2 with fixed T since it is a convex optimiza‑
tion problem. The Lagrangian function is defined as

L = -∑k = 1
K

ak ρk

T
+ λ(∑

k = 1

K akV
RUk

- T + TC) , (20)

where λ is the Lagrange multiplier related with the constraint
(17b). By applying the Karush-Kuhn-Tucker (KKT) conditions
and simple calculation, we can draw the following necessary
and sufficient conditions, as

∂L
∂a*k = -

ρk
T
+ λ* V

RUk

ì

í

î

ïï
ïï

≥ 0, a*k = 0,
= 0, 0 ≤ a*k ≤ 1, ∀k ∈ K ,
≤ 0, a*k = 1,

(21)

λ* (∑
k = 1

K Va*k
RUk

+ TC - T) = 0, λ* ≥ 0. (22)

With simple mathematical calculation, we can derive the
optimal user selection policy as shown in Theorem 1, which
ends the proof.

Appendix B
Proof of Theorem 2
According to Theorem 1, users are selected by the descend‑

ing order of ρkRUk . Hence, we can assume that ak = 1 when k =1, 2,...,M and ak = 0 when k = M + 2,M + 3,...,K. Moreover,
it is not clear whether aM + 1 = 0 or aM + 1 = 1. Then, we denote
E(1) as the objective function of problem P2, which can be ex‑
pressed as
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E(1) = ∑
k = 1

M

ρk + aM + 1 ρM + 1

∑
k = 1

M V
RUk
+ aM + 1

V
RUM + 1

+ TC
. (23)

So the derivative of E(1) with respect to aM + 1 is given by

∂E(1)
∂aM + 1

=
ρM + 1 ( )∑

k = 1

M V
RUk
+ TC - V

RUM + 1
∑
k = 1

M

ρk

( )∑
k = 1

M V
RUk
+ aM + 1

V
RUM + 1

+ TC
2 . (24)

It shows that the sign of derivative is consistent with the
sign of the numerator of Eq. (24). However, the value of the nu‑
merator of Eq. (24) is independent of aM + 1. Therefore, E(1) ismonotone when aM + 1 ∈ [ 0,1 ]. That is, the maximum value of
E(1) must be obtained either when aM + 1 = 0 or when aM + 1 = 1.In conclusion, the optimal solution of ak to P2 must be an inte‑ger solution. Hence, this solution must be the feasible solution
to problem P1 as well. Moreover, after relaxation, the maxi‑
mum value of the objective function is non-decreasing. Thus,
the optimal solutions to problem P2 and P1 are exactly the
same, which ends the proof.

Appendix C
Proof of Theorem 3
According to Theorem 2, we know that the optimal solutions

to problem P2 and P1 are exactly the same. Thus, we only
consider the integer solutions here. When no user is selected,
the learning efficiency is zero obviously. The learning efficien‑
cy must increase first with the number of selected users. In
other words, at least one user is selected. Then we consider
the following condition.
Denote TM =∑k = 1

M V RUk + TC,M ∈ {1, 2,...,K} as the sys‑
tem latency when M users are selected. Assume that the fol‑
lowing formulas exist

EM - EM - 1 =
ρM∑

k = 1

M - 1 V
RUk
+ TC ρM - V

RUM
∑
k = 1

M - 1
ρk

( )∑
k = 1

M V
RUk
+ TC ( )∑

k = 1

M - 1 V
RUk
+ TC

> 0, (25)

EM + 1 - EM =
ρM + 1∑

k = 1

M V
RUk
+ TC ρM + 1 - V

RUM + 1
∑
k = 1

M

ρk

( )∑
k = 1

M + 1 V
RUk
+ TC ( )∑

k = 1

M V
RUk
+ TC

< 0. (26)

From Eqs. (25) and (26), we can obtain the following in‑
equalities.
ρMRUM (∑

k = 1

M - 1 V
RUk
+ TC) > V∑

k = 1

M - 1
ρk, (27)

ρM + 1RUM + 1 (∑
k = 1

M V
RUk
+ TC) < V∑

k = 1

M

ρk . (28)

According to Eq. (27), we can derive the recurrence formu‑
la as

ρM - 1RUM - 1 (∑
k = 1

M - 2 V
RUk
+ TC) - V∑

k = 1

M - 2
ρk =

ρM - 1RM - 1 (∑
k = 1

M - 1 V
RUk
+ TC) - V∑

k = 1

M - 1
ρk >

ρMRUM (∑
k = 1

M - 1 V
RUk
+ TC) - V∑

k = 1

M - 1
ρk > 0,

(29)

which implies EM -2 < EM - 1. Then we can obtain the conclu‑sion recursively, as
E1 < E2 < ... < EM. (30)
Similar to the above analysis, we have the following conclu‑

sion, as
E1 < E2 < ... < EM > EM + 1 > EM + 2 > ... > EK. (31)
Based on the above analysis, EM first increases and then de‑creases with M, which ends the proof.
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⬅ From Page 01future directions. The third paper“Joint User Selection and
Resource Allocation for Fast Federated Edge Learning”by JI‑
ANG et al. presents a new policy for joint user selection and
communication resource allocation to accelerate the training
task and improve the learning efficiency.
Edge learning includes both edge training and edge infer‑

ence. Due to the stringent latency requirements, edge infer‑
ence is particularly bottlenecked by the limited computation
and communication resources at the network edge. The fourth
paper“Communication-Efficient Edge AI Inference over
Wireless Networks”by YANG et al. identifies two communi‑
cation-efficient architectures for edge inference, namely, on-
device distributed inference and in-edge cooperative infer‑
ence, thereby achieving low latency and high energy efficien‑
cy. The fifth paper“Knowledge Distillation for Mobile Edge

Computation Offloading”by CHEN et al. introduces a new
computation offloading framework based on deep imitation
learning and knowledge distillation that assists end devices to
quickly make fine-grained offloading decisions so as to mini‑
mize the end-to-end task inference latency in MEC networks.
By considering edge inference in MEC-enabled UAV systems,
the last paper“Joint Placement and Resource Allocation for
UAV-Assisted Mobile Edge Computing Networks with
URLLC”by ZHANG et al. jointly optimizes the UAV’s
placement location and transmitting power to facilitate ultra-
reliable and low-latency round-trip communication from sen‑
sors to UAV servers to actuators.
We hope that the aforementioned six papers published in

this special issue stimulate new ideas and innovations from
both the academia and industry to advance this exciting area
of edge learning.
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Abstract: Given the fast growth of intelligent devices, it is expected that a large number of
high-stakes artificial intelligence (AI) applications, e.g., drones, autonomous cars, and tac‑
tile robots, will be deployed at the edge of wireless networks in the near future. Therefore,
the intelligent communication networks will be designed to leverage advanced wireless tech‑
niques and edge computing technologies to support AI-enabled applications at various end
devices with limited communication, computation, hardware and energy resources. In this
article, we present the principles of efficient deployment of model inference at network edge
to provide low-latency and energy-efficient AI services. This includes the wireless distribut‑
ed computing framework for low-latency device distributed model inference as well as the
wireless cooperative transmission strategy for energy-efficient edge cooperative model infer‑
ence. The communication efficiency of edge inference systems is further improved by build‑
ing up a smart radio propagation environment via intelligent reflecting surface.
Keywords: communication efficiency; cooperative transmission; distributed computing;
edge AI; edge inference
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1 Introduction

The past few decades have witnessed a rapidly growing
interest in the area of artificial intelligence (AI), which
has contributed to the astonishing breakthroughs in
image recognition, speech processing, etc. With the

advancement of mobile edge computing[1], it becomes increas‑
ingly attractive to push the AI engine from the cloud center to
the network edge. Such a transition makes AI proximal to the
end devices and has the potential to mitigate the privacy and
latency concerns. This novel area is termed as“edge AI”, in‑
cluding both edge training and edge inference, which is envi‑
sioned to revolutionize the future mobile networks and enable

the paradigm shift from“connected things”to“connected in‑
telligence”[2]. Edge AI can provide various AI services, such
as Internet of Vehicles (IoV), unmanned aerial vehicles
(UAVs) and tactile robots, as illustrated in Fig. 1. By deploy‑
ing AI models and performing inference tasks at network
edge, edge inference is the main focus of this article and faces
the following three major challenges. First, the large size of AI
models makes it difficult to be deployed at the network edge.
Second, the inference latency is severely bottlenecked by the
limited computation and communication resources at the net‑
work edge. Third, edge devices are usually battery-powered
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with limited energy budget and computing power.
It is generally impractical to deploy the entire AI models

on a single resource-constrained end device. Fortunately, a
recently proposed edge inference architecture, termed as

“on-device distributed AI inference”, is capable of pooling
the computing resources on a large number of distributed de‑
vices to perform inference tasks requested by each end de‑
vice[3]. For popular distributed computing structures such as
MapReduce[4], the dataset (i. e., AI model for inference) is
split and deployed on end devices during the phase of datas‑
et placement. Each end device computes the intermediate
values of all tasks locally with the map functions. After ex‑
changing the intermediate values, each device obtains all
map function values for its inference task and performs the
reduce function to yield the desired inference result. Howev‑
er, the communication efficiency of the intermediate value
exchange is the main performance bottleneck of distributed
edge inference systems[5]. To this end, we shall propose a
communication-efficient data shuffling strategy for on-device
distributed AI inference based on cooperative transmission
and interference alignment.
For computation-intensive inference tasks, it is beneficial

to deploy the AI models at the edge servers, e.g., access points
(APs), followed by uploading the input dataset to the proximal
edge servers. This helps to perform the inference tasks and re‑
turn the inference results to the end devices through downlink
transmission. On the other hand, cooperative transmission[6] is
a well-known approach that can mitigate co-channel interfer‑
ence as well as improve the reliability and energy efficiency of
downlink transmission. These facts motivate us to propose the
in-edge cooperative AI inference architecture by performing

each task at multiple edge servers and en‑
abling cooperative transmission to improve
the quality of service (QoS) and reliability
for the delivery of inference results. Howev‑
er, performing each inference task by multi‑
ple edge servers leads to a higher computa‑
tion power consumption. We thus propose a
joint task allocation and downlink coordinat‑
ed beamforming approach to achieve energy-
efficient in-edge cooperative AI inference
through minimizing the total power con‑
sumption consisting of both transmit and
computation power consumptions under the
target QoS constraints.
Although our joint computation and com‑

munication designs can greatly improve the
communication efficiency for on-device dis‑
tributed AI inference and in-edge coopera‑
tive AI inference, the achievable low-latency
and energy efficiency are still fundamentally
limited by the radio propagation environ‑
ment. We thus resort to an emerging technol‑

ogy, i.e., intelligent reflecting surface (IRS)[7], to actively control
the wireless propagation environment. In particular, we propose
to utilize the IRS for further enhancing the communication effi‑
ciency of edge AI inference systems, thereby providing low-la‑
tency and energy-efficient AI services. By dynamically adjust‑
ing the phase shifts of the IRS, our proposed strategy improves
the feasibility of the interference alignment conditions for the
data shuffling of on-device distributed AI inference systems, as
well as reduces the energy consumption of in-edge cooperative
AI inference systems.

2 Overview of Edge AI Inference
In this section, we present the architectures, key performance

metrics, and promising applications of edge AI inference.
2.1 Architecture
In the conventional cloud-based AI systems, a large

amount of data collected/generated by the end devices is re‑
quired to be delivered to the central cloud center for AI mod‑
el training. Such cloud-based AI systems are generally limit‑
ed by scarce spectrum resources and susceptible to data mod‑
ification attacks. With the increase of the computing power
and storage capability of edge servers (e.g., APs and base sta‑
tions) and end devices (vehicles and robots), there is a trend
of pushing AI engines from the cloud center to the network
edge[8–9]. Therefore, edge AI emerges as a promising re‑
search area that performs the training and inference tasks at
the network edge. In this article, we go beyond that and focus
on a much broader scope of edge AI to fully leverage the dis‑
tributed computation and storage resources at the network

IoV: Internet of Vehicles UAV: unmanned aerial vehicles
▲Figure 1. Illustration of edge AI.
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Mobile edgeintelligence

On‑deviceintelligence

Tactile robots UAVs IoVs
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edge across end devices, edge servers and cloud centers to
provide low-latency and energy-efficient AI services, such as
IoVs, UAVs and tactile robots.
According to Ref. [8], the edge AI can generally be classi‑

fied into six levels, including cloud-edge co-inference, in-edge
co-inference, on-device inference, cloud-edge co-training, all
in-edge, and all on-device. The training of AI models can be
performed on end devices, in edge servers, or with the collabo‑
ration of the cloud center and edge nodes, which are out of the
scope of this article. We in this article mainly focus on the
model inference of edge AI, also known as edge inference.
The major architectures of edge inference are listed as follows:
• Device-based edge inference: Deploying AI models direct‑

ly on end devices can reduce the communication cost due to
information exchange. However, this poses stringent require‑
ments on the storage capability, computing power, energy bud‑
get of each end device. To this end, a promising structure of
device-based edge inference is to enable cooperation among
multiple devices via a distributed computing framework[3], i.e.,
on-device distributed AI inference.
• Edge-based edge inference: The end devices offload the

dataset to the neighboring edge servers, which perform the in‑
ference tasks and return the inference results to the end users.
This inference architecture has the potential to perform com‑
putation-intensive inference tasks. However, the limited chan‑
nel bandwidth is the main performance-limiting factor of this
edge inference architecture. To address this issue, it is promis‑
ing to enable cooperation among multiple edge servers[10–11] to
facilitate in-edge cooperative AI inference.
• Others: In addition to the device-based and edge-based

edge inference architectures, there are also other promising
edge inference architectures. The device-edge architecture
with model partition proposed in Refs. [12] and [13] can en‑
hance the energy efficiency and reduce the latency of edge in‑
ference systems. Moreover, the inference tasks can also be ac‑
complished by adopting the edge-cloud collaborative architec‑
ture, which is particularly suitable for end devices with highly
constrained resources.
This paper emphasizes on two promising system architec‑

tures, i.e., on-device distributed AI inference and in-edge co‑
operative AI inference, which pool the computation and com‑
munication resources across multiple end devices and edge
servers, respectively. In such distributed systems, the commu‑
nication efficiency is a critical issue in determining the perfor‑
mance of edge inference systems. We thus focus on designing
communication-efficient on-device distributed AI inference
and in-edge cooperative AI inference strategies for computa‑
tion-intensive inference tasks, thereby achieving low latency
and high energy efficiency.
2.2 Key Performance Metrics
The communication efficiency of edge inference systems

can be measured by the following metrics:

• Latency: In edge inference systems, latency is a crucial
performance metric that measures how fast the inference re‑
sults can be obtained, which in turn determines the timeliness
of the inference results. The latency is generally composed of
the computation and communication latency. Achieving low la‑
tency is challenging as it depends on various factors, includ‑
ing channel bandwidth, transmission strategy, and channel
conditions.
• Energy efficiency: As performing inference tasks are gen‑

erally energy consuming, the energy efficiency is a critical per‑
formance metric of edge inference systems. The energy con‑
sumption typically consists of both communication and compu‑
tation energy consumptions, which depend on the type of the
inference tasks and the size of the dataset.
• Others: There are also other indicators that can describe

the performance of edge inference. For example, privacy is a
major concern in edge inference systems for various high-
stake AI applications such as IoVs and UAVs. For such appli‑
cations, it is also critical to ensure that the inference results
are received at the end devices with a high level of reliability.
2.3 Applications
Efficient edge inference is envisioned to be capable of sup‑

porting various low-latency AI services, including IoVs,
UAVs, and tactile robots, as shown in Fig. 1.
• Internet of Vehicles: IoV is a network system that inte‑

grates networking and intelligence for promoting the efficiency
of transportation and improving the quality of life[14], as well as
emphasizes the interaction of humans, vehicles, and roadside
units. Numerous AI models are necessary for IoV such as the
advanced driver-assistance system (ADAS) for the detection of
vehicles, pedestrians, lane lines, etc. It is generally impracti‑
cal to deploy all AI models on the resource-constrained vehi‑
cles. As a result, to achieve low-latency and energy-efficient
inference for a large number of AI models, it is critical to pool
the distributed computation and storage resources of the vehi‑
cles and edge servers at the network edge.
• Unmanned aerial vehicles: There has been a fast-growing

interest in UAVs[15] for the transportation of cargo, monitoring,
relaying, etc. Although the UAVs are battery-powered with
limited energy budget, they are deployed to accomplish a vari‑
ety of intelligent computation tasks. As it is energy inefficient
for UAVs to communicate with the remote cloud center, en‑
abling cooperative inference on the devices or in the edge is a
promising solution that can achieve low-latency and energy-ef‑
ficient processing of inference tasks, as well as enhance the
data privacy.
• Tactile robots: As remote representatives of human be‑

ings, smart robots are envisioned to be capable of achieving
physical interaction by enabling haptic capabilities, leading
to the new field of tactile robots[16]. The greatly improved ca‑
pability of processing tactile sensation and the connectivity
of a large number of robots make tactile robots a representa‑
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tive embodiment of the tactile Internet. Exploring the poten‑
tial of edge inference for tactile robots is able to provide inte‑
grated intelligence for agriculture, manufacture, health care,
traffic, etc.

3 Wireless Distributed Computing System
for On-Device Distributed AI Inference
In this section, we shall present a communication-efficient

data shuffling strategy in the wireless distributed computing
system for on-device distributed AI inference.
3.1 MapReduce-Based Distributed Computing System
MapReduce is a ubiquitous distributed computing frame‑

work that processes tasks with a large amount of data across
multiple distributed devices[4]. For a computing task with the
MapReduce-like structure, the target function is decomposed
as the“reduce”function value of a number of map functions,
which can be computed in a parallel manner. Hence, the Ma‑
pReduce-based distributed computing system is capable of
pooling the computation and storage resources of multiple de‑
vices to enable on-device distributed AI inference.
For a wireless distributed computing system consisting of

multiple mobile devices, the inference result (e.g., a machine

learning model) to be obtained by each device depends on the
entire input dataset. Supposing that each computation task for
inference fits the MapReduce computation structure (Fig. 2),
K mobile devices cooperatively accomplish the inference tasks
through the following four phases
• Dataset placement: In this phase, the entire dataset is par‑

titioned into N portions and each mobile device is allocated a
subset of the entire dataset before inference.
• Map function: With the allocated local data, each mobile

device computes the map function values with respect to all
the input data, which yields the intermediate values for itself
and other devices.
• Shuffling: As each mobile device does not have enough in‑

formation for inference, the intermediate values computed by
each device shall be transmitted to the corresponding devices
over radio channels in this phase.
• Reduce function: Finally, based on the collected N inter‑

mediate values, each mobile device calculates the reduce
function to obtain the corresponding inference result.
With limited radio resources, the shuffling of intermediate

values among multiple mobile devices leads to significant
communication overhead and is the main performance-limit‑
ing factor for on-device distributed AI inference systems.

F

…F1 F2 FK

Map Map
3 3 3
4 4 4

Map
5 5 5
N N N

Reduce

1 1 1
2 2 2

Reduce Reduce

1 3 5
2 4 N

1 3 5
2 4 N

1 3 5
2 4 N

…1 2 3 4 5 N

Shuffle

▲Figure 2. Illustration of computing model of MapReduce-based distributed computing framework.
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3.2 Communication-Efficient Data Shuffling
As data shuffling over radio channels is the major bottle‑

neck of MapReduce-based distributed computing systems, it
is necessary to propose a communication-efficient data shuf‑
fling strategy for a given dataset placement. We take a wire‑
less communication system consisting of multiple mobile de‑
vices and an AP as an example (Fig. 3). The basic idea for
achieving low-latency data shuffling is to explore the opportu‑
nity of concurrent transmission, detailed as follows.
• Uplink multiple access: After computing the intermediate

values with map functions, each mobile device transmits its
precoded intermediate values to the AP over the multiple ac‑
cess channel.
• Downlink broadcasting: The AP broadcasts the received

signal of uplink transmission to each device, which decodes
its desired intermediate values.
The output of each computation task depends on both the lo‑

cally computed intermediate values at each device based on
its own dataset and intermediate values computed by other de‑
vices. By treating each intermediate value as an independent
message, the data shuffling procedure is indeed a message de‑
livery problem. The AP first receives a mixed signal from all
mobile devices in the uplink, and then simply broadcasts the
mixed signal to all mobile devices in the downlink. By study‑
ing the input-output relationship from all mobile devices to all
mobile devices after the uplink and downlink transmissions,
the proposed data shuffling strategy can be equivalently mod‑
eled as a data delivery problem over the K-user interference
channel with side information available at both the transmit‑
ters and the receivers. Note that the AP behaves like a two-
way relay[17] and simply transmits an amplified version of the
received signal. The side information refers
to the available intermediate values at each
device. As a result, the goal becomes the
transceiver design for maximizing the com‑
munication efficiency of data shuffling. It
has been demonstrated that the linear cod‑
ing schemes are effective for the transceiver
design because of their optimality in terms
of the degree of freedoms (DoFs) for interfer‑
ence alignment as well as low implementa‑
tion complexity. Note that DoF is a first-or‑
der characterization of channel capacity,
which is thus chosen as the performance
metric for data shuffling. With interference
alignment, the solutions meeting interfer‑
ence alignment conditions yield transceivers
that are able to simultaneously preserve the
desired signal and cancel the co-channel in‑
terference.
The problem of finding solutions to the in‑

terference alignment conditions with a maxi‑
mum achievable DoF can be tackled by de‑

veloping an efficient algorithm based on a low-rank optimiza‑
tion approach[3]. This is achieved by defining the product of
the aggregated precoding matrix and the aggregated decoding
matrix as a new matrix variable, based on the following two
key observations:
• The interference alignment conditions can be represented

as affine constraints in terms of the newly defined matrix vari‑
able and the global channel state information.
• The rank of the matrix is inversely proportional to the

achievable DoF.
Therefore, the maximum achievable DoF can be obtained

via minimizing the matrix rank, subjecting to the affine con‑
straints. For the nonconvex low-rank optimization problem,
the traditional nuclear norm minimization approach yields un‑
satisfactory performance, which motivates us to propose a nov‑
el computationally efficient difference of convex functions
(DC) [18] algorithm to achieve considerable performance en‑
hancement.
With limited radio resources, the scalability of the data

shuffling strategy is also critical to the wireless distributed
computing framework. We prefer a data shuffling strategy if
the communication cost (which can be measured by achiev‑
able DoF) does not increase too much with more involved mo‑
bile devices. We present simulation results to demonstrate the
effectiveness of the proposed algorithm for data shuffling. In
simulations, we consider a single-antenna system, where the
dataset is evenly split into five files and each device stores up
to two files locally. With the uniform dataset placement strate‑
gy, each file is stored by 2K/5 mobile devices. The achievable
DoFs averaged over 100 channel realizations are illustrated in
Fig. 4. Interestingly, the achievable DoF of the proposed DC

AP: access point
▲Figure 3. Illustration of communication model for data shuffling of on-device distributed AI
inference systems.
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approach remains almost unchanged as the number of devices
increases, while the nuclear norm relaxation approach suffers
from a severe DoF deterioration. This demonstrates the scal‑
ability of the proposed DC approach. The main intuition is
that the collaboration opportunities are increased as each file
can be stored at more devices, although more intermediate val‑
ues are requested with more involved devices.

4 Edge Processing System for In-
Edge Cooperative AI Inference
In this section, we present a cooperative

wireless transmission approach for energy-effi‑
cient edge processing of computational inten‑
sive inference tasks at edge servers.
Due to the strong capability of capturing da‑

ta representation, machine learning tech‑
niques, in particular deep learning[19], have
been widely used for achieving greatly im‑
proved performance in distilling intelligence
from images, videos, texts, etc. However, the
deep learning model are usually large and com‑
plex, and processing deep neural networks
(DNNs) is a computation-intensive task. For re‑
source-constrained mobile devices equipped
with limited storage, computation power, and
energy budget, such as drones and robots, a
promising solution of performing computation-
intensive inference tasks is to enable edge pro‑
cessing at the APs of mobile networks. With
more powerful computing power than the re‑
source-constrained mobile devices, APs have
the potential of efficiently performing the infer‑
ence tasks and transmitting the inference re‑
sults to mobile users[20]. The design target is to
enable cooperative transmission among multi‑
ple APs to provide higher QoS for reliably de‑
livering the inference results, while minimizing
the total power consumption consisting of the
computation power of inference tasks and the
transmission power at APs. The computation
power of each task at an AP can be determined
via estimating the energy consumption of pro‑
cessing DNNs[21] and computation time.
We consider a typical edge processing sys‑

tem consisting of N APs served as edge pro‑
cessing nodes and K mobile users, as demon‑
strated in Fig. 5. Each mobile user has an infer‑
ence task to be accomplished. The inference re‑
sults can be obtained by uploading the input of
each mobile user to the APs, processing a sub‑
set of inference tasks at each AP, and coopera‑
tively transmitting the inference results to the

corresponding mobile user. The pre-trained models can be
downloaded from the cloud center and deployed at each AP in
advance to facilitate edge inference. For example, the infer‑
ence task can be the GauGan AI system by Nvidia, where the
inputs are rough doodles and the outputs are photorealistic
landscapes. Although the cooperative edge inference is able to
deliver the reliable inference results to mobile users, the ener‑
gy efficiency becomes critical as a huge amount of computa‑
tion is required for processing DNNs at multiple APs.

AP 1 AP N

Pre‑trained models

Device 1 Device 2 Device K
…
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▲Figure 4. Achievable DoF of algorithms versus the number of devices for the data shuf⁃
fling of on-device distributed AI inference systems.

AP: access point
▲Figure 5. Illustration of in-edge cooperative AI inference systems.
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There exists a tradeoff between communication and compu‑
tation in an edge processing system by enabling cooperation
among APs. In particular, if each AP performs more inference
tasks, the inference results can be delivered with better QoS
via cooperative downlink transmission. However, more compu‑
tation power is consumed at the APs for processing the DNNs.
To balance the tradeoff, we thus propose to minimize the total
power consumption, consisting of computation power and com‑
munication power, under the target QoS constraints. This prob‑
lem involves the joint design of the task allocation strategy
across APs and the downlink beamforming vectors. Interest‑
ingly, if an inference task is not performed at one AP, the cor‑
responding beamforming vector could be set as zero. This in‑
trinsic connection between the task allocation strategy and the
group sparsity structure of the downlink beamforming vectors
allows us to reformulate the total power minimization problem
under target QoS constraints as a group-sparse beamforming
problem with QoS constraints. The group sparse structure can
be induced with a well-recognized mixed l1,2 norm, which re‑sults in a convex second-order cone program (SOCP) problem
that can be efficiently solved. We leave simulation results in
Fig. 6 in Section 5.3 to evaluate the total power consumption
of the proposed approach as well as the intelligent reflecting
surface empowered in-edge cooperative AI inference.

5 IRS for Enhancing Communication Effi⁃
ciency of Edge Inference Systems
In this section, we introduce the novel IRS[7] technique for

improving the signal propagation conditions of wireless envi‑
ronment, which is able to further enhance the communication
efficiency for on-device distributed AI infer‑
ence and in-edge cooperative AI inference.
5.1 Principles of IRS
An IRS is a low-cost two-dimensional sur‑

face of electromagnetic (EM) materials and
composed of structured passive scattering ele‑
ments[22]. The structural parameters determine
how the incident radio waves are transformed
at the IRS. The specially designed scattering el‑
ements introduce a shift of the resonance fre‑
quency and a change of boundary conditions,
resulting in phase changes of both the reflected
and diffracted radio waves. The scattering ele‑
ments on IRS are reconfigurable by imposing
external stimuli to alter their physical parame‑
ters, which can be exploited to fully control the
phase shift of each element at the IRS.
Although the communication efficiency of

data shuffling for on-device distributed AI in‑
ference and wireless cooperative transmission
for in-edge AI inference can be greatly im‑

proved by our novel communication strategy and algorithm de‑
sign, it is still fundamentally limited by the wireless propaga‑
tion environments. To this end, we resort to IRS that is capa‑
ble of building a smart radio environment to address this issue.
5.2 IRS-Empowered Data Shuffling for On-Device Dis⁃

tributed AI Inference
IRS with real-time reconfigurability is capable of control‑

ling the signal propagation environments, thereby improving
the spectral efficiency and reducing the energy consumption
of wireless networks. The controllable phase shifts to the inci‑
dent signals make IRS possible for further improving the
achievable DoFs for data shuffling in Section 3. In particular,
by actively reconfiguring the radio propagation environment,
the feasibility of interference alignment conditions can be
achieved. As a result, IRS is a promising technology for pro‑
viding low-latency on-device distributed AI inference services
for a wide range of applications. Note that we can still use the
communication scheme and interference alignment technique
provided in Section 3.2, and model the data shuffling problem
as a side information aided message delivery problem in inter‑
ference channel, while the channel coefficients could be ad‑
justed by the phase shifts of IRS. The additional dimension
provided by the phase shifts at RIS is able to further enhance
the desired signals while nulling interference.
5.3 IRS-Empowered In-Edge Cooperative AI Inference
To further reduce the power consumption of in-edge cooper‑

ative inference in Section 4, it is promising to combat the unfa‑
vorable channel conditions by actively adjusting the phase
shifts of IRS, rather than only adapting to the wireless propaga‑
tion environments. By dynamically configuring the phase

IRS: intelligent reflecting surface SINR: signal-to-interference-plus-noise ratio
▲Figure 6. Average total power consumption comparison between edge processing sys⁃
tems with and without IRS.
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shifts of the IRS, a desired channel response
can be achieved at the mobile devices, which
in turn improves the signal power. Therefore,
under the same QoS requirements, IRS can be
utilized to further reduce the total power con‑
sumption of the edge processing system.
However, it calls for the joint design of the

task allocation strategy, the downlink beam‑
formers and the phase shifts of IRS. Exploiting
the group structure of beamformers yields a
highly nonconvex group-sparse optimization
problem with coupled optimization variables in
the QoS constraints, i. e., the downlink beam‑
forming vectors at the APs and the phase shifts
at the IRS. An alternating optimization frame‑
work can be adopted to decouple the highly
nonconvex QoS constraints, for which updating
the downlink beamforming vector is exactly the
same as that in Section 4.1. The update for
phase shifts at the IRS can be transformed to a
homogeneous quadratically constrained qua‑
dratic program (QCQP) problem with noncon‑
vex unit modulus constraints. To tackle the
nonconvex constraints, the problem is further reformulated as
a rank-one constrained optimization problem by leveraging the
matrix lifting technique. The resulting optimization problem
can then be solved with a DC algorithm by minimizing the dif‑
ference between trace norm and spectral norm of the matrix
variable.
For illustration purpose, we consider an edge processing

system with three 5-antenna APs and ten single-antenna mo‑
bile users that are uniformly located in the square area of
[ 0, 200 ]m ×[ 0, 200 ]m. An IRS equipped with 25 reflecting
elements is deployed at the center of the square area. In sim‑
ulations, the power consumption of performing an inference
task at the AP is 0.45 W and the maximum transmit power of
AP is 1 W. Fig. 6 shows the average total power consumption
versus the target signal-to-interference-plus-noise ratio
(SINR) for edge processing systems without and with an IRS,
where a simple random phase shift strategy is adopted. Simu‑
lation demonstrate that the power consumption can be signifi‑
cantly reduced by leveraging the advantages of IRS. We then
compare the proposed DC approach with the semidefinite re‑
laxation (SDR) approach as well as the random phase shifts
strategy in Fig. 7. It demonstrates that the proposed ap‑
proach is able to achieve the least total power consumption
among others.

6 Conclusions
In this article, we presented the communication-efficient de‑

signs for edge inference. We identified two representative sys‑
tem architectures for edge inference, i.e., on-device distribut‑

ed AI inference and in-edge cooperative AI inference. For on-
device distributed AI inference, we proposed a low-latency da‑
ta shuffling strategy, followed by developing a low-rank optimi‑
zation method to maximize the achievable DoFs. We also pro‑
posed a group-sparse beamforming approach to minimize the
total power consumption of in-edge cooperative AI inference.
In addition, we explored the potential of deploying IRS to fur‑
ther enhance the communication efficiency by combating the
detrimental effects of wireless fading channels. Our proposals
are capable of achieving low-latency and high energy efficien‑
cy for edge AI inference.
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Abstract: Edge computation offloading allows mobile end devices to execute compute-inten‑
sive tasks on edge servers. End devices can decide whether the tasks are offloaded to edge
servers, cloud servers or executed locally according to current network condition and devic‑
es’profiles in an online manner. In this paper, we propose an edge computation offloading
framework based on deep imitation learning (DIL) and knowledge distillation (KD), which
assists end devices to quickly make fine-grained decisions to optimize the delay of computa‑
tion tasks online. We formalize a computation offloading problem into a multi-label classifi‑
cation problem. Training samples for our DIL model are generated in an offline manner. Af‑
ter the model is trained, we leverage KD to obtain a lightweight DIL model, by which we fur‑
ther reduce the model’s inference delay. Numerical experiment shows that the offloading de‑
cisions made by our model not only outperform those made by other related policies in laten‑
cy metric, but also have the shortest inference delay among all policies.
Keywords: mobile edge computation offloading; deep imitation learning; knowledge distillation
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1 Introduction

Nowadays more and more end devices are running com‑
pute-intensive tasks, such as landmarks recognition
apps in smartphones[1], vehicles detection apps used
for traffic monitoring in cameras[2], and augmented re‑

ality apps in Google Glass. The advantages of executing com‑
pute-intensive tasks on end devices are twofold. On the one
hand, most data, such as images, audios and videos, are gener‑
ated at end devices. Compared with sending these data to the

cloud server, processing data locally on end devices can avoid
time-consuming data transmission and reduce heavy band‑
width consumption. On the other hand, some tasks are sensi‑
tive to latency and the execution result can be out of date if be‑
ing late. In some cases (e. g., face recognition applications),
high latency can result in poor user experience. If computa‑
tion tasks are offloaded to the cloud, the unreliable and delay-
significant wide-area connection can be problematic. Hence,
executing compute-intensive tasks on end devices is a poten‑
tial solution to lower end-to-end latency.
However, compared with cloud servers, the computing re‑

sources of end devices are very limited. Even a smartphone’s
computing capability is far weaker than a cloud server, not to
mention the Google Glass and cameras. It turns out that exe‑
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cuting compute-intensive tasks on end devices may result in
high computation latency. In addition, end devices often have
energy consumption restrictions；for example, most smart‑
phone users do not want a single app to consume too much
power. Thus, it is unwise to execute tasks on end devices in‑
discriminately.
Recently, edge computing has emerged as a new paradigm

different from local execution and cloud computing, and has
attracted more and more attention. The European Telecommu‑
nications Standards Institute provided a concept of multi-ac‑
cess edge computing (MEC) [3]. In the MEC architecture, dis‑
tributed edge servers are located at the network edge to pro‑
vide computing capabilities and IT services with high band‑
width and real-time processing. Edge servers become the third
offloading location of compute-intensive tasks in addition to
end devices and cloud. However, due to edge servers’restrict‑
ed computing capability, they cannot completely take place of
cloud servers. Many factors, including available computation
and communication resources, should be taken into consider‑
ation when making offloading decisions. To tackle this chal‑
lenge, in this paper, we design a computation offloading frame‑
work which jointly considers computation and communication
and dynamically makes optimal offloading decisions to mini‑
mize the end-to-end execution latency.
Recent advances in deciding offloading strategies focus on

learning-based methods. YU et al.[4] propose to“imitate”the op‑
timal decisions of traditional methods by deep imitation learn‑
ing (DIL), where DIL[5] uses instances generated from human’s
behaviors to learn the decision strategies in specific environ‑
ments. DIL enjoys two advantages compared with traditional
methods[6] and deep reinforcement learning methods[7]. First, in‑
ference delay of DIL is much shorter than that of traditional
methods especially when the amount of input data is large (as
shown in our experiment in Section 5). Second, DIL has higher
accuracy in imitating optimal offloading decisions compared
with approaches based on deep-reinforcement-learning (DRL).
However, the DIL model is built upon deep neural network

(DNN), which is compute-intensive and typically requires
high inference latency. On this issue, model compression[8] is
proposed, and knowledge distillation (KD) is one of the solu‑
tions[9]. The idea behind KD is similar to transfer learning. KD
not only effectively reduces the size of the neural network and
improves the inference efficiency, but also improves the accu‑
racy in the case where training samples are insufficient and
unbalanced, which may appear in DIL training phase. Hence,
we believe that applying KD can benefit the deployment of
DIL model.
In this article, we leverage the emerging edge computing par‑

adigm and propose a framework based on DIL and KD, which
jointly considers available computation and communication re‑
sources and makes fine-grained offloading decisions for end de‑
vices. The objective of the proposed framework is to minimize
the end-to-end latency of compute-intensive tasks on end devic‑

es. We use offloading decision instances to train our DIL model
offline and compress the model to a lightweight one by KD on‑
line for quickly making near-optimal offloading decisions.
The rest of this article is organized as follows. We briefly re‑

view related works in Section 2. We explain how to build a
DIL model and use it in computation offloading decisions in
Section 3. Then we describe how to use KD to further optimize
the performance of the DIL model in Section 4. Numerical ex‑
periment results are shown in Section 5. At last we discuss
some future directions and conclude in Section 6.

2 Related Work

2.1 Computation Offloading Strategies
To achieve lower latency or energy, mobile end devices usu‑

ally choose to offload tasks to the cloud or edge servers. How‑
ever, due to the complexity of network conditions in practice,
for different devices at different times, the optimal computa‑
tion offloading decisions are different. It is difficult to find this
optimal decision in real time. Traditional computation offload‑
ing strategies are mostly based on mathematical modeling. Re‑
searchers in Ref. [6] study the computation offloading problem
in multi-user MEC environment. They firstly prove that find‑
ing the best offloading strategies in multi-channel and multi-
user condition is NP-hard. Then they model this problem as
an offloading game and design a distributed approach to reach
the Nash equilibrium. The authors in Ref. [10] study offload‑
ing video objects detection tasks to cloud server. In Ref. [10],
a big YOLO model is deployed in cloud while a lite YOLO
model is deployed at end devices. Many factors such as bit
rate, resolution and bandwidth are considered and the offload‑
ing problem is formulated into a multi-label classification
problem. A near-optimal solution is found by an iteration ap‑
proach and it successfully achieves higher accuracy in video
objects detection. The main disadvantage of mathematical
modeling methods is that they are so complicated that they
may cause non-negligible inference delays and are difficult to
be deployed in MEC network.
One of the typical compute-intensive tasks is DNN infer‑

ence, on which many researchers study specialized computa‑
tion offloading strategies. KANG et al. [11] propose Neurosur‑
geon framework for DNN offloading. Neurosurgeon divides
DNN into two parts. One part runs at end devices and the oth‑
er runs at the cloud. This method reduces the calculation at
end devices, and tries to find a balanced point between com‑
putation and transmission. Neurosurgeon evaluates the latency
of each DNN layer by regression models offline, and uses
these models to calculate the best divided point online tai‑
lored to end devices’performance and bandwidth.
Recently, some researchers introduce DRL to find computa‑

tion offloading strategies. In this case, the latency or energy
consumption serves as agents’reward. The authors in Ref. [7]
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improves the inference efficiency, but also improves the accu‑
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DIL model.
In this article, we leverage the emerging edge computing par‑

adigm and propose a framework based on DIL and KD, which
jointly considers available computation and communication re‑
sources and makes fine-grained offloading decisions for end de‑
vices. The objective of the proposed framework is to minimize
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es. We use offloading decision instances to train our DIL model
offline and compress the model to a lightweight one by KD on‑
line for quickly making near-optimal offloading decisions.
The rest of this article is organized as follows. We briefly re‑

view related works in Section 2. We explain how to build a
DIL model and use it in computation offloading decisions in
Section 3. Then we describe how to use KD to further optimize
the performance of the DIL model in Section 4. Numerical ex‑
periment results are shown in Section 5. At last we discuss
some future directions and conclude in Section 6.

2 Related Work

2.1 Computation Offloading Strategies
To achieve lower latency or energy, mobile end devices usu‑

ally choose to offload tasks to the cloud or edge servers. How‑
ever, due to the complexity of network conditions in practice,
for different devices at different times, the optimal computa‑
tion offloading decisions are different. It is difficult to find this
optimal decision in real time. Traditional computation offload‑
ing strategies are mostly based on mathematical modeling. Re‑
searchers in Ref. [6] study the computation offloading problem
in multi-user MEC environment. They firstly prove that find‑
ing the best offloading strategies in multi-channel and multi-
user condition is NP-hard. Then they model this problem as
an offloading game and design a distributed approach to reach
the Nash equilibrium. The authors in Ref. [10] study offload‑
ing video objects detection tasks to cloud server. In Ref. [10],
a big YOLO model is deployed in cloud while a lite YOLO
model is deployed at end devices. Many factors such as bit
rate, resolution and bandwidth are considered and the offload‑
ing problem is formulated into a multi-label classification
problem. A near-optimal solution is found by an iteration ap‑
proach and it successfully achieves higher accuracy in video
objects detection. The main disadvantage of mathematical
modeling methods is that they are so complicated that they
may cause non-negligible inference delays and are difficult to
be deployed in MEC network.
One of the typical compute-intensive tasks is DNN infer‑

ence, on which many researchers study specialized computa‑
tion offloading strategies. KANG et al. [11] propose Neurosur‑
geon framework for DNN offloading. Neurosurgeon divides
DNN into two parts. One part runs at end devices and the oth‑
er runs at the cloud. This method reduces the calculation at
end devices, and tries to find a balanced point between com‑
putation and transmission. Neurosurgeon evaluates the latency
of each DNN layer by regression models offline, and uses
these models to calculate the best divided point online tai‑
lored to end devices’performance and bandwidth.
Recently, some researchers introduce DRL to find computa‑

tion offloading strategies. In this case, the latency or energy
consumption serves as agents’reward. The authors in Ref. [7]
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consider a condition of vehicular networks based on software
defined network and jointly optimize networking, caching,
and computer resource by a double-dueling Deep-Q-Net‑
work. The main drawback of DRL-based approaches in com‑
putation offloading is that the offline training and online in‑
ference takes many overheads. To tackle this challenge, we
propose to utilize DIL for computation offloading, the train‑
ing cost and inference latency of which are significantly low‑
er than those of DRL.
2.2 Deep Imitation Learning and Knowledge Distillation
DIL refers to training agents to imitate human’s behaviors

by a number of demos. Compared with DRL, training and in‑
ference time of DIL is much shorter. The authors in Ref. [4]
build an edge computation offloading framework based on
DIL. However, since DIL is based on DNN, if the size of DNN
grows too large, it may still result in high inference delay. On
this issue, we use Knowledge Distillation to compress the DIL
model.
KD is firstly proposed in Ref. [9], where the authors show

that small DNNs can achieve approximately high accuracy as
large DNNs with relatively less inference latency. This moti‑
vates us to compress the models to reduce inference delay
with tiny accuracy loss. In KD, a large DNN is trained on a
large training set and a lite DNN is trained on a small training
set whose labels are the output of large DNN after“softened”.
In our work, we compress our DIL model through KD to fur‑

ther reduce the inference delay, and improve the model’s per‑
formance when training samples are missing and unbalanced.

3 Edge Computation Offloading by Deep
Imitation Learning

3.1 System Model
We study the problem of making fine-grained offloading deci‑

sions for a single end device user. A compute-intensive task A
on end device needs to be executed. We firstly split task A into
some subtasks, following Ref. [12]. Each subtask can be denot‑
ed by a tuple at = ( t, εt, dt, dt + 1 ). Task A can be seen as a set ofall subtasks at. And εt represents the computation complexity ofthe t-th subtask (usually in central processing unit (CPU) cy‑
cles). All of the computation complexity forms a set E =
{ εt|tϵ[ 0, | A |) }. The dt denotes the size of input data of the t-th
subtask (usually in bytes). When t=0, d0 represents the size ofinput data of task A. dt + 1 denotes the size of output data of the t-th subtask, and is also the input data size of the (t+1) -th sub‑
task. When t=|A|, d |A| represents output size data of task A. Sizesof all data flow jointly form the set D = { dt|t ∈ [ 0, | A | + 1) }.
As shown in Fig. 1, during the runtime of the mobile end

device, a wireless connection with an edge server is estab‑
lished, and the edge server maintains a connection with the
cloud server through the Internet. When a computation task in
the end device needs to be executed, it will be divided into
some subtasks. Each subtask can choose to be executed local‑
ly on end device or sent to the edge server. When the edge
server receives a requirement of execution of a subtask, it can
decide whether to execute it locally on edge server or further
send it to cloud server. Execution of a subtask leads to compu‑

▲Figure 1. Subtasks are offloaded to end device, edge server and cloud server respectively.
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tation latency, which depends on the profile of end device and
edge server and the computation complexity of subtasks E. If
two adjacent subtasks are offloaded to different locations,
transmission latency will also occur, which mainly depends on
the bandwidth between end device, edge server and cloud
server and transmission data size D. In this paper, due to the
strong computing capability of the cloud server, cloud compu‑
tation latency is far less than the transmission latency. Hence,
when the subtask is offloaded to cloud server, the computation
latency can be ignored and only the transmission latency is
concerned.
3.2 Problem Formulation
When a computation task needs to be executed, end devic‑

es split it into some subtasks and evaluate computation com‑
plexity E and transmission data sizes D of all subtasks. We
can leverage the method introduced in Ref. [12] to evaluate E
and D. Then all subtasks, E, D and the computing capability
of the end device (denoted by p1) are sent to edge server；p1can be measured in CPU frequency (in Hz). The edge server
measures the bandwidth between the end device and edge
server (denoted by b1) and the bandwidth between the edgeserver and cloud server (denoted by b2). Factors mentionedabove and the computing capability of edge server (denoted by
p2) jointly form the description of current offloading require‑ment S = (E,D, p1, p2, b1, b2 ). The edge server is responsiblefor making offloading decisions of each subtask according to S.
For each subtask at, its offloading decision is representedby It ∈ { 0, 1, 2 }. It = 0, 1, 2 indicates that subtask at is execut‑ed at end device, edge server or cloud server respectively.

Offloading decision of the whole task A is given by I =
{ It|t ∈ [ 0, |A|) }. Obviously, |I| = 3|A|. The offloading problemturns into finding the offloading decision I with the shortest
end-to-end latency according to given S.
Now we compute the end-to-end latency of a specific I. As

we have discussed, end-to-end latency can be divided into
computation latency and transmission latency. Let Ltexec denotethe computation latency of t-th subtask. When It = 0, 1, thesubtask is executed at end device or edge server, hence Ltexec =
εt /p1 or Ltexec = εt /p2, respectively. When It = 2, as mentionedin Section 3.1, computation latency at cloud server is ignored,
hence Ltexec = 0. Given S and offloading decision I, computa‑tion latency of the whole task A is:
Lexec (S, I) =∑t = 0

|| A - 1Ltexec . (1)
Let Lttrans represent the data flow size between t-th and (t-1)-thsubtask. When data are transmitted between end device and

edge server, Lttrans = dt /b1 , and when data is transmitted be‑tween edge server and cloud server, Lttrans = dt /b2. Note that thedata at the beginning of the whole task are input by the end
device, and the final output destination is also the end device,
thus we can assume that I-1 and I |A| are always 0. Given S and

offloading decision I, transmission latency of the whole task A
is:
Ltrans (S, I) =∑t = 0

|| A Lttrans . (2)
Our goal is to find the offloading decision I * with the short‑

est end-to-end latency, which is:
I * = argmin I (Lexec (S, I) + Ltrans (S, I)) . (3)
So far, we have formulated computation offloading problem

to an end-to-end latency minimization problem. By changing
the parameter of argmin to energy, we can switch optimization
objective to the energy consumption. Let S represent the de‑
scription of offloading requirement, I represent the offloading
decision, Rexec (S, I) be the energy consumption of computation
and Rtrans (S, I) be the energy consumption of transmission.
Then the best offloading decision I * is: I * =
argmin I (Rexec (S, I) + Rtrans (S, I) ). If it is required to optimize
latency and energy simultaneously, we can set the parameter
of argmin to a weighted sum of latency and energy.
3.3 Deep Imitation Learning for Offloading
The above minimization problem can be considered as a

combinatorial optimization problem. Existing technologies
such as traditional offloading algorithms or reinforcement
learning are difficult to solve such problems efficiently.
Hence, we apply DIL to deal with it. Finding the best offload‑
ing decision I * can be formulated to a multi-label classifica‑
tion problem[13]. Decision I is a set of |A| labels and the three
values of It corresponding to three classes. The idea of DIL isto use a DNN to learn the mapping from S to the best offload‑
ing decision I *. To this end, offloading requirement S can
serve as features of input samples and I * serves as the real la‑
bels of samples, as shown in Fig. 2.
DIL for offloading consists of three phases described as fol‑

lows:
1) Generate training samples offline. DIL is supervised

learning and it needs a number of features labels pair (S, I * ).
The feature S can be obtained by collecting the actual offload‑
ing task requirement, or randomly generating features based
on the distribution of various parameters in the actual offload‑
ing task requirement. Since labels I * are generated offline,
some expensive non-real-time algorithms can be applied. In
addition, performance of our DIL model is limited by the qual‑
ity of labels, and only the labels with high accuracy can en‑
sure highly accurate DIL model. Note that the size of decision
space is 3|A|. In summary, when |A| is small, we can use an ex‑
haustive approach to obtain the optimal offloading decision by
searching the whole decision space. When |A| is large, we
solve this problem as integer programming problem by exist‑
ing efficient solvers such as CPLEX.
2) Train DIL model offline. We train a DNN model to learn
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the mapping from S to I*. In this multi-label classification
problem, the output of DNN consists of predictions of |A| la‑
bels. Each prediction has three possibilities corresponding to
three values of It. Hence the output layer of DNN has 3 × |A|neurons and the activation function is SoftMax. All hidden lay‑
ers are full connected layers.
3) Make offloading decisions online. After our DIL model is

trained, it is deployed to edge server to make offloading deci‑
sions online. Experiment shows that the efficiency of DIL mod‑
el inference is higher than baseline models.
DIL is based on learning. DIL’s performance is closely re‑

lated to the training samples. If the training samples are di‑
verse, DIL model can deal with more conditions, i. e., it be‑
comes more robust. If training samples contain offloading re‑
quirement under the conditions with fluctuation of wireless
channels, DIL model can learn how to make a good decision
under these conditions. In practice, training samples are from
actual offloading requirement. The fluctuation of the wireless
channels is also covered.
After the DIL model is trained, we should consider where

the DIL model is deployed for online inference. Same as the
computation tasks, DIL model can be deployed on end devic‑
es, edge server or cloud server. However, if DIL model is de‑
ployed on the cloud server, the wide-area connection will be‑
come an unstable factor. To ensure model’s performance, we
expect that the inference result of DIL model can be obtained
with a low and predictable delay. Hence, even though the com‑

puting capability of cloud server is much stronger, it is not rec‑
ommended to deploy DIL model on cloud server. In addition,
since having all model inference workload on end device may
lead to high energy consumption, we believe that edge server
is a better place for DIL model deployment.

4 Knowledge Distillation for Model Com⁃
pression
Since our DIL model is based on compute-intensive DNN

execution, the inference latency could be high due to the limit‑
ed computing capability of edge servers. We hope that the DIL
model running on the edge server is lightweight and the model
inference delay is minimized. Towards that, a potential solu‑
tion is to put the three phases mentioned above into edge serv‑
er to train a DIL model based on small DNN locally on edge
server. However, it raises two problems. First, limited by the
number of parameters, the learning capability of a small DNN
is insufficient. Compared with large DNN, it may cause loss of
accuracy and make performance worse. Second, in the phase
of generated demo offline, training samples are obtained by
collecting the actual offloading task requirement or randomly
generated based on distribution of various parameters in the
actual offloading task. However, the service area of an edge
server is highly limited. Compared with the samples collected
by cloud server, samples collected by edge server may be not
enough and unbalanced. This further incurs the accuracy and
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▲Figure 2. Deep imitation learning model for edge computing offloading. Given the offloading requirement S=(E, D, p1, b1, p2, b2) as the input, the
deep imitation learning model can output the offloading decision I* = (a1, a2, a3, a4, a5, a6).
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performance of small DNN. To this end, directly training a
lightweight DIL model on edge server is not practical[15].
The authors in Ref. [9] proposed KD, which can be used for

DNN compression. This technology helps us transfer the
knowledge from a large DNN to a small DNN. When the train‑
ing samples are inadequate and unbalanced, accuracy of the
DNN trained by KD is higher than that of the DNN directly
trained on samples. Large DNN is called the“teacher”and
small DNN is called the“student”. Back to our offloading
problem, we can leverage the strong computing capability of
cloud server and a number of samples to train a large DNN
with high accuracy to serve as the teacher, and then transfer
the knowledge learned by large DNN to small DNN which is
deployed to edge server by KD, achieving low inference delay
and small scale with tiny loss of accuracy, as shown in Fig. 3.
KD can be applied to any neural networks whose output

layer is activated by SoftMax; in other words, the networks are
used for solving classification problem. In KD, we train two
networks, the teacher network and the student network. Train‑
ing the teacher network is the same as training conventional
network, and training the student network is also similar. The
only difference is that the initial labels of student network be‑
fore training are from the teacher network’s trained labels,
rather than from the training dataset.
In some cases, teacher network’s trained labels may be very

small and close to zero (e.g., < 10-3), which is nearly the same
as the original one-hot encoded labels and remains difficult for
student network to learn the differences between labels. To alle‑
viate this problem, we amplify the differences by further“soft‑
ening”the labels. Let pi be the probability of the i‑th class pre‑dicted by the teacher, and qi is the softened probability corre‑sponding to pi. We slightly change the form of the softening for‑mula in Ref.[9] to compute qi:

qi =
exp ( )ln ( )pi

T

∑j = 1
C exp ( )ln ( )pj

T

, （4）

where C is the total number of classes, in our offloading prob‑
lem C=3. T is a tunable hyper-parameter with the constraint T ≥
1. If T=1, qi = pi. The labels will be softer with higher T. For in‑stance, if original label is (0.999, 2 × 10-4, 3 × 10-6), when T=
5, the softened label will be (0.71, 0.20, 0.09); when T=10, the
softened label will be (0.53, 0.28, 0.19). In the following experi‑
ment we set T=5. Back to the offloading problem, we use a
teacher network trained at cloud server to predict labels of the
training set obtained by edge server. Then soften these labels
by the formula mentioned above and train student network by
softened labels at edge server.
We show the complete flowchart of our DIL offloading

framework with KD in Fig. 4.

5 Evaluation

5.1 Evaluate Large DIL Model Performance
In this section, we set up a numerical experiment to evalu‑

ate the performance of DIL model described in Section 3. We
consider that an MEC network consists of an end device user
and an edge server connected by wireless connection, mean‑
while the edge server connects to cloud server via the Inter‑
net[16]. We assume that the compute-intensive task A on end
device is divided into 6 subtasks, which is |A|=6. If the num‑
ber of subtasks of some computation tasks is not 6, we can
merge some subtasks or insert empty subtasks to make the
number of subtasks 6. The computation complexity of each

Predict labels bylarge DIL model andsoften the labels

Edge server

Lite model

▲Figure 4. Complete flowchart of our edge offloading framework based
on DIL and KD.

▲Figure 3. Compress model by knowledge distillation to get a lightweight
model deployed to edge server.
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subtasks εt (measured in CPU cycles) is in the interval of
[ 0, 2 000 ] × 106, following uniform distribution. Sizes of data
transmission between subtasks follow uniform distribution
with dt ∈ [ 0,10 ]MB, like the setting in Ref. [14]. In addition,
we assume that the computing capability of end device and
edge server (both measured by CPU frequency in Hz) is in the
intervals of [ 100, 1000 ]MHz and [ 500, 5 000 ]MHz respec‑
tively, both following the uniform distribution. The bandwidth
between end device and edge server and the bandwidth be‑
tween edge server and cloud server are uniformly distributed
in b1 ∈ [ 0, 2 ]MB/s and b2 ∈ [ 0, 3 ] MB/s respectively. We ran‑domly generate 100 000 samples offline to train DIL model
and 10 000 testing samples for testing.
Our DIL model is based on a DNN with 5 hidden layers. All

hidden layers are full connected layers and consist of 256 neu‑
rons. The number of parameters in the whole DNN is 1.6 mil‑
lion. Activation function of hidden layers is RELU and output
layer is activated by SoftMax. To evaluate the performance of
our DIL based offloading framework, we consider some base‑
line frameworks listed follow:
1) Optimal. Exhaustive method: For each sample, search the

whole 3|A| decision space, compute the latency described in Sec‑
tion 3.2 and choose the offloading decision with minimal laten‑
cy. Note that this minimal latency is the lower bound in the de‑
cision space. Hence, this decision is bound to be optimal.
2) Greedy. For each sample, find the offloading location one

by one for each subtask to minimize the computation and
transmission latency of current subtask.
3) DRL. Offload framework based on deep reinforcement

learning. Features of samples serve as environment and offload‑
ing decisions serve as actions. The
opposite number of latency acts as
reward. The deep Q network is
similar to that in Ref. [7].
4) Others. Local: The whole task

is executed on end device, which is
for any t, It = 0; Edge: All subtasksare executed on edge server, which
means It = 1; Cloud: All subtasksare offloaded to cloud server, which
is It = 2; Random: Randomly
choose offloading location for each
subtask, that is to say, It are ran‑domly chosen from {0, 1, 2}.

Fig. 5 shows the normalized la‑
tency of the DIL model and base‑
line frameworks with the latency of
optimal decision are normalized to
1.0, and then the latency of deci‑
sion made by our DIL model is
1.095, with an increase less than
10%. Experiment results show that
our model outperforms other base‑

line frameworks. Note that latency of“Edge”is less than“Lo‑
cal”and“Cloud”, which indicates that edge server can certain‑
ly improve the compute-intensive tasks in end-to-end latency.
At last, latency of“Random”is far higher than others, this is
because randomly choosing offloading location will cause high
transmission latency, which is expectable.
5.2 Evaluate Knowledge Distillation Performance
As mentioned in Section 4, we should compress our DIL

model before deploying it to edge server and deal with the situa‑
tion in which training samples on edge server are insufficient
and unbalanced. We call our compressed model“KD-DIL”for
short. In this section, we assume the CPU cycles of subtasks are
uniformly distributed in εt ∈ [ 500, 1500 ] × 106. Sizes of trans‑mission data between subtasks are in dt ∈ [ 3, 8 ] MB, followinguniform distribution. The distribution range of εt and dt is re‑duced by half compared with that in Section 5.1. Distributions
of other parameters remain the same. In order to simulate the
case in which training samples are insufficient, we only gener‑
ate 1 000 samples for training in this section, reduced by 99%
compared with that in Section 5.1. Testing samples remain the
same as that in Section 5.1.
Our KD-DIL model is still based on DNN consisting of full

connect layers. There are only 2 hidden layers in DNN with 32
neurons in each layer. The number of parameters of the whole
DNN is about 10 000, reduced by 99.375% compared with that
in Section 5.1. The following baseline models are used for eval‑
uating the performance of our KD-DIL model.
1) Baseline DIL: This DIL model is based on the DNN which

is same as that in KD-DIL. The difference is that Baseline DIL

▲Figure 5. Normalized end-to-end latency of offloading decisions made by our DIL model and baselines.
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is directly trained on the training
set described above without apply‑
ing KD described in Section 4.
2) DRL: Deep reinforcement

learning based on DQN. The dif‑
ference between this and DRL
model in Section 5.1 is that it is
trained on training set with 1 000
samples described above instead
of that with 100 000 samples de‑
scribed in Section 5.1.
3) Greedy: Same as Greedy in

Section 5.1.
Fig. 6 shows the normalized la‑

tency of KD-DIL models and base‑
line models. Again, the latency of
optimal decision is normalized to
1.0. It shows that our KD-DIL
model still outperforms baseline
models. Note that the performance
of DRL has a sharp decreasing
compared that in Section 5.1 be‑
cause of the change of training set.
It is further shown that when the number and distribution of
training samples are changed, the accuracy loss of our KD-DIL
model is relatively small.
At last, Table 1 shows the normalized inference delay of

all models with delay of“Greedy”being normalized to 1.00,
since the greedy method is the typical method for computation
offloading. We measure the delay of making 100 000 deci‑
sions of all the models, and divide this delay by 100 000 to
get the average delay of each decision. As shown in Table 1,
compared with the large DIL model, the inference delay of
KD-DIL model decrease by 63% (0.17/0.51). Table 1 shows
that the inference delay of the Greedy approach is slightly
higher than DIL model. As described in Section 5.1, the
Greedy approach finds deployment place for each subtask by
iterations. The number of iterations equals to that of subtasks.
In practice, the number of subtasks may be much higher than
6, so the inference delay of the Greedy approach may become
correspondingly higher.
Lastly, the inference of the optimal approach and DRL is

hundreds of times that of our DIL models. Because optimal ap‑
ply exhaustive method, high inference delay is expectable.
While making decisions by DRL, we treat each strategy as an
action and end-to-end latency as reward. We calculate each
action’s reward to find the highest reward, which needs many
times of DNN inference. Hence, the delay of DRL inference is
much higher than DIL.

6 Future Work and Conclusions
Flowcharts of subtasks can be represented by directed acy‑

clic graph (DAG) known as computation graph. In computa‑
tion graph, nodes denote subtasks, edges denote data flow and
directions of edge represent data transmission directions.
DNN can also be regarded as a computation graph. In many
programming frameworks dedicated to deep learning, such as
TensorFlow, the concept of computation graph is applied.
Offloading a computation graph in MEC network to optimize
end-to-end latency is a difficult problem. The subtasks flow‑
chart studied in this article has a list structure. In our future
work we will focus on how to modify our work to adapt to DAG.
In this article, we have studied fine-grained edge computing

offloading framework. In the situation in which an end device
wirelessly connects to an edge server, compute-intensive tasks
can choose to be executed at end device, edge server or cloud
server. We first review existing edge offloading framework in‑
cluding mathematic model method (game theory) and rein‑
forcement learning. Then we provide model of computing task
and describe the execution process of a task. Offloading prob‑
lem is formulated into a multi-label classification problem and
is solved by a deep imitation learning model. Next, in order to
deal with the insufficient and unbalanced training sample, we
apply knowledge distillation to get a lightweight model with ti‑
ny accuracy loss, making it easier to be deployed to edge serv‑

▲Figure 6. Normalized KD-DIL model and baselines when using a small training set.

DIL: deep imitation learningKD-DIL: knowledge distillation-deep imitation learning DRL: deep reinforcement learning
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er. Numerical experiment shows that the offloading decisions
made by our model have the lowest end-to-end latency and the
inference delay of our model is the shortest, and after knowl‑
edge distillation we successfully reduce the inference delay by
63% with tiny accuracy loss. At last we briefly discuss some
future directions of edge computation offloading.
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Abstract: This paper investigates an unmanned aerial vehicle (UAV) assisted mobile edge
computing (MEC) network with ultra-reliable and low-latency communications (URLLC), in
which a UAV acts as an aerial edge server to collect information from a set of sensors and
send the processed data (e.g., command signals) to the corresponding actuators. In particu‑
lar, we focus on the round-trip URLLC from the sensors to the UAV and to the actuators in
the network. By considering the finite block-length codes, our objective is to minimize the
maximum end-to-end packet error rate (PER) of these sensor-actuator pairs, by jointly opti‑
mizing the UAV’s placement location and transmitting power allocation, as well as the us‑
ers’block-length allocation, subject to the UAV’s sum transmitting power constraint and
the total block-length constraint. Although the maximum-PER minimization problem is non-
convex and difficult to be optimally solved, we obtain a high-quality solution to this problem
by using the technique of alternating optimization. Numerical results show that our proposed
design achieves significant performance gains over other benchmark schemes without the
joint optimization.
Keywords: UAV; MEC; URLLC; placement optimization; resource allocation

Citation (IEEE Format): P. Y. Zhang, L. F. Xie, J. Xu, et al.,“Joint placement and resource allocation for UAV‑assisted mobile edge com‑
puting networks with URLLC,”ZTE Communications, vol. 18, no. 2, pp. 49–56, Jun. 2020. doi: 10.12142/ZTECOM.202002007.

1 Introduction

Recent advances in artificial intelligence (AI) and In‑
ternet of Things (IoT) are envisioned to enable various
new intelligent applications such as augmented reali‑
ty (AR), virtual reality (VR), and unmanned aerial ve‑

hicles (UAVs). Towards this end, billions of IoT devices (e.g.,
smart sensors and actuators) will be deployed in future wire‑
less networks to collect information from the environments
and take physical actions, and machine learning functional‑
ities will be incorporated into wireless networks to analyze and
acquire knowledge from these data for making decisions. In
this case, how to provide real-time sensing, communication,
and control among a large number of sensors and actuators,
and how to implement real-time machine learning in the loop
are challenging issues in the design of beyond-fifth-generation
(B5G) or sixth-generation (6G) cellular networks towards a vi‑
sion of network intelligence.
Mobile edge computing (MEC) [1–7] and learning[8–10] have
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emerged as important techniques to deal with the above is‑
sues, by pushing the cloud-like computation and storage capa‑
bilities, and the machine learning functionality at the network
edge, e. g., base stations (BSs) and access points (APs). Ac‑
cordingly, the edge servers at BSs/APs can help end users re‑
motely execute the computation-intensive applications in a
swift way, and quickly acquire knowledge from the locally gen‑
erated data at IoT devices for making quick decisions. Howev‑
er, wireless communications among end devices and BSs/APs
are becoming the performance bottleneck for such systems, as
the wireless channels connecting them may fluctuate over
time and be unstable. Prior works have investigated the joint
communication and computation design for mobile edge com‑
puting[1–4] and for training in mobile edge learning[8–10], re‑
spectively. Besides the joint design of communication and
computation, the ultra-reliable and low-latency round-trip
communications from sensors to edge servers and to actuators
are another crucial issue for successfully implementing the
machine edge learning with critical latency requirements. For
instance, consider the inference phase in mobile edge learn‑
ing, where trained machine learning models are deployed at
the edge server. In this case, IoT devices[11] (e.g., sensors) first
send the sensed information to the edge server; after receiving
such information，the edge server implements the inference
process and sends the inference results (e. g., such as com‑
mand signals) back to the same or other IoT devices (e.g., actu‑
ators) for taking actions. In this scenario, the round-trip ultra-
reliable and low-latency communications (URLLC) for the

“sensors-edge-server-actuators”flow is important and thus is
the main focus of this paper.
Furthermore, UAV-assisted wireless platforms[12–14] are

promising techniques towards B5G. UAV-assisted wireless
platforms can provide flexible wireless services to on-ground
devices by deploying wireless transceivers (such as BSs and
APs) at UAVs that can fly freely over the three-dimensional
(3D) space. Compared with conventional terrestrial wireless in‑
frastructures, UAV-enabled BSs/APs are advantageous due to
their deployment flexibility, strong line of sight (LoS) channels
with on-ground users, and highly controllable mobility[15–18].
By exploiting the controllable mobility, the UAVs can fly clos‑
er to intended on-ground devices and fly farther away from un‑
intended ones to help enhance the communication perfor‑
mance. By integrating UAVs with MEC, UAV-enabled MEC
has attracted a lot of recent research interests, in which the
UAV is deployed as dedicated aerial MEC server to support
the communication and computation of end users on the
ground. Prior works have investigated the computation offload‑
ing design in the UAV-assisted MEC, in which wireless devic‑
es (such as smartphones) offload their own computation tasks
to the UAV for enhancing the performance of task execu‑
tion[13], [19–24]. For instance, Refs. [22] and [23] aim to minimize
the energy consumption of the UAV while ensuring the quality
of service (QoS) requirements at users, by jointly optimizing

the UAV’s flight and wireless resource allocation. Refs. [19]
and [24] optimize the flight trajectory and communication
wireless resource allocation at the UAV, so as to maximize the
UAV’s endurance time or communication rate.
Different from prior works, this paper focuses on the round-

trip URLLC in mobile edge networks, in which the UAV-en‑
abled edge server is employed to improve the round-trip com‑
munication performance from on-ground sensors to the UAV
and to the actuators. This may practically correspond to a de‑
lay-sensitive inference scenario in mobile edge learning,
where the machine learning models are deployed at the UAV
for remote control. To our best knowledge, the problem of
round-trip URLLC under this scenario has not been addressed
yet. This problem, however, is challenging to be dealt with.
First, for achieving URLLC, the delivered packets (e. g., the
sensed information by the sensors and the command signals
sent from the MEC server to the actuators) are generally with
small block lengths, and as a result, the conventional Shannon
capacity under the assumptions of infinite block length and ze‑
ro decoding error is not applicable. Therefore, we must take in‑
to account the effect of finite block-length codes, under which
new performance metrics characterizing the relations among
the communication rate, packer error rate (PER), and block-
length should be considered[25–26]. Next, there generally exist a
large number of sensors and actuators over IoT networks. It is
thus very important to efficiently design wireless resource allo‑
cation among these sensor-actuator pairs. This, however, is
technically very difficult due to the new performance metrics
considered. Last but not least, the UAVs’mobility can be ex‑
ploited via trajectory control[24] or deployment optimization[27]
for optimizing the MEC performance. How to jointly design
the UAVs’deployment optimization or trajectory control to‑
gether with the wireless resource allocation is also a new prob‑
lem to be tackled for URLLC.
Notice that Ref. [27] studies the UAV-enabled relaying

system with URLLC, in which the UAV’s deployment loca‑
tion and the block-length allocation are jointly optimized, for
the purpose of minimizing the end-to-end PER from the
ground source node to the ground destination node. In con‑
trast to Ref. [27] that focused on the relaying scenario with
only one single source-destination pair, this paper studies a
different UAV-enabled MEC scenario with multiple sensor-
actuator pairs, for which both the transmitting power alloca‑
tion at the UAV and the block-length allocation are consid‑
ered, together with the UAV’s deployment optimization.
This paper investigates a UAV-assisted MEC network with

URLLC as shown in Fig. 1, in which a single UAV acts as an
aerial edge server to collect information sent from multiple sen‑
sors, analyze such information (via, e.g., machine learning), and
then send the processed data (e.g., command signals) to their re‑
spective actuators. We focus our study on the round-trip
URLLC by assuming the time and resource consumption for in‑
formation processing at the UAV which is given and thus ig‑
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nored. Furthermore, we consider the quasi-stationary UAV sce‑
nario1, in which the UAV hovers at an optimized location dur‑
ing the whole communication period of our interest. The main
results of this paper are summarized as follows.

• Under the above setup, we aim to minimize the maximum
end-to-end PER of these sensor-actuator pairs, by jointly opti‑
mizing the UAV’s placement location and wireless resource
allocation, subject to the UAV’s sum transmitting power con‑
straint and the total block-length constraint.

• The formulated problem is non-convex and thus is diffi‑
cult to be solved optimally. To tackle this difficulty, we pro‑
pose an alternating-optimization-based algorithm to obtain a
high-quality solution, in which the UAV’s placement location
and transmitting power allocation and the users’block-length
allocation are optimized in an alternating manner.

• Numerical results are provided to validate the perfor‑
mance of our proposed UAV-enabled round-trip URLLC
among multiple sensor-actuator pairs. It is shown that our pro‑
posed design achieves much lower PER than other benchmark
schemes without such joint optimization. It is also shown that
when the transmitting power at the UAV becomes large, prop‑
er wireless resource allocation among different sensor-actuator
pairs is crucial to enhance the maximum PER performance.
The remainder of this paper is organized as follows. Section 2

introduces the system model of the UAV-assisted MEC network
with URLLC, and formulates the maximum-PER minimization
problem of our interest. Section 3 proposes an efficient algo‑
rithm to obtain a high-quality solution to the formulated prob‑
lem by using the alternating optimization and the Lagrange du‑
ality method. Section 4 presents numerical results to validate

the performance of our proposed
approaches. Finally, Section 5
concludes this paper.

2 System Model
As shown in Fig. 1, a UAV-as‑

sisted MEC network, in which a
UAV is dispatched as an aerial
MEC server to serve N pairs of
sensors and actuators，is consid‑
ered. We use N = {1,...,N } to de‑
note the set of sensors or actua‑
tors. In particular, the UAV col‑
lects information sent from the N
sensors in the uplink and then
transmits the processed data (or
command signals) to the respec‑
tive actuators in the downlink.
Suppose that the sensor i ∈ N and
actuator i ∈ N on the ground have
fixed locations ( x̂ i, ŷi, 0 ) and
( x͂ i, y͂ i, 0 ) in a 3D Cartesian coordi‑nate system, where ŵ i = ( x̂ i, ŷi ) and w͂ i = ( x͂ i, y͂i ) are defined astheir horizontal coordinates, respectively. The locations of sen‑

sors and actuators are assumed to be a-priori known by the
UAV to facilitate the placement location optimization and
wireless resource allocations.
The UAV is assumed to stay at a fixed altitude H above the

ground, and the horizontal coordinate of the UAV is denoted
by q = ( x, y )2. Therefore, the distance from the UAV to sensor
i and actuator i are respectively given as:
d̂i = H 2 + ||q - ŵ i||2 , ∀i ∈ N, (1)
d͂i = H 2 + ||q - w͂ i||2 , ∀i ∈ N, (2)

where  ⋅ denotes the Euclidean norm of a vector.
It is assumed that the wireless channels from the UAV to

ground sensors or actuators are dominated by LoS links. Thus,
the channel power gained from the UAV to sensor i and actua‑
tor i follows the free-space path loss model, which is ex‑
pressed as:
ĥi (q ) = ρ0 d̂-2i = ρ0

H2 + ||q - ŵ i||2 , ∀i ∈ N, (3)

1 There is another scenario, namely the fully-mobile UAV scenario, in which the UAV
can fly around over the communication period and thus the trajectory control becomes
crucial. Note that in our considered setup, the on-ground sensors and actuators are at
fixed locations. Therefore, we only consider the quasi-stationary UAV scenario by opti‐
mizing the deployment location only.
2 In this paper, we assume that the UAV hovers at an unchanged location during the
whole flight period.

▲Figure 1. Unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) network with one
UAV acting as an MEC server to serve multiple sensors and actuators on the ground.
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h͂i (q ) = ρ0 d͂-2i = ρ0
H2 + ||q - w͂ i||2 , ∀i ∈ N, (4)

where ρ0 denotes the channel power gained at the referencedistance of d0 = 1 m.In the uplink, each sensor adopts constant power Q to send
messages to the UAV. In this case, the correspondingly received
signal-to-noise-ratio (SNR) at the UAV can be expressed as:

γ̂i (q ) = Qĥi (q )σ2
, ∀i ∈ N. (5)

In the downlink, the UAV adopts transmitting power
pi, i ∈ N to send the processed data to actuator i. Thus, the cor‑respondingly received SNR at actuator i can be expressed as:

γ͂i (q, pi ) = pi h͂i (q )σ2
, ∀i ∈ N, (6)

where σ2 denotes the power of the additive white Gaussian
noise (AWGN) at the receiver. Suppose that the UAV’s down‑
link transmission power is Psum. Then we have∑

i ∈ N
pi ≤ Psum.

We consider the time-division multiple access (TDMA)
transmission protocol, in which the uplink transmission from
each sensor to the UAV and the downlink transmission from
the UAV to each actuator are implemented over the same
frequency band and orthogonal time instants. Suppose that
the size of the packet generated by sensor i is denoted as k̂iand that desired by actuator i is denoted as k͂i , which aregenerally different. Accordingly, let m͂i and m̂i denote the al‑located block-length during the uplink and downlink trans‑
mission for the i-th sensor-actuator pair, i ∈ N, respectively.
Thus, we have∑

i = 1

N (m̂i + m͂i ) ≤ M, where M denotes the total
block-length.
In order to process the uploaded data from sensors, the

UAV needs to consume certain time and energy for implement‑
ing the inference task. Let f and κ denote the CPU frequency
and the effective capacitance for computing at the UAV, C de‑
note the total CPU cycles required for accomplishing the task.
Then the energy required for executing the inference task is
approximated Pcomp = κCf 2 and the time duration for computa‑tion is given as Tcomp[13]. Suppose that δ is the symbol length forwireless communication and T total denotes the total end-to-end
delay for the inference task. Then we have δM = T total - Tcomp.In this paper, we assume that the computation delay Tcomp andenergy consumption Pcomp are given and thus are not consid‑ered in the optimization of our interest.
Based on the achievable rate formula of finite block-length

codes[25], it follows that to transmit a short packet within finite
symbols, the PERs (within (0, 0.5)) of the uplink and downlink
transmission for the i-th sensor-actuator pairs are approximat‑

ed as the following two formulas, respectively[25].

ε̂i ( k̂i,q,m̂i ) = Q ( m̂i ln (1 + γ̂ (q ) ) - k̂i ln2
m̂i 1 - (1 + γ̂ (q ) )-2 ), (7)

ε͂i ( k͂i,q,m͂i ) = Q ( m͂i ln (1 + γ͂ (q ) ) - k͂i ln2
m͂i 1 - (1 + γ͂ (q ) )-2 ), (8)

where Q ( x ) = 1
2π ∫x∞ e- t

2
2 dt .

As a result, we define the end-to-end PER of the i-th sensor-
actuator pair as the rate when the packet error occurs at either
the uplink or downlink transmission, which is denoted as εiand given by
εi = 1- (1- ε̂i ( k̂i, q, m̂i )) (1- ε͂i ( k͂i, q, m͂i )) =

ε̂i ( k̂i, q, m̂i ) + ε͂i ( k͂i, q, m͂i ) - ε̂i ( k̂i, q, m̂i ) × ε͂i ( k͂i, q, m͂i ).(9)

In general, under our URLLC consideration, the sensor-ac‑
tuator pairs should work at the regime when the PERs are gen‑
erally very small, i. e., it should hold that ε̂i ( k̂i, q, m̂i ) ≤ 10-1,
ε͂i ( k͂i, q, m͂i ) ≤ 10-1, i ∈ N. In this case, we have ε̂i ( k̂i, q, m̂i ) +
ε͂i ( k͂i, q, m͂i ) ≫ ε̂i ( k̂i, q, m̂i ) × ε͂i ( k͂i, q, m͂i ) , and accordingly, it
follows that εi ≈ ε̂i ( k̂i, q, m̂i ) + ε͂i ( k͂i, q, m͂i ),∀i ∈ N [27].
Our objective is to minimize the maximum PER of the N

pairs, by jointly optimizing the UAV’s placement location and
transmitting power allocation, and the users’block-length,
subject to the total block-length constraint and the sum trans‑
mitting power constraint at the UAV. For notational conve‑
nience, we denote that m ≜ { m̂i, m͂i}, p ≜ { pi}. Therefore, themaximum end-to-end PER minimization problem of our inter‑
est can be formulated as
(P1): min

q,m,p max i ∈ N ε̂i ( k̂i, q, m̂i ) + ε͂i ( k͂i, q, m͂i )
s.t. ε̂i ( k̂i, q, m̂i ) < 10-1, ε͂i ( k͂i, q, m͂i ) < 10-1,∀i ∈ N (10a)
∑
i ∈ N
(m̂i + m͂i ) ≤ M (10b)

∑
i ∈ N
pi ≤ Psum (10c)

pi ≥ 0,∀i ∈ N, (10d)
where Eq. (10a) corresponds to the constraints for the approxi‑
mation of objective function to be accurate, Eq. (10b) denotes
the total block-length constraint and Eq. (10c) denotes the
sum transmitting power constraint at the UAV. As the objec‑
tive function in (P1) is a non-convex function in general, the
problem (P1) is a non-convex problem that is generally diffi‑
cult to be optimally solved.

52



Joint Placement and Resource Allocation for UAV⁃Assisted Mobile Edge Computing Networks with URLLC Special Topic

ZHANG Pengyu, XIE Lifeng, XU Jie

ZTE COMMUNICATIONS
June 2020 Vol. 18 No. 2

3 Proposed Solution to Problem (P1)
In this section, we propose an efficient algorithm to obtain a

high-quality solution to the problem (P1). Towards this end,
we first introduce an auxiliary variable ε, and equivalently re‑
formulate the problem (P1) as
(P2): min

q,m,p,ε
ε

s.t. ε̂i ( k̂i, q, m̂i ) + ε͂i ( k͂i, q, m͂i ) ≤ ε, ∀i ∈ N
(10a ),(10b) and (10c).

(11)

However, the problem (P2) is still non-convex. To tackle
this challenge, we propose an algorithm to solve the problem
(P2) or (P1) by using the alternating optimization technique, in
which the block-length allocation, the transmitting power allo‑
cation, and the deployment location are optimized in an alter‑
nating manner, by considering the others to be given, towards
a converged solution.
3.1 Block-Length Allocation
Under any given UAV’s location q and power allocation p,

the block-length allocation problem is formulated as
(P2.1): min

m,ε ε

s.t. ε̂i ( k̂i, q, m̂i ) + ε͂i ( k͂i, q, m͂i ) ≤ ε,∀i ∈ N, (12a)
∑
i ∈ N
(m̂i + m͂i ) ≤ M. (12b)

Since the error rate functions ε (k, q,m ) in the constraint
(12a) are convex with respect to m[26], the problem (P2.1) is a
convex optimization problem. Therefore, the strong duality
holds between (P2.1) and its Lagrange dual problem. As a re‑
sult, we can optimally solve (P2.1) by using the Lagrange dual‑
ity method[28].
Let λi ≥ 0, ∀i ∈ N and μ ≥ 0 denote the dual variables as‑sociated with the i-th constraint in Eqs. (12a) and (12b), re‑

spectively. Then we define λ ≜ [ λ1,...,λN ]. Let X denote theset λ and μ specified by the constraints in the dual problem of
(P2.1). The Lagrangian of problem (P2.1) is given by
ℒ1 (ε,m,λ, μ ) = (1 -∑

i ∈ N
λi )ε +∑

i ∈ N
λi ( ε̂i ( k̂i, q, m̂i ) +

ε͂i ( k͂i, q, m͂i )) + μ∑
i ∈ N
(m̂i + m͂i ) - μM. (13)

Accordingly, the dual function of (P2.1) is
g (λ, μ ) = min

m,ε L (m, ε,λ, μ )
s.t. (12a ) and (12b). (14)

As a result, the dual problem is given by

(D2.1): max
λ,μ g (λ, μ )
s.t. ∑

i = 1

N

λi = 1
μ ≥ 0,λi ≥ 0,∀i ∈ N.

(15)

First, we obtain the dual function under any given λ and μ
by solving Eq. (14). Towards this end, we obtain the optimal
solution { m͂*

i } and { m̂*
i } via solving Eqs. (16) and (17) by usinga bisection search.

∂ℒ1
∂m͂i

= λi -( a͂m͂i + b͂)
2 2π m͂3/2

i

e
-( a͂ m͂i - b͂/ m͂i )2 /2 + μ = 0, (16)

∂ℒ1
∂m̂i

= λi -( âm̂i + b̂)
2 2π m̂3/2

i

e
-( â m̂i - b̂/ m̂i )2 /2 + μ = 0, (17)

where a͂ = ln (1 + γ͂i )
1 - (1 + γ͂i )-2

> 0 and b͂ = k ln2
1 - (1 + γ͂i )-2

> 0.
Then, we obtain the optimal λopt and μopt via solving the dual

problem (D2.1) by using sub-gradient based method[29], such
as the ellipsoid method. With λopt and μopt at hand, we can ob‑
tain the optimal solution { m͂opt

i } and { m̂opt
i } by replacing λ and

μ in Eqs. (16) and (17) as λopt and μopt. Therefore, problem
(P2.1) is solved.
3.2 Power Allocation
For any given UAV’s location q and block-length allocation

m, the power allocation problem is formulated as:
(P 2.2): min

p,ε ε

s.t. ε̂i ( k̂i, q, m̂i ) + ε͂i ( k͂i, q, m͂i ) ≤ ε,∀i ∈ N (18a)
∑
i ∈ N
pi ≤ Psum (18b)

pi ≥ 0,∀i ∈ N . (18c)
We have the following lemma for solving the problem.
Lemma：For any given UAV’s location q and latency allo‑

cation m, the error rate ε is convex in p under the mild condi‑
tion ε (γ,m ) < 0.5.
Proof：See Appendix.
Since the error rate functions ε (k, q,m ) in the constraint (18a)

are convex with respect to p, the problem (P2.2) is a convex opti‑
mization problem. Therefore, the strong duality also holds be‑
tween (P2.2) and its Lagrange dual problem. As a result, we can
optimally solve (P2.2) by using Lagrange duality method.
Let ζi ≥ 0, νi ≥ 0, ∀i ∈ N, and η ≥ 0 denote the dual vari‑ables associated with the constraints (18a), (18c) and (18b), re‑
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spectively. Then we define ζ ≜ [ ζ1,..., ζN ] and ν ≜ [ ν1,..., νN ].Let γ denote the set of ζ, η and ν specified by the constraints
in the dual problem of (P2.2). The Lagrangian of the problem
(P2.2) is given by
ℒ2 ( p, ε, ζ, ν,η ) = (1 -∑

i ∈ N
ζi )ε +∑

i ∈ N
ζi ( ε̂i ( k̂i, q, m̂i ) +

ε͂i ( k͂i, q, m͂i )) + η∑
i ∈ N
pi -∑

i ∈ N
νi pi - ηPsum. (19)

Accordingly, the dual function is given as:
g (ζ, ν,η ) = min

p,ε L ( p, ε, ζ, ν,η )
s.t. (18a ),(18b) and (18c). (20)

As a result, the dual problem of (P2.2) is expressed as
(D2.2): max

ς,μ,φ g (ζ,ν,η )
s.t. ∑

i = 1

N

ζi = 1
η ≥ 0, ζi ≥ 0, ν ι ≥ 0, ∀i ∈ N.

(21)

First, we obtain the dual function of Eq. (20) under any giv‑
en ζ, η and ν by solving the problem of Eq. (22). In particular,
we can obtain the optimal solution { pi *} via solving Eq. (22)by the bisection search.
∂ℒ2
∂pi =

ζi
2π Ade

( -A2 )/2 + η - νi = 0, (22)

where

Ad≜
-(

h
σ2
m3/2 1-(1+γi )-2

1+γi -
m
h
σ2
(m ln (1+γi )-k ln2)

(1+γi )3 1-(1+γi )-2
)

m (1- (1+γi )-2 ) ,
(23)

A ≜ m ln (1 + γi ) - k ln2
m 1 - (1 + γi )-2

. (24)

Then we obtain the optimal ζopt, ηopt and νopt via solving the
dual problem (D2.2) by using the ellipsoid method[28]. With
ζopt, ηopt and νopt obtained, we can determine the optimal solu‑
tion { pi opt} by replacing ζ,η and ν in Eq. (22) as ζopt, ηopt and
νopt. Therefore, problem (P2.2) is finally solved.
3.3 UAV Placement Optimization
Finally, under any given UAV’s transmitting power alloca‑

tion p and users’block-length allocation m, we optimize the
UAV placement location, for which the optimization problem
is formulated as

(P2.3): min
x,y,ε ε

s.t. ε̂i ( k̂i, q, m̂i ) + ε͂i ( k͂i, q, m͂i ) ≤ ε,∀i ∈ N. (25)
We solve the problem (P2.3) by adopting a two-dimensional

(2D) exhaustive search over the region [ -x ,-x ] × [ -y ,
-y ], where

-x = min i ∈ N ( x̂ i, x͂i ), -x = max i ∈ N ( x̂ i, x͂i ), -y = min i ∈ N ( ŷ i, y͂i ),
-y =

max i ∈ N ( ŷ i, y͂i ).In summary, we optimize the UAV’s placement location q
and the wireless resource allocation m and p in an alternating
manner. It is worth noting that the objective value (i. e., the
achieved maximum end-to-end PER value) is monotonically
non-increasing after each update. As a result, the alternating-
optimization-based approach eventually converges to a con‑
verged solution to (P2) or (P1), as the maximum PER value is
lower bounded by zero. It is also worth noting that the pro‑
posed algorithm can be employed offline before the UAV is
launched for helping perform the inference task, which can
thus be implemented efficiently in practice and will not affect
the low latency requirement of the online computation task.

4 Numerical Results
In this section, we present numerical results to evaluate the

performance of the proposed design. In the simulation, we ran‑
domly generate sensors and actuators’positions in a 2D area
within 100 × 100 m2. We set k̂i =100 bit and k͂i =80 bit, and∀i ∈ N for uplink and downlink communications. The refer‑
ence channel power gain is set as ρ0 = -40 dB and the receiv‑er noise power is σ2 = -90 dBm. The transmitting power of all
sensors is Q = 1 W. The UAV flies at a fixed altitude of H =
120 m. We consider the following reference schemes for per‑
formance comparison.

• Benchmark scheme: In this scheme, the UAV hovers
above a fixed location (i. e., the middle point of the area) and
wireless resources are allocated equally among all sensor-actua‑
tor pairs (i.e., M2N for all the sensor-actuator pairs’block-length
and Psum

N
for the UAV’s transmitting power to actuators).

•Placement optimization only: In this scheme, we consid‑
er equal block-length and power allocations (i.e., wireless re‑
sources are allocated to all the sensor-actuator pairs evenly).
Under this design, the UAV hovers at an optimized location,
which can be obtained by solving the problem (P2.3) under
given UAV’s transmitting power allocation p and users’
block-length allocation m.

•Resource allocation only: The UAV hovers above the mid‑
dle point of the area with optimal wireless resource allocations,
which can be obtained via solving the problems (P2.1) and (P2.2).

Fig. 2 shows the maximum end-to-end PER versus the total
block-length M, where we set Psum = 36 dBm. It is observed
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that our proposed design outperforms other reference schemes
and the performance gain becomes more significant when the
total block-length becomes larger. It is also observed that the
resource allocation only scheme significantly outperforms the
placement optimization only scheme. This shows the impor‑
tance of the joint uplink and downlink resource allocation.

Fig. 3 shows the maximum end-to-end PER versus the total
transmitting power Psum, where we set M = 150. It is observed
that the scheme with placement optimization only and the
benchmark scheme both lead to a PER error floor when Psum >33 dBm. It is also observed that in the low transmitting power
regime, the placement only scheme slightly outperforms the re‑
source allocation only scheme. By contrast, when the transmit‑
ting power becomes high, the placement only scheme and the
benchmark scheme result in unchanged maximum PER val‑
ues, which is due to the fact that the PER performance is fun‑
damentally limited by the uplink because of the lacking of re‑
source allocations. In this case, the resource allocation only
scheme and the proposed design lead to monotonically de‑
creasing maximum PER values as transmitting power increas‑
es. Over all transmitting power regimes, the proposed design
with both resource allocation and UAV placement optimiza‑
tion is observed to always achieve the best performance, and
the performance gain becomes more evident when the trans‑
mitting power becomes larger.

5 Conclusions
In this paper, we study a new UAV-assisted MEC network

with URLLC, in which a UAV is deployed at an optimizable
location for serving multiple pairs of sensors and actuators.
We minimize the maximum end-to-end PER of these sensor-
actuator pairs by jointly optimizing the UAV’s placement lo‑
cation and transmitting power allocation, and the block-length
allocation among these sensor-actuator pairs. We propose an
effective algorithm based on the alternating optimization tech‑
nique to obtain a high-quality solution to this challenging
problem. Numerical results show that the proposed algorithm
achieves better performance than other benchmark schemes.
Due to the space limitation, there have been some other inter‑
esting issues that are not addressed in this paper, which are
discussed in the following to motivate future work.
We consider the quasi-stationary UAV scenario by only op‑

timizing the UAV’s deployment location. In some other sce‑
narios (e.g., the IoT devices have intermittent traffics that hap‑
pen at different time instants), it may be feasible to exploit the
UAV’s mobility over time for further enhancing the round-trip
URLLC performance. In this case, how to optimize the UAV’s
trajectory optimization (instead of placement location only)
and the wireless resource allocation to maximize the system
performance is an interesting and challenging problem.
We only consider the round-trip URLLC among the sensor-

actuator pairs by ignoring the computation or information pro‑

cessing at the UAV. Eventually, the computation-communica‑
tion tradeoff in MEC and mobile edge learning systems can al‑
so be exploited for enhancing the latency performance. How to
optimize the performance of UAV-enabled MEC systems for
various edge machine learning applications is an interesting
direction for future investigation.

Appendix
Since Q ( x ) is strictly decreasing and convex in x when

Q ( x ) < 0.5, it suffices to show the convexity of ε (γ,m ) in γ by
proving
f (m,γ ) ≜ m ln (1 + γ ) - N ln2

m 1 - (1 + γ )-2 , (26)

PER: packet error rate

▲Figure 2. The maximum end-to-end PER versus the number of total
available block-length M.

PER: packet error rate UAV: unmanned aerial vehicle
▲ Figure 3. The maximum end-to-end PER versus the UAV’s maxi⁃
mum transmitting power Psum.
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which is strictly concave in γ for any given m.
Let t = 1 + γ > 1, and then we have
-f (m, t ) ≜ f (m,γ ) ≜ mt ln ( t ) - tN ln2

m ( t2 - 1) . (27)

Thus, we have
∂ -f (m, t )
∂t = m ( t2 - ln t - 1) + N ln2( t2 - 1) m ( t2 - 1) =

m ( t2 - ln t - 1)
( t2 - 1) 32

+ N ln2
m

1
( t2 - 1) 32

.
(28)

Let A = m , B = N ln2
m
, we have

∂2 -f (m,t )
∂t2 =

A( (2t-1
t
) ( t2-1)-32 -3Bt ( t2-1)-52 -3t ( t2-ln t-1) ( t2-1)-52 )≗
(2t-1

t
) ( t2-1)-3t ( t2-ln t-1)-3t B

A
≗

(2- 1
t2
) ( t2+1)-3( t2-ln t-1)-3 B

A
=

-t2+ 1
t2
+3lnt-3 B

A
<0,

(29)

where ≗ means both sides have the same sign. Therefore,
-f (m, t ) is concave with respect to (w.r.t.) t. Since t is the affine
transformation of p , it follows that -f (m, t )is also concave w.r.t.
p. Due to the convexity rule of compound function[29],
ε (γ,m )is strictly convex w. r. t. p under a mild condition of
ε (γ,m ) < 0.5.
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(SNR) limitation, level nonlinearity distortion, energy efficiency consideration and the de‑
cision precision.
Keywords: optical interconnection; digital signal processing; advanced modulation formats

Citation (IEEE Format): L. Sun, J. B. Du, F. Hua, et al.,“Adaptive and intelligent digital signal processing for improved optical interconnec‑
tion,”ZTE Communications, vol. 18, no. 2, pp. 57–73, Jun. 2020. doi: 10.12142/ZTECOM.202002008.

1 Introduction

In the past decade, the data traffic has been explosively in‑
creasing due to applications such as 4K/8K display,
cloud computing, 4G/5G and augmented reality/virtual re‑
ality (AR/VR), urgently driving the demand of high-capac‑

ity data communications. Typically, the very severe data traf‑
fic for communication and interaction occurs in data centers
with single-lane data rate over 100 Gbit/s. For this scenario,
traditional electrical interconnects find its bottlenecks in the
perspective of power consumption, available bandwidth and
implementation density. In contrast, optical approach exhibits
great advantages of high capacity, high density, and perfect ro‑
bustness to ambient environment as well as improved energy
efficiency. With these excellent features, optical intensity-
modulation and direct-detection (IM-DD) solution is adopted
by IEEE 802.3bs Task Force, for over 100 Gbit/s intercon‑
nects with distance ranging from 100 m to 10 km[1]. The ongo‑
ing trend of standardization is utilizing advanced modulation
formats and suitable optical devices for IM-DD systems.
In the perspective of modulation formats, advanced solu‑

tions enable improved spectrum efficiency (SE) for short-reach
application including pulse amplitude modulation (PAM) [2–4],
quadrature amplitude modulation (QAM) [5–7], orthogonal fre‑
quency division multiplexing (OFDM)[8–10], discrete multi-tone
(DMT) modulation[11–14] and carrier-less amplitude phase
(CAP) modulation[15–18], as shown in Fig. 1. PAM, which ex‑
hibits the advantages of simplicity and easy synchronization is
currently the most suitable candidate for IM-DD optical inter‑
connects with a distance below 10 km. By comparison, QAM
and OFDM based on orthogonal multiplexing supporting co‑
herent detection with improved receiver sensitivity, are appli‑
cable for interconnection distance over 10 km. DMT is one
special solution of channel-adaptive OFDM, by loading modu‑
lations with different bit numbers on individual subcarriers
with reference to the channel’s signal-to-noise-ratio (SNR) re‑
sponse. Consequently, DMT performs better in channels con‑
strained and fluctuated by bandwidth. While CAP improves
its SE by means of Nyquist shaping, it is more bandwidth effi‑
cient than PAM. Moreover, the finite impulse response (FIR)
filters can be implemented on digital circuits with ignorable la‑
tency (related to FIR’s tap number), making CAP more prom‑
ising for short-reach optical interconnection.
To get the best use of these formats, hardware parts of an

IM-DD system should be carefully selected to find the best
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trade-off among available bandwidth, fabrication density and
power consumption. For interconnection distance below 1 km,
vertically cavity surface emitting laser (VCSEL) combined
with multi-mode fiber (MMF) is the most power efficient solu‑
tion, because power cost is mostly concerned in this circum‑
stance. While for longer interconnection distance where se‑
vere dispersion bothers, single-mode fiber (SMF) transmission
assisted with silicon modulator exhibits simultaneous advan‑
tages of large-scale integration and high capacity. Typically,
silicon micro-ring modulator (Si-MRM) has the attractive fea‑
ture of compact footprint, high modulation speed, and low en‑
ergy consumption, thus it is quite suitable for this scenario.
Consequently, above-mentioned modulation formats, com‑

bined with suitable optical hardware, can improve the capaci‑
ty whilst maintaining the simplicity and reliability. However,
advanced modulation formats always show comparably weak
robustness to noise and signal distortion during modulation
and transmission. In detail, at the same baud rate, PAM-4 suf‑
fers severer eye closure than on-off keying (OOK) due to the
bandwidth limitation[19]. More level numbers (constellation
numbers for QAM) of PAM lead to more sensitivity to SNR
limitation. Furthermore, modulation nonlinearity always oc‑
curs, which severely degrades signal quality for PAM-4 (much
severer for PAM-8). As for VCSEL-based links, modulation
nonlinearity is mainly caused by the nonlinear light-current
(LI) response of VCSEL, as shown in Fig. 2a[20]. Moreover, due
to the temperature-sensitive feature of VCSEL, the correspond‑
ing LI response can be easily deteriorated by temperature
change, leading to more difficulties for linear operation. While
for Si-MRM based SMF links, modulation nonlinearity is

mainly induced due to the free carrier dispersion effect and
the Lorentz spectral shape of the Si-MRM[21–22]. A small wave‑
length drift of MRM’s spectra may lead to severe nonlinearity,
as shown in Fig. 2b. So for VCSEL and Si-MRM based sys‑
tems, the modulation nonlinearity is a specific distortion of
PAM and other formats. In addition, power cost is also a criti‑
cal concern for short-reach interconnection. As a result, how
to pursue the cost-effective signaling is quite important. There‑
fore, for short-reach optical interconnection utilizing advanced
modulation formats based on VCSEL and Si-MRM, the main
issues are: 1) how to improve the performance under limited
SNRs; 2) how to mitigate the modulation nonlinearity; 3) how
to further enhance the energy efficiency.
At the same time, improved digital signal processing (DSP)

technologies have been extensively investigated due to the de‑
sire of high-capacity transmission and low power consumption
for optical interconnection. Widely known methods such as
maximum likelihood sequence estimator (MLSE) [23–25], deci‑
sion feedback equalizer (DFE)[26–28] and feed-forward equaliz‑
er (FFE)[29–30] have been utilized in attempt to improve the sys‑
tem’s robustness to inter-symbol interference (ISI).
In this paper, we take a review about the current works as to

how to deal with above-mentioned three specific issues by
DSP methods for adaptive operation, including our finished
and ongoing works as well. This paper is composed of four
parts. Section 1 is the introduction of short-reach optical inter‑
connections. Section 2 is DSP methods at the transmitting
side, mainly introducing probabilistic shaping. Section 3 is
DSP in the receiver, mainly about machine-learning assisted
techniques. Section 4 is the conclusions.

▲Figure 1. Advanced modulation formats for short-reach optical interconnections.
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2 Adaptive Probabilistic Shaping at the
Transmitter
Very recently, probabilistic shaping (PS) as a coding method

has been rapidly developed in the field of coherent optical com‑
munications[31–39]. PS can bring two benefits simultaneously: 1)
improved achievable information rate (AIR) at the low SNR con‑
dition[40]; 2) reduced average power due to PS when voltage of
peak-to-peak (Vpp) is fixed[41]. Consequently, PS is a quite use‑
ful approach to improve the transmission performance at the
SNR-constrained condition, and enhance the energy efficiency
at the same time. In the field of direct detection system, the the‑
oretical AIR gain of 0.19 bit at 16.2 dB SNR has been reported
by using the exponential distributions of 6 level PAM signals,
and a corresponding experiment is presented by external modu‑
lation at 1550 nm for single mode fiber transmission[42]. Mean‑
while, an entropy loading scheme of DMT is reported to fit
channel SNR response based on PS[43–45]. In Ref. [44], the en‑
tropy loading is employed after water-filling algorithm to get rid
of extra power reallocation for coherent optical system. Because
the subcarriers’power is previously adapted to water filling, on‑
ly limited numbers of shaped distribution are demonstrated. In
Ref. [45], an entropy-loaded DMT without power allocation is
proposed by using Maxwell-Boltzmann (MB) distribution in visi‑
ble light communication system, with an AIR of 204 Mbit/s.
However, above-stated researches do not focus on the short-
reach interconnection.
As discussed in the introduction part, VCSEL exhibits ex‑

cellent features of lower power cost, high fabrication density
and large electrical bandwidth. It is quite suitable for short-

reach interconnections applications. Generally, the SNR and
bandwidth for VCSEL-MMF links are more limited compared
with coherent systems which require high SNR for high-level
QAM and large bandwidth for achieving large capacity. It can
thus be expected that PS coding will lead to improved AIR
which is particularly desired for the VCSEL-MMF links. Most
non-uniform distributions (such as the Maxwell-Boltzmann dis‑
tribution and the exponential distribution) require distribution
matchers and complex code words to code independent and
identically distributed sequences into non-uniform ones with
the desired distributions[36], and the induced complexity is not
suitable for the cost-sensitive short reach optical interconnec‑
tions. As a result, the objective of this section is to investigate
the power-efficient and low-complexity PS methods for cost-ef‑
fective VCSEL-MMF optical interconnections.
2.1 Dyadic Probabilistic Shaping for PAM
Dyadic PS is advantageous with simple implementation, which

makes it particularly suitable for the cost-effective short reach ap‑
plications. Moreover, PS coding can reallocate majority distribu‑
tions to lower levels (near direct current) of the PAM signal, result‑
ing in reduced average power along with improved energy efficien‑
cy. The VCSEL-MMF solution is currently dominating the sub-
hundred-meter-distance optical interconnections with very large
volume. The SNR and bandwidth for VCSEL-MMF links are par‑
ticularly constrained. Therefore, we believe the proposed dyadic
PS method is an opportune solution for the cost-sensitive VCSEL-
MMF links due to its simplicity of coding with shaping gain and
power reduction. To obtain dyadic distributions, binary mapping of
M bits generates symbols with probability of 2-M. However, such

▲Figure 2. Modulation nonlinearity caused by: (a) nonlinear LI curve of vertically cavity surface emitting laser VCSEL; (b) nonlinear spectra of Si-
MRM as well as wavelength drift.

LI: light-current PAM: pulse amplitude modulation Si-MRM: silicon micro-ring modulator VCSEL: vertically cavity surface emitting laser
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variable-length coding will induce synchronization complexity at
the receiver, when the noisy sequences are processed. One practi‑
cal solution is to insert ambiguity bits to maintain the code words
in the same length. The proba‑
bility distributions of PAM-4
and PAM-8, and the shaped sig‑
nals are shown in Fig. 3.
Then the theoretical AIR val‑

ues are calculated for evaluating
the performance of above distri‑
butions. As shown in Fig. 4a,
AIR goes saturated along with
the increase of SNR. The satu‑
rated AIR (maximum AIR) is re‑
duced after dyadic PS, com‑
pared with the uniform distribu‑
tion. However, at a certain SNR
region, such as 10.3–16.57 dB
for PAM-4 and 16.6– 25.5 dB
for PAM-8 (P’X), AIR values af‑
ter dyadic PS become larger
compared with those before
shaping. It indicates that dyadic
PS can increase the AIR of
PAM-N system at the condition
of constrained SNR. The zoom-
in plot in Fig. 4b shows the AIR
performances of the PAM-N
modulations for SNR ranging
from 14 dB to 24 dB. For PAM-
4, the SNR requirement is re‑
duced by 0.61 dB to achieve the
20% soft decision-forward error
correction (SD-FEC) threshold
(AIR=1.6 bit/symbol) after dyad‑
ic PS. As for PAM-8, 1.08 dB
and 1.74 dB，SNR gains are ob‑
tained by dyadic PS to achieve
2.4 bit/symbol AIR, by using
distributions of P’X and P’’X
respectively.
Experiments have been car‑

ried out directly for PAM-8
modulation over a VCSEL-
MMF optical interconnection
link to verify the performance
of dyadic PS. Due to the insert‑
ed ambiguity bits of PS PAM-8,
the code rate is 13/16. Conse‑
quently, to maintain the same
data rate of 60 Gbit/s, the sym‑
bol rate of PS PAM-8 increases
to 25 Gbaud (30 Gbaud to

achieve the net rate of 75 Gbit/s). The optical back-to-back
(B2B) eye-diagrams of the 60 Gbit/s and 75 Gbit/s PAM-8, be‑
fore and after PS, are plotted in Fig. 5. The opening of the eye-

▲Figure 3. Dyadic probability distributions of PAM-4, PAM-8, dyadic shaped PAM-4, dyadic shaped PAM-8
(P’X) and dyadic shaped PAM-8(P’’X).

PAM: pulse amplitude modulation

▲Figure 4. AIR curves for PAM-4 and PAM-8(a) with and (b) without dyadic PS (probabilistic shaping).

AIR: achievable information ratePAM: pulse amplitude modulation SD‑FEC: soft decision‑forward error correctionSNR: signal‑to‑noise‑ratio

▲Figure 5. Optical eye diagrams of 60 Gbit/s and 75 Gbit/s PAM-8 signals, with and without dyadic shaping.
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diagrams has been improved (the sub-eye-diagrams are clearer
with larger eye-height and eye-width) compared with that before
PS. The bit error ratio (BER) curves of 75 Gbit/s PAM-8 signals
are plotted in Fig. 6. Due to the increased symbol rates, the lim‑
ited bandwidth of the optical channel shrinks the signal spec‑
trum more severely. Consequently, the shaping gain of dyadic
PS PAM-8 signals is smaller than theoretical one under this cir‑
cumstance. Despite this, 0.88 dB and 0.3 dB SNR gain is ob‑
tained for optical B2B case and 100 m OM3 fiber transmission
at 75 Gbit/s.
2.2. Maxwell-Boltzmann and Dyadic Probabilistic Shap⁃

ing for DMT
The dyadic shaping has been demonstrated in PAM system.

While for most practical IM-DD channels, frequency response is
usually uneven with SNR fluctuating in the frequency domain
due to fiber dispersion. A DMT modulation is proposed as a way
to address this problem, by loading modulations with different
bit-numbers on individual subcarriers with reference to the chan‑
nel’s SNR response. However, for conventional DMT, the con‑
stellations of individual subcarriers are all equal-probability dis‑
tributed. Here we demonstrate a frequency-resolved adaptive
probabilistic shaping method
which refers to channel frequen‑
cy response, for the 112 Gbit/s
DMT-modulated IM-DD optical
interconnection system. The
continuously bit (in terms of en‑
tropy) loading is realized by
adapted probability distribu‑
tions, allowing for better fitting
to channel frequency response
with simultaneous shaping gain.
The proposed bit-loading

metrology for probabilistic
shaping-discrete multi-tone
(PS-DMT) is illustrated in Fig.
7. A rounding-up function is
performed for Bi to obtain stan‑dard constellations for QAM-N
noted as Bi*, and N denotes
the constellation number. The
corresponding bit-to-symbol
mapping is performed as N =
2B*i . Finally, the optimization
problem must be solved to
search for the distribution of
the 1D PAM signals. The opti‑
mization object is to obtain the
1D probability distribution
with entropy that is most close
to Bi/2. These distributions aresubject to the MB equation P=

e−|x| with a variable. In addition, the MB distributions require
large-length block to perform PS coding. Here, we use Geomet‑
ric Huffman Coding (GHC) to match dyadic distributions to
MB ones.
The experiment investigation of 112 Gbit/s optical intercon‑

nection is carried out using a VCSEL-MMF link. In the optical
B2B link case, the bit-loading results for conventional DMT
are shown as the red points in Fig. 8, while the bit-loading re‑
sults for the proposed PS-DMT (MB) scheme are plotted as
blue points. Entropies of dyadic shaped PS-DMT are marked
by blue lines. The adapted SNR response by power realloca‑
tion is measured by sending multi-tone quadrature phase shift
keying (QPSK) signals with reallocated power, plotted as pink
line in Fig. 8. In fact, the adapted response is not precisely
matched to loaded bit numbers for conventional DMT. Fortu‑
nately, PS-DMT can get rid of this deviation, by directly adapt‑
ing entropies to channel response. The corresponding opti‑
mized distributions for 12th and 66th subcarriers are shown in
Fig. 8a, respectively. It should be noted here that it is usually
impractical to implement the ideal bit-loading number (typi‑
cally a decimal) perfectly. Only specific PS coding can be

▲Figure 7. Bit loading metrologies of conventional DMT and proposed PS-DMT schemes.

DMT: discrete multi‑tonePS‑DMT: probabilistic shaping‑multi‑tone discrete SNR: signal‑to‑noise‑ratio

▲Figure 6. Bit error ratio (BER) curves of 75 Gbit/s PAM-8 signals.
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used to approach it maximally.
A distribution matcher (DM)
using dyadic distributions is
used to approach the ideal bit-
loading number approximate‑
ly. The matched dyadic distri‑
butions are also inserted in
Fig. 8b.
With an optical power of

3.5 dBm for the optical B2B
case, the demodulated con‑
stellations for both DMT and
PS-DMT at the receiver are
plotted as shown in Fig. 9.
Constellations are drawn for
two selected typical subcarri‑
ers (12th and 66th). In addi‑
tion, the right side of Fig. 9
shows the constellations of
these typical subcarriers after
100 m OM3 fiber transmis‑
sion with a received optical
power of 3.3 dBm. The im‑
provement in the signal quali‑
ty related to the PS shaping
gain can be observed visually
by the clearer constellations
that appear after PS when
compared with those obtained
before PS. It can also be seen
that the constellations be‑
come clearer after PS. This oc‑
curs because the Euclidean
distances between the sym‑
bols are broadened, with more
symbols being gathered at the
center, when the average pow‑
er is fixed. After 100 m OM3
fiber transmission, however,
the channel-efficient band‑
width is reduced, and more
bits are loaded on the lower-
frequency subcarriers. As a
result, the constellations are much noisier after the 100 m
transmission. Additionally, the shaped constellations are ob‑
viously clearer, with more bits being allocated at their cen‑
ters. However, after transmission, the received constellations
always rotate because of the fluctuating phase response.
The total general mutual information (GMI) values of a DMT

symbol are then calculated with varying received optical power
values, as shown in Fig. 10. Without noise and signal distor‑
tion, the total GMI value equals to the loaded bit numbers of a
DMT symbol (552 in this experiment). As the optical power de‑

creases, the total GMI also decreases rapidly because of the low
SNR. In the optical B2B case, with an optical power of more
than 1 dBm, the SNR is sufficient to keep the GMI value stable.
However, for optical powers below 1 dBm, any reduction in the
SNR also reduces the GMI values of high-density constella‑
tions, which results in sharply reduced GMI values. After 100 m
OM3 fiber transmission, more bits are allocated to the lower-fre‑
quency subcarriers because the bandwidth is more constrained.
In this case, when the optical power decreases, the higher-den‑
sity constellations with larger bit-loading numbers suffer greater

Optical B2B 100 m OM3 transmission
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▲Figure 8. Experimental bit loading results for DMT and PS-DMT in the optical B2B case: (a) bit-loading re⁃
sults for conventional DMT, PS-DMT and PS-DMT (dyadic); (b) shaped probability distributions of two typi⁃
cal subcarriers (22th and 66th subcarriers) for PS-DMT.
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▲Figure 9. Constellations of 12th and 66th subcarriers for optical B2B case (3.5 dBm received power) and af⁃
ter 100 m OM3 fiber transmission (3.3 dBm received power).
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GMI reduction than those in the optical B2B case. To enable er‑
ror-free signaling at 112 Gbit/s with 20% SD-FEC, power sensi‑
tivity gains of 0.7 dB and 0.64 dB can be obtained for the opti‑
cal B2B case and the 100 m OM3 fiber transmission case, as‑
sisted by PS-DMT (MB). For PS-DMT (dyadic), power sensitivi‑
ty gains are 0.44 dB and 0.29 dB for optical B2B and 100 m
transmission. The corresponding enabling data rate for reliable
transmission is calculated by the multiplication of GMI value
and the symbol rate.

3 Advanced DSP at the Receiver
DSP embedded at the receiver side mainly includes post

equalization, decoding and decision. Equalization aims to re‑
cover signals from severe ISI and noise. Decoding is always
performed to correct bit errors, combined with pre-coding at
the transmitter. Then advanced decision methods are in at‑
tempts to obtain reduced BER when nonlinear distortion oc‑
curs. Apart from the tradition DSP methods like FFE, DFE
and MLSE, machine-leaning assisted DSP recently exhibits
improved performance. It can be used for formats identifica‑
tion[46–47], system monitoring[48–49] as well as optical signal re‑
ceiving. For signal receiving technologies, machine learning
can be utilized in equalization and decision for achieving dis‑
tinguished performance[50–55].
For the equalization part, the progressive support vector ma‑

chine (SVM) algorithm has been applied to reduce nonlinear
inter-subcarrier intermixing in coherent optical OFDM[50].
Moreover, artificial neural network can also be embedded in
equalization part, to reduce the error vector magnitude (EVM)
of constellations[51]. As for the decision part, machine-learning
techniques can adaptively learn the optimal decision line for

obtaining the lowest BER[52–55]. Related works mainly focus on
QAM signals, and utilized SVMs to mitigate the phase noise.
Therefore, the ML method is quite a viable solution for solving
the nonlinearity problem (Kerr nonlinearity or modulation non‑
linearity), which is the key issue in optical communications.
For short reach optical communications, modulation nonlinear‑
ity becomes very serious for advanced modulation formats like
QAM, PAM, CAP and DMT which are all sensitive to the lin‑
earity, both for direct modulation of VCSEL and for external
modulation of silicon modulator.
3.1 SVM for QAM Decision
High-order QAM is an efficient format for increasing the

transmission capacity due to its high spectral efficiency. How‑
ever, such dense constellations make QAM signals very sensi‑
tive to nonlinear distortion. When nonlinear distortion bothers,
the decision boundary can no longer be a simple straight line
for obtaining a better BER performance. To deal with it, we
propose several SVM multi-classification methods to obtain
adaptive nonlinear decision boundary for QAM decision,
based on one versus rest (OvR) and binary tree (BT) structure.
Different classification methods have different performance in
terms of classification precision and complexity.
The OvR SVM is to generate a hyper plane between a class

of samples and the remaining multi-class samples, and to real‑
ize multi-class recognition. Therefore, if it is an N classifica‑
tion problem, then N SVMs (N>2) are required to perform clas‑
sification. For example, if the OvR SVM scheme is used for
deciding QAM-8 sequences, the data are divided into two cate‑
gories for every SVM classifier. Consequently, it requires
eight SVMs to decide eight symbols of QAM-8 signal.
On the other hand, BT structure can be used to reduce the

number of SVM classifier for QAM-N signal decision. Starting
from the root node, the category is divided into two subclasses,
and then the two subclasses are further divided, until the sub‑
class contains only one category. Here, we employ three differ‑
ent BT-based SVM classification schemes including the binary
encoding (BE), the constellation rows (CR) and columns, and
the in-phase and quadrature components (IQC). Since the QAM
constellation mapping can be realized through binary encoding,
the multi-classification based on BE can be performed to de‑
cide every bit information of QAM-N. Fig. 11a shows the train‑
ing model for 16-QAM, where the hyper plane generated by
each SVM does not take all the training set data into consider‑
ation, which can effectively reduce the training time. When test‑
ing, only four SVMs is required to perform decision, as shown
in Fig. 11b. Another BT-based decision scheme can be real‑
ized by rows-and-columns classification. Most of the constella‑
tions are rectangle, except for 32-QAM, 128-QAM, etc., thus
the label feature according to rows and columns is reasonable.
Besides, according to the IQC, the QAM signal can be regarded
as two PAM signals, which means splitting a binary tree train‑
ing model into two binary trees to reduce the SVM numbers.

Conventional DMT in optical B2B casePS-DMT (MB) in optical B2B casePS-DMT (dyadic) in optical B2B caseConventional DMT after 100 m transmissionPS-DMT (MB) after 100 m transmissionPS-DMT (dyadic) after 100 m transmission
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To experimentally evaluate above-mentioned
decision methods, DMT signaling is realized on
the SMF-based optical interconnects system. DMT
symbol is composed of different QAM modulations
in frequency domain, thus the decision methods
can be investigated for analyzing individual sub‑
carriers. Corresponding experimental setup is il‑
lustrated in Fig. 12. An arbitrary waveform gener‑
ator (AWG) is used to generate the DMT signal
with 54 GSa/s. The laser operates at 1 550 nm fol‑
lowed with external modulation by a Mach-
Zehnder-Modulator (MZ-M). The optical signal is
coupled into 10 km standard single-mode fiber
(SSMF) for transmission. A photodetector (PD)
with 22 GHz bandwidth is used for detecting the
transmitted optical signal from the SSMF. A digi‑
tal storage oscilloscope (DSO) (Keysight Z592A)
with 59 GHz bandwidth is used to sample the sig‑
nal with a sampling rate of 160 GSa/s for the off-
line DSP. Based on the BER results, complexity
comparison among the four decision methods is
shown in Table 1.
In terms of complexity during training and decision pro‑

cesses, OvR-based SVM is the worst, with about 6 to 8 times
the number of support vectors to others. While, the number
of SVMs for decision is similar for the remaining three meth‑
ods. In detail, the IQ-based decision method only requires
about one-third of the SVM number compared with other
methods, which benefits simple implementation. It is worth
mentioning that one should carefully evaluate the require‑
ment regarding different application scenarios (particularly

different modulationing formats and different nonlinear dis‑
tortions) when choosing a specific classification method for
SVM machine learning detection.

▼ Table 1. Complexity comparison for different SVM-based decision
schemes

Complexity

SVM number for training
Support vector number (×105)
Average SVM number for testing

OvR

2 294
11.61
2 294

BE

2 177
1.367
492

CR

2 177
1.376
492

IQC

804
1.997
492

▲Figure 11. (a) The training model of SVM based on binary-tree structure; (b) a schematic diagram of the hyper plane generated by node SVM for
the training processing of category 1.

SVM: support vector machine

▲Figure 12. Experimental setup of QAM decision based on SVM classification methods.
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3.2 SVM for PAM Decision
As discussed above, BT-based SVM decision can efficiently

improve transmission performance, along with considerable com‑
plexity. In this section, BT-based SVM decision is employed to
mitigate modulation nonlinearity in PAM-modulated systems,
specifically including VCSEL-MMF as well as Si-MRM optical
links. In detail, as for VCSEL-based links, modulation nonlineari‑
ty is mainly caused by the nonlinear LI response of VCSEL.
While for SMF links based on Si-MRM, modulation nonlinearity
is mainly induced due to the Lorentz spectral shape of the Si-
MRM. When processing nonlinearly-distorted PAM signals,
SVM-based decision scheme can generate adaptive boundaries
for the obtained improved decision performance.
3.2.1 Optical Interconnection Link Based on VCSEL-MMF
To evaluate the performance of binary tree-support vector

machines (BT-SVM) decision for PAM signals, the experiment
based on VCSEL-MMF system has been carried out at a bit
rates of 60 Gbit/s for PAM-4 and PAM-8. With the received
optical power being manually attenuated, BER curves of the
PAM-4 and PAM-8 signals are plotted in Fig. 13, where 20%-
overhead FEC is assumed for investigating the receiver sensi‑
tivity. Consequently, there are about 1 dB and 2 dB receiver
sensitivity improvements with the use of complete binary tree-
support vector machines (CBT-SVMs) classifier, respectively
for PAM-4 and PAM-8 signals. Improvement for PAM-8 is
clearly better compared with PAM-4 due to its doubled modu‑
lation levels, which makes it more sensitive to modulation non‑
linearity distortion as we expected.
Moreover, it is essential to quantitatively analyze the ma‑

chine learning performance of CBT-SVMs classifier for PAM
signals under different modulation nonlinearities. Fig. 14
shows the SVM machine learning performance of CBT-SVMs
classifier with the increase of eye-linearity (increase of modu‑
lation nonlinearity distortion). Here we use 7% overhead
FEC threshold for investigating receiver sensitivity. The sen‑
sitivity changes almost linearly with eye-linearity. Smaller
power (receiver sensitivity) can be obtained by using BT-
SVMs classifier, which has a smaller slope as shown in Fig.
14. The smaller slope means an increased sensitivity gain
with the increase of eye-linearity. The very severely distorted
eye diagram with an eye-linearity of 1.72 is also presented in
Fig. 14. A sensitivity gain of 2.5 dB is obtained by the pro‑
posed CBT-SVMs at eye-linearity of 1.72. One can expect
larger gain for larger eye-linearity.
3.2.2 Optical Interconnection Link Based on Si-MRM-SMF
Besides VCSEL-based optical link, the Si-MRM will induce

severe modulation nonlinearity. Si-MRM exhibits the attractive
features of compact footprint, high modulation speed, and low
energy consumption. However, the high Q factor of the Si-MRM
makes it very sensitive to resonance drift, which means it may
cause serious damage to the signal. Here, we model a PAM-4

modulated optical interconnections system, with different Si-
MRM resonator wavelengths as shown in Fig. 15. 100 Gbit/s
PAM-4 signals are generated with a bandwidth of 50 GHz. The

B2B: back to backBER: bit error ratio CBT-SVM:complete binary tree support vector machinesMMF:multi⁃mode fiber
▲Figure 13. BER curves by using conventional hard decision and pro⁃
posed CBT-SVM for (a) PAM-4; (b) PAM-8.

▲Figure 14. Optical power sensitivity versus different eye-linearity val⁃
ue by using conventional hard decision and proposed CBT-SVM.
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bandwidths of digital-to-analogue-converter and analogue-to-
digital-converter (DAC/ADC) as well as optical link in the simu‑
lation system are set at 40 GHz. A PD with 1 A/W sensitivity is
used to detect the optical signal. The thermal noise of the PD is
set to be 10e-12 A/√Hz.In the simulation, PAM-4 signals are biased at 0.7 V, and Vpp
of PAM-4 signals is 1 V. The Si-MRM linear operation range is
very narrow, and the temperature drift will affect the Si-MRM
transmission which leads to the degradation of the PAM-4 modu‑
lation. To quantitatively analyze the influence of wavelength drift
for the PAM-4 signals, we use a term of level-deviation (LD).

Fig. 16 denotes the LD as a function of the Si-MRM reso‑
nant wavelength, which refers to the wavelength drift. It can
be seen that even very slight wavelength drift will lead to dete‑
riorated LD. Fig. 17 shows the sensitivity gain as a function of
LD. The power sensitivity gain means the reduction of the re‑
ceived power requirement for achieving error free (assuming
7% overhead FEC) by using CBT-SVMs with respect to hard
decision. The black line in Fig. 17 represents the forward
wavelength drift and the red one refers to the reverse wave‑
length drift. From Fig. 17, generally, the sensitivity gain in‑
creases along with the increase of the LD (absolute value)
which means larger gain due to machine learning detection for
larger modulation nonlinearity distortion. The largest sensitivi‑
ty gain is about 2.7 dB. Fig. 17 also gives the sensitivity of
CBT-SVMs at different LDs as shown by the blue and yellow
dash-dot curves. The sensitivity powers for all the cases with
different LDs are comparably stable with less than 3 dB fluctu‑
ation. This also indicates the very useful capability of machine
learning detection for stabilized PAM-4 modulation without
wavelength drift control at the transmitter side.
3.3 Recurrent Neural Network (RNN) for PAM
For PAM modulated optical interconnections system, another

distortion degrading performance is eye skewing. Fig. 18 illus‑
trates the eye-diagrams of PAM-4 signal before and after VCSEL
modulation. The eye-skewing always occurs when the signal is
modulated directly on laser. The potential reason behind the
skewed eye is the variant rise times with different amplitudes.
Therefore, we propose an RNN-based demodulator to deal

with the problem of system performance degradation caused
by eye skewing in VCSEL-based PAM system. Compared with
other neural network methods, RNN adds a feedback mecha‑
nism to the network architecture, which may adaptively learn
the skewing during VCSEL modulation. Here, we employ long
short-term memory (LSTM) scheme to decode eye-skewing
PAM-4 signal. The structure of LSTM is indicated in Fig. 19.
LSTM is split into four parts: unit status, forgetting gates, in‑
put gates, and output gates. The unit state of LSTM is primari‑
ly used to transmit information from the previous unit to the
next unit. The main function of the forgetting gate is to receive
the information of the previous neuron and the input informa‑
tion of current neuron, and at the same time determine how

CBT‑SVM: complete binary tree‑support vector machines LD: level‑deviation

▲Figure 16. The level-deviation curve as a function of the wavelength
drift. Inserted pictures are the eye diagrams at different wavelengths.

Si‑MRM: silicon micro‑ring modulator

ADC: analogue-to-digital-converterCBT⁃SVMs: complete binary tree-supportvector machinesCW: continues waveDAC: digital-to-analogue-converter

DC: direct currentPAM: pulse amplitude modulationPD: photodetectorSi-MRM: silicon micro-ring modulatorSMF: single-mode fiber
▲Figure 15. Simulation setup of Si-MRM based optical interconnects
system.

▲Figure 17. Sensitivity gain (solid curves) and receiver sensitivity pow⁃
er (dashed curves) for the machine learning detection at different LDs.
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much the state of the last neuron is forgotten. The function of
the input gate is mainly to cooperate with a tanh function to
control the input of new information. The output gate activates
the neuron state information through the tanh function to ob‑
tain the output result. The sigmoid in the structure produces
coefficients that control the amount of information filtered. In
this way, RNN completes the function of information transmis‑
sion, forgetting, and memory.
In this experiment, the RNN we used was a 10-layer neural

network. The number of data for this trial was 20 000. We used
20% as the training set for the neural network, and the remaining
80% was used to test the performance of the RNN in the system.

Fig. 20 shows the BER curves of PAM-4 by using conven‑
tional hard decision (HD), CBT-SVM decision and LSTM.
BER curves by using conventional HD and CBT-SVM exhibit
a linear increasing trend as the optical power decreases, but
RNN shows different phenomena around 1 dBm optical power.
For RNN by means of sequence mining, the BER performance
of the system is stabilized. In general, compared with hard de‑
cisions, RNN can bring about 2 dB power sensitivity improve‑
ment to the system, slightly better than CBT-SVMs.

3.4 K-Means Clustering for Soft Decision in PAM System
Above mentioned classification methods require training

the system through prior-known sequences, resulting in en‑
hanced complexity. To deal with it, a K-means machine learn‑
ing method assisted signal receiver including both equaliza‑
tion and soft decision is proposed for VCSEL-based PAM-4
optical interconnection. Mean values and noise variances of
four levels can be obtained through K-means clustering, with‑
out training using prior-known sequences. According to the
learned level means, least mean square (LMS) equalization
based on the corresponding level-adapted sequences is expect‑
ed with improved performance. Moreover, based on learned
level means and variances, the precision of log-likelihood ra‑
tio (LLR) estimation can be enhanced, which leads to the im‑
proved performance of soft decision (SD).
The schematic diagram of proposed receiver is plotted as

Fig. 21. K-means clustering is employed after resampling, to
adaptively learn the mean values and noise variances for indi‑
vidual levels, denoted as Ln and σn. The upper blue box is the
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▲Figure 18. PAM-4 eye-diagram.
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equalization part. Tap coefficients are trained through LMS
process. Different from conventional LMS, the levels of train‑
ing sequence are altered adaptively based on learned level
means through K-means approach. The lower box is the deci‑
sion part. With learned level Ln (n=1, 2, 3, 4) and noise vari‑ances σn, the corresponding LLRs can be calculated. Becauseit takes level nonlinearity (affecting Ln) and level-dependentnoise (affecting σn) into consideration, the proposed SD is ex‑pected with improved decision precision.
Experiments have been carried out for PAM-4 modulation

over a VCSEL-MMF optical interconnection link to verify the
performance of the proposed K-means adaptive receiver. To re‑
alize 90 Gbit/s and 100 Gbit/s PAM-4 signaling, the sampling
rate of AWG is set at 45 Gsa/s and 50 Gsa/s, respectively. The
DC bias current is fixed at 15 mA in the experiment. To process
the PAM-4 sequences, the sampled signals by DSO have to be
re-sampled to 1 sample/sym‑
bol. Then the samples are sent
into LMS for equalization, and
the normalized errors are re‑
corded for every interaction. Er‑
ror convergence curves for 90
Gbit/s and 100 Gbit/s PAM-4
in optical B2B case are shown
in Figs. 22a and 22b respec‑
tively, with received optical
power of 3 dBm. The residual
errors are mainly induced by
random noise and residual ISI.
And after 100 m transmission,
residual errors are higher than
the case of optical B2B. It can
also be seen that, for K-means
LMS (red line), errors converge
faster than conventional LMS
(blue line). Because for conven‑
tional LMS, the levels are mis‑
matched between training se‑
quences and received samples,
which deteriorates the conver‑
gence performance. This result
indicates that lower numbers of
interaction can be achieved for
K-means LMS.
The eye-diagrams of origi‑

nal sequences, equalized
ones as well as LLRs are de‑
picted in Fig. 23. It can be
seen that 90 Gbit/s PAM-4 in
optical B2B case shows clear‑
er eyes than others, which is
because less ISI occurs in
this circumstance. While for
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▲Figure 22. LMS errors during interaction for optical B2B case.

▲Figure 23. Results of K-means equalization and SD for 90 Gbit/s and 100 Gbit/s PAM-4.
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100 Gbit/s signaling after 100 m OM3 fiber transmission,
the eye severely closes with undistinguished four levels.
Resampling is performed to obtain 1 sample/symbol se‑
quences, whose eyes are depicted in the second column in
Fig. 9. By using K-means equalization, the corresponding
eyes are opened obviously, with observable four levels, as
shown in the third column. While in the case of 100 Gbit/s
and 100 m transmission, the corresponding eye is still noisy,
which is because the residual ISI cannot be effectively elimi‑
nated. At the fourth column, the two LLR tributaries are
demonstrated by means of eye diagram.
3.5 K-Nearest Neighbor (K-NN) for CAP Decision
Apart from PAM, CAP also shows weak tolerance to modula‑

tion nonlinearity. Modulation nonlinearity mainly results in ir‑
regular constellations for CAP. Consequently, conventional
hard decision with the straight decision line cannot obtain con‑
siderable BER without considering the modulation nonlinearity.
Here, we experimentally investigate the machine learning for
nonlinearity mitigation by using K-NN algorithm in 32 Gbit/s
CAP system. The basic principle of K-NN algorithm can be in‑
tuitively understood from Fig. 24 (right picture). Firstly, the
training signal has to be sampled, shown as blue scatters in con‑
stellation diagram. Then when the signal (red point) is detected,
its distances to training signals are required to be calculated.
And the shortest K distances with responding training samples
are selected, to get the constellation label which contains the
majority of these training samples (L3 in Fig. 24). It is intuitive
that when linear distortion like Gauss white noise occurs, the
K-NN algorithm cannot decrease BER compared with the hard
decision. However, when constellation is distorted nonlinear‑
ly, K-NN is desired to have better performance than the hard
decision. The constellation of 32 Gbit/s CAP signal in optical
B2B with received optical power at -2 dBm is shown in Figs.

25a and 25b. And the constellation of CAP after 7 km trans‑
mission with the same received power is noisier than B2B
case, as shown in Fig. 25c.
The algorithm complexity of K-NN mainly comes from the

selection of K shortest distances. The BER curves of 32 Gbit/s
CAP is shown in Fig. 26. The K-NN can reduce BER by more
than 20 dB for the optical CAP signal, when signal is mainly
distorted nonlinearly. However, after 7 km transmission, the
signal quality improvement of K-NN is not so obvious when
processing signal with low SNR, which is because signal quali‑
ty is mainly influenced by linear noise.
3.6 SVM for DMT Carrier-by-Carrier Decision
For DMT modulation, nonlinear distortion behaves differ‑

ently for different subcarriers due to the different bit alloca‑
tion and SNR. Consequently, every subcarrier suffers different
distortions, even for those subcarriers who are loaded by same-
order QAM modulation. Thus, adaptive decision is required to
perform for every subcarrier. As mentioned above, the SVM-
based decision method has the advantage of adaptive decision
boundary. Thus, efficient mitigation of the nonlinear distortion
for DMT system can be expected through SVM-assisted carri‑
er-by-carrier decision.
An experiment of 112 Gbit/s DMT signaling is performed

on VCSEL-MMF optical link. At transmitting side, bit loading
and power reallocation are realized according to channel fre‑
quency response. The measured channel responses in the case
of optical B2B and 100 m OM3 transmission are plotted in
Fig. 27, as well as corresponding bit loading results. At the re‑
ceiving side, demodulation of every subcarrier is performed,
as well as SVM decision. Constellations of some typical sub‑
carriers are depicted in Fig. 28. A total of 40 320 DMT sym‑
bols are sent in the experiment and 20% of the data has been
used for training. The decoded signal in binary sequence after

AWG

DC bias

Laser MZM PD

EA

PC SSMF
DSO

1001001011...

0011010110...

Matched filters Down-sampling
K-NN algorithm

K=3
L1 L2

L3 L4

+

Shaping filters
Up-sampling Data streams

AWG: arbitrary waveform generatorDC: direct currentDSO: digital storage oscilloscope
EA: electrical amplifierK-NN: K-nearest neighborMZM: Mach-Zehnder Modulatro

PC: polarization controllerPD: photodiodeSSMF: standard single mode fiber
▲Figure 24. Experimental setup of optical carrier-less amplitude phase modulation (CAP) transmission system (left) and principle of K-nearest neigh⁃
bour algorithm (right).
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de-mapping is then off-line processed for the BER measure‑
ment.
Assisted with SVM decision, BER result of DMT system is

shown in Fig. 29, where significant reduction of BER has
been achieved by using SVM detection compared with that us‑
ing convention detection. Error-free operation has been
achieved for B2B case at 7% FEC and 100 m MMF transmis‑
sion case at 20% FEC.

4 Conclusions
The above mentioned is our current works about advanced

DSP methods for optical interconnection systems, mainly in‑

cluding PS coding for transmitter side and machine-learning
based DSP for receiver side.
In the perspective of PS, we proposed dyadic shaping for

PAM system. Up to 1.74 dB SNR gain can be achieved theo‑
retically by dyadic PS for PAM-8. Proof-of-concept experi‑
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Carrier.22 Carrier.76Carrier.2

Carrier.92 Carrier.95Carrier.84 Carrier.104

SNR back-to-back
SNR after 100 m MMF
Bit allocation back-to-back
Bit allocation after 100 m MMF

▲Figure 28. Constellations of some typical subcarriers for multi-tone
modulation (DMT) as well as SVM-based decision boundaries for (a) op⁃
tical B2B case and (b) 100 m MMF transmission.
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▲Figure 27. SNR response and bit-allocation of multi-tone modulation
(DMT) for back to back (B2B) and 100 m MMF.
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▲ Figure 26. BER curves of 32 Gbit/s optical carrier-less amplitude
phase modulation (CAP) by using conventional hard decision and K-NN
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ments have been carried out over a VCSEL-MMF link. As‑
sisted by SVM classifier, 100 m MMF transmission of PS-
PAM-8 signals at 75 Gbit/s has been achieved. Energy effi‑
cient optical interconnection with 16% reduction of power
consumption has been obtained by PS coding. On the other
hand, channel-adaptive PS method has been proposed by us‑
ing DMT modulation, combined with MB shaping. The pro‑
posed PS-DMT scheme can significantly improve the signal‑
ing capacity since two significant benefits are simultaneous‑
ly utilized: 1) the shaping gain of PS for carriers with limited
SNR; 2) the frequency-resolved continuous entropy loading
for better fitting the channel frequency response. Proof-of-
concept investigations have been carried out via both simu‑
lations and experiments, for MB and dyadic distributions.
Data rate improvement of 5.68 Gbit/s was obtained theoreti‑
cally using the PS-DMT with dyadic distributions. In addi‑
tion, optical signaling was realized experimentally using a
commercial VCSEL at 112 Gbit/s data rate. The 0.44 dB and
0.29 dB power gains have been achieved for optical B2B
and 100 m OM3 fiber transmissions, by using dyadic shap‑
ing of DMT.
While for DSP methods in the receiver, we mainly employ

the machine-learning algorithm to realize improved signal de‑
tection. In detail, for QAM signaling, we proposed a SVM
multi-classification method to obtain adaptive nonlinear deci‑
sion boundary. Different classification methods have been
evaluated in terms of classification precision and complexity
including OvR and BT structure. Among them, the in-phase
and quadrature classification method only requires about one-
third of the SVM number compared with other methods, which
is much simpler for implementation. One should carefully
evaluate the requirement regarding different application sce‑
narios (particularly different modulation formats and different

nonlinear distortions) when choosing a specific classification
method for SVM machine learning detection.
Besides QAM decision, we also use SVM method to miti‑

gate the modulation nonlinearity in PAM-modulated VCSEL-
MMF as well as Silicon MRM-SMF optical links. Compared
with the published works, we firstly come up with the CBT
structure multi-classes SVMs which are more suitable for
PAM modulation. For VCSEL-based PAM system, there are
about 1 dB and 2 dB receiver sensitivity improvements respec‑
tively for PAM-4 and PAM-8 signals with the use of CBT-
SVMs classifier. The improvement for PAM-8 is clearly better
compared with PAM-4 due to its doubled modulation levels,
which makes it more sensitive to modulation nonlinearity dis‑
tortion as we have expected. For silicon MRM-SMF optical
link, the sensitivity versus different LDs are comparably sta‑
ble with less than 3 dB fluctuation by using proposed CBT-
SVM. It indicates the very useful capability of machine learn‑
ing detection for stabilized PAM-4 modulation without wave‑
length drift control at the transmitter side. Moreover, we also
propose an RNN-based demodulator to mitigate eye skew in
VCSEL-PAM system. Compared with other neural networks,
RNN adds a feedback mechanism to the network architecture,
which can comprehensively consider the association of infor‑
mation before and after the sequence. In detail, compared with
hard decisions, RNN can bring about 2 dB power sensitivity
improvement to the system, slightly better than CBT-SVMs.
Subsequently, a K-means assisted receiver including both
equalization and soft decision is proposed for VCSEL-based
PAM-4 optical interconnects. Through self-learning of mean
values and noise variances of four levels, performance of LMS
equalization as well as LLR-based SD has been improved. Be‑
sides, we also investigate the performance of machine-learn‑
ing methods in CAP and DMT system. For CAP system, K-NN
based decision is realized for mitigating nonlinear distortion.
For DMT system, carrier-by-carrier decision based on SVM is
performed, obtained significant reduction of BER.
The above-mentioned are proposed DSP methods and corre‑

sponding results. In brief, PS embedded in transmitter (Tx)
side and machine-learning decision in receiver (Rx) side are
realized. With assistance of such intelligent DSP approach,
improved performances in terms of BER and capacity are
achieved. Moreover, these methods can be not only utilized for
short-reach link, but also extended for long-haul transmission.
The challenges for practical application are mainly the cost of
complexity with respect to the sensitivity gain. Presently, the
complexity is still large and applications for short reach opti‑
cal interconnection are difficult. However, for long haul,
which is not so sensitive to power consumption and cost, com‑
plex DSP can be acceptable as long as the gain is large
enough. For data center interconnection (DCI) applications
ranging from tens of kilometers to hundreds of kilometers,
there would be a good balance.

▲Figure 29. BER comparison between using SVM decision and conven⁃
tional hard decision.
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Abstract: Crowd counting is a challenging task in computer vision as realistic scenes are al‑
ways filled with unfavourable factors such as severe occlusions, perspective distortions and di‑
verse distributions. Recent state-of-the-art methods based on convolutional neural network
(CNN) weaken these factors via multi-scale feature fusion or optimal feature selection through
a front switch-net. L2 regression is used to regress the density map of the crowd, which is
known to lead to an average and blurry result, and affects the accuracy of crowd count and po‑
sition distribution. To tackle these problems, we take full advantage of the application of gen‑
erative adversarial networks (GANs) in image generation and propose a novel crowd counting
model based on conditional GANs to predict high-quality density maps from crowd images.
Furthermore, we innovatively put forward a new regularizer so as to help boost the accuracy of
processing extremely crowded scenes. Extensive experiments on four major crowd counting
datasets are conducted to demonstrate the better performance of the proposed approach com‑
pared with recent state-of-the-art methods.
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1 Introduction

With the population density of major cities increasing
in recent years, crowd scene analysis has already
become an important safety index in the field of vid‑
eo surveillance, especially the crowd count and

high-quality density map which has a wide range of applica‑
tions in public safety, traffic monitoring, scene understanding
and flow monitoring. However, predicting accurate crowd count
while ensuring high-quality density map is a really challenging
task, because complex crowd scenes are always accompanied
with severe occlusions, perspective distortions and diverse dis‑
tributions, and also put forward a great challenge to the algo‑
rithm model. Several typical still crowd images from the Shang‑
haiTech dataset[1] are shown in Fig. 1.
In order to solve these problems in computer vision field, a

great many algorithms have been proposed, which can be
mainly divided into two categories, namely, the hand-crafted
feature based regression and the convolutional neural network
(CNN) based regression. Recent works[1–3] indicate that the

CNN based regression has a more excellent performance.
Such methods obtain the number of people from a still image
by mapping the image to its density map through a CNN archi‑
tecture. They have achieved significant improvements on
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(a) pictures with dense crowd
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▲Figure 1. Examples of crowd scene from the ShanghaiTech dataset[1].
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count estimates, whereas the quality of their estimated density
map is unfortunately poor due to the throng scene and self-de‑
fect of Euclidean loss.
In the past two years, generative adversarial networks

(GANs)[4] have become the most popular frameworks in all rel‑
evant fields of image generation. Some of its derivatives such
as conditional GANs (cGANs) [5] and information maximizing
generative adversarial nets (InfoGANs) [6] can generate ex‑
tremely realistic images. Therefore, the key point is whether
we can draw the advantages of GANs to generate high-quality
and high-resolution density maps. Inspired by this, we pro‑
pose a novel crowd counting model based on cGANs called
Crowd Counting Network for Real Monitoring Scene.
The initial inspiration of Crowd Counting Network for Real

Monitoring Scene derives from Ref. [7] which uses cGANs to
realize pixel-to-pixel translation. Usually, most existing CNN-
based approaches on crowd counting add several max-pooling
layers in their networks, forcing them to regress on down-sam‑
pled density maps, and traditional Euclidean loss is employed
to optimize their network parameters which will eventually
lead to a relatively blurry result. While in our proposed ap‑
proach, the generator of cGANs is designed to generate densi‑
ty maps having the same size as input images through a U-
net[8] structure with the same amount of convolutional and de-
convolutional layers. In other words, it executes a pixel-wise
translation from a crowd image to its estimated density map.
Thanks to the combination of pixel-wise Euclidean loss, per‑
ceptual loss, inter-frame loss and the adversarial training loss
provided by GANs, the density map predicted by the genera‑
tor overcomes blurry results obtained by optimizing only over
Euclidean loss and achieves higher quality than that of the
previous methods. Besides, we innovatively propose a novel
regularizer which provides a very strong regularization con‑
straint on the consistency of parent-child-relationship density
maps between different scales to excavate multi-scale consis‑
tent information. Unlike using different sizes of filters to ex‑
tract multi-scale features, we care more about local and over‑
all interrelation between adjacent image patches.
Contributions of this paper are summarized as follows.
• We propose a novel crowd counting framework based on

cGANs, called Crowd Counting Network for Real Monitoring
Scene. It implements end-to-end training. The use of adversari‑
al training loss helps generate high-quality crowd density map.
• A novel regularizer is introduced to help solve perspec‑

tive distortions and diverse distributions problems in crowd
scenes by providing a very strong constraint on the consisten‑
cy of parent-child-relationship patches to excavate multi-scale
consistent information.
• An inter-frame loss is denoted for the crowd counting in

video stream, which can improve the continuity of detection
by constraining the number of people calculated by density
map between adjacent frames. The loss can also enhance the
stability of the network in predicting the density map of video

information.
• Our method obtains state-of-the-art performance on four

major crowd counting datasets involving the ShanghaiTech da‑
taset, WorldExpo’10 dataset, UCF_CC_50 dataset and UCSD
dataset.

2 Related Work
A large number of algorithms have been proposed to tackle

crowd counting task in computer vision. Early works estimate
the number of pedestrians via head or body detection[9–11]. Such
detection based methods are limited by severe occlusions in ex‑
tremely dense crowd scenes. Methods in Refs. [12–15] use re‑
gressors trained with low-level features to predict global counts,
and Ref. [16] makes a fusion of hand-crafted features from mul‑
tiple sources, including the histogram of oriented gradients
(HOG), scale-invariant feature transform (SIFT), Fourier analy‑
sis, and detections. These methods cannot provide the distribu‑
tion of crowd, and such low-level features are outperformed by
features extracted from CNN which have better and deeper rep‑
resentations.
Several works focus on crowd counting in videos by trajecto‑

ry-clustering. RABAUD et al. [17] utilized a highly parallelized
version of the Kanade-Lucas-Tomasi Tracking (KLT) tracker
to extract a set of feature trajectories from videos. Fragmenta‑
tion of trajectories is restrained by conditioning the trajecto‑
ries spatially and temporally. BROSTOW et al.[18] proposed an
unsupervised data driven Bayesian clustering algorithm,
which uses space-time proximity and trajectory for clustering.
However, such tracking based methods are limited in crowd
counting from arbitrary still image for lack of temporal infor‑
mation.
In recent years, crowd counting has entered the era of CNN.

WANG et al. [19] trained a classic Alexnet style CNN model to
predict crowd counts. Regrettably, this model has limitation in
crowd analysis as it does not provide the estimation of crowd
distribution. ZHANG et al. [3] proposed a deep convolutional
neural network for crowd counting which is alternatively re‑
gressed with two related learning objectives: the crowd count
and the density map. Such switchable objective-learning helps
improve the performance of both objectives. However, the ap‑
plication of this method is limited as it requires perspective
maps which are not easily available in practice during the pro‑
cess of both training and testing. Multi-column CNN is em‑
ployed by Refs. [1] and [20]. Different CNN columns with var‑
ied receptive fields are designed to capture scale variations
and perspectives, and then features from these columns are
fused together by a 1×1 convolutional layer to regress crowd
density. Switch-CNN[2] based on the multi-column convolution‑
al neural network (MCNN)[1] is a patch-based switching archi‑
tecture before the crowd patches go into multi-column regres‑
sors. The switch-net is trained as a classifier to choose the
most appropriate regressor for a particular input patch, which
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takes advantage of patch-wise variations in density within a
single image. These methods have made great contributions to
the progress of crowd counting by deep learning; at the same
time, they add max-pooling layers in their networks and use
L2 loss to optimize the whole model. Namely, they pay more
attention to the accuracy of predicted crowd count, and ne‑
glect the quality of the regressed density map. The latest pro‑
posed contextual pyramid CNN (CP-CNN) [21] is a contextual
Pyramid CNNs for incorporating global and local contexts
which are obtained by learning various density levels. This
contextual information is fused with high dimensional feature
maps extracted from a multi-column CNN[1] by a fusion-CNN
consisting of a set of convolutional and fractionally-strided lay‑
ers. Adversarial loss is used to help generate high-quality den‑
sity maps in the last fusion-CNN. Up to now, this approach ac‑
quires the lowest counting error on three major crowd datasets
in addition to generating high-quality density maps.
The above methods utilize multi-scale features fusion or

optimum feature selection to deal with crowd in varied
scales, but to some extent they only consider crowd in differ‑
ent scales having different sensitivities to diverse convolu‑
tional kernel, which is a relatively local consideration. The
latest one incorporates contextual information by classifying
images or patches into five density levels independently,
while ignoring the correlation between adjacent patches. In
other words, none of them research on the statistical consis‑
tency of the crowd counts in multi-scale joint patches; for ex‑
ample, a patch is supposed to be equally divided into four
sub-patches and the estimated crowd count of the patch
ought to be equal to the sum of the estimated crowd counts of
these four sub-patches. Such multi-scale consistency offers
an effective and strong regularization constraint for crowd
count and density estimation. Unfortunately, these methods
do not take it into consideration.

3 Our Approach
We proposed a novel GANs-based crowd counting frame‑

work called Real Monitoring Scene Network (RMSN) for
Crowd Counting. Many of the previous state-of-the-art meth‑
ods[1–2] choose L2 loss to regress density map, which is widely
acknowledged to result in low-quality and blurry results espe‑
cially for image reconstruction tasks[7], [22]. To overcome this
flaw and generate high-quality and high-resolution density
maps, we design a weighted combination of loss including: ad‑
versarial training loss, perceptual loss and pixel-wise Euclide‑
an loss, and a new regularizer is proposed in our GANs-based
model to excavate multi-scale consistent information. After
generating the density map, we will get the density matrix in‑
formation between −1 and 1 and then normalize it. The count
number from density map can be obtained by summing the
normalized matrix divided by a certain coefficient 0.12.

3.1 Architecture
RMSN is based on the idea of pixel-to-pixel translation, and

in order to leverage the proposed regularizer, our network ar‑
chitecture consists of two complementary conditional GANs:
GANlarge and GANsmall. A classic GAN architecture usually con‑tains two models: a generator G trained to produce outputs and
a discriminator D trained to distinguish the real target and
fake outputs from G. In our method, the generator G learns an
end-to-end mapping from input crowd image to its density
map. Fig. 2 shows the integral architecture of RMSN. The gen‑
eral structures of the two GANs are quite similar. Specific de‑
tails are discussed below.
A general problem of pixel-to-pixel translation is the diffi‑

culty to efficiently map a high resolution input image to a high
resolution output image. Fortunately, previous works[7], [23–24]
have provided an excellent solution by using an encoder-de‑
coder network[25]. In RMSN, a U-net[8] structure is introduced
to the generator G as an encoder-decoder. Let us start with the
large GANs in our proposed architecture. In the generator
Glarge, eight convolutional layers along with batch normaliza‑tion layers and LeakyReLU activation layers are stacked in
the encoder part which serves as a feature extractor. Then,
eight de-convolutional layers along with batch normalization
layers and ReLU activation layers (except for the last one) are
added in the decoder part, followed by a tanh function. Note
that the de-convolutional layers are a mirrored version of the
foregone convolutional layers. We set a stride of 2 in all lay‑
ers, which means convolutions in the encoder down-sample by
a factor of 2, whereas deconvolutions upsample by a factor of
2. In addition, three dropout layers are added behind the first
three de-convolutional layers with dropout ratio set to 0.5 in
order to alleviate over-fitting. Skip connections are also added
between mirror-symmetry convolutional and de-convolutional
layers to help improve the performance and efficiency, similar
to Ref. [7]. The architecture of Glarge can be depicted as: C(64,6)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-
DCD(64,4)-DCD(64,4)-DCD(64,4)-DC(64,4)-DC(64,4)-DC(64,
4)-DC(64,4)-DC(3,6)-Tanh, where C is a Conv-BN-LReLU lay‑
er, DCD is a deConv-BN-Dropout-ReLU layer, DC is a de‑
Conv-BN-ReLU layer and the first number in every parenthe‑
sis represents the number of filters while the second number
represents filter size.
The generator Gsmall which is similar to Glarge contains 7 con‑volutional layers and 7 deconvolutional layers. 4 × 4 filters are

used in all layers with a stride of 2. The architecture of genera‑
tor Gsmall can be depicted as: C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-C(64,4)-DCD(64,4)-DCD(64,4)-DC(64,4)-DC
(64,4)-DC(64,4)-DC(64,4)-DC(3,4)-Tanh. The inputs of gener‑
ator Glarge are 240×240×3 sized crowd patches, and the inputsof generator Gsmall are 120×120×3 sized crowd patches equa‑tionally cropped from the input of the generator Glarge withoutoverlapping, as shown in the upper left corner of Fig. 2 Their
outputs are of the same size as their inputs. That means the

density maps generated from our RMSN contain more details
and have better characterization capabilities than previous
density-map-based works[1–3] as their density maps are always
much smaller than the origin images.
The discriminators Dlarge and Dsmall have the same struc‑ture, displayed at the bottom of Fig. 2. Five convolutional

layers along with batch normalization layers and LeakyRe‑
LU activation layers (except for the last one) act as a feature
extractor. A tanh function is stacked at the end of these con‑
volutional layers to regress a probabilistic score ranges from
−1.0 to 1.0. The architecture of discriminators Dlarge and Ds‑
mall can be depicted as: C(48,4)-C(96,4)-C(192,4)-C(384,4)-C(1,4) -Tanh. The inputs of the discriminators Dlarge and Dsmallare 240×240×6 and 120×120×6 sized concatenated pairs of
crowd patch and density map, respectively. The values of
the output matrix indicate whether the input is real (close to
1.0) or fake (close to −1.0).
3.2 Loss Function
In our problem, motivated by recent success of GANs, we

propose an adversarial loss of generating crowd density map
from image patch. The adversarial loss involves a discrimina‑
tor D and a generator G playing a two-player minimax game: D
is trained to distinguish synthetic images from ground truth
while G is trained to generate images to fool D. The adversari‑

al loss is denoted as:
LA (G,D) = Ex, y~Pdata (x, y ) [ logD ( x, y ) ] +

Ex~Pdata (x ) [ log (1 - D ( x,G ( x ) ) ) ] , (1)
where x denotes a training patch and y denotes corresponding
ground-truth density map. G tries to minimize this objective,
whereas D tries to maximize it.
Due to the lack of direct constraint from ground truth, just

using an adversarial loss may sometimes lead to aberrant spa‑
tial structure. Thus, we include two conventional losses to
smooth and improve the solution, which is denoted as follows.
In our problem, l2 loss LE(G) can force the generated estimat‑ed density map to fool D and be close to the ground truth in an

L2 sense.
LE (G) = 1C∑c = 1

C

 pG ( )c - pGT ( )c
2
2 , (2)

where pG (c) represents the pixels in generated density map
and pGT (c) represents the pixels in ground-truth density map,
with c=3.
Perceptual loss is first introduced by JOHNSON et al.[24] for

image transformation and super resolution task. By minimiz‑
ing the perceptual differences between the two images, the
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density maps generated from our RMSN contain more details
and have better characterization capabilities than previous
density-map-based works[1–3] as their density maps are always
much smaller than the origin images.
The discriminators Dlarge and Dsmall have the same struc‑ture, displayed at the bottom of Fig. 2. Five convolutional

layers along with batch normalization layers and LeakyRe‑
LU activation layers (except for the last one) act as a feature
extractor. A tanh function is stacked at the end of these con‑
volutional layers to regress a probabilistic score ranges from
−1.0 to 1.0. The architecture of discriminators Dlarge and Ds‑
mall can be depicted as: C(48,4)-C(96,4)-C(192,4)-C(384,4)-C(1,4) -Tanh. The inputs of the discriminators Dlarge and Dsmallare 240×240×6 and 120×120×6 sized concatenated pairs of
crowd patch and density map, respectively. The values of
the output matrix indicate whether the input is real (close to
1.0) or fake (close to −1.0).
3.2 Loss Function
In our problem, motivated by recent success of GANs, we

propose an adversarial loss of generating crowd density map
from image patch. The adversarial loss involves a discrimina‑
tor D and a generator G playing a two-player minimax game: D
is trained to distinguish synthetic images from ground truth
while G is trained to generate images to fool D. The adversari‑

al loss is denoted as:
LA (G,D) = Ex, y~Pdata (x, y ) [ logD ( x, y ) ] +

Ex~Pdata (x ) [ log (1 - D ( x,G ( x ) ) ) ] , (1)
where x denotes a training patch and y denotes corresponding
ground-truth density map. G tries to minimize this objective,
whereas D tries to maximize it.
Due to the lack of direct constraint from ground truth, just

using an adversarial loss may sometimes lead to aberrant spa‑
tial structure. Thus, we include two conventional losses to
smooth and improve the solution, which is denoted as follows.
In our problem, l2 loss LE(G) can force the generated estimat‑ed density map to fool D and be close to the ground truth in an

L2 sense.
LE (G) = 1C∑c = 1

C

 pG ( )c - pGT ( )c
2
2 , (2)

where pG (c) represents the pixels in generated density map
and pGT (c) represents the pixels in ground-truth density map,
with c=3.
Perceptual loss is first introduced by JOHNSON et al.[24] for

image transformation and super resolution task. By minimiz‑
ing the perceptual differences between the two images, the

▲Figure 2. Architecture of the proposed Crowd Counting Network for Real Monitoring Scene (RMSN): The top level is the structure of generator
Glarge, the middle part is the structure of generator Gsmall, and the bottom part is the discriminators Dlarge and Dsmall that have the same structure.
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synthetic image can be more semantically similar to the objec‑
tive image. The perceptual loss is defined as:
LP (G) = 1C∑c = 1

C

 f G ( )c - f GT ( )c
2
2 , (3)

where f G (c) represents the pixels in high level perceptual fea‑
tures of generated density map and f GT (c) represents the pix‑
els in high level perceptual features of ground-truth density
map, with c=128.
Therefore, the integrated loss is expressed as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) , (4)

where λe and λp are predefined weights for Euclidean lossand perceptual loss. Suggested by previous works[26], we set
λe= λp=150.In our problem, we propose a new inter-frame loss for the
prediction in video stream, which can improve the continuity
of detection by constraining the number of people between ad‑
jacent frames and enhance the stability of the network in pre‑
dicting the density map of video information. The loss is de‑
fined as the distance between two adjacent frames of generat‑
ed density maps, which is denoted as:
Li (G) = 1

Npix
 nG ( )c - n*G ( )c

2
2 , (5)

where Npix represents the whole numbers of pixels in generat‑ed density maps, nG (c) represents the number of pedestrians
calculated from the current frame in generated density map,
and n*G (c) represents the number of pedestrians calculated
from the previous frame.
Therefore, for video stream information, the integrated loss

L I should be denoted as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) +

λiLi (G) , (6)
where λi=150 is predefined weights for inter-frame loss.To restrain the cross-scale consistency of parent-child-rela‑
tionship density maps, we propose a Cross-Scale Consistency
Pursuit loss[27] defined as the discrepancy/distance between
Pconcat and Pparent. The CSCP loss of a W×H density map withchannels is defined as:
LC (G) = 1C∑c = 1

C

 pprt ( )c - pcnt ( )c
2
2 , (7)

where pprt (c) represents the pixels in density map Pparent and
pcnt (c) represents the pixels in density map Pconcat, with c=3.As pointed out above, the four loss functions are weightedly
combined to a final objective,

L II = L I + λcLC (G ) , (8)
where λc=10 is the predefined weight for cross-scale consis‑tency pursuit loss.
3.3 Training Details
During training, the input is an image pair consisting of a

crowd patch and its corresponding density map. Such an im‑
age pair is first input to the large-scale subnet G large, and thenevenly divided into four equidistant image pairs without over‑
lapping and finally input to the small-scale subnet Gsmall. Bothsubnets are jointly trained. The RMS prop optimizer has a
learning rate set to 0.00005 and is used to update the parame‑
ters of the network. We follow the update rule: in each itera‑
tion, Gsmall’s four updates are followed by a G large.To increase the training data, one of the general methods is
to resize the input image pair to a larger size and randomly
crop the image pair of a particular size. However, such data in‑
creases are not appropriate in our crowd counting tasks be‑
cause image interpolation algorithms such as recent and bilin‑
ear algorithms inevitably change the number of people in the
density map. Therefore, in our experiments, we use filled and
flipped images to replace image size adjustments with a proba‑
bility of 50% for data enhancement.
Our model requires approximately 300 periods of training

to converge. In order to balance the training of the two sub-net‑
works, in the first 100 periods, the predefined weight λc inEq. (6) is set to 0, then it is adjusted to 10 and the training
process is continued. Finally, the well-trained generator G largeis used to predict the density map of the test image. Training
and testing of the proposed network is implemented on the
Torch7 framework.
3.4 Parameter λc StudyWe did comparative experiments performed on Part_B of
the ShanghaiTech dataset to choose the optimum value of λc.As shown in Fig. 3, mean absolute error (MAE) decreases

▲Figure 3. Comparisons of MAE for different λcvalues on Shanghai⁃
Tech Part_B.
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synthetic image can be more semantically similar to the objec‑
tive image. The perceptual loss is defined as:
LP (G) = 1C∑c = 1

C

 f G ( )c - f GT ( )c
2
2 , (3)

where f G (c) represents the pixels in high level perceptual fea‑
tures of generated density map and f GT (c) represents the pix‑
els in high level perceptual features of ground-truth density
map, with c=128.
Therefore, the integrated loss is expressed as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) , (4)

where λe and λp are predefined weights for Euclidean lossand perceptual loss. Suggested by previous works[26], we set
λe= λp=150.In our problem, we propose a new inter-frame loss for the
prediction in video stream, which can improve the continuity
of detection by constraining the number of people between ad‑
jacent frames and enhance the stability of the network in pre‑
dicting the density map of video information. The loss is de‑
fined as the distance between two adjacent frames of generat‑
ed density maps, which is denoted as:
Li (G) = 1

Npix
 nG ( )c - n*G ( )c

2
2 , (5)

where Npix represents the whole numbers of pixels in generat‑ed density maps, nG (c) represents the number of pedestrians
calculated from the current frame in generated density map,
and n*G (c) represents the number of pedestrians calculated
from the previous frame.
Therefore, for video stream information, the integrated loss

L I should be denoted as:
L I = arg minG max

D
LA (G,D) + λeLE (G) + λpLP (G) +

λiLi (G) , (6)
where λi=150 is predefined weights for inter-frame loss.To restrain the cross-scale consistency of parent-child-rela‑
tionship density maps, we propose a Cross-Scale Consistency
Pursuit loss[27] defined as the discrepancy/distance between
Pconcat and Pparent. The CSCP loss of a W×H density map withchannels is defined as:
LC (G) = 1C∑c = 1

C

 pprt ( )c - pcnt ( )c
2
2 , (7)

where pprt (c) represents the pixels in density map Pparent and
pcnt (c) represents the pixels in density map Pconcat, with c=3.As pointed out above, the four loss functions are weightedly
combined to a final objective,

L II = L I + λcLC (G ) , (8)
where λc=10 is the predefined weight for cross-scale consis‑tency pursuit loss.
3.3 Training Details
During training, the input is an image pair consisting of a

crowd patch and its corresponding density map. Such an im‑
age pair is first input to the large-scale subnet G large, and thenevenly divided into four equidistant image pairs without over‑
lapping and finally input to the small-scale subnet Gsmall. Bothsubnets are jointly trained. The RMS prop optimizer has a
learning rate set to 0.00005 and is used to update the parame‑
ters of the network. We follow the update rule: in each itera‑
tion, Gsmall’s four updates are followed by a G large.To increase the training data, one of the general methods is
to resize the input image pair to a larger size and randomly
crop the image pair of a particular size. However, such data in‑
creases are not appropriate in our crowd counting tasks be‑
cause image interpolation algorithms such as recent and bilin‑
ear algorithms inevitably change the number of people in the
density map. Therefore, in our experiments, we use filled and
flipped images to replace image size adjustments with a proba‑
bility of 50% for data enhancement.
Our model requires approximately 300 periods of training

to converge. In order to balance the training of the two sub-net‑
works, in the first 100 periods, the predefined weight λc inEq. (6) is set to 0, then it is adjusted to 10 and the training
process is continued. Finally, the well-trained generator G largeis used to predict the density map of the test image. Training
and testing of the proposed network is implemented on the
Torch7 framework.
3.4 Parameter λc StudyWe did comparative experiments performed on Part_B of
the ShanghaiTech dataset to choose the optimum value of λc.As shown in Fig. 3, mean absolute error (MAE) decreases

when the value of λc increases. The lowest MAE value is ob‑tained at λc=10. After that, when the value of λc increases,the error rises rapidly, because the comparison of the weight
of cross-scale consistency loss and L1 loss becomes too signifi‑cant. Therefore, we finally assign 10 to λc.

4 Experiments
We evaluate our method in four major crowd counting datas‑

ets, including the ShanghaiTech dataset, WorldExpo’10 datas‑
et, UCF CC 50 dataset and UCSD dataset. Compared with the
state-of-the-art methods, our method gains a superior or at
least competitive performance in all datasets used for evalua‑
tion. Training and testing of the proposed network are imple‑
mented on Torch7 framework.
We use MAE and mean squared error (MSE) to evaluate the

performance of our method on existing works.
Adversarial pursuit seeks to exploit adversarial loss, per‑

ceptual loss and U-net structured generator to improve the
quality of generated density maps. It is worth noting that our
predicted density map is better distributed than the MCNN
population, with less blur and noise. In addition, compara‑
tive experiments were performed on the ShanghaiTech[1] and
WorldExpo’10[3] datasets in Table 1 above. It can be ob‑
served that training with additional adversarial loss and per‑
ceptual loss (i. e. LI) results in far less errors than training
with Euclidean loss only.
4.1 ShanghaiTech
The ShanghaiTech dataset is created by ZHANG et al. [1]，

which that consists of 1 198 annotated images. The dataset is
divided into two parts. Part A contains 482 images download‑
ed from the Internet with extremely dense crowd, and Part B
contains 716 images taken from the busy street in Shanghai
with normal flow of crowd. Our model is trained and tested on
the training and testing set split by author respectively. To
augment the training data, we resize all the images to 720×
720 and cropped patches from each image. Each patch is 1
size of origin image and is cropped from different locations.
Ground-truth density maps are generated by geometry-adap‑
tive Gaussian kernels. At the test time, a window of size 240×
240 slides on the test image to crop patches with 50% overlap‑
ping as inputs of the well trained generator. Then, outputs
from the generator are integrated to a weight-balanced density
map which has the same size of the test image. Finally, the es‑
timated crowd count of the image can be calculated by the
sum of the density map. The proposed method is compared
with four current state-of-the-art CNN-based approaches: a
switchable objective-learning CNN[3], MCNN[1], Switch-CNN[2]
and CP-CNN[21]. ZHANG et al.[3] proposed a switchable objec‑
tive-learning CNN which is alternatively regressed with two re‑
lated learning objectives: crowd count and density map. This
method is highly dependent on the perspective maps during

training and testing. ZHANG et al.[1] employed a MCNN to ex‑
tract multi-scale features and to fuse them to get a better repre‑
sentation. Switch-CNN[2] trained a prepositive switch-net to in‑
telligently choose the optimal regressor instead of multi-col‑
umn feature fusion. CP-CNN[21] incorporated global and local
contextual information with fused multi-column features, and
is trained in an end-to-end fashion using a combination of ad‑
versarial loss and pixel-level Euclidean loss. From Table 2
we can see, on Part B of which images are closer to the real
monitoring screens, the proposed approach obtains apprecia‑
ble improvement in contrast to the best model CP-CNN at the
time. On Part A, besides CP-CNN, our method has also
achieved the best results, compared with the other three ones.
In order to fairly evaluate the quality of the generated density
map, we choose the same set of test images published in
MCNN[1] paper along with ground-truth and predicted density
maps, shown in Fig. 4. It can be intuitively seen that our pre‑
dicted density maps conform to the distribution of crowd much
better than MCNN’s with noticeable blur and noise, which ben‑
efits from our GANs-based architecture and new regularizer.
4.2 WorldExpo’10 Dataset
The WorldExpo’10 dataset is created by ZHANG et al. [3]

with 1 132 annotated video sequences captured by 108 sur‑
veillance cameras from Shanghai 2010 World Expo. A total
of 199 923 pedestrians in 3 980 frames are labeled at the
centers of their heads. In these frames, 3 380 frames are
treated as the training set; the rest 600 frames are used as
the test set, which are sampled from five different scenes,
each containing 120 frames. The pedestrian number in the
test scene ranges from 1– 220. This dataset also provides
perspective maps, the value of which represents the number

▼Table 1. Comparisons of errors for training with different losses

Objective
LE
LI
LII

Part A
MAE
95.8
83.2
75.7

MSE
149.4
131.3
102.7

Part B
MAE
24.1
18.4
17.2

MSE
36.4
28.8
27.4

WorldExpo’10
AMAE
9.95
8.48
7.5

AMAE: average mean absolute error MAE: mean absolute error MSE: mean squared error
▼Table 2. Comparison of RMSN with other three state-of-the-art CNN-
based methods on ShanghaiTech dataset

Methods
The approach in Ref. [3]

MCNN[1]
Switch-CNN[2]

The proposed RMSN

Part A
MAE
181.8
110.2
90.4
86.2

MSE
277.7
173.2
135.0

145.4

Part B
MAE
32.0
26.4
21.6
17.2

MSE
49.8
41.3
33.4
27.4

MAE: mean absolute errorMCNN: multi‑column convolutional neu‑ral network
MSE: mean squared errorRMSN: real monitoring scene network
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of pixels in the image covering one square meter at real loca‑
tion. For fair comparison, we choose the crowd density distri‑
bution kernel introduced by Ref. [3], which contains two
terms: a normalized Gaussian kernel as a head part and a bi‑
variate normalized distribution as a body part, to generate den‑
sity maps with perspective information. To follow the previous
methods, only the crowd in region of interest (ROI) are taken
into consideration. So we multiply predicted density map by
specifing ROI mask, which means that the area out of ROI is
set to zero. MAE is suggested by ZHANG et al. [3] to evaluate
the performance of crowd counting model on this dataset.

Table 3, in which MAE is used to evaluate the perfor‑
mance on each scene and the average result across scenes,
reports the performance of our method on five different test
scenes in comparison to other four state-of-the-art methods.
Our method refreshes the scores of three scenes: Scene2,
Scene3 and Scene5，while achieving comparable perfor‑
mance on the rest two scenes, and outperforms the leader CP-
CNN[21] by a margin of 0.41 points in terms of average MAE
across scenes.
4.3 UCF_CC_50 Dataset
The UCF_CC_50 dataset, which is a very challenging datas‑

et composed of 50 annotated crowd images with a large vari‑
ance in crowd counts and scenes, is firstly introduced by
IDREES et al. [28]. The crowd counts range from 94 to 4 543.
We follow Ref. [28] and use 5-fold cross-validation to evaluate
the proposed method.
We compare our method with five existing methods on

UCF_CC_50 dataset using MAE and MSE as metrics in Table
4. IDREES et al.[28] proposed to use multi-source features like
head detections, Fourier analysis and texture features. Our ap‑
proach acquires the best MAE and comparable MSE among
existing approaches.

4.4 UCSD Dataset
We also evaluate our method on the single-scene UCSD da‑

taset with video stream. This dataset consists of 2 000 labeled
frames with size of 158×238. Ground truth is labeled at the
center of every pedestrian and the largest number of people is
under 46. The ROI and perspective map are provided as well.
In order to cover the pedestrian contour, we choose a bivariate
normalized distribution kernel shaped ellipse to generate den‑
sity maps. We follow the same train-test setting in Ref. [13].
The 800 frames from 601 to 1 400 are treated as training set
and the rest 1 200 frames as test set. At the test time, MAE

▼Table 3. Comparison of RMSN with other four state-of-the-art CNN-
based methods on the WorldExpo’10 dataset

Methods
The approach in Ref. [3]

MCNN[1]
Switch-CNN[2]
CP-CNN[21]

The proposed RMSN

Scene 1
9.8
3.4
4.4
2.9

4.1

Scene 2
14.1
20.6
15.7
14.7
14.05

Scene 3
14.3
12.9
10.0
10.5
9.6

Scene 4
22.2
13.0
11.0
10.4

11.8

Scene 5
3.7
8.1
5.9
5.8
2.9

Average
12.9
11.6
9.4
8.9
8.49

CP-CNN: contextual pyramid convolutional neural networkMCNN: multi-column convolutional neural networkRMSN: real monitoring scene network
▼Table 4. Comparative results on the UCF_CC_50 dataset

Methods
The approach in Ref. [28]
The approach in Ref. [3]

MCNN[1]
Switch-CNN[2]
CP-CNN[21]

The proposed RMSN

MAE
419.5
467.0
377.6
318.1
295.8
291.0

MSE
541.6
498.5
509.1
439.2
320.9
404.6

MAE: mean absolute errorMCNN: multi-column convolutional neu‑ral network
MSE: mean squared errorRMSN: real monitoring scene network

▲Figure 4. Two test images sampled from the ShanghaiTech Part A dataset (From left to right, the four columns successively denote test images,
ground-truth density maps, our estimated density maps and the multi-column convolutional neural network（MCNN）’s[1] respectively).
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and MSE are used as evaluation metrics.
Table 5 exhibits the comparison of our method with other

state-of-the-art methods on UCSD dataset. Crowd count is cal‑
culated within the given ROI. The first two methods[12], [14]
adopts hand-crafted features, while the rest three are CNN-
based. All their results are relatively close due to the compara‑
tively simple scene with low variation of crowd density. Never‑
theless, our method outperforms most of the methods, which
shows that our approach is also applicable in relatively sparse
and single crowd scene.

Fig. 5 shows the application of our method under video in‑
formation from UCSD dataset. In practical applications, we
calculate the pedestrian flow and retention based on the densi‑
ty map. In the velocity map, we can see the small arrows
around pedestrian area which represents the direction of pe‑
destrian movement. In the retention map, we use the chromat‑
ic area of different colors near head to indicate the length of
retention of the corresponding pedestrian, based on the resi‑
dence time of the pedestrian in a certain place.

5 Conclusions
In this paper, we propose a GANs-based crowd counting

network which takes full advantage of excellent performance
of GANs in image generation. To better reduce errors caused

by different scales of the crowd, we propose a novel regulariz‑
er which provides a strong regularization constraint on multi-
scale crowd density estimation. Extensive experiments indi‑
cate that our method achieves the state-of-the-art performance
on major crowd counting datasets used for evaluation.
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