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Special Topic
Computational Radio Intelligence: One Key for 6G Wireless

Editorial
JIANG Wei and LUO Fa⁃Long

To Learn or Not to Learn: Deep Learning
Assisted Wireless Modem Design

There is an ongoing debate as to what additional values artificial intelli⁃
gence (or machine learning) could bring to us, particularly on the physi⁃
cal layer design; and what penalties there may have? These questions
motivate a fundamental rethinking of the wireless modem design in the
artificial intelligence era. Through several physical⁃layer case studies,
the authors argue for a significant role that machine learning could play
and discuss the fundamental bottlenecks of machine learning as well as

their potential solutions in this paper.
XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim

TAFAZOLLI, and Terence DODGSON

A Machine Learning Method for Prediction of
Multipath Channels

In this paper, a machine learning method for predicting the evolution of
a mobile communication channel based on a specific type of convolu⁃
tional neural network is developed and evaluated in a simulated mul⁃

tipath transmission scenario. The simulation and channel estimation are
designed to replicate real-world scenarios and common measurements
supported by reference signals in modern cellular networks. The capa⁃
bility of the predictor meets the requirements that a deployment of the
developed method in a radio resource scheduler of a base station poses.

Julian AHRENS, Lia AHRENS, and Hans D. SCHOTTEN

A Case Study on Intelligent Operation System
for Wireless Networks
In this paper, the authors focus on the intelligent operation of wireless
network through ML algorithms. A comprehensive and flexible frame⁃
work is proposed to achieve an intelligent operation system. Two use
cases are also studied to use ML algorithms to automate the anomaly
detection and fault diagnosis of key performance indicators (KPIs) in
wireless networks. The effectiveness of the proposed ML algorithms is
demonstrated by the real data experiments, thus encouraging the fur⁃
ther research for intelligent wireless network operation.
LIU Jianwei, YUAN Yifei, and HAN Jing

Machine Learning for Network Slicing
Resource Management: A Comprehensive
Survey
The emerging technology of multi⁃tenancy network slicing is consid⁃
ered as an essential feature of 5G cellular networks. It provides net⁃
work slices as a new type of public cloud services and therewith in⁃
creases the service flexibility and enhances the network resource effi⁃
ciency. Meanwhile, it raises new challenges of network resource man⁃
agement. A number of various methods have been proposed over the
recent past years, in which machine learning and artificial intelli⁃
gence techniques are widely deployed. In this article, the authors
provide a survey to existing approaches of network slicing resource
management, with a highlight on the roles played by machine learn⁃
ing in them.
HAN Bin and Hans D. SCHOTTEN
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Machine Learning Based Unmanned Aerial
Vehicle Enabled Fog-Radio Access Network

and Edge Computing
Mobile edge computing (MEC) and fog radio access network (F⁃RAN)
together with machine learning algorithms are an emerging approach
to solving complex network problems. In this paper, the authors sug⁃
gest a new orientation with UAV enabled F⁃RAN architecture. Addi⁃
tionally, the authors summarized the works on machine learning ap⁃
proaches for UAV networks and MEC networks, which are related to

the suggested architecture and discussed some technical challenges in
the smart UAV⁃IoT, F⁃RAN 5G and Beyond 5G (6G).

Mohammed SEID, Stephen ANOKYE, and SUN Guolin

A Survey on Machine Learning
Based Proactive Caching

In this paper, a survey of mobile edge caching using machine learning
is explored. This survey shows that edge caching can reduce delay and
subsequently the backhaul traffic of the network; most caching is con⁃
ducted at the small base stations (SBSs) and caching at unmanned aer⁃
ial vehicles (UAVs) is recently used to accommodate mobile users who

dissociate from the SBSs.
Stephen ANOKYE, Mohammed SEID, and SUN Guolin

Review
A Survey on Network Operation and

Maintenance Quality Evaluation Models
In this paper, the authors analyze the general process of quality evalua⁃
tion models for network operation and maintenance. The authors further
describe the working principle of each step, especially the methods for
indicator selection and weight determination. Finally, the authors re⁃

view the recently proposed evaluation models and the international stan⁃
dards of network operation and maintenance quality evaluation.

LIU Lixia, WU Muyang, JI Feng, and LIU Zheng

Research Paper
An Improved Non-Geometrical Stochastic
Model for Non-WSSUS Vehicle-to-Vehicle
Channels
In this paper, the authors propose a novel non⁃geometrical stochastic
model (NGSM) for non⁃wide sense stationary uncorrelated scattering
(non⁃WSSUS) vehicle⁃to⁃vehicle (V2V) channels. The proposed model
is based on a conventional NGSM and employs a more accurate meth⁃
od to reproduce the realistic characteristics of V2V channels, More⁃
over, the statistical properties of the proposed model in different sce⁃
narios are simulated and compared with those of the existing NGSM.
Furthermore, the simulation results demonstrate not only the utility of
the proposed model, but also the correctness of our theoretical deriva⁃
tions.
HUANG Ziwei, CHENG Xiang, and ZHANG Nan
.
Fiber-Wireless Integrated Reliable Access
Network for Mobile Fronthaul Using
Synclastic Uniform Circular Array with Dual-
Mode OAM Multiplexing
The authors propose an access network that integrates fiber and wire⁃
less for mobile fronthaul (MFH) with simple protection capabilities, us⁃
ing dual⁃mode orbital angular momentum (OAM) multiplexing. The au⁃
thors experimentally demonstrate a 3.35 Gbit/s DMT⁃32QAM pre⁃
equalized system with 10 km and 15 km fiber links in the 5.9 GHz
band; then there is a link of two channels with a 0.5 m wireless link.
XU Yusi, WU Xingbang, YANG Guomin, and CHI Nan
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Editorial: Special Topic on Computational Radio Intelligence: One Key for 6G Wireless Special Topic

JIANG Wei and LUO Fa-Long

EditorialEditorial:: Special Topic onSpecial Topic on
Computational Radio IntelligenceComputational Radio Intelligence:: One Key forOne Key for 66GWirelessGWireless

The year of 2019 is the first deployment year of the fifth
generation (5G) mobile communications. As we are
writing the editorial for this special issue, a list of coun⁃
tries such as South Korea, the United States, China,

Switzerland, the United Kingdom, and Spain have launched
commercial 5G services for the general public, while this list is
growing quickly and is envisioned to become much longer in
the near future. For the past months, 5G has been continuous⁃
ly a hot buzzword in the news, attracting a huge focus from the
whole society. It even goes beyond the technical and commer⁃
cial scopes, becoming the frontline of geopolitical contention
and conflict. As a revolutionary technology, 5G will penetrate
into all aspects of society―not only human daily life but also
manufacturing, education, health care, and scientific activities
―generating tremendous economic and societal benefits.
From the perspective of technology research, however, it is al⁃
ready the time to start considering what future beyond-5G or
the sixth generation (6G) mobile networks should be, in order
to satisfy the demand on communications and networking in
2030. Although a discussion is ongoing within the wireless
community about whether counting should be stop at 5, adopt⁃
ing the Microsoft Windows’approach where Windows 10 is
the ultimate version, several pioneering works on the next-gen⁃
eration wireless networks have been initiated. The Internation⁃
al Telecommunication Union Telecommunication Standardiza⁃
tion Sector (ITU-T) Focus Group Technologies for Network

2030 (FG NET-2030) was established in July 2018. The Focus
Group intends to study the capabilities of networks for the year
2030 and beyond, when it is expected to support novel forward-
looking scenarios, such as holographic type communications,
extremely fast response in critical situations, and high-preci⁃
sion communication demands of emerging market verticals.
The European Commission initiated to sponsor beyond-5G re⁃
search activities, such as its recent Horizon 2020 call―5G
Long Term Evolution―where a number of pioneer projects will
be kicked off at the early beginning of 2020. In Finland, the
University of Oulu has begun ground-breaking 6G research as
part of Academy of Finland’s flagship program, 6G-Enabled
Wireless Smart Society and Ecosystem (6Genesis), which fo⁃
cuses on several challenging research areas including reliable
near-instant unlimited wireless connectivity, distributed com⁃
puting and intelligence, as well as materials and antennas to be
utilized in future for circuits and devices.
Among the short list of 6G enabling technologies that can be

envisioned currently, such as Terahertz communications, visi⁃
ble light communications, photonics-defined radio, holographic
radio, super massive multiple-input and multiple-output (MI⁃
MO), quantum communications, and dense satellite constella⁃
tion, artificial intelligence (AI) is the most recognized candi⁃
date, which can provide computational radio and network intel⁃
ligence from the fundamental physical layer to the upper net⁃
work management layer. Due to its powerful nonlinear map⁃
ping and distribution processing capability, deep neural net⁃
works based machine learning technology is being considered
as a very promising tool to attack the big challenge in wireless
communications and networks imposed by the explosively in⁃

JIANG Wei is an IEEE Senior Member and a Senior Re⁃
searcher at German Research Center for Artificial Intelli⁃
gence (DFKI), which is the birthplace of the concept“Indus⁃
try 4. 0”. Additionally, he serves as a Senior Lecturer in part
time at University of Kaiserslautern, Germany, teaching

“Wireless Communications”. He received his Ph. D. degree
in computer science from Beijing University of Posts and Tele⁃
communications in 2008 and was a Post-Doctoral Fellow with
Institute of Digital Signal Processing, University of Duisburg-
Essen, Germany, from 2012 to 2015. He has also extensive
experience in wireless standardization research and develop⁃

ment as a 3GPP standardization engineer. He is the author of three book chapters
and more than 50 conference and journal papers. He holds around 30 granted pat⁃
ents in wireless communications, and participated in a number of research projects,
such as EU FP7 ABSOLUTE, H2020 5G COHERENT and 5G SELFNET, and Ger⁃
man BMBF TACNET4. 0. He now serves as an associate editor for IEEE Access.

LUO Fa-Long is an IEEE Fellow and an Affiliate Full Profes⁃
sor of Electrical & Computer Engineering Department at the
University of Washington in Seattle, USA. Having gained inter⁃
national high recognition, Dr. LUO has 36 years of research
and industry experience in wireless communications, neural
networks, signal processing, machine learning, and broadcast⁃
ing with real-time implementation, applications and standard⁃
ization. Including his well-received books:“Applied Neural
Networks for Signal Processing”(1999, Cambridge) and“Sig⁃
nal Processing for 5G”(2016, Wiley-IEEE), Dr. LUO has pub⁃
lished six books and more than 100 technical papers in the re⁃

lated fields. Dr. LUO has also contributed 61 patents/inventions which have success⁃
fully resulted in a number of new or improved commercial products in mass produc⁃
tion. He has served as the Chairman of IEEE Industry DSP Standing Committee and
the Technical Board Member of Signal Processing Society. Dr. LUO was awarded the
Fellowship by the Alexander von Humboldt Foundation of Germany.

Guest Editor Guest Editor
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creasing demands in terms of capacity, coverage, latency, effi⁃
ciency (power, frequency spectrum and other resources), flexi⁃
bility, compatibility, quality of experience, and silicon conver⁃
gence. Mainly categorized into the supervised learning, the un⁃
supervised learning, and the reinforcement learning, various
machine learning algorithms can be used to provide a better
channel modelling and estimation in millimeter and terahertz
bands, to select a more adaptive modulation (waveform, coding
rate, bandwidth, and filtering structure) in massive MIMO, to
design a more efficient front-end and RF processing (pre-dis⁃
tortion for power amplifier compensation, beam-forming and
crest-factor reduction), to deliver a better compromise in self-
interference cancellation for full-duplex transmission and de⁃
vice-to-device communications, and to offer a more practical
solution for intelligent network optimization, orchestration and
management, mobile edge and fog computing, networking slic⁃
ing and radio resource management related to wireless big da⁃
ta, mission critical communications, massive machine-type
communications and tactile internet.
From practical application and research development per⁃

spective, this special issue aims to be the first single form to
provide a comprehensive and highly coherent treatment on all
the technology aspects related to machine learning for wireless
communications and networks by covering multipath fading
channel, channel coding, physical-layer design, network slic⁃
ing, resource management, mobile edge architecture, fog com⁃
puting, and autonomous network management. The call-for-pa⁃
pers of this special issue have brought excellent submissions in
both quality and quantity. After rigorous reviews, six excellent
articles have been selected for publication in this special issue
which is organized into the following three category groups.
Consisting of two articles, the first group of this special issue

focuses on the exploration of replacing conventional model-
based statistical methods with data-driven learning approaches
in spatial-temporal-spectral radio signal processing, in order to
simplify the physical layer implementation or boost the transmis⁃
sion performance. As its title“To Learn or Not to Learn: Deep
Learning Assisted Wireless Modem Design”exactly means, the
first article by XUE Songyan et al. provides a fundamental re⁃
think of the wireless modem design to answer a frequently-asked
question: what additional values artificial intelligence could
bring to the physical layer. Three case studies, i. e. , deep learn⁃
ing assisted parallel decoding of convolutional codes for a sub⁃
stantial reduction of decoding latency, deep learning aided
multi-user frequency synchronization, and deep learning based
coherent multi-user multi-antenna signal detection, are present⁃
ed in this article, By adapting transmission parameters such as
the constellation size, coding rate, and transmit power to instan⁃
taneous fading channel conditions, adaptive wireless communi⁃
cations can potentially achieve great performance. To realize
this potential, accurate channel state information (CSI) is re⁃
quired at the transmitter. However, unless the mobile speed is
very low, the obtained CSI quickly becomes outdated due to the

rapid channel variation caused by multi-path fading. The sec⁃
ond article,“A Machine Learning Method for Prediction of Mul⁃
tipath Channels”by Julian AHRENS et al. , investigates the fea⁃
sibility of predicting fading channels by means of a convolution⁃
al neural network. The numerical results verify the effectiveness
of machine learning based channel prediction in the presence of
outdated CSI. It is envisioned that the channel prediction is ap⁃
plicable to a wide variety of adaptive transmission techniques,
such as pre-coding and multi-user scheduling in MIMO systems,
massive MIMO, beam-forming, interference alignment, closed-
loop transmit diversity, transmit antenna selection, opportunistic
relaying, orthogonal frequency-division multiplexing (OFDM),
coordinated multi-point transmission (CoMP), mobility manage⁃
ment, and physical layer security.
Mobile networks’troubleshooting (systems failures, cyber-

attacks, performance optimization, etc. ) still cannot avoid man⁃
ual operations. A mobile operator has to keep an operational
group with a large number of network administrators with high
expertise, leading to a costly Operational Expenditure (OPEX)
that is currently three times that of Capital Expenditure (CA⁃
PEX) and keeps rising. The 5G and next-generation networks
are more complicated and heterogeneous than previous sys⁃
tems. It inevitably imposes a great challenge on manual and
semi-automatic network management that is already costly, vul⁃
nerable and time-consuming. Therefore, the second group of
this special issue is about the application of machine learning
approaches to realize an intelligent and autonomous network
management that can keep OPEX under an affordable level,
improve system Quality-of-Service (QoS) and end users’Quali⁃
ty-of-Experience (QoE), and shorten time-to-market of new ser⁃
vices. In the third article entitled“A Case Study on Intelligent
Operation System for Wireless Networks”, LIU Jianwei et al.
propose a comprehensive and flexible framework to achieve an
intelligent operation system. Two use cases are studied to il⁃
lustrate machine learning algorithms to automate the anomaly
detection and fault diagnosis of key performance indicators in
wireless networks. The effectiveness of the proposed machine
learning algorithms is demonstrated by the real data experi⁃
ments. Next, HAN Bin et al. provide a comprehensive over⁃
view on the metrics of machine learning for network slicing re⁃
source management in their article“Machine Learning for Net⁃
work Slicing Resource Management: A Comprehensive Sur⁃
vey”. Two problems of resource management in network slic⁃
ing, namely the slice admission control and the cross-slice re⁃
source management, are discussed, illustrating the benefits of
machine learning techniques in the improvement of service
flexibility and network resource efficiency.
The new demanding features for advanced networks, e. g. ,

mobile edge computing and fog computing, foster novel servic⁃
es and applications that never emerged in previous networks,
such as Unmanned Aerial Vehicle (UAV), the Internet of
Things, connected and automated cars, and tactile internet.

➡ To Page 18
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To Learn or Not to LearnTo Learn or Not to Learn::
Deep LearningDeep Learning

Assisted Wireless Modem DesignAssisted Wireless Modem Design

XUE Songyan1, LI Ang1, WANG Jinfei1, YI Na1, MA Yi1, Rahim TAFAZOLLI1, and Terence DODGSON2

(1. Institute for Communication Systems, University of Surrey, Guildford, GU2 7XH, the United Kingdom；
2. Airbus Defense and Space, Portsmouth, PO3 5PU, the United Kingdom)

Abstract: Deep learning is driving a radical paradigm shift in wireless communications, all
the way from the application layer down to the physical layer. Despite this, there is an ongoing
debate as to what additional values artificial intelligence (or machine learning) could bring to
us, particularly on the physical layer design; and what penalties there may have? These ques⁃
tions motivate a fundamental rethinking of the wireless modem design in the artificial intelli⁃
gence era. Through several physical-layer case studies, we argue for a significant role that ma⁃
chine learning could play, for instance in parallel error-control coding and decoding, channel
equalization, interference cancellation, as well as multiuser and multiantenna detection. In
addition, we discuss the fundamental bottlenecks of machine learning as well as their poten⁃
tial solutions in this paper.
Keywords: deep learning; neural networks; machine learning; modulation and coding

1 IntroductionWith the launch of commercial 5G mobile networks in
2019, the research of wireless communications is
now well on the way towards Vision 2030 and be⁃
yond. Today, the picture of future wireless commu⁃

nications is becoming much clearer than ever. According to
ITU Network 2030 Working Group [1], future networks should
be architected to support holographic communications and
smart connectivity, providing seemingly zero latency, guaran⁃
teed ultra-reliability (e. g. 99. 9999%), massive Internet of
Things (IoT) connectivity, and Tbit/s wireless speed. Commu⁃
nication networks are no longer only a medium for information
flow, but also act as distributed computers to form over-the-top
(OTT)-like platforms to provide services (such as computing-as-

a-service and design-as-a-service) for vertical users. To
achieve this goal, wireless technologies should be fundamental⁃
ly re-designed to be able to fully explore the spectrum; as such,
this is driving the development of extreme physical-layer
(PHY) technologies, which are able to handle wireless systems
with many nonlinearities, due to the use of very-high order
modulations, unexploited mmWave or THz bands, and/or low-
cost electronic components (such as low-noise amplifiers
(LNAs), mixers, oscillators and low-resolution analog-to-digital
converters (ADCs)). Moreover, PHY solutions should be made
scalable to the number of connected devices; and they should
be parallel computing ready, as future high-performance com⁃
puting technologies (including future quantum computing tech⁃
nology) rely highly on the parallel computing power.
With such a big picture in mind, machine learning or more

specifically, deep learning can play a significant role in the
PHY design, at least from the following five aspects:
1) Conventional PHY algorithms, particularly for wireless re⁃

ceivers, are mostly not parallel computing ready. For instance,

DOI: 10.12142/ZTECOM.201904002

http://kns.cnki.net/kcms/detail/34.1294.
TN.20191206.1105.002.html, published
online December 9, 2019

Manuscript received: 2019⁃09⁃19

This work was supported in part by EU H2020 5G-DRIVE Programme un⁃
der Grant No. 814956, in part by Airbus Defense and Space, and in part by
the UK 5G Innovation Centre (5GIC).
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most of the linear or nonlinear coherent receivers (such as lin⁃
ear zero-forcing, minimum mean-square error, lattice reduc⁃
tion, and sphere decoding) require either channel matrix inver⁃
sions or channel matrix decompositions, which are difficult to
execute in an efficient and parallel manner. This can cause a
bottleneck for the implementation of advanced channel equaliz⁃
ers or multiuser detectors at the receiver side. An exception
could be the matched-filter algorithm, which is of low-complex⁃
ity and parallel computing architecture. On the other hand,
matched filtering is often too suboptimum for most wireless ap⁃
plications. One might also argue for parallel computing abilities
of brute-force search, likelihood ascent search, or Tabu search.
However, those algorithms trade off complexity for parallel com⁃
puting, and thus they are not cost-effective solutions. In this pa⁃
per, we will study the merits of deep-learning assisted solutions,
with specific to their inborn parallel computing ability.
2) Conventional hand-engineered PHY algorithms face the

fundamental trade-off between performance and complexity.
Optimum algorithms are often too complex to implement and
low-complexity algorithms are often too suboptimum. Deep-
learning assisted PHY algorithms have the potential to achieve
(near- )optimum performances with low computation complexi⁃
ties. We argue for the merits of performance-complexity trade-
off when using deep learning.
3) Current PHY technologies are designed for linear commu⁃

nication channels and they are not optimized for future wire⁃
less systems often operating in nonlinear conditions. Nonlin⁃
ear systems are often much harder for mathematical analysis,
and in general, we even do not know their channel capacities.
Hand-engineered approaches for PHY design and optimization
are currently very challenging; and this is where deep learning
can be of much assistance.
4) Sensing and communication is an emerging concept in

the scope of network automation. Basically, wireless net⁃
works are able to capture environmental changes through lo⁃
cal and remote sensors or even live video records, based on
which networks can adapt their operating states for optimum
uses of their local radio resources. On the PHY layer, envi⁃
ronmental information can be translated into channel-side in⁃
formation through machine learning [2], and this can be use⁃
ful for advanced modem functions such as adaptive modula⁃
tion, coding and beamforming. In addition, machine learning
can play a central role in building and reconfiguring state ma⁃
chines for local networks through extensive online back⁃
ground learning.
5) Since Shannon’s ground-breaking work on communica⁃

tion theory reported in 1948, most telecommunications re⁃
search effort has been targeting the Level A problem, i. e. ,
how accurately can the information-bearing symbols be con⁃
veyed from one point to another? In the academic domain,
this research problem has been almost saturated. In the in⁃
dustrial domain, it is very challenging to apply the outcome of
Level A research so as to satisfy the growing demand of future

wireless networks in terms of smart connectivity, providing
seemingly zero latency and perceived infinite capacity.
Therefore, it is perhaps the right time to revisit or invest more
research effort on the Level B problem, i. e. , how precisely
do the symbols of communication convey the desired mean⁃
ing? This problem goes well beyond traditional source encod⁃
ing practices; as for now, source encoders are expected to un⁃
derstand the meaning of objects instead of just the probability
distribution. A simple example of the Level B problem is il⁃
lustrated in Fig. 1, where the picture on the left-hand side is
the original picture for transmission. Instead of compressing
the picture using current codec processing methods, source
encoders that have been trained to understand the meaning of
the picture could send a textual description, such as“a white
background picture, with a mother kangaroo carrying her ba⁃
by in her pouch.”The receiver then rebuilds the picture
based on the meaning of the received symbols; this can be
termed semantic communications, which involves heavy use
of artificial intelligence/machine learning in semantic source
encoding and decoding.
Certainly, we shall be able to find more merits and interest⁃

ing topics when applying artificial intelligence/machine learn⁃
ing in wireless communications; some are already under fast
development and some are just emerging. In the following sec⁃
tions, our discussion will be mainly focused on points 1), 2),
and 3), as they are suitable for both current and future commu⁃
nication networks. We will also discuss fundamental bottle⁃
necks when applying deep learning to wireless modem design.
The rest of this paper is organized as follows. Section 2 out⁃

lines the principles of deep learning assisted modem design in
the wireless communication physical layer. Section 3 provides
the design details of three practical physical layer applica⁃
tions. Section 4 provides further discussions and open re⁃
search problems. Section 5 draws the conclusion.

2 Principles of Deep Learning Assisted Mo⁃
dem Design
By deep learning, we often mean machine learning through

deep artificial neural networks (ANNs). An ANN is called
deep when it has two or more hidden layers. Mathematically,

▲Figure 1. A simple example of Level B communication problem (se⁃
mantic communication).
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the main function of each hidden layer is to perform classifica⁃
tion of input vectors which might be referred to as perception
in the artificial intelligence domain. If each output neuron
yields a binary-type output, a hidden layer, consisting of L neu⁃
rons, is able to classify at least L clusters. When a hidden lay⁃
er is trained according to the nearest-neighbor rule, the ma⁃
chine is able to learn optimum classifications [3]. One might
also employ the k-nearest neighbor rule to train the hidden lay⁃
er, and in this case, the machine can form at most 2L clusters.
This is a possible way to scale up ANN when input vectors
have to be partitioned into clusters that are growing exponen⁃
tially. However, we will have to trade off the classification ac⁃
curacy.
Prior to studying deep learning assisted wireless modem de⁃

sign, let us have a brief review of the PHY procedure of point-
to-point communications (Fig. 2). Basically, signal waveforms
are drawn from a finite-alphabet set, say A, with the size J. Af⁃
ter going through the fading channel, received waveforms in
their discrete-time equivalent form are vectors forming an infi⁃
nite set. The role of receivers is to map the received vectors
back onto the finite-alphabet set A. This procedure mimics the
ANN-based classification procedure, as described above. In⁃
deed, it is rather straightforward to replace the receiver box in
Fig. 2 with an ANN black-box. The input vectors are formed
by received waveforms combined with the channel state infor⁃
mation, as they together form a bijection to the original wave⁃
form set A. Alternatively, the input vectors can be channel-
equalized signals which also form bijection with the original
waveform set A. The bijection allows the ANN black-box to be
trained through supervised learning. In fact, this example is not
the only way to apply deep learning for modem designs. It is al⁃
so possible to replace both the transmitter and receiver with
their corresponding ANN black-boxes, so as to form an autoen⁃
coder which can be trained end-to-end for joint transmitter and
receiver design [4], [5]. Theoretically, a shallow-ANN (i. e. an
ANN with a single hidden layer) would be sufficient to perform
signal classification at the receiver side, as a receiver is nor⁃
mally a single-task classifier. Joint transmitter and receiver de⁃
signs (autoencoders) are different, as they need at least one hid⁃
den layer at the transmitter side to construct the waveform set
and another hidden layer at the receiver side to carry out corre⁃

sponding signal classification. Here, the implication is that
deep-ANN is more meaningful when a PHY module or proce⁃
dure can have a breakdown of two or more different tasks; or
otherwise, a shallow-ANN would be more than enough. This is⁃
sue will be further elaborated in Section 3.
In addition to the ANN architecture, ANN training algo⁃

rithms or methods are crucial when improving machine learn⁃
ing efficiency. Analogous to ANN-assisted machine learning
practices in the general artificial intelligence domain, it is al⁃
ways important to pay particular attention to the following three
aspects:
1) Weighting vectors (including biases) in each hidden layer

should be carefully initialized. They are often randomly gener⁃
ated according to a certain independent probability distribu⁃
tion within a certain range, which can vary from case to case in
practical applications. Specific to modem design, we should
bear in mind that those weighting vectors during training be⁃
come reference vectors for the eventual signal classification.
Therefore, they should be initialized in a way that facilitates
the capture of the characteristics of communication signals by
machines.
2) Activation functions must be carefully selected to improve

the optimality or efficiency of ANN-assisted machine learning.
For instance, Softmax(. ) is suitable for small-scale ANNs to
adopt the nearest-neighbor rule in machine learning. This en⁃
ables Euclidean-distance optimality when training a hidden lay⁃
er. Moreover, Softmax(. ) allows machines to produce soft out⁃
puts that are often useful for soft-demodulation and decoding
practices. Alternatively, we can employ Sigmoid(. ) to scale up
ANNs when they are expected to handle massive-region classi⁃
fications. Certainly, we will have to pay for the classification
optimality. For more information, a relatively comprehensive
list of activation functions as well as their descriptions can be
found in [6].
3) Backpropagation (BP) is essential at the ANN training

stage to recursively update neuron weighting vectors, with the
aim of minimizing the loss function such as the mean-square
error, mean absolute error or categorical cross-entropy between
the ANN output and labeled training target, depending on the
applications. A commonly used BP method is called mini-
batch gradient descent, which randomly picks up a certain
number of training samples from the entire training data set on
each training iteration. Compared to another commonly used
BP algorithm called batch gradient descent, mini-batch gradi⁃
ent descent can significantly reduce computational complexi⁃
ties, particularly when the path to the desired minima is quite
noisy.

3 Deep Learning Assisted Modem Designs
and Their Merits
In this section, we will offer three case studies on deep-

learning assisted wireless modem design and argue for their ad⁃
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▲ Figure 2. Block diagram of the physical-layer (PHY) procedure of
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vantages in computing latency reduction, remarkable complexi⁃
ty-performance trade-off, as well as robustness to nonlinear
physical distortions.
3.1 Case Study 1: Deep Learning Assisted Parallel Decod⁃

ing of Convolutional Codes
Error-control codes often have a serial computing architec⁃

ture in nature due to correlations amongst codeword bits. This
fact is challenging the design of parallel-computing ready de⁃
coding algorithms. Recent advances towards ANN-assisted de⁃
coders are mainly based on recurrent neural networks [7], [8]
and there is a clear show of advantages in performance-com⁃
plexity trade-off. Here, we review a more recent contribution
in this domain, which proposes to the employment of feed-for⁃
ward neural networks for low-complexity parallel decoding of
convolutional codes [9].
The basic idea is to partition a long convolutional codeword

into a number of pieces, forming so-called sub-codewords.
When the length of sub-codewords is sufficiently long, there ex⁃
ists a bijection between sub-codewords and their correspond⁃
ing original information bits, subject to an initial state uncer⁃
tainty. As depicted in Fig. 3a, sub-codewords are first decod⁃
ed in parallel using a list maximum-likelihood decoder (List-
MLD), and then initial state uncertainties are removed through
the sub-codeword merging process, referred to as a two-stage
decoding process that can be implemented in parallel. In this
case study, the role of the ANN is to replace the List-MLD al⁃

gorithm at the sub-codeword decoding stage, as the latter is of
very high computation complexity. Fig. 3b illustrates the
ANN training procedure, where the sub-codeword decoder is
modelled as a deep-ANN black-box. The input vector is the
noisy version of all possible sub-codewords, and the output vec⁃
tor is the corresponding estimate of the original information
bits. It is worthwhile highlighting that the training set of input
vectors should be carefully defined so as to incorporate the ef⁃
fect of initial state uncertainty (as detailed in [9]), as this is cru⁃
cial for the sub-codeword merging stage. Moreover, it is sug⁃
gested to partition a long convolutional codeword evenly, as in
this case we only need to train one ANN block-box and can re⁃
use it for all sub-codewords, thus resulting in an efficient way
to reduce the training complexity.
Fig. 4 illustrates the bit reliability of convolutional decoders

in additive white Gaussian noise (AWGN), considering a half-
rate non-recursive convolutional code with a codeword length
of 64. The illustrated simulation results are only for Eb/N0=4dB and similar conclusions can be drawn for other Eb/N0 values[9]. The ANN black-box was trained at Eb/N0=2 dB. Whencomparing the parallel decoder with the conventional MLD, it
can be seen from Fig. 4 that they have no difference in bit reli⁃
ability; and thus, the parallel decoder is optimum. Moreover,
due to the parallel computing nature, the parallel decoder has
the potential to reduce computing latency, subject to the num⁃
ber of sub-codewords. When the sub-codeword decoder is real⁃
ized through the ANN black-box described in Fig. 3b, we can
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see a little bit of a performance loss in bit reliability (around
0. 03%); this is mainly due to using an insufficient number of
epochs during the ANN training stage. Nevertheless, the com⁃
putation time for sub-codeword decoding is reduced by around
95%. It is clear that ANN helps to achieve a very good com⁃
plexity-performance trade-off. In addition, the ANN decoder
can be executed fully in parallel and this is an additional ad⁃
vantage for latency reduction.
3.2 Case Study 2: Deep Learning Assisted Multiuser OFD⁃

MA Frequency Synchronization
Consider a multiuser frequency-synchronization problem in

the context of orthogonal frequency-division multiple-access
(OFDMA) uplink communications, where transmitters experi⁃
ence independently generated carrier-frequency-offsets
(CFOs), due to oscillator instability or Doppler-induced ran⁃

dom frequency modulations. This problem involves two sub-
problems. One is the multiuser-CFO estimation and the other
is multiuser detection (MUD) or multiuser interference (MUI)
cancellation given the CFO estimates. Multiuser-CFO estima⁃
tion can be implemented by employing either pilot-assisted ap⁃
proaches or blind approaches that exploit statistical behaviors
inherent in signal waveforms. When CFO estimates are as⁃
sumed available at the transmitter side, each transmitter can
carry out CFO pre-compensation, individually. However, link-
level latency will be a considerable issue due to the CFO feed⁃
back delay. Alternatively, multiuser frequency synchronization
can also be carried out at each individual user domain (e.g. , sub-
band) using the filterbank approach, which can be combined
with iterative parallel interference cancellation (PIC). Howev⁃
er, such a method is vulnerable to the CFO estimation accura⁃
cy and it could introduce extra baseband processing latency in⁃
to the system.
Fig. 5 illustrates a deep-learning assisted multiuser frequen⁃

cy synchronization approach, named classification-and-then-
MUD (CAT-MUD) in [10]. The deep-ANN has two functional
layers: one is responsible for multiuser-CFO classification and
the other is for the MUI cancellation. The CFO classifier is
employed to tell the CFO sub-range where transmitters’CFOs
fall in. This is very different from the conventional CFO esti⁃
mation in the sense that the classifier only estimates the CFO
range instead of CFOs. With the estimated CFO sub-range in⁃
dex, received signals are then fed into the MUD layer for the
MUI cancellation; please find a detailed introduction of CAT-
MUD in [10].
Fig. 6 illustrates the overall system performance (in block-

error rate, BLER) for OFDMA systems, where 4 transmitters
evenly share 32 subcarriers. Original information bits are first
modulated into 16-QAM symbols and then transmitted through
an 8-tap frequency-selective Rayleigh fading channel (3GPP
Channel Model A). To be more robust to CFO classification er⁃

100.00%
99.80%
99.60%
99.40%
99.20%
99.00%
MLD Parallel List-MLD
Parallel ANN-Assisted Decoder

Bit Reliability Evaluation at Eb/N0=4 dB
400
350
300
250
200
150
100
50
0

Computing Time/s for 200 000 SCWs Decoding

List-MLD ANN-Decoder

ANN: artificial neural network
MLD: Maximum-Likelihood Decoder

SCW: Short Code Word
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rors, the switch depicted in Figure 5 can simultaneously turn
on multiple adjacent MUD branches. Figure 6 shows that the
3-branch model achieves the best performance-complexity
trade-off. It outperforms the conventional PIC approach by
around 3 dB in Eb/N0 and offers comparable performances withthe CFO-free case at low and moderate SNRs (such as Eb/N0<15 dB).
3.3 Case Study 3: Deep Learning Assisted Coherent MI⁃

MO Detection
Multiuser multiple-input multiple-out (MU-MIMO) signal

detection over noisy fading channel is mathematically an inte⁃
ger least-squares (ILS) problem, which aims to minimize the
pairwise Euclidean distance between the transmitted signal
multiplied by channel matrix and the received signal [11].
Concerning the optimal MLD solution to be computationally
expensive, the usual practice is to employ linear channel
equalization algorithms, such as the matched filter (MF), zero
forcing (ZF) and linear minimum mean-square error
(LMMSE), to trade off the optimality for lower computational
complexity. However, linear algorithms are often too sub-opti⁃
mum due to their use of symbol-by-symbol detection. There⁃
fore, enormous research efforts have been paid in the last two
decades to achieve the best performance-complexity trade-off
through the use of non-linear algorithms (e. g. , Vertical-Bell

Laboratories Layered Space-Time (V-BLAST) [12], Linear
Minimum Mean-Square Error-Successive Interference Cancel⁃
lation (LMMSE-SIC [13], and so on). The problem is that
most of the non-linear algorithms are too complex for current
DSP technology and do not lend themselves well to parallel
computing. This goes against the trend of computing technol⁃
ogy development.
Deep learning assisted solutions have demonstrated their po⁃

tential for offering computational complexity close to linear re⁃
ceivers, without compromising the detection performance.
Moreover, most of the deep learning algorithms are parallel
computing ready. According to the ways of utilizing channel
state information at the receiver side (CSIR), deep-learning so⁃
lutions can be divided into two categories: channel equaliza⁃
tion and learning (CE-L) mode (Fig. 7a) and direct learning
(Direct-L) mode (Fig. 7b). The difference is that the CE-L
mode employs ANN black-box after channel equalization, and
the Direct-L mode takes both CSIR and received signal as the
input vector for signal classification.
A major advantage of the CE-L mode lies in the use of chan⁃

nel equalization for multiuser signal orthogonalization. Hence,
the input vector to the ANN black-box is effectively a noisy
version of the transmitted signal vector. By such means, the
CE-L mode can turn the ANN classification problem from the
vector level to the symbol level. However, the performance of
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the CE-L mode is limited by the symbol-by-symbol MLD
bound. Theoretically, the Direct-L mode is able to achieve the
optimum MLD performance for the vector-level classification.
In addition, the Direct-L mode does not need channel equaliza⁃
tion. This is a remarkable advantage as channel equalizers of⁃
ten require channel matrix inversions which do not support par⁃
allel computing. On the other hand, the Direct-L model is not
a scalable approach with the size of MIMO, due to ANN’s re⁃
duced classification ability with the growth of multiuser inter⁃
ferences.
Fig. 8 illustrates a novel deep-ANN approach, where a

multi-layer modularized ANN is combined with PIC to scale
up the Direct-L mode. This approach is called DNN-PIC in
[14]. Basically, the entire ANN consists of a number of cas⁃
caded PIC layers, with each layer employing a group of identi⁃
cal pre-trained DNN-PIC modules for signal classification
and interference cancellation. Therefore, multiuser interfer⁃
ence decreases linearly with the feed-forward procedure, and
the last layer is able to provide a better classification of MU-
MIMO signals.
Fig. 9 compares the average bit-error-rate (BER) performance

between conventional MU-MIMO receivers and the DNN-assist⁃
ed solutions. For the CE-L and Direct-L mode, the ANN was
trained at Eb/N0=5 dB. For the DNN-PIC approach, the ANN
was trained at three different Eb/N0 points (i. e. Eb/N0=0 dB,

5 dB and 10 dB), and were optimally selected in the commu⁃
nication procedure in order to obtain the best achievable per⁃
formance. Simulation results show that deep learning mod⁃
ules largely improve the detection performance of the MF-
based receiver (around 8 dB at BER of 10-3) due to better use
of the sequence-detection gain. For both the ZF and LMMSE
receiver, the sequence-detection gain vanishes since channel
equalization orthogonalizes multiuser signals. Meanwhile,
the Direct-L mode significantly outperforms all CE-L modes
and this result confirms the accuracy of the theoretical analy⁃
sis. Finally, the proposed DNN-PIC approach further im⁃
proves the BER performance of the Direct-L approach by
around 1. 5 dB. The performance gap between the DNN-PIC
and the MLD receiver is only about 0. 2 dB. Again, it should
be emphasized that the DNN-PIC approach is parallel com⁃
puting ready.

4 Discussion and Research Challenges
Although deep learning has achieved widespread empirical

success in many areas, the applications of deep learning for
wireless communication physical layer design are still at the
early stage of research and engineering implementation. In
this section, we list several fundamental bottlenecks together
with the potential future research directions.
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1) Training set overfitting.
Overfitting is a modeling problem which occurs when a func⁃

tion too closely fits a limited data set [15]. In PHY, it could re⁃
fer to the case that an ANN-assisted receiver trained for a spe⁃
cific wireless environment (or channel model) is not suitable
for another environment (or channel model). It is a severe
problem since a deep learning solution with limited generaliza⁃
tion capability is less useful in real practice. However, this is⁃
sue can be viewed more positively if deep learning algorithm
can be used to optimize wireless receivers integrated into ac⁃
cess points based on their local environments.
2) Scalability of DL-based solutions.
In machine learning theory, scalability refers to the effect

of an increasing training data set on the computational com⁃
plexity of a learning algorithm. For instance, the ANN solu⁃
tion in Fig. 7b has its learning capacity rapidly degraded
with the growth of transmit antennas [14]. The current ap⁃
proach to mitigate this problem is by means of training the
ANN with channel equalized signals (Fig. 7a). However, in
this case, ANN-assisted receivers are not able to exploit maxi⁃
mally the spatial diversity-gain due to the multiuser orthogo⁃
nalization enabled by channel equalizers, and the perfor⁃
mance goes far from optimum. To tackle this issue, novel
deep learning algorithms with good scalability are required
(and expected) in the future.

3) Training strategies and performance evaluation.
Deep learning for wireless communication is a new research

area and people lack experience in training strategies. For ex⁃
ample, the optimal training SNR points for different PHY sce⁃
narios remain unknown [15]. In [9], it can be observed that the
training of an ANN at relatively high SNRs gives an excellent
generalization performance at low SNR regime in AWGN chan⁃
nel. However, when wireless channel becomes fading [14], the
learned PHY feature at high SNR regime can no longer indi⁃
cate the feature of low SNRs. A potential solution is to train
ANNs at different SNR regimes separately and then merge the
results together, but this solution introduces additional training
complexities and requires SNR estimation. A related question
is whether there is a more appropriate way to measure the train⁃
ing process in PHY solutions. It is well known that ANN train⁃
ing aims to minimize a given loss function, and we consider
that an ANN is well trained if the loss is converged to an ideal
state. On the other hand, PHY performance is normally mea⁃
sured by BER or SER. In most of the ANN-assisted PHY solu⁃
tions, we make a hard decision on ANN outputs to obtain the
bit-level (or symbol-level) estimates. However, the loss func⁃
tion might not be able to accurately indicate the training prog⁃
ress when complicated PHY scenarios are considered (e. g. ,
high-order modulation and fast fading channel). In [14], the
authors introduce a method which measures the training prog⁃
ress by computing the average BER/SER over the last few
training epochs, and the estimated BER performance is shown
to be very close to the validation performance. In general, the
training strategies, especially for PHY applications, are worthy
of investigation in future research.
4) Hardware implementation.
Currently, most of the ANN-assisted PHY solutions are

still in their software simulation stages, but hardware imple⁃
mentation normally requires more practical considerations
[16]– [18]. Apart from the channel model and data set that
we have discussed in the previous sections, power consump⁃
tion also needs to be considered since the ANN training pro⁃
cess often involves very high computation cost. The aim of re⁃
ducing ANN learning expenses has recently motivated a new
research area on the non von Neumann computing architec⁃
ture.

5 Conclusions
This paper presents several promising ANN-assisted PHY

applications. The idea lies in the use of ANNs to replace parts
of the conventional signal processing blocks in the communica⁃
tion chain. It is shown that ANN-assisted approaches achieve
competitive performance in terms of both reliability and laten⁃
cy in various applications. More importantly, deep learning of⁃
fers us a fundamentally new way to design and optimize the
conventional communication systems. A wide range of open
challenges need to be solved and theoretical analysis is also ex⁃
pected in future research.
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▲Figure 9. Average BER as a function of Eb/N0 for uncoded 4-by-8 mul⁃
tiuser multiple-input multiple-out (MU-SIMO) system with BPSK modu⁃
lation.
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Abstract: A machine learning method for predicting the evolution of a mobile communication
channel based on a specific type of convolutional neural network is developed and evaluated
in a simulated multipath transmission scenario. The simulation and channel estimation are de⁃
signed to replicate real-world scenarios and common measurements supported by reference
signals in modern cellular networks. The capability of the predictor meets the requirements
that a deployment of the developed method in a radio resource scheduler of a base station pos⁃
es. Possible applications of the method are discussed.
Keywords: channel estimation; channel prediction; convolutional neural network; machine
learning; multipath transmission

1 Introduction

Today’s mobile communication networks are driven by
the demand of a steadily increasing number of sub⁃
scribers for ever higher data rates. This demand has
led to the introduction of support for technologies such

as millimeter wave transmissions and massive multiple-input
multiple-output (MIMO) into the current 5G standards. Apart
from the introduction of these new technologies, the available
spectrum has to be utilised in the most efficient manner possi⁃
ble. This has already led to the move to orthogonal frequency-
division multiple access (OFDMA) and orthogonal frequency-
division multiplexing (OFDM) in the fourth-generation mobile
broadband standards, which allow for fine grained control over
the utilisation of the available radio resources across both the
time and frequency domains. While OFDM combats frequency-
selective fading by using long symbol times, OFDMA provides
further benefits by allowing multiple users to schedule trans⁃
mission on the subcarriers which are best for them at the time
[1]. OFDM also allows for different encodings to be used across
the available spectrum, thereby giving the scheduler fine

grained control over the trade-off transmission data rate vs. sig⁃
nal robustness.
The dynamic allocation of radio resources and its scheduling

are key to achieving efficient utilisation of the available spec⁃
trum. Since base stations manage a large number of transmis⁃
sions, each across a different channel depending on the posi⁃
tion and environment of the individual user equipment (UE),
they are natural candidates for hosting an optimisation through
dynamic scheduling of the radio resources. To achieve effi⁃
cient radio resource management, scheduling algorithms need
to have information about the current and future states of the
transmission channels. In particular, two things are required:
On the one hand, a mechanism for the estimation of the trans⁃
mission channels needs to be in place, i. e. , there has to be a
measurement of the channel transfer function; on the other
hand, the development of the transmission channels over time
has to be predicted to allow for estimates of future channel
quality.
In Long Term Evolution (LTE) systems, channel estimation

can be implemented by observing the Cell-Specific Reference
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Signals (CRS). LTE release 10 (LTE Advanced) supplemented
the CRS by the introduction of Channel State Information Ref⁃
erence Signals (CSI-RS). 5G New Radio (NR) does not provide
CRS, instead relying exclusively on the flexibly configurable
CSI-RS. In this paper, we use a simulation of a multipath prop⁃
agation transmission channel based on the empirical evidence
and the models devised in [2]. The channel is estimated by
transmitting and measuring a test signal containing a similar
amount of information as the LTE CRS. In particular, very sim⁃
ilar estimates can be derived from the observation of LTE CRS.
The present work focusses on the aspect of predicting the

time-variant transmission channels. A convolutional neural
network (CNN) operating on the time-frequency domain and us⁃
ing multiple time resolutions is designed in order to achieve
the necessary prediction performance. The proposed CNN is a
two-dimensional variant of the WaveNet network architecture
proposed in [3] and uses dilated kernels on the time axis to
achieve the incorporation of multiple time resolutions. A fur⁃
ther enhancement to the WaveNet architecture presented here
consists in enabling simultaneous multi-step predictions, allow⁃
ing for the instantaneous predictions of the channel develop⁃
ment over a period of 5 ms (one half-frame) at a resolution of
500 μs (one slot) each. This is especially useful, since the allo⁃
cation of resource blocks can be changed at the half-frame lev⁃
el, necessitating the prediction over at least this time period.
The remainder of this work is structured as follows: Section

2 introduces the simulation from which the transfer functions
of a fading channel scenario based on real-world observations
are derived. Section 3 describes the employed channel estima⁃
tion procedure. Section 4 describes the channel predictor that
is the essential part of this work. Section 5 summarises the ob⁃
tained results. In Section 6, we provide a discussion of possi⁃
ble applications and an outlook on future research. Section 7
concludes the paper.

2 Simulation
Setting the position and carrier frequency of the transmitter

to (0, 0) ∈ ℝ2 and fcarrier = 900 MHz, respectively, the multipathtransmission is simulated by generating 256 scatterers. Each
scatterer starts at a randomly chosen initial position
(xι0,y ι0 ) ∈ ℝ2 such that the power delay profile of the resulting
multipath transmission matches the typical urban scenario de⁃
scribed in [2], and moves at a random time-invariant velocity
(vιx,vιy ) ∈ ℝ2 with vιx,vιy~N(0,σ2 ), σ = 10 m/s, for ι = 0,...,63,
and vιx,vιy = 0 for ι ≥ 64. The receiver is supposed to movefrom an initial position (x*0,y *0 ) = (400,0) ∈ ℝ2 near the trans⁃
mitter at velocity v* = (v*x ,v*y ) ∈ ℝ2 with | v* | = 10 m/s,
arctan2 ( v*y ,v*x )~U ( - π,π) where exp (i arctan2 ( y,x ) ) = (x +
iy) / x2 + y2 for (x,y) ∈ ℝ2. The transmissions are assumed to
be conducted periodically in blocks. The time for transmitting
one block is assumed to be T = 500 μs, which leads to a dis⁃

crete time simulation with step size 500 μs. The simulation
time amounts to 212=4 096 time steps in total. The bandwidth
of transmission is set to 12. 8 MHz. A time interval of length
20 μs at the beginning of each block is used for the transmis⁃
sion of a test signal generated for the channel estimation. All
values are computed and stored using International System of
Units (SI) base units.
An example configuration of this simulation is shown in

Fig. 1. The large red and black dots represent the transmitter
and receiver, respectively. The smaller dots represent the
scatterers which are coloured according to the phase offsets ob⁃
served on the corresponding transmission path (shown as lines)
with red representing zero offset and cyan representing a phase
offset of π.
At each simulation step t and for each ι, the path length re⁃

flected by the ι-th scatter l( )ιt = | (xιt ,y ιt ) - (0,0) | + | (x*t ,y *t ) -
( xιt ,y ιt ) | and its derivative with respect to time ddt l( )ιt are com⁃puted. For each scatterer ι, we recorded the corresponding
transmission delay time σ( )ι

t , the constant phase offset θ( )ιt , andthe Doppler frequency fD ( )ι
t caused by the ι-th scatterer follow⁃

ing the rules σ( )ι
t = l( )ιt /c0, θ( )ιt = ( ( - l( )ιt fcarrier /c0 )mod 1) ⋅ 2π,

and fD ( )ι
t = - ddt l( )ιt fcarrier /c0, respectively, as well as the receivedsignal amplitude a( )ιt computed using the free-space propaga⁃

tion model a( )ιt = c0 / (4πfcarrier l( )ιt ) [1]. (Here, c0 refers to the
speed of light in vacuum. )
In a setting without line of sight, using linearisation of the

phase offset with respect to the Doppler frequency, the time-
variant channel impulse response evaluated at time t + τ for
each simulation step t and small τ resulting from the multipath
transmission simulated using the above parameters can be ap⁃
proximated by

h ( ⋅ , t + τ) = 1
∑ı = 0

255 ( )a( )ıt
2∑ı = 0

255 a( )ıt exp (iθ( )ıt +

i2πfD ( )ı
t τ) δσ( )ıt ( ⋅ ) . (1)

For any signal {Sτ}0 ≤ τ < T being transmitted in the block be⁃
ginning at time step t through the simulated channel, this con⁃
sideration leads to a received signal {Rτ}0 ≤ τ < T in the form of

Rτ = (h ( ⋅ , t + τ)*S ⋅ ) (τ) = 1
∑ı = 0

255 ( )a( )ıt
2

∑ı = 0
255 a( )ıt exp (iθ( )ıt + i2πfD ( )ı

t τ) (δσ( )ıt ( ⋅ )*S ⋅ ) (τ) . (2)

This parametrisation is used in [4] and delivers a realistic
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approximation of real-world scenarios for numbers of summands
greater than 100 [5]. In order to allow continuous time delays to
be applied to discrete time signals, the impulse functions
δ
σ( )ıt
( ⋅ ) in (1) and (2) are convolved with a windowed sinc ( ⋅ )

function scaled with a given bandwidth. Overall, the channel
transmission including pulse shaping with bandwidth restricted
to half the sample rate and additive noise is approximated by re⁃
placing the δ

σ( )ıt
( ⋅ ) in (1) and (2) by sin (π ( ⋅ /2)) / (π ( ⋅

/2))1[ ]-8,8 and adding independent and identically distributed
Gaussian white noise ~N(0,σ2 ) to the transmitted signal with
power σ2 resulting in a signal-to-noise ratio of 12 dB.

3 Channel Estimation
For both the channel estimation and prediction, we will work

in the frequency domain. Apart from the obvious usefulness of
frequency domain estimation and prediction for OFDM sys⁃
tems, working in the frequency domain allows for a channel es⁃
timation scheme of lower computational complexity compared
to equalisers operating in the time domain and requiring matrix
inversions. Moreover, the frequency domain mode of operation
has some benefits on the predictor further detailed in Section
4. Throughout the remainder of this paper, for a discrete time
complex-valued signal {Xτ}

τ = 0,...,N - 1, let ℱX = {ℱXf} f = 0,...,N - 1
denote its (discrete) Fourier transform.
The time-variant channel transfer functions ℱh ( ⋅ , t + τ) for

t = 0,...,4 095T and 0 ≤ τ < T simulated in Section 2 are ap⁃
proximated by a time series of block wise time-invariant transfer
functions {ℱht}

t = 0,...,4 095 based on which the estimation and pre⁃
diction of the channel transmission are conducted. For each

transmission block beginning at time step t, in order to estimate
the corresponding channel transfer function ℱht, a complex-val⁃
ued (white noise) test signal {S͂tτ}

τ = 0,...,N - 1 whose Fourier trans⁃
form has constant amplitude and random phases ~U ( - π,π) is
generated and then transmitted through the multipath transmis⁃
sion channel with additive white noise simulated in Section 2,
resulting in a received signal {Rtτ}τ = 0,...,N - 1. The transfer func⁃
tion ℱht is in a first step estimated by

ℱh͂t ≔ ℱRtℱS͂t . (3)

In order to improve the quality of the preliminary estimator
ℱh͂t = {ℱh͂t f}

f
which is noise corrupted, the correponding im⁃

pulse response h͂t is windowed by a step function of width N/2
and then Fourier transformed, i. e. , the estimator ℱĥt of the
channel transfer function is given by

ℱĥt = ℱ (1[ ]0,N/2 ℱ-1ℱh͂t ) , (4)

where ℱ-1Y = {ℱ-1Yτ}
τ = 0,...,N - 1 refers to the inverse Fourier

transform of the considered signal {Yf}
f = 0,...,N - 1 in the frequen⁃

cy domain. The step of windowing the preliminarily estimated
impulse response h͂t = ℱ-1ℱh͂t is conducted due to the observa⁃
tion of a long noisy tail showing up in the recorded h͂t, which,
according to the simulation with maximum transmission delay
time less than N/2, should be eliminated; this, at the same
time, yields a discrete approximation to convolving the estimat⁃
ed channel transfer function with the kernel sin (π ( ⋅
/2)) / (π ( ⋅ /2)) so that down sampling with step size 2 (instead
of the original step size 1) in the frequency domain delivers an
error corrected version of the estimated channel transfer func⁃
tion {ℱĥt2f}

f = 0,...,N/2 - 1.
When applied to a multipath transmission channel with addi⁃

tive white noise such as the transmission channel simulated in
Section 2, the above method of estimating the channel transfer
function yields a reasonably accurate estimate.
The initial resolution level of the frequency spectrum is set

to N = 29 which results in an estimated channel transfer func⁃
tion ℱĥt of length N/2 = 256 for each block beginning at simu⁃
lation step t. Overall, the simulation is run 16 times indepen⁃
dently, which results in 16 independent time series of the form
{ℱĥt}

t = 0,...,4 095 with ℱĥt ∈ ℂ256.
An example realisation of transfer functions estimated dur⁃

ing one simulation is shown in Fig. 2. The x-axis represents
time, labelled by time steps t, and the y-axis represents fre⁃
quency, labelled by indices of subcarriers f. Brightness corre⁃

▲Figure 1. Example configuration of the designed simulation.
sponds to amplitude with bright colors representing good signal
reception. Colors correspond to phases with red representing
phase 0 and cyan representing phase π. One can clearly see
the thin dark areas reflecting the effect of frequency selective
fading.
In order to ensure that the proposed system could indeed be

implemented on current cellular radio equipment, the method
of estimation of the simulated channel is chosen in such a man⁃
ner that the level of channel information obtained is very simi⁃
lar to that commonly available from the reference signals in re⁃
al-world systems.

4 Channel Prediction
The time series of estimated channel transfer functions from

Section 3 are used as labels for training and testing a carefully
chosen convolutional neural network (CNN) that delivers one-
or multi-step ahead predictions of the time-variant channel
transfer functions resulting from the simulation in Section 2.
Since additive noise is included in the simulation of the chan⁃
nel, the trained neural network also contributes to the denois⁃
ing of the channel transfer function along with the channel esti⁃
mation scheme in Section 3.
In general, CNNs are a specific architecture of feed-forward

neural networks, where linear filters (convolution kernels) in⁃
stead of traditional single weight parameters are used in a shift
invariant manner for the transformation between adjacent lay⁃
ers, making use of local temporal and spatial structure of the
input signal within a local receptive field. The local receptive
field can be enlarged without the need for increasing the num⁃
ber of parameters by means of the dilation parameter. In the
one-dimensional case, a CNN with dilation is known as
WaveNet that is introduced in [3] for processing audio signals.
For more details on CNNs, the readers are referred to [6]. Com⁃
pared to traditional fully connected neural networks and recur⁃

rent neural networks such as long short-term memory units
(LSTMs) [7], CNNs use fewer parameters and are less receptive
to overfitting.
The shift invariant nature of CNNs necessitates that the sig⁃

nals processed by a CNN have some amount of homogeneity, as
the layers of the CNN have no way of varying the processing
performed by them between different regions of the input sig⁃
nal. In our particular case, this means that the method in
which predictions are performed for a certain consecutive
group of subcarriers is exactly the same as that used for any
other group of consecutive subcarriers. This is a reasonable ap⁃
proach, as the manner in which the influence of the channel on
the transmission develops over time is indeed very homoge⁃
neous across the entire considered bandwidth. This assump⁃
tion would not hold, if we were to work directly on the time do⁃
main channel impulse response, as most of the power of this
impulse response is contained within the first few microsec⁃
onds, suggesting a different approach for processing this earlier
part of the impulse response.
In our setting, a two-dimensional convolutional neural net⁃

work (CNN) with partial dilation is used for building the predic⁃
tion model, which is described in the remainder of this section.
CNNs are a special type of feed-forward neural networks

made up of one or several convolutional layers. A feed-forward
neural network is a function mapping an input vector to an out⁃
put vector, making use of a set of parameters which are to be
adapted through the training. In a multi-layer neural network,
this function operates in the form of several such functions in
succession, each transforming the corresponding input vector
into an output vector. In our setting, for processing the time se⁃
ries of channel transfer functions {ℱĥt}

t = 0,1,... with ℱĥt ∈ ℂ256,
we use two-dimensional convolutional layers where each input
vector is indexed with three axes related to the real-or-imagi⁃
nary part of the complex plane, the simulation time steps, and
the frequency domain, and the transformation is conducted by
convolving the input vector with a convolution kernel made up
of free parameters to be adapted and adding a free parameter
vector called bias to the result. For our purpose of multi-step
prediction, we also consider the evolution of the time series
over a long period of time, for which we use the so-called dila⁃
tion parameter on the time axis defining the spacing between
the free parameters in the convolution kernel. The introduc⁃
tion of the dilation parameter enables us to extend the recep⁃
tive field of the CNN in time without taking extra parameters
for fitting.
For delivering at most m-step ahead predictions of the future

channel transfer function, we use a 5-layer CNN beginning
with 4 consecutive partially dilated convolutional layers along
the t-axis with channel sizes 2, 6, 12, 12, 6, followed by one
convolutional layer with 2m output channels. In each partially
dilated convolutional layer, the size of the free convolutional
kernel is set to (4, 5) for the time and frequency axis, respec⁃
tively, and the dilation parameter is defined by 4 to the power
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sponds to amplitude with bright colors representing good signal
reception. Colors correspond to phases with red representing
phase 0 and cyan representing phase π. One can clearly see
the thin dark areas reflecting the effect of frequency selective
fading.
In order to ensure that the proposed system could indeed be

implemented on current cellular radio equipment, the method
of estimation of the simulated channel is chosen in such a man⁃
ner that the level of channel information obtained is very simi⁃
lar to that commonly available from the reference signals in re⁃
al-world systems.

4 Channel Prediction
The time series of estimated channel transfer functions from

Section 3 are used as labels for training and testing a carefully
chosen convolutional neural network (CNN) that delivers one-
or multi-step ahead predictions of the time-variant channel
transfer functions resulting from the simulation in Section 2.
Since additive noise is included in the simulation of the chan⁃
nel, the trained neural network also contributes to the denois⁃
ing of the channel transfer function along with the channel esti⁃
mation scheme in Section 3.
In general, CNNs are a specific architecture of feed-forward

neural networks, where linear filters (convolution kernels) in⁃
stead of traditional single weight parameters are used in a shift
invariant manner for the transformation between adjacent lay⁃
ers, making use of local temporal and spatial structure of the
input signal within a local receptive field. The local receptive
field can be enlarged without the need for increasing the num⁃
ber of parameters by means of the dilation parameter. In the
one-dimensional case, a CNN with dilation is known as
WaveNet that is introduced in [3] for processing audio signals.
For more details on CNNs, the readers are referred to [6]. Com⁃
pared to traditional fully connected neural networks and recur⁃

rent neural networks such as long short-term memory units
(LSTMs) [7], CNNs use fewer parameters and are less receptive
to overfitting.
The shift invariant nature of CNNs necessitates that the sig⁃

nals processed by a CNN have some amount of homogeneity, as
the layers of the CNN have no way of varying the processing
performed by them between different regions of the input sig⁃
nal. In our particular case, this means that the method in
which predictions are performed for a certain consecutive
group of subcarriers is exactly the same as that used for any
other group of consecutive subcarriers. This is a reasonable ap⁃
proach, as the manner in which the influence of the channel on
the transmission develops over time is indeed very homoge⁃
neous across the entire considered bandwidth. This assump⁃
tion would not hold, if we were to work directly on the time do⁃
main channel impulse response, as most of the power of this
impulse response is contained within the first few microsec⁃
onds, suggesting a different approach for processing this earlier
part of the impulse response.
In our setting, a two-dimensional convolutional neural net⁃

work (CNN) with partial dilation is used for building the predic⁃
tion model, which is described in the remainder of this section.
CNNs are a special type of feed-forward neural networks

made up of one or several convolutional layers. A feed-forward
neural network is a function mapping an input vector to an out⁃
put vector, making use of a set of parameters which are to be
adapted through the training. In a multi-layer neural network,
this function operates in the form of several such functions in
succession, each transforming the corresponding input vector
into an output vector. In our setting, for processing the time se⁃
ries of channel transfer functions {ℱĥt}

t = 0,1,... with ℱĥt ∈ ℂ256,
we use two-dimensional convolutional layers where each input
vector is indexed with three axes related to the real-or-imagi⁃
nary part of the complex plane, the simulation time steps, and
the frequency domain, and the transformation is conducted by
convolving the input vector with a convolution kernel made up
of free parameters to be adapted and adding a free parameter
vector called bias to the result. For our purpose of multi-step
prediction, we also consider the evolution of the time series
over a long period of time, for which we use the so-called dila⁃
tion parameter on the time axis defining the spacing between
the free parameters in the convolution kernel. The introduc⁃
tion of the dilation parameter enables us to extend the recep⁃
tive field of the CNN in time without taking extra parameters
for fitting.
For delivering at most m-step ahead predictions of the future

channel transfer function, we use a 5-layer CNN beginning
with 4 consecutive partially dilated convolutional layers along
the t-axis with channel sizes 2, 6, 12, 12, 6, followed by one
convolutional layer with 2m output channels. In each partially
dilated convolutional layer, the size of the free convolutional
kernel is set to (4, 5) for the time and frequency axis, respec⁃
tively, and the dilation parameter is defined by 4 to the power

▲Figure 2. Example plot of estimated transfer functions.
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of the corresponding layer number. The final layer is endowed
with 1 × 1 convolution kernels. Apart from the last layer, the
hyperbolic tangent is used as activation function in each layer.
In order to improve the back propagation of the gradient [8], a
residual convolutional layer [9] with kernel size (1, 1) is added
to each partially dilated convolutional layer. The above layout
is common in convolutional neural networks and is designed to
best adapt to our task and the nature of the input signals. The
layout of our CNN is summarised in Table 1. For illustration,
a diagram of the dilated layers along the t-axis is presented in
Fig. 3.
During the training, the free parameters in our CNN are ad⁃

justed to the labelled training data by minimising the mean
squared error (MSE) of prediction along the negative direction
of the gradient of the error function with respect to the parame⁃
ters, for which we use a refined version of stochastic gradient
descent (SGD) called ADAM training algorithm [10]. The gra⁃
dient for each update is computed by means of the so-called
backpropagation algorithm [8] based on the chain rule.

In our setting, the 16 independent time series of channel
transfer functions {ℱĥt}

t = 0,...,4 095 with ℱĥt ∈ ℂ256 are each divid⁃
ed into 8 segments which are to be fed into the CNN as input
vectors and grouped as training, validation, and test parts with
the proportion 6:1:1. The ADAM optimiser with learning rate
γ = 0.01 is run for 30 training epochs in total.

5 Results
The performance of our approach to delivering multi-step

ahead prediction is measured in a setting with m = 10 for train⁃
ing the corresponding CNN to output 10-step ahead predic⁃

tions at most. The MSEs are evaluated for training, validation,
and test data (Table 2). The similarity of performance evaluat⁃
ed on all three sub-datasets indicates no significant overfitting.
As a baseline, we consider the trivial prediction where all fu⁃

ture values of the time series are set to the latest observed val⁃
ue; the MSE of such a prediction scheme provides a measure
for the variation of the underlying time series over time (Table
2). Overall, the instantaneous long-term prediction with our
CNN using m = 10 facilitated by employing the dilation param⁃
eter in time delivers much more accurate results than the trivi⁃
al prediction scheme.
In Figs. 4, 5, 6, and 7, the power density spectra in dB of an

example channel transfer function evaluated at time steps t0and t0 + Δt and the Δt-step ahead instantaneous prediction fortime t0 + Δt, Δt = 1,2,5,10, output by the trained CNN with
m = 10, are plotted in blue, yellow, and green, respectively.
Note in particular that most of the negative peaks of the future
power density spectra are correctly detected by the predictor,
which suggests the utility of our approach in handling situa⁃

▼Table 1. Layout of the 2D CNN for m-step ahead prediction

Layer
Number
0
1
2
3
4

Layer Type
Dilated convolution
Dilated convolution
Dilated convolution
Dilated convolution
Convolution

Channel
Sizes
2 → 6
6 → 12
12 → 12
12 → 6
6 → 2m

Kernel
Size (t, f )
(4, 5)
(4, 5)
(4, 5)
(4, 5)
(1, 1)

Dilation
Parameter
(1, 1)
(4, 1)
(16, 1)
(64, 1)
(1, 1)

Residual
Layer

1 × 1 convolution
1 × 1 convolution
1 × 1 convolution
1 × 1 convolution

None

▲Figure 3. Structure of the dilated convolutional layers along the t-axis.

Layer 3Layer 2Layer 1Layer 0

t=t 0
+63

t=t 0
+15

t=t 0
+3t=t 0

▼Table 2. Mean squared errors (MSEs) for prediction length Δt from 1 to 10

Δt
1
2
3
4
5
6
7
8
9
10

Training
0.1466
0.1579
0.1753
0.2014
0.2357
0.2757
0.3249
0.3821
0.4459
0.5133

Validation
0.1460
0.1569
0.1735
0.1988
0.2321
0.2723
0.3208
0.3763
0.4393
0.5055

Test
0.1424
0.1538
0.1707
0.1962
0.2298
0.2704
0.3183
0.3735
0.4354
0.5005

Trivial
0.2217
0.2532
0.3047
0.3750
0.4621
0.5644
0.6788
0.8040
0.9382
1.0797

tions with frequency selective fading in an OFDM transmission
scheme (see Section 6 for more discussion).

6 Discussion
As mentioned in the introduction, the method proposed in

the preceding sections can be employed to provide an OFDMA/
OFDM radio resource scheduler located in a base station with
predictions necessary for an efficient scheduling of radio re⁃
sources. There are two main aspects of the scheduler, which
can benefit from this information:
The predictions can be used to decide to which user a specif⁃

ic radio resource element should be allocated by estimating the
relative usefulness of assigning the element to a specific user
compared to the utility another user may have of it. For in⁃
stance, consider the case where two radio resource blocks RRB
A and RRB B are assigned to users UE A and UE B, respec⁃

tively. If the predictor predicts that during the next half-frame
the part of the spectrum on which RRB A is transmitted will
become faded for UE A, but a strong signal could be received
by UE B, it would be advantageous to change the allocation
and assign RRB B to UE A and RRB A to UE B.
The other aspect is that the scheduler may control the

choice of encoding used on each of the radio resource ele⁃
ments. In particular, if a prediction reveals that a certain part
of the spectrum will become faded for a particular user and a
reallocation among the users as in the case discussed previ⁃
ously is not applicable, the scheduler may initiate a change of
the employed encoding, for instance from 64QAM1 down to
16QAM, thereby increasing the robustness of the signal and
counteracting the decreasing signal-to-noise ratio. In ex⁃
treme cases of frequency selective fading, transmissions on
the corresponding frequencies could even be disabled com⁃
pletely.
In future research, we hope to expand on both of these topics

by developing an adaptive coding scheme and a dynamic

16



A Machine Learning Method for Prediction of Multipath Channels Special Topic

Julian AHRENS, Lia AHRENS, and Hans D. SCHOTTEN

ZTE COMMUNICATIONS
December 2019 Vol. 17 No. 4

tions with frequency selective fading in an OFDM transmission
scheme (see Section 6 for more discussion).

6 Discussion
As mentioned in the introduction, the method proposed in

the preceding sections can be employed to provide an OFDMA/
OFDM radio resource scheduler located in a base station with
predictions necessary for an efficient scheduling of radio re⁃
sources. There are two main aspects of the scheduler, which
can benefit from this information:
The predictions can be used to decide to which user a specif⁃

ic radio resource element should be allocated by estimating the
relative usefulness of assigning the element to a specific user
compared to the utility another user may have of it. For in⁃
stance, consider the case where two radio resource blocks RRB
A and RRB B are assigned to users UE A and UE B, respec⁃

tively. If the predictor predicts that during the next half-frame
the part of the spectrum on which RRB A is transmitted will
become faded for UE A, but a strong signal could be received
by UE B, it would be advantageous to change the allocation
and assign RRB B to UE A and RRB A to UE B.
The other aspect is that the scheduler may control the

choice of encoding used on each of the radio resource ele⁃
ments. In particular, if a prediction reveals that a certain part
of the spectrum will become faded for a particular user and a
reallocation among the users as in the case discussed previ⁃
ously is not applicable, the scheduler may initiate a change of
the employed encoding, for instance from 64QAM1 down to
16QAM, thereby increasing the robustness of the signal and
counteracting the decreasing signal-to-noise ratio. In ex⁃
treme cases of frequency selective fading, transmissions on
the corresponding frequencies could even be disabled com⁃
pletely.
In future research, we hope to expand on both of these topics

by developing an adaptive coding scheme and a dynamic

▲Figure 5. Power density spectrum in dB for Δt = 2.
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▲Figure 7. Power density spectrum in dB for Δt = 10.
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▲Figure 6. Power density spectrum in dB for Δt = 5.
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▲Figure 4. Power density spectrum in dB for Δt = 1.
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scheduler for the multi-user case based on the research per⁃
formed in this article.

7 Conclusions
In this paper, we simulated a multipath transmission scenar⁃

io, implemented a channel estimation scheme, and designed a
machine learning model for predicting the resulting channel
transfer functions over multiple time steps. Our results show
that the machine learning model is capable of capturing charac⁃
teristics of the channel evolution and provides reasonable pre⁃
dictions. We addressed possible applications of the method in
real-world systems, which we plan to implement and evaluate
in future research.

References
[1] BEARD C, STALLINGS W. Wireless Communication Networks and Systems,
Global Edition [M]. London, UK: Pearson, 2015

[2] COST 207 Management Committee. COST 207 Digital land mobile radio commu⁃
nications [R]. Brussels, Belgium; Luxembourg, Luxembourg: Commission of the
European Communities, 1990

[3] VAN DEN OORD A, DIELEMAN S, ZEN H, et al. WaveNet: A Generative Mod⁃
el for Raw Audio [EB/OL]. (2016-09-19). https://arxiv.org/abs/1609.03499

[4] SCHULZE H. Stochastische Modelle und digitale Simulation von Mobilfunk⁃
kanälen [C]//Kleinheubacher Berichte. Kleinheubach, Germany, 1988: 473–483

[5] K⁃DKAMMEYER. Nachrichtenübertragung [M]. Wiesbaden, Germany: Vieweg+
Teubner Verlag, 2004. DOI:10.1007/978-3-322-94062-9

[6] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning [M]. Cambridge,
USA: MIT Press, 2016

[7] HOCHREITER S, SCHMIDHUBER J. Long Short ⁃ Term Memory [J]. Neural
Computation, 1997, 9(8): 1735–1780. DOI: 10.1162/neco.1997.9.8.1735

[8] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning Representations
by Back ⁃Propagating Errors [J]. Nature, 1986, 323: 533–536. DOI: 10.1038/
323533a0

[9] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition

[C]//29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016. Las Vegas, USA, 2016. DOI:10.1109/CVPR.2016.90

[10] KINGMA D P, BA J L. Adam: A Method for Stochastic Optimization [C]//3rd In⁃
ternational Conference on Learning Representations, ICLR 2015. San Diego,
USA, 2015. arXiv:1412.6980 [cs.LG]

Julian AHRENS (Julian. Ahrens@dfki. de) received his Master’s degree
in mathematics from Kiel University (CAU), Germany, while working in
non-commutative harmonic analysis. He is currently working as a research⁃
er at the Intelligent Networks Group of Prof. Hans D. Schotten at the Ger⁃
man Research Center for Artificial Intelligence, where he is involved in the
BMBF project Future Industrial Network Architecture (FIND). His re⁃
search interests include high performance computing, artificial intelligence,
digital signal processing, and harmonic and functional analysis.

Lia AHRENS received her Ph. D. degree in stochastics and financial
mathematics from Kiel University (CAU), Germany. She is currently work⁃
ing as a senior researcher at the Intelligent Networks Group of Prof. Hans
D. Schotten at the German Research Center for Artificial Intelligence,
where she is involved in the BMBF project TACNET 4. 0―Taktiles Inter⁃
net. Her research interests include stochastic processes, stochastic filter⁃
ing, and machine learning for time series analysis.

Hans D. SCHOTTEN received his Diploma and Ph. D. degrees in elec⁃
trical engineering from the RWTH Aachen University of Technology, Ger⁃
many. He is a full professor and director of the Institute for Wireless Com⁃
munications and Navigation at the Technical University of Kaiserslautern,
Germany. In addition, he is a scientific director of the German Research
Center for Artificial Intelligence (DFKI) and head of the department for In⁃
telligent Networks. Since 2018, he is the chairman of the German Society
for Information Technology and member of the Supervisory Board of the
VDE.

Biographies

This will in turn impose new technical challenges on the cellular
networks but can well be overcome in the 6G networks. Orga⁃
nized into the third group, the fifth and sixth articles of this spe⁃
cial issue focus on cross-layer optimization for the novel network
architecture and new services by taking advantage of machine
learning techniques. More specifically, the fifth article“Ma⁃
chine Learning Based Unmanned Aerial Vehicle Enabled Fog-
Radio Access Network and Edge Computing”by Mohammed
SEID et al. presents the use of machine learning in the UAV en⁃
abled fog-radio access network of edge computing architecture.
Moreover, this article also addresses the future research direc⁃
tion of machine learning roles in UAV connected cellular net⁃
works. Last but not the least, the sixth article of this special is⁃

sue“A Survey on Machine Learning Based Proactive Caching”
by Stephen ANOKYE et al. provides an overview on smart and
efficient mobile edge caching relying on machine learning ap⁃
proaches. Issues affecting edge caching, such as caching enti⁃
ties, policies, and algorithms, are discussed, followed by a sum⁃
mary on challenges and future research directions.
As we conclude the introduction to this special issue and the

content of six articles, we would like to thank all authors for
their valuable contributions. We also express our sincere grati⁃
tude to all the reviewers for their timely and insightful com⁃
ments on all submitted articles. It is hoped that this special is⁃
sue is informative and useful from various aspects related to
the application of machine learning approaches for next-gener⁃
ation wireless networks.

⬅ From Page 02

18



ZTE COMMUNICATIONS
December 2019 Vol. 17 No. 4

A Case Study on Intelligent OperationA Case Study on Intelligent Operation
System for Wireless NetworksSystem for Wireless Networks

LIU Jianwei, YUAN Yifei, and HAN Jing

(ZTE Corporation, Shenzhen, Guangdong 518057, China)

Abstract: The emerging fifth generation (5G) network has the potential to satisfy the rapidly
growing traffic demand and promote the transformation of smartphone-centric networks into an
Internet of Things (IoT) ecosystem. Due to the introduction of new communication technologies
and the increased density of 5G cells, the complexity of operation and operational expenditure
(OPEX) will become very challenging in 5G. Self-organizing network (SON) has been re⁃
searched extensively since 2G, to cope with the similar challenge, however by predefined poli⁃
cies, rather than intelligent analysis. The requirement for better quality of experience and the
complexity of 5G network demands call for an approach that is different from SON. In several
recent studies, the combination of machine learning (ML) technology with SON has been investi⁃
gated. In this paper, we focus on the intelligent operation of wireless network through ML algo⁃
rithms. A comprehensive and flexible framework is proposed to achieve an intelligent operation
system. Two use cases are also studied to use ML algorithms to automate the anomaly detection
and fault diagnosis of key performance indicators (KPIs) in wireless networks. The effectiveness
of the proposed ML algorithms is demonstrated by the real data experiments, thus encouraging
the further research for intelligent wireless network operation.
Keywords: 5G; self-organizing network; machine learning; anomaly detection; fault diagnosis

1 Introduction

The wireless communication technologies have expe⁃
rienced significant advancement over the past three
decades, from the first generation (1G) system to
fourth generation (4G) networks. The cellular net⁃

works successfully transform from pure telephony systems
to versatile networks that can transport rich multimedia con⁃
tent and have a profound impact on our daily life. The rapid
development of the mobile Internet generates a tremendous
amount of traffic and consequently requires more bandwidth

and better quality of experience. The next-generation wire⁃
less networks, i. e., the fifth generation (5G) cellular net⁃
works, which are assumed to be commercially deployed in
2020, have the potential to satisfy such a rapidly growing
demand for data traffic [1].
The 5G networks mainly have three types of scenarios [2]:

first, the enhanced mobile broadband (eMBB) aims to provide
broadband multimedia to human-centric use cases; second, the
ultra-reliable low latency service (URLLC) with strict require⁃
ments in terms of latency (ms level) and reliability (five nines
and beyond) is used for remote control of robots or tactile Inter⁃
net applications; third, massive machine type communications
(mMTC) is mainly used to connect a very large number of de⁃
vices and transmit a low load of non-delay-sensitive informa⁃
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tion. It is believed that 5G will significantly promote the trans⁃
formation of the smartphone-centric networks into an Internet
of Things (IoT) ecosystem [3] that integrates a heterogeneous
mix of wireless-enabled devices ranging from smart-phones to
connected vehicles, drones, wearables, sensors, and virtual re⁃
ality devices. The throughput will be 1 000 times more in ag⁃
gregate from 2015 to 2020 and the number of devices will grow
to 500 billion [4]. In order to achieve the capacity growth, 5G
cells have to be densely deployed, about 40 to 50 times as
many as 4G networks. Moreover, a typical 5G node is expect⁃
ed to have 2 000 parameters to be configured and optimized,
significantly more than a typical 2G node (500 parameters), a
3G node (1 000 parameters) and a 4G node (1 500 parameters)
[5]. It is foreseen that the network operations of 5G will be⁃
come an enormous challenge. As estimated in [5], there will
be 53 to 67 times increase in operational complexity in 5G
compared to 4G.
The operational expenditure (OPEX) is always an important

issue for wireless networks. The idea of self-organizing net⁃
work (SON) was evolved in 2G, 3G and 4G. However, the auto⁃
mation is realized by predefined policies, rather than intelli⁃
gent analysis and smart decisions. It is time-consuming and
expensive for 5G operators to operate and configure the net⁃
work all manually by humans. In order to reduce the OPEX
and facilitate the efficiency of the next generation networks,
several studies have investigated the benefits of applying ma⁃
chine learning (ML) and big data technology in SON, showing
promising results [5]–[8]. The ML engine has the potential to
automate many scenarios of SON, for example, node deploy⁃
ment planning, advanced load balancing, resource allocation
strategy, quality-of-experience (QoE)/quality-of-service (QoS)
analysis, and network monitoring, paving a way to a proactive,
self-aware, self-adaptive and highly efficient networking. In
this paper, we focus on the intelligent operation of wireless net⁃
work through applying ML technology.
This paper is organized as follows. In Section 2, the ML pre⁃

liminaries are demonstrated, and a framework of intelligent op⁃
eration system designed by layered scheme is proposed. Then
two use cases are illustrated, which use ML algorithms to auto⁃
mate the anomaly detection and fault diagnosis of key perfor⁃
mance indicators (KPIs) in wireless networks. Promising re⁃
sults for on-site data analyses are shown in Section 3. Finally,
we draw the conclusions in Section 4.

2 Framework of the Intelligent Operation
System

2.1 Machine Learning Preliminaries
ML technology has attracted wide attentions for several de⁃

cades, especially with the third wave of artificial intelligence
(AI) facilitated by rapid developments of deep neural net⁃
works, big data analysis and cloud computing. ML is being

applied to more and more areas, for example, image process⁃
ing, face recognition, speech recognition, natural language
processing, computational advertising, recommendation sys⁃
tem, and automated driving. Depending on the type of data
input and output, and the type of task or problem intended to
solve, there are three main categories of learning algorithms
as follows:
1) Supervised Learning.
A supervised learning algorithm is fed with a set of data that

contains both the inputs and the desired outputs. The data is
known as the training data that consists of a set of training ex⁃
amples. Through iterative optimization of an objective func⁃
tion, a supervised learning algorithm aims to determine a gen⁃
eral rule that can nicely map inputs to outputs. There are a
number of popular supervised learning algorithms which have
been developed and achieve successful applications, for exam⁃
ple, regression model (RM), support vector machine (SVM),
hidden Markov model (HMM), random forest (RF), and time se⁃
ries forecasting. In wireless networks, these models have the
potential to solve a number of problems. Fox example, in mas⁃
sive multi-input multi-output (MIMO) systems associated with
hundreds of antennas, both detection and channel estimation
lead to high-dimensional search-problems, which can be ad⁃
dressed by these models to estimate or predict radio parame⁃
ters that are associated with specific users [9]. Forecasting the
trend of user equipment (UE) mobility or the traffic volume of
different services is another possible application.
2) Unsupervised Learning.
Different from the aforementioned supervised learning, the

input information for unsupervised learning does not contain
priori labels. Therefore, the unsupervised learning algorithm
has to rely on its own capability to find the embedded structure
or pattern from its input, like grouping or clustering of data
points. The typical unsupervised learning algorithms include
K-means clustering, principal component analysis (PCA), inde⁃
pendent component analysis (ICA), one-class SVM, etc. The
K-means clustering was studied in [10] to partition the mesh
access points (MAPs) into several groups in a hybrid optical/
wireless network scenario, in order to optimize both the gate⁃
way partitioning and the virtual-channel allocation. K-means
clustering can also be used to detect network anomaly. PCA
and ICA are two common algorithms used for signal processing
and feature dimension reduction. They can be developed for
the physical layer signal dimension reduction of massive MI⁃
MO systems to reduce the computational complexity or in the
area of anomaly-detection, and fault-detection problems of
wireless networks with multi-performance data monitoring.
3) Reinforcement Learning.
Inspired by both control theory and behaviorist psychology,

reinforcement learning is an area of machine learning regarded
with how software agents ought to take actions in an environ⁃
ment so as to maximize some notion of cumulative reward.
Many reinforcement learning algorithms use dynamic program⁃

20



A Case Study on Intelligent Operation System for Wireless Networks Special Topic

LIU Jianwei, YUAN Yifei, and HAN Jing

ZTE COMMUNICATIONS
December 2019 Vol. 17 No. 4

ming techniques and do not assume explicit knowledge of
whether they have come close to its goal. They are used when
exact models are infeasible. Due to its generality, the field is
studied in many other disciplines, such as control theory, oper⁃
ations research, information theory, multi-agent systems, and
swarm intelligence. There are several typical reinforcement
learning algorithms, for example, Markov decision processes
(MDP), partially observable Markov decision process (POM⁃
DP), Q-learning, and multi-armed bandit (MAB). In conjunc⁃
tion with MDP models, Q-learning has been extensively ap⁃
plied in heterogeneous networks. As in [11], the authors pre⁃
sented a heterogeneous fully distributed multi-objective strate⁃
gy for the self-configuration/optimization of femto cells. The re⁃
inforcement learning methods can also be applied in problems
like spectrum sharing for device-to-device networks and ener⁃
gy modeling in energy harvesting.
The three categories of machine learning algorithms and the

typical methods in each category are summarized in Fig. 1.
2.2 Intelligent Operation System Design
Although ML can be applied in a number of aspects in SON,

this paper focuses on the application of ML technology in the
intelligent operation and maintenance (O&M) of wireless net⁃
works. Fig. 2 demonstrates a possible implementation for the
framework of intelligent operation system. The system is de⁃
signed in such a layered manner as to maximize the flexibility,
scalability, and manageability. The system consists of four lay⁃
ers: the data governance layer, engine layer, model & semantic
layer, and application layer. Detailed description of each layer
is demonstrated as follows.
1) Data Governance Layer.
The original data are collected, screened and transformed in

this layer. Data is the fundamental ingredient for successful
implementation of ML. In the wireless network system, diverse
kinds of and large amount of data are produced from individual
modules, which contain valued information for network mainte⁃
nance. Examples of data include KPI data, key quality indica⁃
tor (KQI) data, alarm data, configuration data, log data, etc.
The data could be collected in three ways. Historical data are
collected from a wide range in the history, mainly used for mod⁃
el training. Online data are collected automatically in real-
time, which are used for online application of the trained mod⁃
el, such as anomaly detection of KPIs. Label data are collect⁃
ed by labeling tools and used to train supervised machine
learning algorithms or improve the algorithm performance. For
example, the operation expert can label each data point of a
KPI whether anomalous. Then, these label data can be used to
train an anomaly detection model. The collected original data
are managed with an extract-transform-load (ETL) process, pro⁃
ducing the dimensional data, merged data, topic data or train⁃
ing data. Dimensional data are produced from original data ac⁃
cording to different perspectives, for example, KPIs could be
classified into accessibility indicators, retainability indicators,

mobility indicators, etc. The original data could be merged
spatially or temporally, for example, the cell-level KPIs are
merged into sub-network level. Original data could be orga⁃
nized into topic data according to application scenario, for ex⁃
ample, traffic flow data are used to network traffic monitoring.
Training data are the final processed data that are able to cali⁃
brate the ML algorithms.
2) Engine Layer.
The engine layer provides a number of common engine mod⁃

ules for the upper application layer. The batch computing en⁃
gine processes the off-line and high volumes of data, and the
data often spread a wide period of time. A famous technology
used for batch computing is the Hadoop Map/Reduce. The
streaming computing engine is suitable for processing data in

ApplicationLayer
TopN Analysis AnomalyDetection Root CauseAnalysis PredictionAnalysis

Model & SemanticLayer

EngineLayer

Data GovernanceLayer

Network ElementModel Expert Rule Lib MetadataModel AlgorithmsLib

Batch/StreamingComputing Engine TrainingEngine InferenceEngine RuleEngine WorkflowEngine

Original Data Dimension/Merged/Topic Data Training/Sample Data

ETL Storage

Online Data
Label Data

OperationPersonnel

Historical Data

▲Figure 2. A general overview of intelligent operation system.
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▲Figure 1. Three categories of machine learning algorithms and typical
methods in each category.
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real-time, usually used for the computing of online ML models
after they have been trained off-line. The training engine sup⁃
plies a framework with training ML models. It defines several
standard steps to train a ML model, such as data normalization,
feature extraction, feature selection, model training, and post-
processing. The rule engine and inference engine can be used
to build expert systems, which are essentially composed of two
sub-systems: the knowledge base and the inference engine.
Both forward chaining and backward chaining reasoning modes
are available in such a engine. The workflow engine provides
tools for managing the processes of developing a ML applica⁃
tion. It facilitates the organization of such modules as the data
reading module, data preprocess module, training module, and
online testing module. The engine layer can include other en⁃
gine types, which are not showed here.
3) Model & Semantic Layer.
The model & semantic layer provides several abstract mod⁃

els and basic libraries to fulfill an end ML application. The
network element (NE) model defines several explicit mathemat⁃
ical models of individual wireless network modules, for exam⁃
ple, the communication model in physical layer, the device pa⁃
rameters of some physical components, the exact relationship
between some KPIs, and the network topology of different ele⁃
ments. The metadata model is adopted to define some general
concepts when a set of objects share the same attributes, opera⁃
tions, relations, and semantics. For example, a time series
metadata model is formulated to represent all those data (KPIs/
KQIs) of time series nature. The metadata model should define
several common attributes: sampling frequency, time-range, pe⁃
riod, sampling value, time-stamps, and etc. The expert rule li⁃
brary collects a number of rules defined by O&M experts.
These rules can be used as input to ML algorithms or to im⁃
prove the performance of the algorithm. For example, the ex⁃
perts can define the correlation of some alarms, for instance,
one KPI is the root cause of another KPI. The algorithm li⁃
brary collects plenty of ML algorithm modules used for devel⁃
oping ML applications. As mentioned above, the ML algo⁃
rithms include SVM, HMM, RF, ICA, PCA, K-means cluster⁃
ing, and so on.
4) Application Layer.
The application layer includes a number ML applications de⁃

veloped for facilitating the intelligent O&M of wireless net⁃
work. These applications are produced by utilizing the compo⁃
nents from the lower layers. They are usually developed case
by case, to solve practical O&M problems and should be easily
used by operation personnel. TopN analysis application would
automatically show the top-n cells whose QoS are poor, such as
with a high drop call rate, low connection rate, and low paging
success rate. The TopN analysis is one of the most common
functions for network maintenance. Its automation can signifi⁃
cantly reduce the load of an O&M engineer. The anomaly de⁃
tection application is used for automating the process of fault
detecting in the network. Fox example, whether abnormal in

each point of a KPI can be detected depends on dynamic
threshold technology. Comparing with the static threshold con⁃
figured by manner, a ML-directed dynamic threshold has the
potential to improve detection accuracy and efficiency. Root
cause analysis could be used for automatic association or corre⁃
lation analysis between different events and detect the root
cause, like an alarm or a detected KPI anomaly. The root
cause analysis is critical for fault diagnosis and fault recovery.
Prediction analysis is useful for QoS/QoE or other variable pre⁃
diction according to historical and current state of the net⁃
work. It is a critical step toward proactive operation of the sys⁃
tem with possible applications like fault prediction, load bal⁃
ance, and capacity plan, consequently reducing the fault rate
and increasing the resource utilization. It is worth noting that
here only a few examples are enumerated and many other ap⁃
plications would be developed according to different require⁃
ments.

3 Use Cases
The aforementioned framework illustrates a unified solution

for implementing an O&M operation system. In this section,
two use cases will be described in detail, domestrating the ML
algorithms developed for anomaly detection and anomaly diag⁃
nosis with KPIs. They are the example functions of the anoma⁃
ly detection application and root cause analysis application in
Fig. 2.
3.1 Anomaly Detection with KPIs
The KPI anomaly detection is quite important for network

maintenance. Due to the complexity of a 5G network that con⁃
tains numerous radio nodes and other components, there are a
huge amount of KPI data to be monitored, which may be time
consuming, error-prone and even impossible. An ML-based
anomaly detection method is proposed in this paper, as shown
in Fig. 3. It is essentially composed of three modules: anomaly
detection, anomaly scoring, and feedback modules. The anom⁃
aly detection model and scoring model are trained with off-line
data, using the batch computing engine and training engine in
Fig. 2. Then, the KPIs data are detected online based on the
streaming computing engine. The KPI data point whose anom⁃
aly score is higher than a predefined threshold will be noticed
to the O&M engineer and the engineer can label it whether ab⁃
normal, providing feedback to the training module to improve
the algorithm performance.
The KPIs represent varied characteristics because of the di⁃

verse characteristics of network modules. For example, some
KPIs show periodicity while others do not; some KPIs have
trend, while the other KPIs are stable. A two-stage modeling
method is proposed in this paper to deal with the huge chal⁃
lenge for comprehensive modeling of all kinds of KPIs. As
shown in Fig. 4, the first stage is the classification stage, where
a time series clustering algorithm is formulated to classify the
KPIs based on their structure characteristics. In the second
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stage, the module selects an appropriate time series model for
each KPI category, predicting the normal baseline at each time
point for a KPI. Avalue would be denoted as anomaly if it ex⁃
ceeds the baseline of the online detection.
The time series clustering method based on structural fea⁃

tures has been introduced in [12], which proposed a hierarchi⁃
cal scheme to reduce the complexity of clustering. Firstly, the
time series are classified into two main categories: the signifi⁃
cant periodicity and non-significant periodicity, based on Fou⁃
rier transformation. Secondly, the k-means algorithm is used
to cluster the time series in each main category base on seven
features extracted from the KPI series. In the first stage, the
frequency amplitude spectrum of a KPI is calculated by dis⁃
crete Fourier transformation (DFT) as follows:

|F [ k ] | = |∑
n = 0

N - 1
x (n )e- j 2πN kn | , 0 ≤ k ≤ N - 1. (1)

We denote the maximum, mean and standard deviation of the
amplitude spectrum as |F |max, |F |mean, and |F | std. If satisfying
|F |max > |F |mean + c ⋅ |F | std, where c is a predefined coefficient
larger than 3, the KPI would be classified as significant periodic⁃
ity, otherwise non-significant periodicity. Please refer to [12] for
the more detailed descriptions of the clustering process.
When a KPI is classified, a suitable time series model will

be selected according to its characteristic. There are a number
of candidate models available, such as density estimation,
Olympic model, regression model, Holt-Winters model, and au⁃
to-regressive integrated moving average (ARIMA) [13]. Fox ex⁃
ample, if a KPI contains trend and periodicity, the Holt-Win⁃

ters model is able to model it as following:
lt = α* ( xt - st - m ) + (1 - α* ) ( lt - 1 + bt - 1 )
bt = β* ( lt - lt - 1 ) + (1 - β* )bt - 1
st = γ* ( xt - lt - 1 - bt - 1 ) + (1 - γ* )st - m

, (2)

where lt, bt, and st are the level component, trend componentand seasonal component respectively, and m is the period of
time series. The forecasting value at h step would be:

x̂t + h|t = lt + hbt + st - m + h+m , (3)
where h+m = ë û(h - 1)modm + 1. When the prediction value
and fitting errors in historical data are calculated, the normal
baseline could be formulated as:

x̂Lt + h = x̂t + h|t - z1 - α/2σH

x̂U
t + h = x̂t + h|t + z1 - α/2σH

, (4)

where z1 - α 2 is the 1 - α 2 percentile of standard Gaussian
distribution and αH is the standard deviation of fitting errors inhistorical data. A common used value for α is 0. 003. Fig. 5
is an illustration of the computed thresholds for a KPI.
The other types of KPI can be modeled by other time series

models. For example, the data with significant randomness
could be modeled by density estimation, rather than the Holt-
Winter model.
The anomaly scoring model is critical for reducing the false

alarm and can facilitate the O&M engineer to focus on impor⁃
tant events. The detailed algorithm would not be demonstrated
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▲Figure 5. An illustration of time series modeling by Holt-Winters: (a)
represents the true value (blue curve) and fitting value (green curve) in
historical data; (b) represents the true value (blue curve) and the predict⁃
ed thresholds (red curve) in the following day.

▲Figure 3. An illustration of machine learning (ML)-based anomaly de⁃
tection method.
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▲Figure 4. A demonstration of two-stage time series modeling method.
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in the paper for the sake of space limit is a planning research
topic in the future.
3.2 Anomaly Diagnosis with KPIs
When a KPI anomaly is detected, it is quite worthy to define

the root causes for rapid fault recover. Fig. 6 depicts the
anomaly diagnosis method developed in this paper, which com⁃
bines a rule-based diagnosis module and a ML-based diagnosis
module to handle a wide range of scenarios.
As shown in Fig. 6, when the detected anomaly is a known

fault that can be explicitly diagnosed by predefined expert
rules, the rule-based diagnosis module could define the root
causes according to related information, such as the NE model
in Fig. 2, which contains the network topology, the exact math⁃
ematical function between the KPI and related counter indica⁃
tors (counter indicators are more basic performance data, com⁃
paring to KPIs), and expert rule library. The rule-based mod⁃
ule can generally output exact rule causes and provide direct
execution suggestion for recovering.
When the detected anomaly is an unknown fault, the ML-

based diagnosis module would define the root causes by using
the partial least squares regression (PLS) algorithm as pro⁃
posed in this paper. The PLS has been used in multivariate
monitoring of processing operating performance, which is al⁃
most in the same way as PCA-based monitoring [14]. Instead
of only finding hyper-planes of maximum variance for indepen⁃
dent variables, PLS finds a linear regression model by project⁃
ing the response variables and the independent variables to a
new space. Compared to standard linear regression, PLS re⁃
gression is particularly suitable when the dimension of re⁃
sponse variables is more than independent variables and when
there is multi-collinearity among independent variables. As il⁃
lustrated in Fig. 7, when an abnormal KPI is detected, PLS
models the KPI as a response variable and the correlated coun⁃
ter indicators as independent variables. Following the PLS
modeling, the contribution analysis is conducted to find the top
root counter indicators.
Denoting the data matrix of correlate counter indicators as

Xand the matrix of a KPI as Y, the PLS model between X and Y
can be formulated as:

X = TPT + E
Y = UQT + F, (5)

where T and U are projections of X (the X score, component or
factor matrix) and projections of Y (the Y scores), respectively;
P and Q are orthogonal loading matrices; and matrices E and F
are the error terms. As the PLS model has only one response
KPI, the PLS1 algorithm can be used for estimating the T, U, P
and Q. And then, a T 2 statistic is used to represent the model
status at each observation x as in [14]:

T 2 =  Γx 2, (6)

where Γ = (RΛ-1RT )1/2, Λ = 1
n - 1 TTT and R is the rotationmatrix for X. The contribution of the i-th independent vari⁃

able, i. e. counter indicator, to the T 2 statistic is calculated as:

C (T 2,i ) =  γix2 , (7)

where γi is the i-th row of Γ. The total contribution of the i-th counter indicator to the variation of the KPI can be calcu⁃
lated as the sum of C (T 2,i ) from n observations. The contribu⁃
tions of all counter indicators are sorted, and the top-n coun⁃
ter indicators are output as the root causes of the anomaly
KPI. Fig. 8 shows an experimental example, illustrating the
contributions of 60 counter indicators to an anomaly KPI,
downlink (DL) IP Throughput. The O&M expert confirms
that the top counter indicator, C373597010:DL Used Control
Channel Element (CCE) Average Number, is useful for the
anomaly diagnosis, demonstrating the effectiveness of the pro⁃
posed algorithm.

4 Conclusions
The research of intelligent O&M has attracted extensive in⁃

▲Figure 6. A mixed scheme that combines the rule-based and ML-based
diagnosis modules for KPI anomaly diagnosis.
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▲Figure 7. Root cause analysis with PLS model when a KPI is abnor⁃
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terest for IT system in recent years, which is known as AIOps
[15]. However, this topic is relatively less discussed in wire⁃
less networks. As the evolution of wireless networks and the
emerging of 5G, the networks become more complicated, em⁃
phasizing the disadvantage of manual operation and the desire
to automate O&M process with intelligent analysis to handle
such a challenge. In this paper, we try to formulate an intelli⁃
gent operation system based on the layering concept, resulting
in a flexible, scaling and manageable framework. And then,
two practical use cases, the anomaly detection with KPIs data
and the anomaly diagnosis of KPIs data, are studied based on
the framework. A two-stage time series modeling method is
proposed to construct the anomaly detection model, and a
mixed scheme is proposed to the anomaly diagnosis. The real
data experiments demonstrate the effectiveness of the proposed
method, thus encouraging the further research for intelligent
operation with ML technology. In the future, we would develop
more use cases to resolve other operation issues in wireless net⁃

work, for example the top-n cells analysis, the automated log
analysis, the prediction analysis, and the optimal parameters
configuration.
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Abstract: The emerging technology of multi-tenancy network slicing is considered as an es⁃
sential feature of 5G cellular networks. It provides network slices as a new type of public
cloud services and therewith increases the service flexibility and enhances the network re⁃
source efficiency. Meanwhile, it raises new challenges of network resource management. A
number of various methods have been proposed over the recent past years, in which machine
learning and artificial intelligence techniques are widely deployed. In this article, we provide
a survey to existing approaches of network slicing resource management, with a highlight on
the roles played by machine learning in them.
Keywords: 5G; machine learning; multi-tenancy; network slicing; resource management

1 Introduction

As an emerging technology, network slicing is believed
to be a key enabler and essential feature of the fifth
generation (5G) cellular networks. Proposed by the
Next Generation Mobile Networks (NGMN) Alliance

as an end-to-end (E2E) concept, network slicing is involved
across the radio access network (RAN) and the core network
(CN). It refers to operating and maintaining multiple logically
independent virtual telecommunication networks on the top of
a shared physical infrastructure, in order to provide enhanced
heterogeneity, flexibility, scalability, profitability and security
of future network services. This requires both the network re⁃
sources and network functions to be highly countable, divisible
and isolatable, which can be realized by the modern network
function virtualization technologies.
Since its first proposal, network slicing has triggered exten⁃

sive research interest in various topics in the broad scope of
wireless networking. This includes network architecture de⁃
sign, E2E slice orchestration and management, slice blueprint
design, slice lifecycle management, RAN virtualization, net⁃
work resource management, slice isolation, mobility manage⁃
ment, and cyber-security in network slicing.

In this article, we focus on the problems of resource manage⁃
ment in network slicing, attempting to address the most signifi⁃
cant challenges in this area and provide a timely and compre⁃
hensive survey to the state of the art. Especially, we will show
how machine learning and artificial intelligence are applied to
assist the resource management in sliced wireless networks.

2 Network Slicing and Multi-Tenancy Networks

2.1 Sliced 5G Network: Heterogeneous Services and Het⁃
erogeneous Requirements
The concept of network slicing refers to creating and main⁃

taining multiple independent logical networks, i. e.“network
slices”, on the top of a shared physical network infrastructure.
Every instance of the network slice, according to the definition
of NGMN [1], is defined by a set of network functions and the
resources to run them. These network functions and resources
form a complete instantiated logical network, to meet certain
network characteristics required by the service instance(s),
which is realized within or by the network slice. Different net⁃
work slice instances can be, fully or partially, physically or log⁃

DOI: 10.12142/ZTECOM.201904005

http://kns.cnki.net/kcms/detail/34.1294.
TN.20191209.0921.004.html, published
online December 9, 2019

Manuscript received: 2019⁃09⁃19

HAN Bin1 and Hans D. SCHOTTEN1,2

(1. University of Kaiserslautern, 67663 Kaiserslautern, Germany;
2. German Research Center for Artificial Intelligence, 67663 Kaiserslautern, Germany)

27



Special Topic Machine Learning for Network Slicing Resource Management: A Comprehensive Survey

HAN Bin and Hans D. SCHOTTEN

ZTE COMMUNICATIONS
December 2019 Vol. 17 No. 4

ically, isolated from each other in the perspectives of control,
traffic, resources, etc. Furthermore, each slice instance can be
individually tailored to fulfill the requirements by its service
instance(s).
The feature of individual slice specification in network slic⁃

ing plays a critical role in future 5G networks, due to the high
heterogeneity of different 5G service types, i. e. enhanced mo⁃
bile broadband (eMBB), massive machine type communica⁃
tions (mMTC), and ultra-reliable and low-latency communica⁃
tions (URLLC) [2]. These services generally have different re⁃
quirements for technical performance, each being extreme in a
different aspect, e. g. , throughput, access capacity, and laten⁃
cy, as shown in Fig. 1. This implies highly heterogeneous
specifications of resources and network functions for different
types of slices. Indeed, even for a certain type of 5G service,
the resource requirement can also vary from one service in⁃
stance to another. Aiming at fulfilling the requirements of het⁃
erogeneous service instances simultaneously, the classical one-
size-fits-all architecture that has been deployed in legacy Long
Term Evolution/Long Term Evolution-Advanced (LTE/LTE-A)
networks exposes significant lacks of flexibility and scalability,
which can lead to low resource efficiency and therewith an un⁃
affordable resource cost. Network slicing, in this context, has
become an essential enabler of 5G networks.
2.2 Slice-as-a-Service: a New Public Cloud Environment
In addition to the enhancement of resource efficiency, net⁃

work slicing also makes it possible to decouple the provisions
of wireless network infrastructure and network services. In⁃
stead of running and maintaining the network services by them⁃
selves, mobile network operators (MNOs) can lease network
slices to multiple network slice tenants upon their requests.
The tenants are therewith able to create network services and
deliver them to the end customers without possessing their own
network infrastructure, as illustrated in Fig. 2. The quality of
service (QoS) of a leased slice is guaranteed by a service level
agreement (SLA) between the MNO and the tenant, which de⁃
fines the cost rate, the required minimal performances, and the
penalty in case of SLA violation. This multi-tenancy network
architecture introduces a new business mode that the network
slices are provided as an emerging public cloud service, which

is known as“slice-as-a-service”(SlaaS) [3].
Despite of the similarity in many aspects to classical public

cloud environments such as software-as-a-service (SaaS), platform-
as-a-service (PaaS) and infrastructure-as-a-service (IaaS), SlaaS is
distinguished from them in the complexity of resource manage⁃
ment due to the heterogeneity of network slices, while the service
instances in classical cloud environments are generally homoge⁃
neous. This challenges the efficient deployment of SlaaS and has
triggered dense interest of research in recent years.

3 Resource Management in Network Slicing

3.1 Classification of Approaches
In an architectural perspective, efforts that have been made

towards efficient resource management in sliced networks can
be generally classified into two categories: the slice admission
control and the cross-slice resource allocation (Table 1).
The former one consists of methods focusing on the issue

that the limited resource pool of a MNO may be overloaded by
an overwhelming amount of tenant requests for slices, whereby
the MNO has to select some requests for acceptance while de⁃
clining the others. It has been demonstrated that the policy of
such selection, a. k. a. the slice admission strategy, has a dom⁃
inant impact on the overall resource efficiency and utilization
rate of sliced networks. Advanced methods are therefore pro⁃
posed to find the best strategy, in order to optimize the long-
term overall network performance statistically.
Approaches in the latter class, in contrast, concentrate on

the active slices that have already been created and leased to
tenants. The real-time traffic load of every individual slice is

universally time varying, exhibiting stochastic dynamics.
This phenomenon, known as the slice elasticity, enables the
MNO to overbook slices to tenants for a diversity gain that im⁃
proves the resource efficiency and overall revenue. To realize
slice overbooking and jointly maximize the short-term perfor⁃
mance of all active slices, it calls for methods that efficiently
share network resources among slices in a real-time and dy⁃
namic fashion.
On the other hand, in perspective of the decision making

mechanism, for both the admission control and cross-slice re⁃
source allocation, there are two types of approaches available: 1)
policy-based decision and 2) auction-based decision (Table 1).
In policy-based approaches, the MNO provides a standard

list of prices for slices (in case of admission control) or re⁃
sources (in case of cross-slice resource allocation), which is
consistent for all tenants, and the decision of admission/allo⁃

cation is made according to the MNO’s resource management
policy under the current system state. In case of admission
control, the system state information usually consists of the
amount of idle resources, the set of current active slices, and
the queuing status of awaiting requests. In case of cross-slice
resource admission, on the other hand, such information usu⁃
ally refers to the resource pool size, and the set of current ac⁃
tive slices along with their instantaneous resource demands
and utility rates.
In auction-based approaches, the MNO does not provide uni⁃

versal prices, but only a list of available slices/resources. In⁃
stead, the tenants shall propose their own bids for their request⁃
ed slices/resources. These bids are periodically collected and
evaluated by the MNO, and the winner(s) of the auction will be
granted the requested slice/resources. To guarantee a minimal
revenue of operating the network infrastructure, lowest bids are

Sensor Network
Driving Assist.
Video Streaming

Network Slices

Unsliced Network Fast Response

EnergyEfficiency

Throughput

UEDensity

Reliability

▲ Figure 1. Network slicing enables heterogeneous and highly special⁃
ized services on top of a shared network infrastructure.
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▲Figure 2. Traditional unsliced networks (left) and multi-tenancy sliced
networks (right).

eMBB: enhanced mobile broadband
IoT: Internet of Things
mMTC: massive machine type commu‐

nications

MNO: mobile network operator
SP: service provider
URLLC: ultra-reliable and low-latency

communications
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universally time varying, exhibiting stochastic dynamics.
This phenomenon, known as the slice elasticity, enables the
MNO to overbook slices to tenants for a diversity gain that im⁃
proves the resource efficiency and overall revenue. To realize
slice overbooking and jointly maximize the short-term perfor⁃
mance of all active slices, it calls for methods that efficiently
share network resources among slices in a real-time and dy⁃
namic fashion.
On the other hand, in perspective of the decision making

mechanism, for both the admission control and cross-slice re⁃
source allocation, there are two types of approaches available: 1)
policy-based decision and 2) auction-based decision (Table 1).
In policy-based approaches, the MNO provides a standard

list of prices for slices (in case of admission control) or re⁃
sources (in case of cross-slice resource allocation), which is
consistent for all tenants, and the decision of admission/allo⁃

cation is made according to the MNO’s resource management
policy under the current system state. In case of admission
control, the system state information usually consists of the
amount of idle resources, the set of current active slices, and
the queuing status of awaiting requests. In case of cross-slice
resource admission, on the other hand, such information usu⁃
ally refers to the resource pool size, and the set of current ac⁃
tive slices along with their instantaneous resource demands
and utility rates.
In auction-based approaches, the MNO does not provide uni⁃

versal prices, but only a list of available slices/resources. In⁃
stead, the tenants shall propose their own bids for their request⁃
ed slices/resources. These bids are periodically collected and
evaluated by the MNO, and the winner(s) of the auction will be
granted the requested slice/resources. To guarantee a minimal
revenue of operating the network infrastructure, lowest bids are

Reference

[4]
[5]

[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
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[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
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mission
Control
N
N
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Y
N
N
Y
N
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N

N
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N
Y
N
Y
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Y

Cross-Slice
Resource
Allocation

Y
Y

Y
N
Y
N
Y
Y
N
Y
Y
Y
Y
Y

Y

Y
Y
Y
N
Y
Y
N
N

Policy-
based

Y
Y

Y
Y
Y
Y
Y
N
Y
Y
N
N
Y
Y

Y

Y
Y
Y
Y
Y
Y
Y
Y

Auc⁃
tion-
based
N
Y

N
N
N
N
N
Y
N
Y
Y
Y
N
N

N

N
N
N
N
N
N
N
N

Note

User admission control on every individual slice according to tenant-specific policies to allocate resources cross slices
Policy-based user admission control and user dropping on every slice to guarantee QoS; auction-based intra-slice resource al⁃
location among users; budget-based inter-slice resource allocation. Dynamic cross-slice resource allocation not considered

Grouping users according to behaviors and social relationships; bio-inspired methods to update the groups; policy-based cross-
slice resource allocation according to group status

Uniformed slice size, binary slice admission control according to the active slice set, genetic algorithm to optimize the policy
Deep Q-learning assisted allocation policy optimization
A Markov model for policy-based slice admission control

Jointly optimizing the base station bandwidth and the backhaul capacity as a bi-convex problem
Non-cooperative auction among slices for network resources, implemented with OpenFlow

Q-learning assisted slice admission control policy optimization
A preliminary conference version of [5]

A two-level slicing mechanism with 1) a price competition among network chunks to determine resource prices and 2) an auc⁃
tion mechanism to allocate resources among slices

Optimizing the resource price function to maximize the total profit of slices / the net social welfare of network
Empirical investigation on the diversity gain in SlaaS

Sharing RAN resources among users according to both base station assignment and slice assignment. User admission control
on every slice to shape traffic and guarantee the QoS

Splitting the policy optimization problem into two sub-problems, one from the MNO’s perspective to maximize the revenue
and the other on (every) tenant’s side to minimize the cost. A distributed optimization is therefore achieved through a game-

fashion iteration of price updating. Both resource constraints and service fairness are taken account of
Optimizing the RAN resource allocation policy taking into account of the resource-partitioning problem

A two-layer framework merging slice admission control and cross-slice resource allocation
Allocating users to subcarriers across different MVNOs to maximize the overall network profit, assuming the cost proportional

to both power and bandwidth
Multiple queues for different slice types, taking into account impatient behavior of tenants

Dynamic resource allocation based on deep neural network assisted traffic prediction. Data-driven black-box optimization
Optimizing RAN resource allocation among slices and non-sliced network, where admissions to slice requests are controlled

w.r.t. the demanded resource efficiency
Modeling MNO’s revenue under policy-based slice admission control, analyzing the construction of optimal policy
Studying the rational behavior of impatient tenants in policy-based slice admission control with multiple queues

▼Table 1. A summary of existing works on resource management in network slicing

MNO: mobile network operator
MVNO: mobile virtual network operator

QoS: quality of service
RAN: radio access network

SlaaS: slice-as-a-service
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universally required by the auction-based approaches.
3.2 Key Challenges
A main and generic challenge for policy-based methods for

network slicing resource management is the high computation⁃
al complexity. On one hand, for both admission control and
cross-slice resource allocation, the utility function is generally
non-convex with regard to the MNO’s policy, eliminating any
analytical solution of the global optimum. On the other hand,
numerical solvers are also challenged by the complexity of the
problem. Policy-based admission control problems, no matter
with or without queuing mechanism, are binary programming
problems where the MNO’s decision is always either“0”for
decline or“1”for admission. The policy-based cross-slice re⁃
source allocation problems, in comparison, are integer program⁃
ming problems, where the amount of resource allocated to an
arbitrary slice is always integer times of some atomic resource
block. Both the problems are known to be NP-hard, leading to
an unaffordable computational effort to optimize the policy
through exhaustive search.
In comparison to policy-based methods, auction-based ap⁃

proaches are proven effective to reduce the computational com⁃
plexity significantly. However, it generally requires a careful
design of the auction mechanism and strict regulations, in or⁃
der to mitigate drawbacks and risks that intrinsically root in
the procedure of auction itself, such as multi-round auction
overhead, biased bidding, and cheating [27], [28].
Additionally, although slice overbooking and cross-slice re⁃

source allocation allow the MNO to benefit from the load-driv⁃
en elasticity of network slices, they also lead to risk of over⁃
loading the shared resource pool when traffic peaks simultane⁃
ous occur across multiple slices. In this case, the MNO be⁃
comes incapable to deliver guaranteed QoS to all active slices
and therefore have to violate some SLAs, which implies paying
penalty to the involved tenants. Such a risk must be taken into
account as part of the opportunity cost of maintaining slices.
In an extreme case, the opportunity cost of accepting a request
for new network slice instance may overwhelm the revenue gen⁃
erated by the corresponding slice, and therefore the greedy
strategy fails in admission control.
On the other hand, being too conservative in admission con⁃

trol also leads to the MNO’s loss, due to a two-fold reason.
First, it naturally implies a low resource utilization rate and
low revenue. Second, since the tenants’need for slices does
not simply vanish, the declined requests will usually be either
reissued later, or buffered in a queue for delayed admission.
No matter which design is used, under a low admission rate,
declined requests will stack to cause serious congestions, and
therefore significantly raise the average delay between the issu⁃
ing and the admission of a request. As we have indicated in
[22], after being awaiting for too long time, tenants will eventu⁃
ally lose their patience and interest in the MNO’s service. In
a competitive SlaaS market, such situation can probably lead
to permanent loss of tenants.

Aiming at an optimal balance between the resource feasibili⁃
ty and the admission rate, the MNO must have a deep under⁃
standing in tenant behavior. This includes the characteristics
of both active slices (e. g. , load dynamics, lifetime distribu⁃
tion, etc. ) and tenant requests (e. g. , arriving rate, impatience,
etc. ). This not only calls for accurate models, but also further
raises the computational complexity.

4 Machine Learning and Artificial Intelli⁃
gence Methods

4.1 Reinforcement Learning
Since policy-based network slicing resource management

procedures are typically Markov decision processes (MDPs)
where a policy maps every specific system“state”to a corre⁃
sponding“action”and therewith generates a“reward”. In net⁃
work slicing resource management problems, the reward func⁃
tion is generally non-convex over a huge policy space, as prov⁃
en in [9]. Therefore, in this field people commonly choose to
rely on Reinforcement Learning (RL), which is known for its
high efficiency and convenient implementation in solving Mar⁃
kov decision problems.
A pioneering attempt of deploying RL to optimize the net⁃

work slicing policy was given by [12], where the authors have
demonstrated that their Q-Learning solver can efficiently ap⁃
proximate the optimal slice admission policy that maximizes
the MNO’s revenue and significantly outperform the bench⁃
mark of random policies. In comparison to the value iteration
method that guarantees to achieve the optimum, the Q-Learn⁃
ing method is capable to be executed in an online learning
fashion with a much more reasonable computation cost, with
only a tradeoff of slight reduction in the revenue. Furthermore,
RL algorithms can be designed model-free by appropriately se⁃
lecting the reward functions, which makes them much more ro⁃
bust against imperfect estimations of the slicing statistics, as al⁃
so demonstrated in [12].
The authors of [20] attempted to apply RL for cross-slice re⁃

source allocation, which they called cross-slice congestion con⁃
trol. Aiming at this, they have proposed a framework where the
real-time slice elasticity is realized upon requests of every ex⁃
isting slice for the grant of more resource and the MNO makes
policy-based decisions with regard to both the current resource
availability and the slice priorities. In this way, the cross-slice
resource allocation task is accomplished by an admission-con⁃
trol-like mechanism, where a Q-Learning method is proven to
bring a significant gain in slice elasticity.
Cross-slice resource allocation was achieved in a more

straightforward manner in [8], where the authors defined an
“action”of the system as a specific allocation of radio resource
to all existing slices instead of a binary decision like in slice
admission. This design simplifies the system design, but leads
to a significantly huger policy space and a high non-linearity of
the reward function about the action. To cope with this issue,
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the authors adopted deep neural networks, as we will introduce
later in Section 4. 2.
4.2 Artificial Neural Networks
As the most important part of modern artificial intelligence

technologies, artificial neural networks (ANN) are known to
be efficient in modeling non-linear systems. This can be
used to enhance RL methods into deep reinforcement learn⁃
ing (DRL) methods, such the deep Q-Learning method report⁃
ed in [8].
Another common application of ANN is the model estima⁃

tion and prediction of complex non-linear processes. The au⁃
thors of [23] have given a typical example of ANN-based pre⁃
diction in the field of network slicing resource management.
In this work, they stacked three layers of three-dimensional
convolutional neural networks (3D-CNN) to compose an en⁃
coder, which is cascaded with a decoder implemented by
multi-layer perceptrons (MLPs). This encoder-decoder struc⁃
tured cognitive network is proven capable to predict service
capacity requirement in a data-driven fashion with high accu⁃
racy, which helps the slice orchestrator to make decisions in
slice admission control and cross-slice resource allocation.
In contrast, legacy methods are only able to predict the mean
traffic.
4.3 Evolutionary Algorithms
There are various methods, which rely on statistical evolu⁃

tions based on learning from the system feedbacks to random
strategies. They are commonly referred to as evolutionary algo⁃
rithms, which is an important category of machine learning
techniques.
One example of evolutionary algorithms’ application in

cross-slice resource allocation is given by [6], where the social
relationship between different users attached to multiple net⁃
work slices are updated in a dynamic and evolutionary man⁃
ner. Based on these social relationships, users are clustered in⁃
to groups in such a way that all users in the same group have
similar characteristics in service requirement. This process
helps in degrading and simplifying the complex model of re⁃
source requirement in a large-size sliced network, and there⁃
fore supports to optimize the resource allocation strategy.
In context of slice admission control, on the other hand, we

have shown in our previous work [7] the effectiveness of genet⁃
ic algorithms (GAs). By encoding every slice admission policy
into a chromosome, i. e. a binary sequence, and applying a
classical GA on a population of randomly generated chromo⁃
somes, it will recursively generate new generations of chromo⁃
somes (policies) that statistically converge towards an opti⁃
mum. Furthermore, by manually introducing (an arbitrary)
benchmark policies into the first generation, this GA-based
mechanism is guaranteed to outperform the benchmark. It also
shows good robustness against dynamic environments.
4.4 Distributed Learning
While all the aforementioned cases generally invoke a cen⁃

tralized learning process, some efforts have been made to dis⁃
tribute the learning process over different participators in the
network slicing process, i. e. the mobile network operator and
different tenants/slices, in order to reduce the computational
complexity.
A typical example is [11], where a RL process is executed si⁃

multaneously at every bidder (slice) to recursively update its
bid for network resources. This so-called Exponential Rein⁃
forcement Learning (XL) algorithm is proven to converge to the
unique Nash equilibrium of the auction game.
Similarly, the authors of [18] decomposed the cross-slice re⁃

source allocation problem into a revenue-maximizing problem
of the MNO and a cost-minimizing problem of every slice.
This sets up a game where a distributed evolutionary algorithm
converges to the equilibrium.
Another instance is provided by [21], which invokes the fa⁃

mous Binary Particle Swarm Optimization (BIPSO) algorithm,
which allows to jointly update the resource assignments to dif⁃
ferent users in a distributed cross-learning manner, i. e. in
each iteration, the resource assignment to every specific user
will be updated according to the resource assignments to other
users in the last iteration. Such iterative update continues un⁃
til the utility requirement is satisfied. The authors have shown
that the BIPSO is computationally efficient in solving the poli⁃
cy-based cross-slice radio resource allocation optimization
problem.

5 Future Challenges
Beyond the successes that have already been made, there

are still many open issues and potentials for further successes
of machine learning in the field of network slicing resource
management, as we will name some of them below.
5.1 AI-Enhanced Optimization in More Complex Admis⁃

sion Control Scenario
As it has been pointed out, complex features of slices/ten⁃

ants, such as elasticity [20] and impatience [22], will lead to
challenges in modeling their behavior, even under ideal as⁃
sumptions such as Poisson arrivals of traffic/service requests.
In realistic scenarios, the request arrivals and slice/resource re⁃
lease are usually non-Markovian. This calls for a deeper un⁃
derstanding in the system behavior and better policy optimiz⁃
ers, which shall be provided by a better integration of artificial
neural networks with RL methods, like the authors of [23] have
done.
5.2 Cooperative Game with Distributed Learning
While existing applications of distributed learning in this

field generally consider non-cooperative games where the Nash
equilibriums are achieved, there is a great potential to adopt
the concept of cooperative game, where tenants/slices can
learn to make decisions in an organized and cooperative way,
in order to maximize the global social welfare instead of their
own interests. In this way, a Pareto optimum can be expected
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instead of the Nash equilibrium.

6 Conclusions
In this survey, we have discussed the resource management

problem in multi-tenancy network slicing, introduced different
types of approaches in this field, and extensively reviewed the
existing works. Especially, we have shown how the modern
techniques of machine learning and artificial intelligence
could be applied in this field, and have named some open is⁃
sues for potential future work.
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Abstract: The emerging unmanned aerial vehicle (UAV) technology and its applications have
become part of the massive Internet of Things (mIoT) ecosystem for future cellular networks.
Internet of things (IoT) devices have limited computation capacity and battery life and the
cloud is not suitable for offloading IoT tasks due to the distance, latency and high energy con⁃
sumption. Mobile edge computing (MEC) and fog radio access network (F-RAN) together with
machine learning algorithms are an emerging approach to solving complex network problems
as described above. In this paper, we suggest a new orientation with UAV enabled F-RAN ar⁃
chitecture. This architecture adopts the decentralized deep reinforcement learning (DRL) al⁃
gorithm for edge IoT devices which makes independent decisions to perform computation
offloading, resource allocation, and association in the aerial to ground (A2G) network. Addi⁃
tionally, we summarized the works on machine learning approaches for UAV networks and
MEC networks, which are related to the suggested architecture and discussed some technical
challenges in the smart UAV-IoT, F-RAN 5G and Beyond 5G (6G).
Keywords: unmanned aerial vehicle; machine learning; F-RAN; edge computing

1 Introduction

In the recent past, cellular technologies have become more
dynamic and improved the network infrastructure to the
satisfaction of end users. There are a number of ultra-
dense heterogeneous devices from individuals and organi⁃

zations, which are always generating and storing a huge
amount of data via sensors (edge Internet of Things (IoT) devic⁃
es) and applications [1]. When the massive Internet of Things
(mIoT) devices emerge, the data generated by various sensors
will increase exponentially. Due to the huge volume of the data
produced and different forms of conventional databases (with
structured and unstructured data), big data analysis has attract⁃
ed much attention in recent years and many organizations have
focused on the analysis of collected data to extract useful data
for making appropriate decisions [2]. The data generated from

billions of heterogeneous IoT sensors are sent to the cloud for
processing computing tasks, with a high cost of processing de⁃
lay and energy consumption. However, some IoT sensors data
need to be processed faster than the current processing capabil⁃
ity of clouds. To solve this problem, fog and edge computing
(FEC) is proposed to enable computing tasks processed at the
network edge of IoT [3]–[5]. Edge computing is a new emerg⁃
ing paradigm to solve IoT computation and resource allocation
problem in localized manner [5]. Fog computing is decentral⁃
ized computing paradigm, where a number of smart devices
which have a computational capacity are utilized [6], [7]. In
this paradigm, key issues were discussed about the require⁃
ment and deployment of fog connectivity environment due to
the existence of ultra-dense heterogeneous devices. Several
technical issues on fog computing such as deployment, simula⁃
tion, resource management, fault tolerance and services have
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been studied in [6], [8]–[13]. Even though fog computing and
edge computing both move the computation and storage to the
edge of the network, closer to end-nodes, their paradigms are
not identical [14]. The rapid development of diverse mIoT de⁃
vices such as wireless sensors, smart machines, and mobile us⁃
ers’applications enable the users to enjoy high quality of expe⁃
rience (QoE) and high quality of service (QoS) [5], [15], [16].
However, most of these applications are delay sensitive or real-
time applications, which need high computational capacity.
The edge devices could not compute each task due to the limi⁃
tation of battery and low computation capability, so it is diffi⁃
cult for them to implement these applications [17]. The FEC
can compute tasks of IoT devices and interplay with the cloud
server to provide better QoS and QoE to end users. Some works
were done on computation offloading to mobile edge computing
(MEC) servers and on resource allocation of the IoT devices to
maximize network performance and optimize the problem in ul⁃
tra-dense heterogeneous network [18]– [20]. For ultra-dense
IoT network system, a game theory computation offloading
framework was designed in [21] and [22], to minimize the over⁃
all computation overhead of the task on edge IoT devices.
Radio access network (RAN) provides connectivity to the

wireless terminals through wireless access points (base sta⁃
tions) and may use one or more radio access technologies
(RATs). The fog radio access network (F-RAN) is composed of
F-RAN nodes connected through a single or multiple RATs.
The F-RAN has a unique feature better than the cloud radio ac⁃
cess network (CRAN) and heterogeneous cloud radio access
network (H-CRAN), which helps maximize the use of edge IoT
devices of the network and improve network management and
optimization mechanisms [5], [23], [24].
Based on the report from Federal Aviation Administration

(FAA) [25], the fleet of drones will be more than doubled from
estimated 1. 1 million vehicles in 2017 to 2. 4 million units by
2022. Benefitting from connecting unmanned aerial vehicles
(UAVs) to cellular networks for better control and communica⁃
tions, the growth of the UAV market is expected to bring new
promising business opportunities for cellular operators. Mil⁃
lions of UAVs have been used to perform various services such
as public protection, disaster relief operation, surveillance ap⁃
plications, traffic management, commercial services, extending
the cellular-network coverage to remote areas, and acting as
flying base stations [26], [27]. The Third Generation Partner⁃
ship Project (3GPP) is exploring the challenges and opportuni⁃
ties for serving UAVs as a new type of User Equipment (UE),
called aerial UE. UAVs can facilitate the development of IoT
ecosystems for mIoT applications [28]. UAVs will be the fu⁃
ture of IoT because UAVs, at the beginning, efficiently replace
the connected sensors at rest with one device that is deploy⁃
able to different locations, capable of carrying flexible pay⁃
loads, re-programmable in mission, able to measure anything
from anywhere, easily deployed, and cost effective. In recent
years, a number of works have been done on either UAVs net⁃

works or their integration with cellular networks. Those works
focused on computation offloading, maximization of energy effi⁃
ciency, optimization of UAV trajectory and path planning,
throughput maximization of UE in UAV network, and terrestri⁃
al heterogeneous devices.
The authors of [29] summarized the journey of machine

learning in the last thirty years and the roles machine learning
played in the next-generation wireless network (NGWN) as a
road for achieving the ambitious goal of NGWN and as a tool
for managing the network complexity. The authors of [30] em⁃
phasized the role of diverse machine learning algorithms in dif⁃
ferent key issues of networking across different network tech⁃
nologies. Machine learning techniques are applied for funda⁃
mental problems in networking, including routing and classifi⁃
cation, traffic prediction, congestion control, QoS and QoE
management, resource and fault management, and network se⁃
curity. In [31], the authors studied the advanced machine
learning application in wireless communication for mobility
management in the network layer, resource management in the
MAC layer, and networking and localization in application lay⁃
er. The paper [32] discussed the future cellular networks or
wireless networks which support ultra-reliable and low-latency
communications, as well as the intelligent management for
mIoT devices in dynamic environment. Deep reinforcement
learning (DRL) approaches for cellular networks, next genera⁃
tion wireless networks and self-organization cellular networks
were reviewed in [29]– [34]. Recently, DRL has become one
of the mostly popular machine learning algorithms for edge
computing resource management and a suitable optimization
technique for radio access networks. DRL has recently been
used as an emerging tool for effectively solve various problems
and challenges in modern networks that are more decentral⁃
ized, ad-hoc, and autonomous in nature, such as heterogeneous
networks (HetNets), IoT, vehicle to vehicle (V2V) system, ma⁃
chine to machine (M2M) system, vehicle to everything (V2I)
system, self-organization cellular networks, and UAV net⁃
works [31].
Different non-deterministic polynomial-time hardness (NP-

hard) problems of UAV networks and UAV connected cellular
networks were optimized by adopting traditional optimization
techniques [35]– [38], [40]– [43]. However, traditional opti⁃
mization techniques are difficult to be applied for complex net⁃
work infrastructure and not suitable for the current and future
intelligent wireless networks. Recently, machine learning algo⁃
rithms have been used to easily optimize different problems in
UAV networks and UAV connected cellular networks [63]–
[66], [68], [69]. However, there are still challenges to using
machine learning algorithms for UAV networks which assist
the mIoT, public safety communication (PSC), and edge com⁃
puting.
The main contributions of this work are summarized as fol⁃

lows:
·We suggest a new orientation with UAV enabled F-RAN ar⁃
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chitecture. This architecture adopts the decentralized DRL al⁃
gorithm for edge IoT devices, which enables decision indepen⁃
dently made for offloading, resource allocation, and association
in the A2G network.
·We summarize the works on machine learning approaches
for UAV networks and MEC networks, which are related to the
suggested architecture.
·We discuss some technical challenges in the smart UAV-
IoT, F-RAN 5G, and B5G (6G).
The rest of the paper is organized as follows. We provide a

brief overview of UAV in wireless cellular networks and the
use of UAV for emergency situation and computation offload⁃
ing in Section 2. In Section 3, we review machine learning and
its classification. In Section 4, we present our orientation with
UAV-enabled F-RAN in MEC, which adopts the machine
learning algorithm. In Section 5, we present the works on com⁃
putation offloading and resource allocation using DRL in MEC
and UAV networks. In Section 6, we discuss technical chal⁃
lenges and future research directions of intelligent UAV en⁃
abled F-RAN at the edge level. We conclude the paper in Sec⁃
tion 7.

2 UAV in Wireless Cellular Networks
Currently, the use of flying UAV platform is popular; this

rapidly growing technology has attractive attributes such as mo⁃
bility, flexibility, and adaptive attitude, and has key potential
applications in wireless system. UAVs can be used as aerial
base stations (ABS) to enhance coverage, capacity, reliability,
and energy efficiency of wireless networks, as well as flying mo⁃
bile terminals in cellular network infrastructure. UAV can be
connected with cellular networks as new user equipment and
help increase the revenues for network operators.
The authors of [35] summarized the current state of UAV in

cellular communication system from different points of view.
Different types and characteristics of UAVs are available. A
number of industry-led initiatives depend on the standards of
cellular communications which support low-altitude UAVs for
enabling beyond Line of Sight (LoS) control and establishing a

reliable communication. The deployment of flying UAV base
stations is better than that of ground base stations for reducing
cost and minimizing electronics equipment of base stations.
The deployment of ABS faces different practical challenges
such as placement and mobility, but UAV flying base stations
can be easily deployed at optimum locations in 3D space; they
can potentially provide much better performance in different
parameters such as coverage, load balancing, spectral efficien⁃
cy, and user experience, compared to existing terrestrial based
solutions. UAV can act as flying base stations in the heteroge⁃
neous 5G environment and also support millimeter wave
(mmW) communications; it is collectively viewed as the nexus
of next-generation 5G cellular systems. UAV-enabled mmW
communications is a proposing application of UAVs, which can
establish LoS communication links to users [27]. UAVs can al⁃
so assist various terrestrial network infrastructure such as
mIoT, cellular, and vehicular networks (V2V, V2X, V2I) in dif⁃
ferent ways; for example, UAVs can improve the reliability of
wireless connection and scalability, replace destroyed bases
stations, compute different tasks of edge IoT devices, and relay
the data or signal into central network controller. Table 1 com⁃
pares terrestrial networks with base stations and UAV net⁃
works with bases stations.
UAV at the edge level in cellular networks has a major im⁃

pact on 5G and beyond. A single or multiple UAVs can com⁃
pute the tasks of edge IoT devices. The UAV used as relaying
and ABS which connect terrestrial smart mobile users with
edge servers in MEC have been studied in [36]. To minimizing
the average weighted energy consumption of the smart mobile
devices and the UAV, the authors of [37] studied the multi-cell
edge which is three adjacent cells served by three base sta⁃
tions; at the multi-cell edge, some of the users out of the radius
of the base stations are connected with UAV. The problems
are how to optimize the maximal sum rate of edge users by
avoiding the interference and how to improve QoS and optimize
UAV trajectory for the users who are out of network coverage
and served by UAV.
The recent literature works on UAV network and UAV as⁃

BS: base station UAV: unmanned aerial vehicle

▼Table 1. Comparison between UAV networks with base stations and terrestrial networks with base stations

Terrestrial Networks

Insufficient spectrum
Well defined energy constraints and models

Mainly static association
No timing constraints, with BS being always there

Terrestrial BS
Typical two-dimensional deployment

Mostly long-term and permanent deployments
Few and selected locations

Fixed and static
Not suitable for mobility tracking

UAV Networks

Insufficient spectrum
Elaborate and stringent energy constraints and models

Varying cell association
Hover and flight time constraints

UAV BS
By nature, three-dimensional deployment

Short-term and frequently changing deployments
Mostly unrestricted locations

Mobility dimension
Suitable for mobility tracking
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sisted cellular user or IoT focused on computation offloading,
resource allocation and path planning, and trajectory optimiza⁃
tion of either a single UAV or multi-UAV network. In all cas⁃
es, the UAV assists the terrestrial users or IoT devices in
offloading tasks and in requesting resources such as power,
computational resources and bandwidth. LIU et al. [38] de⁃
signed UAV-Edge-Cloud computing hybrid computing archi⁃
tecture to jointly optimize the computation offloading and rout⁃
ing problem for swarms of multi-UAV which are connected in
D2D forms. The architecture in [38] aims to minimize the
transmission delay and increase the computing capability be⁃
tween UAVs and mobile users. TI et al. [39] designed UAV
based Fog-Cloud-Computing (FCC) to minimize the computa⁃
tion and power consumption of all users, which can jointly opti⁃
mize the computation offloading, user-cloud/cloudlet associa⁃
tion, transition power allocation, and path planning of mobile
users. The UAV acts as a small distributed cloud and the local
BS as micro cloud server; both users and UAV are movable.
When the terrestrial network infrastructure encounters a nat⁃

ural disaster such as earthquake, volcano, landslide and ava⁃
lanche, UAVs can act as a network life saver, especially for
emergency situations. One of the popular communication tech⁃
nologies is PSC, which plays a critical role in saving lives,
property, and national infrastructure during natural or man-
made emergency [40]. This technology is developed for deliv⁃
ering critical real-time streams (video, voice) using predefined
spectrums. The UAV base station (UAVBS) or ABS, with LTE-
advanced capabilities, can be utilized for emergency restora⁃
tion and temporary expansion of public safety for disaster re⁃
covery [41]. ZHAO et al. [42] proposed a UAV-assisted emer⁃
gency network to replace the destroyed base station by estab⁃
lishing multi-hop D2D users in different cells and relay the sig⁃
nal for emergency vehicular communication. And it is a prom⁃
ising method for establishing emergency networks. The au⁃
thors of [43] studied how to replace destroyed base stations by
UAV base stations after creating multi-hop D2D communica⁃
tions. They also designed a UAV transceiver for managing
UAV uplink and downlink, extending the wireless coverage
and guaranteeing the QoS of UAV communications for IoT in
disasters.

3 Machine Learning: Overview
Machine learning is an application of artificial intelligence

(AI), which provides systems with the ability to automatically
learn and improve themselves from experience without being
explicitly programmed. It is essentially based on the premise
that machines should be furnished with AI that enables them
to learn from previous computations and adapt to their environ⁃
ment through experience [32], [44]. Machine learning began to
flourish in the 1990s. Before 1990s, logic-and knowledge-
based schemes, such as inductive logic programming and ex⁃
pert systems dominated the AI scene relying on high-level hu⁃

man-readable symbolic representations of tasks and logic. Re⁃
searchers in 2000s gradually renewed their interest on deep
learning (DL) with the aid of advanced hardware-based compu⁃
tational capacity and the machine learning paradigm became
popular at that time, supporting a wide range of services and
applications in different areas [32], [44], [45].
3.1 Various Types of Machine Learning
Machine learning algorithms can be classified into three

groups based on training data: supervised learning, unsuper⁃
vised learning, and reinforcement learning (RL)
The supervised learning algorithm enables machines to be

trained using labeled data. When dealing with labeled data,
both the input data and its desired output data are known to
the system. Supervised learning is commonly used in applica⁃
tions that have enough historical data. The algorithm is used
to infer a function that maps the input data to the output label
relying on the training of sample data-label pairs. Practically,
considering a set of N sample data label pairs in the form of
{(x1,y1 ) , (x2,y2 ) ,..., (xN,yN )}, where xn is the n-th sample input
data and yn represents its label. Let X = {x1,x2,...,xN} denotes
the input data set and Y = {y1,y2,...,yN} denotes the output la⁃
bel set. The sample pairs are independent and identically dis⁃
tributed (i. i. d. ). The learning algorithms aim for seeking a
function g ( x ) that yields the highest value of the score function
f ( x,y ), hence we have g ( x ) = argmaxy f ( x,y ). Supervised
learning algorithms can be widely used in the context of classi⁃
fication, regression and prediction.
The unsupervised learning algorithm enables machines to be

trained without labeled data. Unsupervised learning is typical⁃
ly about finding structure hidden in collections of unlabeled
data. By analyzing N input data X = {x1,x2,..., xN}, a pair of
popular methods have been conceived for revealing the under⁃
lying unknown features of N input data, namely density estima⁃
tion and feature extraction.
RL enables machines to learn what to and how to map situa⁃

tions to actions so as to maximize a numerical reward signal. It
is different from the above two algorithms and is currently the
most popular research topic in the field of machine learning.
There are elements which are necessary for reinforcement
learning such as agent, state, action in a given environment.
At each episode, the environment is in some state S and the
agent selects a legitimate action A. The system responds at the
next episode by moving into a new state S' with a certain proba⁃
bility influenced both by the specific action chosen and by the
inherent transitions of the system. Meanwhile, the agent re⁃
ceives a corresponding reward r (S, A) from the system, as time
evolves. RL, an important branch of machine learning, is an ef⁃
fective tool and widely used Markov Decision Process (MDP)
method [46]. In RL process, an agent can learn its optimal pol⁃
icy through interaction with its environment. Q-learning is the
most effective method and widely used algorithm for RL. One

of the most popular and widely used learning techniques is
deep learning which allows the computer to build complex con⁃
cepts out of simpler concepts. It is a set of algorithms and tech⁃
niques that attempt to find important features of data and to
model its high-level abstractions [40]. However, the learning
process of RL takes a lot of time to reach optimal policy or gen⁃
erate best policy by exploring and generating knowledge of an
environment, and this circumstance is not suitable and inappli⁃
cable for complex large problems. An artificial neural network
(ANN) is a computational nonlinear model based on the neural
structure of the brain, which is able to learn to perform tasks
such as classification, prediction, decision-making, and visual⁃
ization. The basic model of a neuron is mathematically ex⁃
pressed as follows:

Zn (wn,bn,xn ) = f (bn +∑
i = k

J

xn k .wn k ) , (1)

where xn k is an input signal from a given neuron n to neuron i,
xn = [xn1, xn2, xn3,..., xnJ ] is a vector of the input signal of neuron
n, wnk is the corresponding input weight value, wn =
[wn1,wn2,wn3,...,wnJ ] is a vector of input weight of neuron n, Zn
is the output signal of neuron n, bn is the bias of neuron n, and
f ( ) is a nonlinear activation function. A bias value can shift
the activation function, which is critical for successful learn⁃
ing. The activation function in a neural network will represent
the rate of action potential ring in the cell of a neuron. An
ANN constructed using linear activation functions in (1) can⁃
not reach a stable state after training, and this problem can be
controlled by normalizing different activation functions such as
sigmoid function, tanh function, and rectified linear unit (Re⁃
LU) function.
3.2 Deep Reinforcement Learning
Deep learning was recognized as the first among the top ten

AI technology trends for 2018 [45] and is already the leading
machine learning technique successfully used in many scientif⁃
ic fields such as image recognition, text recognition, speech
recognition, audio and language processing, and robotics [32],
[44], [45]. Deep learning models are based on an ANN. As we
mentioned above, the application of RL is insufficient for the
current complicated problems. The combination of RL and
deep learning, known as deep reinforcement learning (DRL),
can break the limitation of RL in different areas. The DRL
takes the advantage of deep neural networks (DDN) to train the
learning process, improving the learning efficiency and perfor⁃
mance of RL algorithms.
Q-learning is one of the most common used RL algorithms.

It is an attempt to learn the value Q ( s, a) of a specific action
given to the agent in a particular state. Considering a table
where the number of rows represents the number of states, the
RL agent interacts with the environment to learn the Q-values,

based on which the agent takes an action. The Q-value is de⁃
fined as the discounted accumulative reward starting at a tuple
of a state and an action. Once the Q-values are learned after a
maximum episode, the agent can make a quick decision under
the current state by taking the action with the largest Q-value
and the number of columns represents the number of actions
which is called a Q-table [45], [47]. A large amount of state
and action space in the environment makes the Q-table unman⁃
ageable. In current real-world examples like cellular edge
computing, the state space is infinitely large. In order to elimi⁃
nate the shortcoming of Q-learning, a neural network is used to
predict the Q-values. One popular DRL algorithm is deep Q-
network (DQN), which uses DNN to approximate the values.
DQN is much more capable of generalization compared to the
Q-network. DQN inherits and promotes advantages of both re⁃
inforcement and deep learning techniques, and thus it has a
wide range of applications in practice such as game develop⁃
ment, transportation, and robotics [44], [45], [47]. The study of
DQNs has let too many improvements; new architectures have
been designed for better performance and stability, including
double DQN (DDQN), dueling DQN, and another asynchronous
DRL algorithms studied on this articles [47]-[49].

4 System Architecture of UAV Enabled F-
RAN
In the future, the ABS infrastructure will play a great role in

5G and beyond 5G communications. The ML algorithms ap⁃
plied in the current and future cellular technologies and aerial
networks will be used to manage the dynamic network environ⁃
ment. Figs. 1 and 2 depict the integration of UAV networks
and terrestrial networks, where resources from cloud networks
are accessed through the virtualized base band unit (VBBU).
In VBBU, the network resources which are used for both aerial
and terrestrial network infrastructures are virtualized in intelli⁃
gent manner. The resources are allocated in the infrastruc⁃
tures, depending on the network demands. We categorize the
architecture into three layers.
4.1 Layer 1
The H-CRAN that has cloud computing resources is deliv⁃

ered by server-based applications through digital networks or
the public Internet itself. The resources which are available on
cloud are far from edge IoT devices. Due to this, the edge IoT
devices need localized computational nodes and resources to
achieve features of 5G and B5G such as ultra-reliability, low-
latency and massive (ubiquitous) connectivity.
4.2 Layer 2
The virtual BBU pool is located at the data center and multi⁃

ple BBU nodes dynamically allocate resources to different net⁃
work operators. The resources are allocated to aerial networks
and terrestrial networks based on current network demands.
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of the most popular and widely used learning techniques is
deep learning which allows the computer to build complex con⁃
cepts out of simpler concepts. It is a set of algorithms and tech⁃
niques that attempt to find important features of data and to
model its high-level abstractions [40]. However, the learning
process of RL takes a lot of time to reach optimal policy or gen⁃
erate best policy by exploring and generating knowledge of an
environment, and this circumstance is not suitable and inappli⁃
cable for complex large problems. An artificial neural network
(ANN) is a computational nonlinear model based on the neural
structure of the brain, which is able to learn to perform tasks
such as classification, prediction, decision-making, and visual⁃
ization. The basic model of a neuron is mathematically ex⁃
pressed as follows:

Zn (wn,bn,xn ) = f (bn +∑
i = k

J

xn k .wn k ) , (1)

where xn k is an input signal from a given neuron n to neuron i,
xn = [xn1, xn2, xn3,..., xnJ ] is a vector of the input signal of neuron
n, wnk is the corresponding input weight value, wn =
[wn1,wn2,wn3,...,wnJ ] is a vector of input weight of neuron n, Zn
is the output signal of neuron n, bn is the bias of neuron n, and
f ( ) is a nonlinear activation function. A bias value can shift
the activation function, which is critical for successful learn⁃
ing. The activation function in a neural network will represent
the rate of action potential ring in the cell of a neuron. An
ANN constructed using linear activation functions in (1) can⁃
not reach a stable state after training, and this problem can be
controlled by normalizing different activation functions such as
sigmoid function, tanh function, and rectified linear unit (Re⁃
LU) function.
3.2 Deep Reinforcement Learning
Deep learning was recognized as the first among the top ten

AI technology trends for 2018 [45] and is already the leading
machine learning technique successfully used in many scientif⁃
ic fields such as image recognition, text recognition, speech
recognition, audio and language processing, and robotics [32],
[44], [45]. Deep learning models are based on an ANN. As we
mentioned above, the application of RL is insufficient for the
current complicated problems. The combination of RL and
deep learning, known as deep reinforcement learning (DRL),
can break the limitation of RL in different areas. The DRL
takes the advantage of deep neural networks (DDN) to train the
learning process, improving the learning efficiency and perfor⁃
mance of RL algorithms.
Q-learning is one of the most common used RL algorithms.

It is an attempt to learn the value Q ( s, a) of a specific action
given to the agent in a particular state. Considering a table
where the number of rows represents the number of states, the
RL agent interacts with the environment to learn the Q-values,

based on which the agent takes an action. The Q-value is de⁃
fined as the discounted accumulative reward starting at a tuple
of a state and an action. Once the Q-values are learned after a
maximum episode, the agent can make a quick decision under
the current state by taking the action with the largest Q-value
and the number of columns represents the number of actions
which is called a Q-table [45], [47]. A large amount of state
and action space in the environment makes the Q-table unman⁃
ageable. In current real-world examples like cellular edge
computing, the state space is infinitely large. In order to elimi⁃
nate the shortcoming of Q-learning, a neural network is used to
predict the Q-values. One popular DRL algorithm is deep Q-
network (DQN), which uses DNN to approximate the values.
DQN is much more capable of generalization compared to the
Q-network. DQN inherits and promotes advantages of both re⁃
inforcement and deep learning techniques, and thus it has a
wide range of applications in practice such as game develop⁃
ment, transportation, and robotics [44], [45], [47]. The study of
DQNs has let too many improvements; new architectures have
been designed for better performance and stability, including
double DQN (DDQN), dueling DQN, and another asynchronous
DRL algorithms studied on this articles [47]-[49].

4 System Architecture of UAV Enabled F-
RAN
In the future, the ABS infrastructure will play a great role in

5G and beyond 5G communications. The ML algorithms ap⁃
plied in the current and future cellular technologies and aerial
networks will be used to manage the dynamic network environ⁃
ment. Figs. 1 and 2 depict the integration of UAV networks
and terrestrial networks, where resources from cloud networks
are accessed through the virtualized base band unit (VBBU).
In VBBU, the network resources which are used for both aerial
and terrestrial network infrastructures are virtualized in intelli⁃
gent manner. The resources are allocated in the infrastruc⁃
tures, depending on the network demands. We categorize the
architecture into three layers.
4.1 Layer 1
The H-CRAN that has cloud computing resources is deliv⁃

ered by server-based applications through digital networks or
the public Internet itself. The resources which are available on
cloud are far from edge IoT devices. Due to this, the edge IoT
devices need localized computational nodes and resources to
achieve features of 5G and B5G such as ultra-reliability, low-
latency and massive (ubiquitous) connectivity.
4.2 Layer 2
The virtual BBU pool is located at the data center and multi⁃

ple BBU nodes dynamically allocate resources to different net⁃
work operators. The resources are allocated to aerial networks
and terrestrial networks based on current network demands.
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On this layer, the resources are virtualized into N network slic⁃
es which are found on cloud. The network virtualization allows
network resources to be sliced and granted to multiple tenants.
We assume the DRL is in decentralized manner and the fog-
edge network can make decisions independently based on the
local learning environment and inputs. The resulting decision
will then be sent to the central controller.
4.3 Layer 3
The main network operations such as DRL, resource man⁃

agement and computation offloading are performed at this lay⁃
er. It has three levels which are network controller, UAV-
small bases stations (SBS) and Edge IoT devices.
1) Level 1: The network controller (NC) is a central control⁃

ler of the two network infrastructures and a communication
platform where the aerial networks assist the terrestrial net⁃
works and DRL makes an intelligent coordination depending
on network traffic, emergency and resource scarcity. A macro
base station (MBS) with MEC server is used to manage resourc⁃
es which are allocated by the VBBU, allocate these resources
to different network operators, and make a decision about the

network condition for using DRL approach. To satisfy QoS and
QoE of heterogeneous connected edge devices in each slice,
the network will be assisted by UAV network in intelligent
manners. Under MBS there are a number of SBSs with local
servers in each small cell which are used to connect ultra-
dense heterogeneous devices.
2) Level 2: UAV and SBS at this level are used to assist the

communication in a given small cell mainly when the network
is congested at specific time and in emergency situations; UAV
acts as a flying base station to replace the destroyed BS and
perform computational tasks and recharge of edge IoT devices.
At this time the edge IoT devices are mainly wireless sensors,
wearable devices and surveillance cameras, which offload the
collected data into UAV for further analysis and decision mak⁃
ing. Therefore, we consider UAV enabled F-RAN in which the
UAV is considered as a flying remote radio head (RRH) or
base station with computation capability to assist the edge IoT
device. The UAV is part of cellular network; it recharges IoT
sensor batteries and also sends collected data to MBSs.
3) Level 3: Edge IoT devices at this level are ultra-dense

heterogeneous devices (mIoT devices), which are connected

H-CRAN
Resources

Layer 1

Layer 2

Layer 3

Virtual BBU

Virtualize Resources DRL

Level 1

Level 2

Level 3

NC NC-N
DRL Agent ClusterHead UAV-MBS

UAV-CH

IoT Devices
SBS

DRL Agent ClusterHead UAV-MBS

UAV-CH

IoT Devices
SBS

BBU:Base Band UnitCH: cluster headDRL: deep reinforcement learning
H-CRAN: heterogeneous cloud radio access networkIoT: Internet of ThingsMBS: macro-base station

NC: network controllerSBS: small bases stationUAV: unmanned aerial vehicle

▲Figure 1. UAV enabled fog radio access network (F-RAN) system architecture.
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with each other and SBSs. These devices share common re⁃
sources, exchange information with the nearest devices, and
have different interests. The MEC server may be crowed or
even damaged when the devices request resources and need to
offload their own tasks at the same time. The layer three has
more network traffic than other layers and the cooperation of
aerial network with terrestrial network is needed. The UAV as⁃
sists the edge IoT network when either the network coverage is
far from base station or some natural disaster has affected the
network.

5 Machine Learning Algorithms in Edge
Computing and UAV
In the current edge technology era, there is the sprite of di⁃

rect communication between devices which are connected with
the network infrastructures without travelling to base stations
or core networks. D2D communication system is one of the
most common networks and has been widely used in recent
years; it is a milestone on the road towards self-organization
and peer-to-peer (P2P) collaboration. Currently most of edge

IoT devices need computing latency-sensitive support, which
is not tolerable at the cloud level. In 2012, a group of research⁃
ers from Cisco proposed a new paradigm known as fog comput⁃
ing. Fog computing and edge computing appear similar since
they both involve bringing intelligence and processing closer to
UE. Most of the edge IoT devices have shortage of computa⁃
tional capacity and limitation of battery life. Due to this limita⁃
tion, the edge IoT devices may fail to perform different opera⁃
tions properly. However, using the emerging MEC paradigm,
the edge device can offload computation intensive tasks to the
MEC server in different ways. The study of computation
offloading and resource allocation in MEC and fog computing
is complicated system analysis because of mobility patterns, ra⁃
dio access interfaces, strong couplings among mobile users
with heterogeneities in application demands, QoS provisioning,
and wireless resources. A machine learning approach special⁃
ly using RL is a promising candidate to manage huge state
space and optimization variables, especially by using different
types of ANN.
DRL is an emerging tool for sophisticated problems in com⁃

munication and networking in IoT, MEC, HetNet, and UAV
networks. The network unities such as IoT devices, mobile us⁃

BS: base stationPSC: public safety communication RRH: remote radio headUAV: unmanned aerial vehicle VBBU: virtualized base band unitWAP: wireless access point

▲Figure 2. UAV enabled fog radio access network (F-RAN) and edge computing system model in public safety communication (PSC).
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ers, and UAVs need to make local and autonomous decisions,
like spectrum access, data rate selection, transmit power con⁃
trol, computation offloading decision, and base station associa⁃
tion, to achieve the goals of different networks including
throughput maximization, delay minimization, energy consump⁃
tion minimization, and UAV deployment. The main problem is
an uncertain and stochastic environment but the MDP model
can solve the problem using dynamic programming, value itera⁃
tion and RL [45]. LUONG et al. [31] studied the role of DRL
in communication and networking. DRL minimizes the com⁃
plexity of optimization and solves the problem in different per⁃
spectives. DRL allows network entities to learn and build
knowledge about the communication and networking environ⁃
ment. By using DRL algorithms, mobile users can learn opti⁃
mal policies for base station selection, channel selection, han⁃
dover decision, caching and offloading decisions, UAV deploy⁃
ment, path planning, and trajectory optimization without know⁃
ing channel model and mobility pattern. In [31], different top⁃
ics of the research works related to DRL were shown in per⁃
centages, for example, as the research in space communication
is 13%, Ad-hoc 19%, cellular network 31%, IoT network 9%,
and others 31%; the related issues to be solved were also pre⁃
sented in percentages, for example, the issues of wireless ca⁃
pacity is 19%, computation offloading 13%, rate control 8%,
network access 13%, data collection 9%, resource scheduling
9%, connectivity preservation 8%, and network security 12%.
Although there are a number of works on machine learning ap⁃
proaches for wireless communication networks [29], [31], [34],
there is no research focus on machine learning based UAV en⁃
abled F-RAN infrastructures yet.
5.1 Machine Learning Based Computation Offloading in

MEC
Edge IoT devices such as sensors and wearable devices have

a limited computational capacity, short life time of battery, and
storage. Due to this limitation, the IoT devices do not support
advanced applications such as face recognition and online gam⁃
ing (VR/AR). To tackle the problems in edge IoT devices and
also in the network, an offloading mechanism is used to offload
computational tasks and data to the nearest computational
nodes (MEC server, UAV, or local servers). The offloading of
data and computation tasks of the IoT devices can minimize
the processing delay and energy consumption, and may en⁃
hance security. Under this circumstance, there are some criti⁃
cal challenges to computation offloading, such as choosing a
computational node from multiple computational nodes and de⁃
termining the offloading rate. Selection of an overloaded com⁃
putational node also affects the computation time and energy
consumption of IoT devices. The previous works on computa⁃
tion offloading and resources allocation used heuristic or itera⁃
tion algorithms, but they have high complexity. Alternatively,
machine learning is a promising tool used for solving the com⁃
plex problem of computation offloading and resource alloca⁃

tion.
Recently, machine learning algorithms have been applied in⁃

to fog edge computing to minimize the optimization problems.
The authors of [50] proposed SDN NFV based DQN framework
for caching and computation offloading to achieve energy effi⁃
ciency in the network. The authors of [51] proposed a deep
learning-based offloading framework to minimize the offloading
cost for MEC networks. A deep supervised learning was also
modeled to obtain the optimal offloading policy for mobile us⁃
ers. The authors of [52] tried to solve the resource allocation
problems by joint optimization of caching, networking and com⁃
putation for video content compressing and encoding, using
feedforward neural network (FNN) based DQN. DDQN and du⁃
eling DQN approaches were proposed to improve the stability
and performance of the DQN algorithm [53]. A DQN frame⁃
work was also proposed for smart city applications, which is a
dynamic orchestration of caching, bandwidth and computation
to achieve QoS for different services [54].
The authors of [55] proposed offloading cellular traffic for

WLAN by adopting the DQL algorithm and MDP model to min⁃
imize energy consumption and mobile user cost. The MEC
server has a limitation of resources to allocate for all edge de⁃
vices; due to this, the MEC server also minimize cost and ener⁃
gy. In a vehicular network, there is a huge action space and
high complexity due to the vehicles’mobility and service de⁃
lay. In [56], a multi-time scale DQN framework is proposed to
minimize the system cost through jointly designing caching,
communication and computing. The authors of [57] proposed
DQN based joint optimization for computation offloading and
resource allocation in MEC-enabled cellular networks. And
the cost of delay and power consumption is accordingly mini⁃
mized for all mobile users. In cellular networks, a DQL based
optimal offloading policy was proposed to minimize the mobile
users’cost and energy consumption [58]. In [59], a virtualized
computation offloading framework using DRL was designed
and a DDQN based DQL algorithm was proposed for an agent
to learn the optimal offloading policy without prior knowledge
of the network environment in a dynamic manner. This work
also focused on the utility function by decomposing Q-function
and combining with DDQN; a novel online SARSA-based DRL
algorithm was proposed [59]. Besides, the computation offload⁃
ing of multiple MEC servers have been considered [60]–[62].
The authors of [60] designed Q-learning and fast DQL offload⁃
ing scheme to achieve optimal policy for IoT devices and ener⁃
gy harvesting capacity.
In [61], a two-layered DQL algorithm for offloading to maxi⁃

mize the utilization of cloud resources was studied; the first lay⁃
er uses a convolutional neural network (CNN) -based DQL
framework to estimate an optimal cluster for each computation⁃
al task and the second layer uses Q-learning to determine the
optimal serving physical machine in cluster. The authors of
[62] proposed distributed deep learning-based offloading
(DDLO) for multi-computing servers, users and tasks in MEC
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networks to minimize wireless device (WD) energy consump⁃
tion by offloading WD tasks to the MEC server or cloud and al⁃
locating bandwidth. Table 2 shows different machine learn⁃
ing algorithms in vehicular networks and cellular networks.
5.2 Machine Learning Based UAV Connected Cellular

Networks
The application of machine learning for UAV is known as the

drone system. Over the past years, many studies were conduct⁃
ed on either the integration of UAV networks with terrestrial net⁃
works or UAV networks in different application streams such as
energy efficiency, computation offloading, resource allocation,
and network coverage extension. However, Most of the previous
works solved the existed problems using heuristic algorithm.
The current research is focusing more on using machine learn⁃
ing algorithms to solve the aerial and terrestrial network integra⁃
tion for UAV assisted cellular networks, IoT, BSs and others to
achieve a specific goal in the network. The cellular connected
UAV will be a future hot research topic because it can integrate
with future cellular networks and machine learning approaches
to create a new intelligent aerial mobile user.
Many studies have been conducted on machine learning al⁃

gorithms used in UAV or cellular connected UAV networks for
optimizing UAV deployment, path planning, and trajectory as
well as improving energy efficiency, UAV coverage, through⁃
put, and resource allocation. GHANAVI et al. [63] proposed
the optimal 3D UAV deployment to implement UAV-BSs
which use RL to assist or serve the terrestrial network of mobil⁃
ity equipment for keeping the reliability of connection and in⁃
creasing the QoS of users. The authors of [64] proposed an effi⁃
cient 3D ABS positioning solution, in which DQN with DRL is
used to assist the terrestrial BS in a small cell where the BS is
overloaded and none of LoS exists for maximizing the spectra
efficiency of the system. In [65], proposed a novel framework
was proposed to deploy ABSs to assist overloaded or congested
base stations in small cells. Researchers also adopted the ma⁃
chine learning approach to tackle the problem of predicting the
traffic demand of each base station through previous histories,

based on which ABSs are deployed for serving users in small
cells and applying contract theory to jointly maximize the indi⁃
vidual utility of each BS and UAV. In [66], an ANN based op⁃
portunistic computation offloading framework was proposed,
the clustered UAV network assists a vehicular traffic network
and the ground controller predicts the response time of each
clustered UAV to offload intensive tasks. A clustered UAV
network can compute intensive tasks by itself or borrow the re⁃
sources from another cluster UAV network [66]. The authors
of [67] studied the model free RL algorithm using Q-learning to
optimize the trajectory of an UAV acting as a flying BS that
serves multiple terrestrial network users. And the UAV also
acts as an autonomous agent in the environment, learning the
trajectory for maximize the sum rate of transmission during
UAV flying time from one location to another location. CUI et
al. [68] studied a multi-agent RL using Q-learning and sto⁃
chastic game theory model for dynamic resource allocation in
multi-UAV connected multi-users. Each UAV acts as an agent
to make a decision independently for maximizing long-term re⁃
wards of each agent to provide reliable communications. Us⁃
ers, power levels and sub-channel selection strategies were al⁃
so jointly studied in [68]. For cellular connected UAVs in be⁃
yond 5G system, a DRL algorithm was proposed based on the
echo state network (ESN) for an interference aware path plan⁃
ning and management [69]. Each UAV acts as an agent that
uses deep ESN to learn optimal path, transmission power level
and cell association in each location of path and minimize se⁃
quence of time-dependent utility function. Authors of [69] also
studied energy efficiency, the control of UAVs, and the fair
covering of the active areas where the users are available and
the UAVs are required to act as base stations by the DRL algo⁃
rithm. In this work, the fairness index algorithm was applied to
control UAV network coverage to minimize UAV energy con⁃
sumption and improve UE QoS.

6 Challenges and Future Research Directions
According to the recent studies of various issues for future

CNN: convolutional neural network
CRN: cognitive radio network

DDQN: double deep Q-network
DQN: deep Q-network

FNN: feedforward neural network
MDP: Markov Decision Process

SARSA: state action reward state action

▼Table 2. Machine learning algorithms for computation offloading and resource allocation in vehicular networks and cellular networks

Paper

[50]
[52]
[53]
[55]
[56]
[57]
[58]
[59]
[60]

Network

CRN
Vehicular Network
Vehicular Network
Cellular System
Cellular System
Cellular System
Cellular System
Cellular System
Cellular System

Agent

Base station
Service Provider
Service Provider
Base Station
Mobile User
Base Station
Mobile User
Mobile User
Mobile User

Model

MDP
MDP
MDP
MDP
MDP
MDP
MDP
MDP

Game theory

Learning Algorithm

DQN using FNN
DQN using FNN
DQN using CNN
DQN using CNN
DQN using CNN
DQN using FNN
DQN using FNN
DDQN, SARSA

DQN using CNN, Q-learning
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generation network infrastructures, we outline some challenges
and future research directions for the integration of aerial net⁃
works and terrestrial networks with machine learning approach⁃
es in F-RAN, NFV and MEC paradigms.
6.1 Challenges
1) Machine learning used in virtualized UAV enabled F-

RAN: RL (commonly DQN, Q-Learning and others) in virtual⁃
ized MEC system has been used to tackle many issues at differ⁃
ent layers of cellular networks. Deploying the machine learn⁃
ing algorithms at different layers of virtualized H-CRAN of
UAV-enabled F-RAN will create the intelligence of the future
network infrastructure of 5G and beyond. However, in this sce⁃
nario there are a number of network infrastructure and con⁃
cepts. Handling this multi-paradigm concept is complex in the
current 5G technology and future 6G network.
2) Multi-agent in multi-layer UAV enabled F-RAN: Most of

the current studies of cellular mobile networks or MEC system
and UAV network focus on efficient resource allocation, energy
efficiency, computation offloading, and caching to minimize de⁃
lay and energy consumption or maximize revenue. The ma⁃
chine learning (commonly RL) algorithms have been used to
tackle these issues, but most of them use a single agent at the
base station or service providers. The recent years have wit⁃
nessed the rapid evolution of network infrastructure and tech⁃
nologies from one generation to another generation every ten
years. In the era of 5G, ultra-dense heterogeneous networks,
which consist of different layers of IoT or fog network that sup⁃
ports ultra-low-latency (ULL) devices, are connected to each
other at a given time step. In the future, beyond 5G or 6G (5G+
AI) will support intelligent Personal Edge (IPE), genome data⁃
base, autonomous health, sensors to AI fusion block-chain,
etc. [70]– [72]. To perform complex multi-dimensional tasks
in these networks, a multi-agent decentralized DRL approach
needs to be adopted. Adopting this concept in the UAV-en⁃
abled F-RAN multi-agent at each layer is somehow complex
and needs clear framework modeling.
3) Determination of the state of network traffic in different

small cells: In 5G and beyond 5G era, there is ultra-dense het⁃
erogeneous network with massive IoT devices and smart mo⁃
bile users which generate a huge amount of traffic in different
circumstances. These ultra-dense devices will be assisted by
UAV- cluster networks to satisfy the QoS and QoE rather than
terrestrial base stations. In the UAV connected cellular net⁃
work at lower layers such as fog or edge computing level, a sin⁃
gle UAV or multi-UAVs are deployed and heuristic algorithms
are used to identify network traffic in small cells, depending on
the UAV capacity and coverage area. However, such applica⁃
tion of machine learning in the dynamic network is unpredict⁃
able, has a large and continuous state space for making the de⁃
termination of the network traffic state in different cells, and
faces complex deployment of UAV-clusters.
4) Handover for transmitting data and task of mIoT devices

for emergency situations: One of the attractive and promising
paradigms of the UAV connected cellular network is acting as
a flying base station to assist the emergency service. In this sit⁃
uation, the mIoT devices would send computational tasks and
huge amount of request data traffic to the local base station at a
specific time step. However, after the occurrence of a natural
disaster, a good and intelligent handover framework is needed
to manage the handovers in a terrestrial network environment
in a disaster area. The application of machine learning algo⁃
rithms in the handover process is much suitable.
6.2 Future Research Directions
1) Distributed machine learning based virtualized UAV en⁃

abled F-RAN: One of the popular machine learning algorithm
frameworks in wireless communication and network is RL with
deep neuron network, which requires large amount of training.
Most of the time the large DNN is implemented at the central
network controller which has sufficient resources such as com⁃
putational capacity and is capable of training a large continu⁃
ous state space and action space in the dynamic network envi⁃
ronment. The central controller minimizes the burden of aerial
mobile users and IoT devices by considering the limitation of
capacities and capabilities. The main functionalities of UAV
networks and terrestrial or cellular networks can be integrated
with the central network controller. The virtualized DRL
framework for UAV enabled F-RAN or UAV connected cellu⁃
lar system is an open issue. The network traffic exchanges
from one layer to another and from aerial mobile users to terres⁃
trial mobile users (mIoT devices) are efficient.
2) Dynamic deployment of multi-UAV cluster in F-RAN: In

UAV networks, one of the open issues is UAV deployment in
optimal 3D placement for different dynamic terrestrial network
infrastructure. A number of previous works focused on UAV
deployment with optimization of trajectory, path planning, and
maximizing energy efficiency. Due to the dynamical network
infrastructure in 5G and beyond 5G (6G), such as the rapid
changes in coverage, the number of connected devices and net⁃
work platforms, the DRL based approach for optimal 3D place⁃
ment of UAV will be a necessity, with the integration of the cel⁃
lular or IoT network. Under this consideration, there are other
issues such as resource management (aerial mobile users and
terrestrial network devices), optimal computation offloading,
network coverage area, minimizing energy consumption of net⁃
work, and cell association to maximize flight time.
3) Machine learning based resource management in UAV-

Enabled F-RAN: A number of studies have been conducted on
resource management at different layers in cellular networks,
vehicular networks, and UAV networks to solve complex prob⁃
lems such as optimization, maximizing energy efficiency, re⁃
source allocation for UAV and bandwidth management. These
studies aim to maximize the revenue or minimize the cost of de⁃
lay and energy in the system. Other works that used heuristic
algorithms to tackle the complex problems in cellular net⁃
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works, vehicular networks, and fog and edge computing are
now adopting machine learning, commonly RL (DQN, Q-learn⁃
ing, DDQN, DDGP, Actor- critics) for resource management
and computation offloading. However, in the mixed network in⁃
frastructures such as UAV-enabled F-RAN, need to design a
machine learning based joint resource management and compu⁃
tation offloading framework.
4) Machine learning for dynamic deployment of ABS in

emergency (PSC): UAV plays a potential role in the future
promising paradigm for emergency situations known as PSC.
The current communication era heavily relies on the backbone
networks. For the failure of base stations due to natural disas⁃
ter or malevolent attacks, PSC is able to use machine learning
to deploy a group of multi-UAVs in ultra-dense HetNet archi⁃
tecture as ABSs that can dynamically replace the destroyed or
over-headed base stations in the terrestrial network. The
UAVs are used to support the reliable connection for edge IoT
devices, extend the network coverage, control the end user de⁃
vices, etc. from the communication perspective. If a destroyed
BS has the computational resource (local server), MEC server,
and power source that cannot be accessed by edge IoT devices,
the intelligent ABSs also replace the destroyed terrestrial BS to
conduct computing task and allocate transmission power to sat⁃
isfy the QoS and QoE of end users/IoT devices at the fog/edge
level of RAN networks.
5) Machine learning based mobility control of multi-UAV

connected cellular network/F-RAN: In a multi-UAV assisted
cellular network/F-RAN, the UAV flies from one location to an⁃
other location within the given time frame. At the time of
UAV’s flying over the terrestrial network, mobile users/IoT de⁃
vices will wait for long time to get access to the UAV terminal.
Due to this, the QoS and QoE of the network could be degrad⁃
ed. To tackle this issue, an intelligent machine learning based
model is designed for multi-UAV mobility management, where
the agents learn by themselves to adjust the mobility in the pre⁃
dicted location in the terrestrial network infrastructure. Be⁃
sides, the model also considers the terrestrial network connect⁃
ed devices such as mobile users, vehicle, and other mobility
environments. In this scenario, the management of resources
(computational, bandwidth, and energy) is also considered in
the mixed network infrastructures.

7 Conclusions
This paper presents a short review of the machine learning

used to solve complex problems in modern network infrastruc⁃
tures and suggests the machine learning based multi UAV-en⁃
abled F-RAN. First, we introduce F-RAN and UAV for the
current and future network technologies. Second, we discuss
UAV in cellular networks and its replacement of base stations
in terrestrial networks. Third, we review machine learning al⁃
gorithms and RL and suggest the machine learning based
UAV-enabled F-RAN framework architecture in H-CRAN net⁃

work infrastructure for computation offloading and resource al⁃
location. We also mention some previous works on edge com⁃
puting and UAV using RL with DNN to solve different prob⁃
lems such as resource allocation, computation offloading and
base station replacement in different networks. Finally, we out⁃
line the challenges and future research directions.
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Abstract: The world today is experiencing an enormous increase in data traffic, coupled with
demand for greater quality of experience (QoE) and performance. Increasing mobile traffic
leads to congestion of backhaul networks. One promising solution to this problem is the mo⁃
bile edge network (MEN) and consequently mobile edge caching. In this paper, a survey of
mobile edge caching using machine learning is explored. Even though a lot of work and sur⁃
veys have been conducted on mobile edge caching, our efforts in this paper are rather focused
on the survey of machine learning based mobile edge caching. Issues affecting edge caching,
such as caching entities, caching policies and caching algorithms, are discussed. The ma⁃
chine learning algorithms applied to edge caching are reviewed followed by a discussion on
the challenges and future works in this field. This survey shows that edge caching can reduce
delay and subsequently the backhaul traffic of the network; most caching is conducted at the
small base stations (SBSs) and caching at unmanned aerial vehicles (UAVs) is recently used
to accommodate mobile users who dissociate from SBSs. This survey also demonstrates that
machine learning approach is the state of the art and reinforcement learning is predominant.
Keywords: mobile edge caching; reinforcement learning; unmanned aerial vehicle

1 Introduction

The world is witnessing an astronomical growth of mo⁃
bile traffic and an ever-increasing demand from end us⁃
ers for high bandwidth and quality of experience (QoE)
because they do almost everything and share vast

amounts of data, documents, media, etc. on their mobile devic⁃
es. Mobile data traffic grew fast between 2011 and 2016 and is
estimated to increase to 49.0 exabytes per month by 2021 [1].
Increasing mobile traffic leads to congestion of backhaul net⁃
works, which further leads to a higher cost of operation and
maintenance, a lower quality of service (QoS), and inhibits data
delivery. The increasing demand for bandwidth coupled with
greater QoE and performances is beyond the current fourth gen⁃
eration (4G) technologies, and new solutions such as the fifth
generation (5G) technologies have emerged. In order to meet

the increasing data demands, small-cell networks will be wide⁃
ly deployed, which can achieve much higher throughput and
energy efficiency [2]. Mobile edge networks (MENs), as shown
in Fig. 1, are a promising solution to address the above issues
(increasing demand for bandwidth, congestion of backhaul net⁃
works, higher cost of operation and maintenance, a lower QoS,
demand for greater QoE and performance, etc.). By moving the
network functions and resources closer to end users (i. e., the
network edge), many benefits can be obtained, such as high da⁃
ta rates, low delay, improved energy efficiency, and flexible
network deployment and management [3]. One innovative pro⁃
posal to overcoming these challenges is caching the content.
While the two common locations for caching the content are at
the evolved packet core (EPC) and the radio access network
(RAN) [4]. Certain popular contents (e.g., on-the-air TV series
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and popular music) are frequently requested; such contents
can be cached during off-peak times at the network edge, such
as at base stations (BSs) and even user devices [5]. Then the
contents are distributed to requesters through high-rate and
low-cost mobile edge networks rather than transmitted through
the backhaul network repeatedly.
There is an emerging paradigm shift towards the use of un⁃

manned aerial vehicles (UAVs) to assist the traditional cellular
networks in wireless communications to provide connectivity
from the sky to ground users. Such communication from the
sky is expected to be a major component of beyond 5G cellular
networks. When mobile users move outside the cell coverage
areas, the cached contents may not be effectively distributed to
the users. In addition, when a user hands over to a new cell,
the contents requested may not be cached, leading to extra de⁃
lay and bandwidth consumption due to the caching in the new
BS or long-distance fetch from the content server. Also, in
drone cells, the limited fronthaul capacity can hardly satisfy
the demands of data-craving services [6]. To alleviate the pres⁃
sure of small cells and reduce the cost of densely deployed
small base stations (SBSs), UAVs can be exploited to assist
small cells in providing high-speed transmission due to their
low cost and high mobility. UAV-aided wireless networks can
establish wireless connections without infrastructure, realize
larger wireless coverage, and achieve higher transmission rate.
This makes it suitable for many practical applications, such as
terrestrial BS offloading [7], emergency response and public

safety [8], Internet of Things (IoT) communi⁃
cations [9], [10], and massive machine type
communications [11]. A lot of surveys have
been conducted on edge caching over the
years. In [12], various cache management
systems were suggested to enhance the per⁃
formance of mobile Ad hoc networks (MA⁃
NETs). The authors of [13] presented a
comprehensive overview of the recently pro⁃
posed in-network caching mechanisms for
information centric networks (ICNs). They
described each caching mechanism in de⁃
tail, presented examples to illustrate how it
works and extensive simulations, and dis⁃
cussed the remaining research challenges.
The authors of [14] provided a review of the
caching problems in ICNs, with a focus on
on-path caching. To this end, a detailed
analysis of the existing caching policies and
forwarding mechanisms that complement
these policies were given in [14]. The pa⁃
per [15] grouped the most interesting cach⁃
ing techniques with regard to different archi⁃
tectures, considering the cases and the qual⁃
ity of the solutions.
Additionally, the survey [12] outlined var⁃

ious cooperative caching schemes in wireless sensor networks
(WSN) and classified them in distinct categories based on type
of approach applied. Maintaining cache consistency is as im⁃
portant as caching data. This paper also gave a brief overview
of various cache consistency models. GLASS et al. [16] devel⁃
oped a unique taxonomy for cache discovery, surveyed a repre⁃
sentative set of MANET-based cooperative caching schemes,
and classified the associated cache discovery techniques with⁃
in the taxonomy. Using this classification, they then highlight⁃
ed the various cache discovery techniques that have been uti⁃
lized, analyzed their potential in addressing the specific chal⁃
lenges that occur when deploying non-safety applications with⁃
in vehicular Ad hoc networks (VANETs), and identified gener⁃
al pitfalls that should be avoided. In [17], a survey of cache
management strategies in ICNs was presented along with their
contributions and limitations, and their performance was evalu⁃
ated in a simulation network environment with respect to cache
hit, stretch ratio, and eviction operations. Some unresolved
ICN caching challenges and directions for future research in
this networking area were also discussed.
The paper [18] provided a systematical survey of the state-of-

the-art caching techniques that were recently developed in cel⁃
lular networks, including macro-cellular networks, heteroge⁃
neous networks, device-to-device networks, cloud-radio access
networks, and fog-radio access networks. In particular, its au⁃
thors gave a tutorial on the fundamental caching techniques
and introduced caching algorithms from three aspects, i. e. ,

▲Figure 1. Architecture of a mobile edge network.
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content placement, content delivery, and joint placement and
delivery. They also provided comprehensive comparisons
among different algorithms in terms of different performance
metrics, including throughput, backhaul cost, power consump⁃
tion, and network delay; finally, they summarized the main re⁃
search achievements in different networks and highlighted
main challenges and potential research directions. A detailed
survey on the emerging technologies to achieve low latency
communications was presented in [19], considering three differ⁃
ent solution domains: RAN, core network, and caching; a gen⁃
eral overview of major 5G cellular network elements such as
software defined network (SDN), network function virtualiza⁃
tion (NFV), caching, and mobile edge computing (MEC) capa⁃
ble of meeting latency and other 5G requirements was also pre⁃
sented. Finally, [20] presented an overview of caching in wire⁃
less networks and then provided a detailed comparison of tradi⁃
tional and popularity-based caching. The attributes of videos
and the evaluation criteria of caching policies were discussed,
some of the recent works on proactive caching, focusing on pre⁃
diction strategies, were summarized, and an insight into the po⁃
tential opportunities and challenges as well as some open re⁃
search issues enabling the realization of efficient deployment
of popularity-based caching as part of the next-generation mo⁃
bile networks were provided.
⋅ Even though a lot of work and surveys have been done on

mobile edge caching [13]– [15], this survey is focused on the
study of machine learning based mobile edge caching.
⋅ We discuss the issues that affect cach⁃

ing in mobile edge networks in general and
the use of UAVs to cache contents intro⁃
duced.
⋅ We discuss learning techniques ap⁃

plied to caching in mobile edge networks.
The rest of the paper is organized as fol⁃

lows. Section 2 outlines some of the issues
that affect edge caching. Section 3 discuss⁃
es learning based caching schemes and
Section 4 analyzes the challenges and fu⁃
ture directions. Conclusions are drawn in
Section 5.

2 Mobile Edge Caching
Many caching schemes pose such ques⁃

tions as where to cache, what to cache, and
how to cache. Answers to these questions
provide us with better caching solutions. A
lot of research work has been done in try⁃
ing to answer some of the above questions
using various methods. Heuristic, stochas⁃
tic and various optimization techniques
have been applied on caching solutions.
As the network gets so dynamic and com⁃

plex, such methods become too difficult and complex to be im⁃
plemented, hence the introduction of machine learning in the
caching solutions to mobile edge caching (architecture shown
in Fig. 2). In this section, we will survey the research efforts
that have been made in the mobile edge networks. The related
issues include caching entities, content description, caching
policies, content delivery, and so on.
2.1 Caching Entities
Caching units can be deployed in many places of a mobile

network, such as the core network, RAN, user devices and cur⁃
rent UAVs, to cater for mobile users. Currently the widely de⁃
ployed places of caching is the EPC [4]. By caching content at
the mobile core network, the mobile traffic can be reduced.
The caching places at the edge network are discussed as fol⁃
lows.
1) Macro BS (MBS) caching: In heterogeneous networks,

MBSs have more coverage areas and can serve more users.
Caching at the MBS can obtain better cache hit probability.
CAO and CAI in [21] investigated a context-aware proactive
caching problem in a heterogeneous network consisting of a
single MBS with grid power supply and multiple small-cells
with energy harvesting, aiming to maximize the service ratio at
the SBSs. The authors of [22] presented Wolpertinger architec⁃
ture for content caching at the macro base station. The pro⁃
posed framework aims at maximizing the long-term cache hit
rate and it requires no knowledge of the content popularity dis⁃

▲Figure 2. Architecture of edge caching.
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tribution. Furthermore, Context-aware data caching in the het⁃
erogeneous small cell networks (HSCNs) with MBS caching
was proposed in [23], [35] to reduce the service delay for end
users.
2) SBS caching: SBSs are densely deployed in next genera⁃

tion heterogeneous networks. Therefore, caching at SBSs is an⁃
other good choice since the SBSs are more close to end users
and usually provide higher data rates. Many researchers [18],
[21], [24] have studied the performance of caching at SBSs.
3) Device caching: device-to-device (D2D) communication

is one of the key technologies in 5G networks. The storage re⁃
sources in mobile devices can be exploited. The QoE of users
can be greatly improved by caching contents in mobile devices
if the caching strategy is carefully designed. In [25], the D2D
caching problem was modeled as a multi-agent multi-armed
bandit problem and Q-learning was used to learn how to coordi⁃
nate the caching decisions. Several D2D caching schemes
with the application of learning techniques have been proposed
[26]–[29].
4) UAV caching: A new trend of caching entity is the use of

UAVs as a flying BS to cache popular contents that would be
able to serve mobile users. The authors of [6] solved the prob⁃
lem of content caching with multi UAVs while considering the
user mobility by using a novel algorithm based on the machine
learning framework of conceptor-based echo state networks. In
this framework, the agent is able to learn the mobility patterns
and request distributions of the users; based on that, it can pre⁃
dict the contents for caching at the UAVs and the location of
the UAVs, and can effectively deliver the contents to the us⁃
ers. Additionally, the liquid state machine is used to maximize
the queue stability requirements of users while caching the
contents at the UAV [30].
2.2 Caching Policies and Algorithms
To decide what to cache, the caching policies and algo⁃

rithms are used in the edge networks and the popularity of con⁃
tent should be considered to maximize the hit probability of
cache, i. e. , the probability that the content requested by users
is cached in the edge networks. Even though content populari⁃
ty can be grouped into Static [31] and Dynamic [28], [32], the
static ones cannot reflect the real content popularity which is
time varying so the dynamic one is more realistic and suitable
for the learning based caching schemes. The commonly used
popularity model is the Zipf model observed in web cach⁃
ing [33].
A host of caching policies and algorithms have been pro⁃

posed in mobile caching. Some of the conventional caching
policies in wired networks are also applicable in wireless net⁃
works. In addition, new schemes such as learning based poli⁃
cies and cooperative caching policies are also proposed. The
literature [16] reviews in detail the conventional caching poli⁃
cies and forwarding mechanism in information centric net⁃
works.

1) Conventional versus learning based caching policies: Con⁃
tent replacement policies such as the least frequently used
(LFU) and least recently used (LRU) have been adopted in a
large number of caching policies [16]. These strategies are
simple and efficient with uniform size objects. However, these
policies ignore the download latency and size of objects. An⁃
other proactive caching policy used in content delivery net⁃
works is the most popular video (MPV) policy, which caches
the most popular videos based on the global video popularity
distribution [34]. However, the cache size of the RAN is very
limited compared to that of CDN. The hit probability achieved
by MPV policy could be too low for RAN caches. On the other
hand, the content popularity is time-varying and is not known
in advance. Therefore, the track and estimation of timely con⁃
tent popularity is an important issue. Based on machine learn⁃
ing technology, learning based caching polices were proposed
in [35]. The authors in [35] solved the problem of distributed
caching in SBSs from a reinforcement learning view. By adopt⁃
ing coded caching, the caching problem is reduced to a linear
program that considers the network connectivity and the coded
caching scheme performs better than the uncoded scheme.
The authors in [36] solved the cache replacement problem with
a Q-learning based strategy.
2) User preference based policies: In [34], the authors pro⁃

posed a user preference profile (UPP) based caching policy. It
is observed that local video popularity is significantly different
from national video popularity and users may show strong pref⁃
erences toward specific video categories. The UPP of each us⁃
er is defined as the probability that a user requests videos of a
specific video category.
3) Non-cooperative versus cooperative caching: Some of the

existing caching policies decide the content to cache at each
base station without considering the cooperation among BSs.
In [34], the proposed scheme makes caching decision based on
the UPP of active users in a specific cell without considering
the impact of caches in other cells. In [36], the cache replace⁃
ment problem modeled as Markov Decision Process (MDP) is
solved in a distributed way using Q-learning method, without
exchanging extra information about cached data between the
BSs. This strategy outperforms the conventional ones such as
the LFU, LRU and randomized strategy. However, a lot of ex⁃
isting works have studied the cooperation among cache entities
when designing the caching policies [26], [37]–[40].
2.3 Caching of Different File Types
The most common file types for caching is multimedia files

such as popular videos and audio files [26], [38], [41]. One es⁃
sential trait of multimedia data is that many users have the
same affinity for popular contents, thus caching of such con⁃
tents aid in improving the hit rate. The Internet of Things is
one of the main use cases of the next generation 5G networks.
IoT refers to a large number of“things”(devices, objects, hu⁃
mans and animals with unique IDs) connected via the Internet
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tribution. Furthermore, Context-aware data caching in the het⁃
erogeneous small cell networks (HSCNs) with MBS caching
was proposed in [23], [35] to reduce the service delay for end
users.
2) SBS caching: SBSs are densely deployed in next genera⁃

tion heterogeneous networks. Therefore, caching at SBSs is an⁃
other good choice since the SBSs are more close to end users
and usually provide higher data rates. Many researchers [18],
[21], [24] have studied the performance of caching at SBSs.
3) Device caching: device-to-device (D2D) communication

is one of the key technologies in 5G networks. The storage re⁃
sources in mobile devices can be exploited. The QoE of users
can be greatly improved by caching contents in mobile devices
if the caching strategy is carefully designed. In [25], the D2D
caching problem was modeled as a multi-agent multi-armed
bandit problem and Q-learning was used to learn how to coordi⁃
nate the caching decisions. Several D2D caching schemes
with the application of learning techniques have been proposed
[26]–[29].
4) UAV caching: A new trend of caching entity is the use of

UAVs as a flying BS to cache popular contents that would be
able to serve mobile users. The authors of [6] solved the prob⁃
lem of content caching with multi UAVs while considering the
user mobility by using a novel algorithm based on the machine
learning framework of conceptor-based echo state networks. In
this framework, the agent is able to learn the mobility patterns
and request distributions of the users; based on that, it can pre⁃
dict the contents for caching at the UAVs and the location of
the UAVs, and can effectively deliver the contents to the us⁃
ers. Additionally, the liquid state machine is used to maximize
the queue stability requirements of users while caching the
contents at the UAV [30].
2.2 Caching Policies and Algorithms
To decide what to cache, the caching policies and algo⁃

rithms are used in the edge networks and the popularity of con⁃
tent should be considered to maximize the hit probability of
cache, i. e. , the probability that the content requested by users
is cached in the edge networks. Even though content populari⁃
ty can be grouped into Static [31] and Dynamic [28], [32], the
static ones cannot reflect the real content popularity which is
time varying so the dynamic one is more realistic and suitable
for the learning based caching schemes. The commonly used
popularity model is the Zipf model observed in web cach⁃
ing [33].
A host of caching policies and algorithms have been pro⁃

posed in mobile caching. Some of the conventional caching
policies in wired networks are also applicable in wireless net⁃
works. In addition, new schemes such as learning based poli⁃
cies and cooperative caching policies are also proposed. The
literature [16] reviews in detail the conventional caching poli⁃
cies and forwarding mechanism in information centric net⁃
works.

1) Conventional versus learning based caching policies: Con⁃
tent replacement policies such as the least frequently used
(LFU) and least recently used (LRU) have been adopted in a
large number of caching policies [16]. These strategies are
simple and efficient with uniform size objects. However, these
policies ignore the download latency and size of objects. An⁃
other proactive caching policy used in content delivery net⁃
works is the most popular video (MPV) policy, which caches
the most popular videos based on the global video popularity
distribution [34]. However, the cache size of the RAN is very
limited compared to that of CDN. The hit probability achieved
by MPV policy could be too low for RAN caches. On the other
hand, the content popularity is time-varying and is not known
in advance. Therefore, the track and estimation of timely con⁃
tent popularity is an important issue. Based on machine learn⁃
ing technology, learning based caching polices were proposed
in [35]. The authors in [35] solved the problem of distributed
caching in SBSs from a reinforcement learning view. By adopt⁃
ing coded caching, the caching problem is reduced to a linear
program that considers the network connectivity and the coded
caching scheme performs better than the uncoded scheme.
The authors in [36] solved the cache replacement problem with
a Q-learning based strategy.
2) User preference based policies: In [34], the authors pro⁃

posed a user preference profile (UPP) based caching policy. It
is observed that local video popularity is significantly different
from national video popularity and users may show strong pref⁃
erences toward specific video categories. The UPP of each us⁃
er is defined as the probability that a user requests videos of a
specific video category.
3) Non-cooperative versus cooperative caching: Some of the

existing caching policies decide the content to cache at each
base station without considering the cooperation among BSs.
In [34], the proposed scheme makes caching decision based on
the UPP of active users in a specific cell without considering
the impact of caches in other cells. In [36], the cache replace⁃
ment problem modeled as Markov Decision Process (MDP) is
solved in a distributed way using Q-learning method, without
exchanging extra information about cached data between the
BSs. This strategy outperforms the conventional ones such as
the LFU, LRU and randomized strategy. However, a lot of ex⁃
isting works have studied the cooperation among cache entities
when designing the caching policies [26], [37]–[40].
2.3 Caching of Different File Types
The most common file types for caching is multimedia files

such as popular videos and audio files [26], [38], [41]. One es⁃
sential trait of multimedia data is that many users have the
same affinity for popular contents, thus caching of such con⁃
tents aid in improving the hit rate. The Internet of Things is
one of the main use cases of the next generation 5G networks.
IoT refers to a large number of“things”(devices, objects, hu⁃
mans and animals with unique IDs) connected via the Internet
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that can share data. Thus the caching of IoT data (sensory and
any kind of data including multimedia data) is also important
for reducing the total traffic load as the IoT data volume is in⁃
creasing and IoT data have different characteristics such as
short lifespan of the data as compared to multimedia data
[42], [43].
2.4 Mobility versus Static User Awareness
User mobility is a unique feature of wireless networks, thus

it should be considered in caching at the network edge. Many
works have been done on this issue. The authors in [44] pro⁃
posed a temporal-spatial recommendation policy, which can
guide mobile users to request their preferred files in proper
time and place, so as to make local popularity peakier. Here
the assumption was that the user preference, the impact of the
recommendation on request probability, and the mobility pat⁃
tern are unknown. Hence, they resorted to deep reinforcement
learning to optimize the recommendation and caching policy.
User mobility in the caching policies was also considered in
[29] and [45].
2.5 Impact on System Performance
1) Capacity: Existing works on edge caching have proved

that caching at the network edge can significantly improve sys⁃
tem capacity. For example, the solution proposed in [34] can
improve capacity by 3 times compared to having no cache in
the RAN.
2) Delay: Caching at the network edge can significantly re⁃

duce content delivery delay due to the proximity of caches to
end users. In [26], the reinforcement learning cooperative con⁃
tent caching scheme significantly reduced content download⁃

ing latency and improved content cache hit rate when com⁃
pared with other popular caching schemes. In [39], the authors
investigated a delay minimization problem by jointly consider⁃
ing the spatiotemporal variation of content variation, the cost of
content sharing between user devices, and the cost of coopera⁃
tive caching among BSs, using a two-stage multi-armed bandit
learning based online cooperative algorithm.
3) Spectral efficiency: a deep reinforcement learning (DRL)

based algorithm was developed for coded caching enabled Fog
RAN (F-RANs) in [46] to provide high spectral and energy effi⁃
ciency. With the help of new designed fog access points (F-
APs), F-RANs can take the full advantage of local caching ca⁃
pabilities, which relieves the load of fronthaul and reduces
transmission delay. In [47], a cache content management poli⁃
cy was proposed, which exploited the popularity of the contents
in order to increase the chances of D2D communications.
With extensive simulations in [47], it was observed that the
proposed Q-learning algorithm indeed learns by reserving near-
optimal number of resource blocks (RBs) to serve the data rate
requirement at each distributed D2D controller (DDC) and that
the one-and two-hop modes of D2D transfer effectively reduces
the load on eNB by transferring a maximum 49% of the re⁃
quired data to the user equipment (UE). A summary of the is⁃
sues affecting edge caching is shown in Table 1.

3 Learning Based Caching
The traditional optimization techniques become complex

and difficult to solve due to the complex nature of the caching
problems. Therefore, the machine learning approaches are in⁃
troduced into solving these kinds of problems. Machine learn⁃

▼Table 1. Summary of literatures on edge caching

Work Area

Caching entities

Content popularity

Caching policies and algorithms

Caching file types
Mobility awareness

Problem

Literature

[15], [21], [23], [31], [37], [47], [49], [51]–[53]
[18], [21]–[25], [28], [29], [31], [35]–[38], [41], [43], [44], [46], [49], [50], [52]–[54]

[25]–[29], [39], [47], [51], [55]
[6], [30], [55], [56]

[31]
[6], [21], [22], [24], [26]–[29], [32], [34]–[36], [39]–[41], [44], [45], [49], [50]–[52], [54]–[57]

[16], [34], [48]
[28], [29], [34], [44], [52], [58]

[6], [21]–[30], [35]–[41], [43]–[47], [49]–[51], [53]–[57]
[34]

[22], [23], [26], [28], [30], [37]–[40], [51], [54], [55], [57]
[6], [21]–[24], [26]–[30], [32], [34]–[41], [44]–[47], [49]–[51], [53], [55], [57]–[59]

[42], [43], [48], [59]
[6], [29], [30], [44], [45], [48], [49], [51], [52]

[23], [24], [26], [27], [34], [37]–[39], [41], [43], [46], [50], [52], [55], [58]
[22]–[26], [37], [44]

[35], [36], [39]–[41], [45]–[47]
[6], [34], [49], [58],

Key Points

Macro base station (MBS)
Small base station (SBS)

Device
Unmanned aerial vehicle (UAV)

Static model
Dynamic model

Conventional caching policies
User preference based polices
Learning based policies
Non-cooperative policies
Cooperative policies
Multimedia data

Internet of Things (IoT) data
Spatial and temporal properties of user mobility

Delay
Hit rate

Backhaul/fronthaul
Quality of experience (QoE)
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ing techniques are generally grouped into the supervised learn⁃
ing, unsupervised learning, and reinforcement learning. This
section will discuss the application of these learning tech⁃
niques in caching.
3.1 Supervised Learning Based Caching
The majority of practical machine learning uses supervised

learning. Supervised learning uses an algorithm to learn the
mapping from input variables X to the output variable (Y =
f (X ) ) based on example input-output pairs. The goal would
be a model that would approximate the mapping function so
well that when you have new input data (X), you can predict
the output variables (Y) for that data.
VARANASI and CHILUKURI [48] proposed a differentiat⁃

ed edge caching scheme called FlexiCache for vehicle to any⁃
thing (V2X) communication, aiming at increasing the QoS of
the network; kernel ridge regression (KRR) is used to predict
the proportion of cache to be allocated to each traffic type, for a
desired QoS parameter.
CHEN, et al. [30] used the liquid state machine to solve the

problem of joint caching and resource allocation in a network of
cache-enabled UAVs that serve wireless ground users over the
Long Term Evolution (LTE) licensed and unlicensed bands.
SHEN et al. [49] considered caching selected contents of

SBSs in an ultra-dense network (UDN). The cache efficiency
problem is formulated as a system backhaul load minimization
problem, which is hard to be solved for the highly random con⁃
tent demands. Therefore, the cache strategies based on ma⁃
chine learning (K-means and K-Nearest Neighbour (K-NN))
were proposed to tackle this difficult problem from the perspec⁃
tive of exploiting the potential of mobile traffic data. Other ma⁃
chine learning schemes include [23], [38], [40], [50], etc.
3.2 Unsupervised Learning Based Caching
For unsupervised learning, you only have input data (X) and

no corresponding output variables. The goal of unsupervised
learning is to learn more about data by modeling the underly⁃
ing structure or distribution in the data. The algorithms are
left to their own devices to discover and present the interesting
structure in the data. Examples are found in the literatures
[27], [28], [32], and [49].
In [49], the K-means clustering algorithm was used to fully

uncover hidden spatio-temporal patterns of content requests at
SBSs, and achieve personalized inter-cluster cache and predic⁃
tive intra-cluster cache. Then, the K-NN classi fi cation algo⁃
rithm was introduced to categorize the constantly emerging
new contents and cache them in the corresponding cluster peri⁃
odically with high accuracy and low complexity.
The authors in [27] proposed an ef fi cient learning-based

caching algorithm operating together with a non-parametric es⁃
timator to minimize the average transmission delay in D2D-en⁃
abled cellular networks. It is assumed that the system does not
have any prior information regarding the popularity of the files,
and the non-parametric estimator is aimed at learning the in⁃

tensity function of the file requests. An algorithm was devised
to determine the best <file,user> pairs that provide the best de⁃
lay improvement in each loop to form a caching policy with
very low-transmission delay and high throughput. This algo⁃
rithm was also extended to address a more general scenario, in
which the distributions of fading coefficients and the values of
system parameters potentially change over time.
In order to learn user preference, the authors of [28] mod⁃

eled the user request behavior resorting to probabilistic latent
semantic analysis and the model parameters are learned by the
expectation maximization algorithm. They found that the user
preferences are less similar and the activity level and topic
preference of each user change slowly over time. Based on this
observation, they introduced a prior knowledge-based learning
algorithm for user preference, which can shorten the learning
time.
Based on SDN, the authors of [32] proposed a deep-learning-

based content popularity prediction (DLCPP) to achieve the
popularity prediction. DLCPP adopts the switch’s computing
resources and links in the SDN to build a distributed and recon
figurable deep learning network. For DLCPP, they initially de⁃
termine the metrics that can reflect changes in content popular⁃
ity. Each network node collects the spatial-temporal joint dis⁃
tribution data of these metrics. Then, the data are used as in⁃
put to stacked auto-encoders (SAE) in DLCPP to extract the
spatiotemporal features of popularity. Finally, the popularity
prediction is transformed into a multi-classi fi cation problem
through discretizing the content popularity into multiple classi⁃
fications. The Softmax classifier is used to achieve the content
popularity prediction.
3.3 Reinforcement Learning Based Caching
In reinforcement learning, an agent is able to learn from its

environment and take some action so as to maximize some no⁃
tion of cumulative reward with or without a model. The authors
of [22], inspired by the success of DRL in solving complicated
control problems, presented a DRL-based framework with Wol⁃
pertinger architecture for content caching at the base station.
The proposed framework is aimed at maximizing the long-term
cache hit rate, and it requires no knowledge of the content pop⁃
ularity distribution. SUNG et al. [37] applied reinforcement
learning (Q-learning) to the content replacement problem in a
wireless content delivery network (WCDN) with cooperative
caching to maximize the hit ratio based on a multi-agent Q-
learning scheme.
CHENG et al. [52] proposed a novel localized deterministic

caching framework, based on machine learning techniques. By
introducing the concept of the rating matrix, they first proposed
a new Bayesian learning method to predict personal preferenc⁃
es and estimate the (individual content request probability)
ICRP. This crucial information was then incorporated into
their caching strategy for maximizing the system throughput, or
equivalently, minimizing the download latency, where a deter⁃
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ministic caching algorithm based on reinforcement learning
was proposed to optimize the content placement. The authors
of [42] presented fundamentals of caching, major challenges,
relevant state of the art, and a description of their current ap⁃
proaches. They showed directions of using machine learning
for caching in the IoT.
Additionally, the authors of [58] proposed a multi-agent rein⁃

forcement learning (MARL)-based cooperative content caching
policy for the MEC architecture when the users’preference is
unknown and only the historical content demands can be ob⁃
served. They formulated the cooperative content caching prob⁃
lem as a multi-agent multi-armed bandit problem and proposed
a MARL-based algorithm to solve the problem. In [26], the
D2D caching problem is modeled as a multi-agent multi-armed
bandit problem and use Q-learning to learn how to coordinate
the caching decisions. The user devices can be independent
learners if they learn the Q-values of their own actions, or joint
action learners if they learn the Q-values of their own actions
in conjunction with those of other UEs. The authors of [25]
presented Stimulable Neural Network (SNN)-Cache that lever⁃
ages SNN to utilize the inter-relationships among sequenced re⁃
quests in caching decision, evaluated SNN-Cache using an
ICN simulator, and showed that it decreases the load of content
servers significantly compared to a recent size-aware cache re⁃
placement algorithm (up to 30. 7%) as well as the traditional
cache replacement algorithms.
Furthermore, SADEGHI et al. [57] introduced a novel ap⁃

proach to account for space-time popularity of user requests by
casting the caching task in a reinforcement learning (RL)
framework for heterogeneous networks (Hetnets). HE et al.
[51] formulated an optimization problem to maximize the net⁃
work operator’s utility while considering the trust-based social

networks specifically with MEC, in-network caching and D2D
communications under the umbrella of a 3C framework using a
deep reinforcement learning approach. An integrated frame⁃
work that can enable dynamic orchestration of networking,
caching and computing resources to improve the performance
of next generation vehicular networks was studied in [60] and
in this framework, the resource allocation strategy is formulat⁃
ed as a joint optimization problem and DRL is used for prob⁃
lem solving. The authors of [61] dealt with an information-cen⁃
tric virtualized network for smart cities with a deep Q learning
approach for caching. There are other reinforcement based
caching schemes proposed in [26], [29], [43], [44], [46], [50],
and [59]. Table 2 summarizes some of the machine learning
techniques applied to mobile edge caching.

4 Challenges and Future Directions
Like traditional networks, wireless networks are faced with

similar challenges like communication cost, storage and com⁃
putation. The major challenge of caching is the limited storage
space. Because of this, a caching scheme must carefully con⁃
sider the caching decision and replacement techniques to over⁃
come the challenge and improve the performance such as back⁃
haul traffic, latency, and throughput of the network.
4.1 Online Caching
Caching has the content placement phase during which the

content is placed in the caching unit and the content delivery
phase during which the content is actually delivered to the
end user (entity). At some point in the life span of the con⁃
tent, the content may require updating. One efficient caching
update is update during the content delivery phase rather

▼Table 2. A summary of machine learning techniques applied to edge caching

Type of Machine Learning

Supervised learning

Unsupervised learning

Reinforcement learning

Literature
[6]
[30]

[22], [49]
[48]

[38], [40], [50]
[23]
[25]

[27], [28], [32], [49]
[27], [28]
[32]
[57]

[44]–[46], [51]
[60]

[22], [34], [37], [43]
[26], [58]
[21]
[52]

Algorithm
Eco state network
Liquid state network

K-Nearest Neighbour (KNN)
Kernel ridge regression (KRR)

Deep learning
Convolutional neural network (CNN)
Stimulable neural network (SNN)

K-means
Greedy based algorithm

Stacked auto encoders (SAEs) deep learning
Q-learning

Deep Q-learning
Double-dueling-deep Q-network

Actor critic
Multi agent Q-learning

Post decision state based approximate RL (PDS-ARL)
Discrete learning automata (DLA)
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than the content placement phase. This is known as online
caching. Online caching together with machine learning pres⁃
ents itself as an important direction in the future cache re⁃
search.
4.2 UAV Caching
A major problem of mobile edge caching is the mobility of

users. Mobile users tend to dissociate themselves from their
associated base stations. The advent of UAV caching and ma⁃
chine learning techniques in the future 5G networks would
help to solve this bottleneck by employing UAVs as flying
base stations to help to proactively cache content for such mo⁃
bile users. The UAV can assist cellular networks or can be a
complete UAV network on their own depending on the appli⁃
cation.
4.3 Context Awareness
The mobile edge networks are advantageous in exploiting

context information (user location, other surrounding users,
and resources in the environment). The real time context
aware applications could be accomplished with the use of ma⁃
chine learning by collaborations among MEC platforms.
4.4 Virtualization
In the future 5G networks, different service providers would

be providing different services with different QoS and QoE.
Network infrastructure are expensive, so there is the need for
the research into providing virtual networks that would be able
to efficiently share and utilize the underlying physical infra⁃
structure.
4.5 Integration
The architecture of mobile edge networks involves resources

such as computing, storage and communications. The efficient
integration of these resources to achieve the optimal perfor⁃
mance for all users and applications is an ongoing research di⁃
rection that is not concluded. More comprehensive resource al⁃
location schemes need to be developed.

5 Conclusions
This paper surveys and summarizes the research efforts

made on the mobile edge caching and communication resourc⁃
es. The related issues of caching are discussed. Additionally,
machine learning based caching schemes are discussed and
summarized. In this survey, we group the machine learning
based caching into reinforcement learning and other learning
techniques. We realize that reinforcement learning is more
widely used because of its ability to interact and learn from the
environment with or without a model. The more recent UAV
caching is also introduced which is able to deal with mobile us⁃
ers that request content. Finally, the challenges and future
works on mobile edge caching are discussed.
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Review A Survey on Network Operation and Maintenance Quality Evaluation Models

LIU Lixia, WU Muyang, JI Feng, and LIU Zheng

A Survey on Network Operation andA Survey on Network Operation and
Maintenance Quality Evaluation ModelsMaintenance Quality Evaluation Models

Abstract: The evaluation of network operation and maintenance quality is an important
reference for carriers to improve their service. However, the traditional evaluation meth⁃
ods involve so much human participation that it cannot cope with the explosive amount
of data. Therefore, both the major carriers and researchers are trying to find solutions to
evaluate the quality of network operation and maintenance more objectively and accu⁃
rately. In this paper, we analyze the general process of quality evaluation models for net⁃
work operation and maintenance. The process has four steps: 1) selection of evaluation
indicators; 2) data process for chosen indicators; 3) determination of indicator weights;
4) establishment of evaluation models. We further describe the working principle of
each step, especially the methods for indicator selection and weight determination. Fi⁃
nally, we review the recently proposed evaluation models and the international stan⁃
dards of network operation and maintenance quality evaluation.
Keywords: quality evaluation; network operation and maintenance; quality of service;
indicator selection; weight determination

1 Introduction

Great progress has been made in the research of commu⁃
nication technologies. The coverage of voice network
has been expanding, the 4G network has been widely
put into use, and the 5G technology is continuously de⁃

veloping [1]. With the popularity of mobile communication de⁃
vices, the number of users has also been increasing explosively,
which makes the competition among major carriers become
fiercer [2]. In order to take up more market share, the carriers
utilize various approaches such as market research, user ques⁃
tionnaire, drive test, and network quality evaluation. Network
quality evaluation is a comprehensive approach, involving quali⁃
ty of service evaluation, the efficiency of maintenance evalua⁃
tion, etc. Quality evaluation is also utilized in education, eco⁃
nomics, management and other fields. It is a good way to assess
work results and improve work methods.
In the process of network quality evaluation, we usually use

indicators to measure the quality of network in different as⁃
pects. These indicators come from drive test data, ticket data
or alarm data supplied by the carriers. However, with the ex⁃
pansion of communication networks and services, various de⁃
vice types and the huge number of devices bring difficulties to

traditional evaluation methods for the quality evaluation of op⁃
eration and maintenance. First of all, it is impossible to take
all of the original indicators into the evaluation process, since
the traditional indicator selection methods need too much re⁃
source and lacks objectivity and comprehensiveness. Second,
data heterogeneity caused by different types of devices from
different manufacturers makes data integration a challenge. In
addition, the expansion of user groups and network scopes, as
well as the use of automatic drive test technology, has also
brought a surge of data, which inevitably has an impact on the
efficiency of calculation.
How to establish a proper and accurate quality evaluation

model for network operation and maintenance has become an
important issue. The international standard organizations,
such as International Telecommunications Union (ITU) and
Telecom Management Forum (TMF), have defined the quality
of service (QoS) models and the related parameters [3]– [8].
Many researchers athome and abroad have proposed their qual⁃
ity evaluation models or methods. This paper conducts a sur⁃
vey on the research about how to evaluate the quality of net⁃
work operation and maintenance and sums up the general con⁃
struction process of the evaluation model.

2 Construction Process of Quality Evalua⁃
tion Model
The methods for obtaining the condition of a network in⁃
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clude custom survey, alarm systems, ticket records, drive tests,
etc. The alarm systems record the data, such as fault elements,
fault occurrence time, failure time, which is the primary refer⁃
ence for carriers to predict and resolve the emergent problems.
The ticket records include handling time, reply delay, failure
cause, solving methods and influence, which is always used for
evaluating maintenance efficiency. The drive test is the most
common method in the industry to test the wireless signal. It
can provide the signal strength, voice quality, business estab⁃
lishment success rate, average throughput of uplink and down⁃
link, and some other crucial data. The automatic drive test sys⁃
tem has been popular in recent years, making it possible to ex⁃
pand the scope and increase the frequency of the test, therefore
get more accurate data and reduce the costs. The explosive
growth of the data mentioned above, which is derived from vari⁃
ous sources and has different formats, brings challenges to the
traditional manual evaluation methods.
Many researchers have proposed their quality evaluation mod⁃

els and methods, and have improved the key technologies. We
summarized the general process of constructing the quality eval⁃
uation model of network operation and maintenance by taking a
survey on the state-of-the-art technologies in detail. The process
can be divided into the following four steps:
1) Evaluation indicator selection: In this step, we pick up im⁃

portant indicators from the original indicator set to reduce the
difficulty of data processing and calculation. At the stage of
choosing the indicators, an important principle is that the indi⁃
cators should be as comprehensive as possible without informa⁃
tion overlap.
2) Data process for chosen indicators: The major task is to

change data into a unified format which can make it easy to cal⁃
culate and integrate. First we quantify the qualitative data, that
is, change the natural language data into numerical terms. And
then we process all the data of chosen indicators in a normalized
way, so that the data will have the same units of measurement
for mathematical operations, such as adding or multiplying.
3) Determination of indicator weights: In this step, we utilize

the weight to reflect the importance of the chosen indicator.
Then we do some mathematical operations according to the
weight of indicators to enhance the accuracy of the evaluation
result. Although there are many studies relying on expert expe⁃
rience to specify the weight, those methods may result in differ⁃
ent evaluations for different experts. In this article, we sum up
the objective weight determination methods which could re⁃
duce human participation as far as possible to ensure the accu⁃
racy and objectivity of a quality evaluation model.
4) Establishment of evaluation model: The final step is to de⁃

termine the proper evaluation formula. We study on how to
combine weights and data and how to combine the scores of
each indicator to get the final evaluation results.
When a quality evaluation model is constructed, these four

steps are in a linear order. We select the crucial indicator first
to reduce the amount of data, which will make the following

processes easier. And only the data are standardized to the
same dimension can they be utilized to weight calculation and
the final integration operation.

3 Evaluation Indicators Selection
The evaluation indicators indicate the evaluation content

and the evaluation result is obtained by statistical analysis of
the evaluation indicators. With the progress of communication
technology, the communication network is becoming complex,
and the service provided by carriers diverse, which leads to the
increase of the number of relevant indicators. Evaluating all
the indicators will result in great computation complexity and
information overlap. So we should obtain a smaller indicator
set of network operation and maintenance quality evaluation
model by filtering the original indicator set. The selected indi⁃
cator set should be concise enough without missing the infor⁃
mation of the original indicator.
Traditionally, the indicator selection is usually completed by

experts based on subjective experience. Although the indicator
set obtained in this way is concise and specific, it cannot guaran⁃
tee the comprehensiveness and non-overlapping of the indicator
information. Several international standard organizations have
proposed some general models and the related terminology defi⁃
nitions, but has not given the concrete appraisal target. There⁃
fore, we surveyed the literature [9]–[11] and summed up a num⁃
ber of commonly used indicator selection methods.
LI et al. [9] proposed an indicator classification method

which requires multiple data sets to compute the cross-correla⁃
tion coefficients of indicators in different datasets. The cross-
correlation coefficient is usually used in the signal domain to
indicate the similarity between two signal curves. We utilize
the absolute value form of the cross-correlation coefficient for
analyzing. The greater the absolute values of two indicators in⁃
dicate, the more similar they are. The data sequence of an in⁃
dicator is a kind of time series data, which is similar to the dis⁃
crete signal data. The correlation coefficient could be utilized
to represent the similarity between two indicators. Suppose
two indicators x and y are time series data with m samples re⁃
spectively, then the formula of the correlation between the two
indicators could be represented as rxy:

rxy =∑i = 1
m (xi - -x ) ( )yi - -y /
∑i = 1

m ( )xi - -x
2 ⋅∑i = 1

m ( )yi - -y
2 , (1)

where xi and yi represent the i-th sample of indicators x and yrespectively, and -x and -y are the mean values of these two indi⁃
cators.
According to the law of correlation, two indicators are highly

correlated when the absolute value of the correlation number is
greater than 0. 7 [9]. The paper takes many different data sets
into account, and calculates the correlation of the chosen indi⁃
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cators respectively. Two indicators are similar if they are high⁃
ly correlated in most datasets. Then we can use one of them to
represent this class of indicators.
DENG et al. [10] made a detailed description of the condi⁃

tional generalized minimum variance method, which is similar to
the method mentioned above. But this method does not involve
correlation coefficient in judging the similarity between indica⁃
tors. In this paper, if the value of an indicator set is constant
meanwhile the amplitude variation of another indicator set is
very small, the two indicator sets have a strong correlation. If
we delete one of it, there will be tiny information loss. This
method arranges the data sequences of the chosen indicator set
as a matrix. The length of each data sequence should be the
same. Then it uses the determinant of the matrix, that is, the
generalized variance to reflect the change of the indicators. The
range of generalized variance is between 0 and 1. The larger the
generalized variance is, the more independent the indicator data
series is. If the data sequences of two indicators are linearly re⁃
lated, the generalized variance is 0.
After using the method mentioned in literature [9] to divide

the indicator set into several classes, the next step is to choose
the appropriate indicators in each class to represent the entire
class. Similarly, when the two indicator sets have similar infor⁃
mation, we need to determine which one to be deleted in the
method in [10]. In the industry there is no appropriate method
now, but we can use the expert experience to choose the more
commonly used and more representative indicators. This meth⁃
od is not only objective and accurate, but also takes the key in⁃
dicators of carriers concerned into account, which accords with
economic benefit.
Another method, principal component analysis is mentioned

in the literature [11]. This method changes a given set of related
variables into another set of uncorrelated variables by linear
transformation and keeps the total variance of the variables con⁃
stant. The new variables are arranged according to the descend⁃
ing order of variance. The variable with the largest variance is
called the first principal component, the variable with the sec⁃
ond variance the second principal component, and so on. The
preceding variable has more significant influence on the result
of the evaluation and should be retained while the latter variable
has less influence and should be discarded. We use the method
of characteristic root to determine whether a variable should be
retained; that is, if the characteristic root of a variable is greater
than 1, it will be retained and vice versa. Although this method
is just a rule of thumb, many examples have proved it very sim⁃
ple and reliable.
The indicator classification method based on correlation and

the conditional generalized minimum variance method are same
in concept. Both the methods remove the indicators which have
similar information from the original indicator set. The differ⁃
ence between the two methods is that different parameters are
utilized to calculate the similarity between the indicators. The
principal component analysis can also get the importance of in⁃

dicators, but it may need a great amount of computation.

4 Data Process for Chosen Indicators
The indicator set may contain some qualitative indicators,

which need to be quantified, and then can be combined with oth⁃
er quantitative indicators. Quantitative indicators are indicators
which have numerical values while qualitative indicators are in⁃
dicators whose member is the evaluation or description of the
subjects. Qualitative indicators usually include categorical and
sequential indicators [12]. We can use the mean or the median
method to quantify the sequential indicators, which has a clear
order or degree of relationship between the indicators. Litera⁃
ture [10] uses a median approach. Assuming that an indicator
has n values, a1,a2,...,an, after the quantization process the valuebecomes X1,X2,...,Xn. Assuming ai as a normal distribution, wedivided the Xi value into n segments according to a probabilitydistribution, and Xi is the median of each segment, where X fol⁃lows the N (0, 1) distribution. By querying the normal distribu⁃
tion table, we can get the value of Xi.The value of categorical indicators usually is unstructured
and disordered. It is challenging to use objective methods to
quantify categorical indicators. Most of the examples rely on
expert experience for a rough estimate. This type of data usual⁃
ly appears in coal mining, water conservancy, finance and ser⁃
vices industries. In the network operation and maintenance
quality evaluation, this data mainly appears in the manual fill-
in ticket data, such as“business impact”,“troubleshooting re⁃
sults”and other indicators. ZHANG et al. [13] used a statisti⁃
cal figure collecting method, which is a subjective quantifica⁃
tion approach for qualitative indicators. In this method, the ex⁃
perts give their prediction about the range of the evaluation.
The range given by different experts on the same indicators
may be different. A smaller range indicates greater accuracy
of prediction and vice versa, and thus determines the weight of
each expert. By combing the weight, we can get the compre⁃
hensive quantification value, according to statistical figure col⁃
lecting principles.
In addition, the selected indicator data needs to be normal⁃

ized. Normalized processing refers to the elimination of the im⁃
pact of the magnitude by changing the actual value of the indi⁃
cators to a normalized form that can be integrated with other in⁃
dicators, which makes it possible to integrate the evaluation of
indicators. The normalized processing methods commonly
used are the Z-score normalization method and min-max nor⁃
malization method [14]. When normalizing the data, we need
to divide the indicators into negative indicators and positive in⁃
dicators. The negative indicator means that the increase of in⁃
dicator value has a negative impact on the object, while the
positive indicator is the indicator that has a positive impact
when its value increases. Assume that the indicator I has the
data sequence d1,d2,...,dn, where the maximum value is dmaxand the minimum value is dmin. Using the min-max normaliza⁃
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tion method, the data can be transformed as a normalized value
between [0, 1] as s1,s2,...,sn. If the data sequence is all thesame, the data will be processed as 1, otherwise, the formula is
as follows:

sj =
ì

í

î

ï
ï
ï
ï

dj - dmin
dmax - dmin , I is positive indicators
dmax - dj
dmax - dmin , I is negative indicators

. (2)

5 Determination of Indicator Weights
The weight determination is the most important step in the con⁃

struction of an evaluation model. A reasonable weight set will en⁃
hance the accuracy of the evaluation results. Traditionally, the
weight determination relies on expert experience which requires a
lot of human resources and lacks objectivity, and makes it diffi⁃
cult to reflect the differences between indicators. We have inves⁃
tigated and summed up the following several objective ways to de⁃
termine the weight of indicators [10], [15]–[18].
The Analytic Hierarchy Process (AHP) is used to determine

the weight [10], [16]. There are four methods of AHP: the geo⁃
metric mean method, arithmetic mean method, eigenvector
method, and least squares method. The basic principles and
steps of these four methods are almost the same, which can be
divided into three steps:
1) First of all, construct a hierarchical structure model that

can be divided into three levels: the target layer, the criterion
layer and the program layer. The number of hierarchical levels
is related to the complexity of the problem. In general, the
number of layers is not limited, but each element of the level
should be less than nine.
2) Construct the judgment matrix for each level mentioned

above. And conduct the single level ranking and take consis⁃
tency test.
3) Finally, make the overall ranking and consistency test.

And calculate the weight of each level, then integrate all the
weights to a comprehensive one.
This method can be used to systematically analyze the prob⁃

lem with a little quantitative data. However, it will result in
too many qualitative conclusions and makes it difficult to cope
with the situation when there are excessive indicators.
One of the easiest ways is the standard deviation method

[15], which uses the standard deviation of the indicator data to
measure the degree of deviation of the data from the mean val⁃
ue. If the standard deviation of the data is larger, the variation
of the indicator is larger between the different evaluation ob⁃
jects. That is to say, the indicator will provide the greater
amount of information and make the greater effect in the evalu⁃
ation, thus it should be given greater weight. The standard de⁃
viation method is used to calculate the i-th indicator’s weight
wi in the selected n indicators with the formula as follows:

wi = Si /∑k = 1
n Sk , (3)

where Si is the standard deviation of the data of the i-th indica⁃tor. In addition, regardless of which method is used, the sum
of the weights of all the calculated indicators should be con⁃
stant as 1.
The entropy method [17] is a thermodynamics concept, intro⁃

duced by Shannon, which is used to measure the uncertainty.
There is a similarity between the idea of the entropy method
and the standard deviation method. The information entropy of
a certain indicator is smaller, the degree of variation of the da⁃
ta is greater, which reflect the indicator and will provide more
information therefore should be given greater weight. Suppose
there are n indicators, each indicator has m data. The i-th indi⁃
cator information entropy formula is as follows:

Ei = -(lnm) -1∑j = 1
m pij ln pij, i = 1,2,...,n, (4)

where pij = dij /∑j = 1
m dij, in which dij is the j-th data record of

the i-th indicator, then the weight of the i-th indicator is:

wi = 1 - Ei
n -∑i = 1

n Ei
, i = 1,2,...,n. (5)

The last weight determination method was proposed in [18].
The degree of similarity is expressed by introducing the con⁃
flict between the indicators. The greater the conflict between
indicators, the higher the amount of information reflected when
the indicators change, and vice versa. The conflict of i-th indi⁃
cator is calculated as follows:

ci =∑j = 1, j ≠ i
n ( )1 - rij , i = 1,2,...,n, (6)

where rij is the correlation coefficient between the i-th and i-thindicators. The calculation method of the correlation coeffi⁃
cient can refer to the formula in the indicator selection step.
This method combines the aforementioned weights and conflict
to obtain the final weight. The weight with conflict of the i-th
indicator is determined by wi and ci. The formula for calculat⁃ing the weight with conflict of the indicator Wi is:

Wi = wi·ci∑i = 1
n wi·ci , i = 1,2,...,n. (7)

LUO et al. [15] compared the effects of the aforementioned
objective weight determination methods. It turned out that
combining the standard deviation method and conflict as above
form performs best. In the selection of indicators, we need to
pay attention to select the non-overlapping information be⁃
tween the indicators as much as possible. The aforementioned
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weight determination method with conflict is one way to
achieve this effect.

6 Establishment of Evaluation Model
The last step of building the model is to determine the eval⁃

uation formula, combined with the indicator data and the
weight to get the final evaluation results. Commonly used
evaluation formulas are the linear weighted sum, logarithmic
linear weighted sum, mixed weighting, and so on, among
which linear weighting is the simplest and easiest. Assuming
that n indicators are selected, and the weights of each indica⁃
tor are w1,w2,...,wn. These indicators data sequence is
d1,d2,... ,dn, then the evaluation formula of linear weightingmethod is:

R = d1·w1 + d2·w2 + ... + dn·wn. (8)
After the calculation, we will get the score, a value within the

range [0, 1], of the object at a certain moment. In this way, the
results of the same object at different times will be calculated;
hence the fractional curve with time and the mass fluctuation of
the object can be obtained. One can also use the top-N algo⁃
rithm [19] to compare the scores of different objects at the same
time and select the first N best or worst objects for analysis.
Top-N analysis can narrow the scope of the problem, which is
more suitable for carriers to improve prominent problems.
There are some problems existing in the quality evaluation

model using the method mentioned above. It is difficult to ex⁃
plain the mean of each time node’s fraction, since it can only
be explained by comparing with before and after time nodes’
fraction. So here a fuzzy comprehensive evaluation method
[20]–[22] is introduced to evaluate the quality of network op⁃
eration and maintenance. The method applies to the case that
cannot clearly explain the“good”or“bad”quality, such as the
quality of an object at any time node. The fuzzy comprehen⁃
sive evaluation method also needs to complete indicator select⁃
ing, data processing and weight determining, and then needs to
determine the membership function and establish the fuzzy
evaluation matrix. There are many ways to determine the mem⁃
bership function, such as various types of F distribution. The
comprehensive weight can function as a fuzzy evaluation ma⁃
trix, shown in Table 1. The rows of the matrix are the various
factors of the evaluation object and the columns are different
grades. Each cell in this matrix is the degree of membership of
the factor for the grade. If we synthesize all the columns, for

example, taking an averaging operation, we will get the degree
of membership to this grade of this object. By calculating the
degree of membership to all grades, we choose the largest
grade as the final evaluation of the object. We establish the
fuzzy evaluation matrix as Table 1, where the data in this table
are manually fill-in. We take three factors into account as

“Call completing rate”,“Reconstruction success rate”and
“Uplink user average rate”. And we evaluate each factor in
three grades as“Good”,“Medium”and“Bad”. As shown in
Table 1, the first cell is 47. 6%, which means that the possibili⁃
ty of the call completing rate to be good is 47. 6%. After syn⁃
thesizing each column, we could get the degree of membership
of each grade. Then we choose the largest grade as the final
evaluation; in this example, the object has the largest possibili⁃
ty to be perfect.

7 International Standards
To deal with the large amounts of heterogeneous data, the

standardization of network operation and maintenance quality
evaluation methods has become a focus of attention in the in⁃
dustry. The International Organization for Standardization has
proposed some general models for assessing network quality,
which can serve as a reference for carriers to evaluate network
performance, quality of service and so on. In the GB923 hand⁃
book [3], the Telecom Management Forum (TMF) proposed a
mapping model of key performance indicators (KPIs) and key
quality indicators (KQIs). KPI is a measure of performance
and KQI is an indicator of the quality of service, which is the
integration and supplementation of KPI indicators. In both cas⁃
es, KPI is based on network performance and KQI is a direct
response to the business service performance of the end to end
network. In GB923, two kinds of KQIs are defined. One is the
product quality KQI, reflecting the quality of the agreement be⁃
tween the carrier and the user. The other is the quality of ser⁃
vice KQI, reflecting the quality of a single service. The rela⁃
tionship between these two KQIs is that the quality of service
KQI consists of a number of service elements of the KPI com⁃
position while the product quality KQI consists of a number of
quality of service KQI composition, which ultimately forms as
hierarchical structure of the key indicators (Fig. 1).
The International Telecommunication Union (ITU) also

presents a general model for business performance in the
E. 802 standard document [8]. The goal of this model is to an⁃
alyze the performance issues in detail by a structured ap⁃
proach that facilitates the transformation of identified quality
criteria into QoS parameters and can be described with easy-
to-understand technical data. The model is expressed in the
form of a matrix, where Y-axis is the performance factor of
service, and X-axis is the criterion to measure service quali⁃
ty. These elements can cover most aspects of a telecommuni⁃
cation service. The models mentioned in these standard docu⁃
ments cannot be used directly in practice, considering the ac⁃

▼Table 1. Examples of fuzzy evaluation matrices

Call completing rate
Reconstruction success rate
Uplink user average rate

Good
47.6%
58.7%
38.6%

Medium
32.2%
25.6%
37.7%

Bad
20.2%
15.7%
23.7%
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tual situation.

8 Conclusions
In this paper, we summarize the general process of evaluating

network operation and maintenance quality, and divide the eval⁃
uation process into four steps: selecting the evaluation indica⁃
tors, processing the data of chosen indicators, determining the
weight of indicators, and establishing the evaluation model. The
process can also be used in any quality evaluation model of oth⁃
er areas. We introduce each processing step, especially the ob⁃
jective methods which do not rely on expert experience. The
general process above has been utilized to establish a network
performance quality evaluation model for the Shanxi Branch of
China Mobile. The experiment confirmed that this evaluation
model has a good predictive effect on performance alerts.
A future direction could be developing a fully unsupervised

method, such as clustering, for indicator selection. In addition,
the question how to provide a reasonable explanation of the eval⁃
uation results and how to properly display the issues still calls
for many efforts. Finally, in the actual scenarios of the network,
different periods such as working days or weekends may follow
different evaluation criteria, which also needs to be explored.
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▲Figure 1. Key indicator hierarchy [3].
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Abstract: A novel non-geometrical stochastic model (NGSM) for non-wide sense station⁃
ary uncorrelated scattering (non-WSSUS) vehicle-to-vehicle (V2V) channels is proposed.
This model is based on a conventional NGSM and employs a more accurate method to re⁃
produce the realistic characteristics of V2V channels, which successfully extends the ex⁃
isting NGSM to include the line-of-sight (LoS) component. Moreover, the statistical proper⁃
ties of the proposed model in different scenarios, including Doppler power spectral density
(PSD), power delay profile (PDP), and the tap correlation coefficient matrix are simulated
and compared with those of the existing NGSM. Furthermore, the simulation results dem⁃
onstrate not only the utility of the proposed model, but also the correctness of our theoreti⁃
cal derivations.
Keywords: vehicle-to-vehicle; non-WSSUS channels; non-geometrical stochastic model;
LoS component; statistical properties

1 Introduction

Vehicle-to-vehicle (V2V) communication plays a key
role in intelligent transportation systems (ITS), which
aims at improving the traffic efficiency, minimizing
traffic accidents and enabling some new applications

[1]. As a newly emerging communication technique, V2V com⁃
munication faces research challenges and standardization prob⁃
lems, which limit its further development. Therefore, much re⁃
search attention has been attracted to V2V channel modeling
for facilitating the analysis and design of V2V communication
systems [2], [3].
As addressed in [4], [5], V2V channel models can be catego⁃

rized as geometry-based deterministic model (GBDM) [6] and
stochastic model, and the latter can be further classified as
non-geometrical stochastic model (NGSM) [7], [8] and geome⁃
try-based stochastic model (GBSM). The GBDM is character⁃
ized by V2V physical channel parameters in a completely de⁃

terministic approach, whereas its computational complexities
increase with the accuracy requirement. Compared with GB⁃
DM, stochastic models have better tradeoff between accuracy
and complexity, and thus have been widely used currently in
V2V channel modeling. The authors in [9]–[15] proposed sev⁃
eral GBSMs, which used the simplified ray tracing principle
and equivalent scatterer concept to simulate propagation envi⁃
ronment. Though the GBSM can be easily adapted to diverse
scenarios, it is more complex than the NGSM. The NGSM de⁃
termines physical parameters of the V2V channel in a com⁃
pletely stochastic manner without presuming any underlying
geometry. In the literature [7], [8], two conventional wideband
NGSMs were proposed and are both based on the tapped delay
line (TDL) structure.
The wideband NGSM developed in [7] is a conventional

channel model standardized by IEEE 802. 11p. The NGSM in
[7] includes the line-of-sight (LoS) component and has variable
types of Doppler spectra for different delays. Specifically, due
to the short distance of V2V communication, it often includes
the LoS component, especially for the scenario with low vehicu⁃
lar traffic density (VTD). In order to identify the presence of
LoS component, the model employs the Ricean fading. More⁃
over, in the NGSM [7], each tap contains several unresolvable
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subpaths, and subpaths with different delays have different
types of Doppler spectra, e. g. , flat shape, round shape, classic
3 dB shape, and classic 6 dB shape. However, for simplicity,
the NGSM [7] is based on the wide sense stationary uncorrelated
scattering (WSSUS) assumption and only employs the Ricean
fading, which cannot mimic the severe fading in V2V channels.
In the wideband NGSM [8], two characteristics of the V2V

channels not considered in [4] are taken into account, i. e. , non-
stationarity and severe fading. Due to unpredictable traffic and
changes in the size, location, as well as velocity of scatterers, the
number of multipath components and strengths alter frequently,
resulting in the non-stationarity in both time and frequency do⁃
mains for V2V channels. The NGSM [8] employs the first-order
two-state Markov chains and generates correlated stochastic vari⁃
ables to describe the non-stationarity in both time and frequency
domains, respectively. Moreover, in V2V channels, the fading
of multipath component is often worse than Rayleigh fading due
to severer delay dispersion and Doppler dispersion. Hence, the
model also describes the severe fading by means of the Weibull
distribution, in which the tap amplitudes follow the Weibull dis⁃
tribution, with the fading parameter determining fading severity.
However, since the NGSM [8] considers both non-stationarity
and severe fading, it is difficult to further identify the existence
of LoS component and possess variable types of Doppler spectra
for different delays.
Based on the measurement data presented in above two con⁃

ventional NGSMs, we can summarize four important and
unique characteristics that exist in V2V channels, i. e. , non-
stationarity, severe fading, the existence of LoS component,
and variable types of Doppler spectra for different delays.
However, both NGSMs implement only half of the above four
characteristics. Therefore, neither of the two conventional
NGSMs can meet the requirements. Motivated by this, a new
NGSM is desirable to be developed for non-WSSUS V2V chan⁃
nels.
To fill the aforementioned gap and accurately describe the

characteristics of the V2V channel, we propose an improved
model based on the NGSM [8] for non-WSSUS V2V channels.
The proposed model not only considers the non-stationarity but
also describes the severe fading in V2V channels, keeping the
advantages of the NGSM [8]. Moreover, to mimic the V2V
channel non-stationarity in frequency domain, channel models
should generate correlated taps, which consist of the amplitude
part and phase part. Since the amplitude and phase of taps are
independent, the distribution of amplitude and phase should
be properly modeled respectively. Specifically, the tap ampli⁃
tude statistics can be modeled as Weibull distribution to mimic
the severe fading. For simplicity, most papers defined a uni⁃
formly distributed phase over the interval as shown in [8] and
[16]. However, the uniformly distributed phase leads to the
corresponding channel taps having no ability to include the
LoS component. To include the LoS component, the authors in
[17] proposed a Laplace distributed phase. However, the La⁃

place distributed phase cannot mimic the scenarios without the
LoS component. To further fill the gap, we propose a non-uni⁃
formly distributed phase, which is properly combined with the
fading parameter used in the severe fading modeling. By
changing value of the fading parameter, the proposed model
can flexibly mimic different V2V scenarios with and without
LoS components. The main contributions of this paper can be
summarized as follows.
1) For the first time, we prove that it is inappropriate to im⁃

pose a uniformly distributed tap phase, which causes the ab⁃
sence of LoS component.
2) We propose an improved NGSM with the non-uniformly

distributed phase for non-WSSUS V2V channels, which ex⁃
tends the NGSM [8] to identify the presence of the LoS compo⁃
nent. Therefore, the proposed model has the ability to mimic
the aforementioned first three unique characteristics of V2V
channels. The simulation results demonstrate that the LoS
component is successfully added into Doppler power spectral
density (PSD).
3) The effectiveness and accuracy of the proposed V2V

channel model are validated by extensive simulations.
The rest of this paper has the following structure. In Section

2, we describe the constriction steps of the NGSM in [8] and
propose an improved NGSM. The simulation results of the pro⁃
posed model for different scenarios, including Doppler PSDs,
power delay profile (PDP), and the tap correlation coefficient
matrix are provided and analyzed in Section 3 in comparison
with the NGSM [8]. Finally, conclusions are drawn in Sec⁃
tion 4.

2 Channel Models for Non-WSSUS V2V
Channels
In this section, we first review the constriction steps of the

NGSM in [8] and prove that imposing a uniformly distributed
tap phase is inappropriate. Then, an improved NGSM with
non-uniformly distributed tap phase is proposed.
2.1 Conventional NGSM with Uniform Phase Distribution
The constriction steps of existing NGSM [8] include three

parts: non-WSS modeling, non-US modeling, and severe fading
modeling. In this section, we will briefly describe the constric⁃
tion steps of the model and prove that it is too restrictive to im⁃
pose a uniform phase distribution in the NGSM [8].
2.1.1 Non-WSS Modeling
Due to unpredictable traffic and changes in the size, loca⁃

tion, and velocity of scatterers, the number of multipath com⁃
ponents and strengths alter frequently. Based on the litera⁃
ture [18], the NGSM in [8] represents the non-WSS charac⁃
teristic by employing the“birth and death”process with per⁃
sistence process Zk (t) = {0, 1} in V2V channel model, where
tap“off”means below 25-dB threshold from the main tap.
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Such thresholding methods [19]–[21] are widely used in the
literature to limit the number of taps to those that have the
non-negligible energy [8].
In addition, the state transition process of the on/off process

can be described by first-order two-state Markov chains, and
the transition (TS) matrix and the steady-state (SS) matrix [8]
can be given by

TS = é
ë
êê

ù

û
úú

P00 P01
P10 P11

SS = é
ë
êê

ù

û
úú

P0
P1
, (1)

where each element Pij in matrix TS is defined as the probabili⁃ty of going from state i to statej, and each SS element Pj givesthe“steady-state probability”associated with the jth state.
Then, the channel impluse repulse (CIR) of the NGSM in [8]

can be expressed as

h (t,τ) =∑
k = 1

N

zk ( t )ck ( t ) δ (τ - τ k ) ×
exp{ }j2π [ ]fD.k ( )t - τk - fc ⋅ τk , (2)

where Zk (t) = {0, 1} is a persistence process used to account for
the finite“lifetime”of the propagation paths. h (t,τ) denotes the
channel output at time t due to an impulse input at time t - τ.
ck (t) represents the k-th received amplitude, the exponential
term represents the k-th received phase, and the k-th echo path
has a time-varying propagation delay τk. The δ function is a Di⁃rac delta (impulse), and fc is the carrier frequency in Hz. Theterm fD,K represents the Doppler shift, which is associated withthe k-th received multipath echo.
2.1.2 Non-US Modeling
Non-US characteristic reflects the impacts of correlation on

different paths/taps, which represents the delay domain charac⁃
teristics. To accurately represent correlated scattering (non-
US) characteristic, the model generates complex Gaussian sto⁃
chastic variables. As shown in Fig. 1, the correlated complex
Gaussian stochastic variables can be generated with any de⁃
sired correlation coefficients.
The process to generate correlated complex Gaussian sto⁃

chastic variables with correlation ρG from pairs of uncorrelated
Gaussian stochastic variables is as follows: 1) Generate uncor⁃
related complex Gaussian stochastic variables V through the in⁃
dependent Gaussian stochastic variables; 2) using Cholesky de⁃
composition of the correlation matrix LLH = ρG to determine the
coloring matrix V, where LH is the Hermitian transpose of L; 3)
Generate correlated complex Gaussian stochastic variables by
means of W = LV.
2.1.3 Severe Fading Modeling
In V2V channels, due to more severe delay dispersion, Dop⁃

pler dispersion, and non-stationarity characteristics, the fading
of multipath component is often worse than Rayleigh fading.
As addressed in [22], overall, the best fit for the largest number
of taps is obtained by means of the Weibull distribution.
Therefore, in the NGSM [8], the tap amplitude statistics are
modeled as the flexible Weibull distribution, which can be
written as

pW (x) = β
aβ
xβ - 1 exp é

ë
êê - ( xa )

βù

û
úú , (3)

where α = E ( )x2 /Γ[ ]( )2/β + 1 denotes a scale parameter
and β is a fading parameter to represent fading severity. When
β = 2, the Weibull distribution can be transformed to the well-
known Rayleigh distribution, and as β increases, the situation
in which the signal becomes more deterministic. When β is
large enough, it means that the LoS component will exist in the
V2V communications. However, when β < 2, the severe fad⁃
ing will exist in the V2V channel.
As can be seen from the above analysis, severe fading model⁃

ing can be implemented by the Weibull stochastic process,
whereas Weibull stochastic process can be obtained by a com⁃
plex Gaussian stochastic process [23]. Specifically, the detail
construction steps of the NGSM in [8] is shown in Fig. 2. As
can be readily observed from the figure, the time correlated do⁃
main of the model is implemented by means of the linear con⁃
volution for the Gaussian stochastic process. In order to main⁃
tain the type of Doppler spectra, the NGSM in [8] employs the
separation of amplitude and phase, in which only the ampli⁃
tude is transformed with complex exponentiation 2/β. Where⁃
as, the phase is not be transformed, which is directly separated
from the complex Gaussian stochastic variables.
The phase is gained directly from the complex Gaussian sto⁃

chastic process and if we do not consider the time correlation,
the phase will follow a uniform distribution over [ - π,π].
Consequently, the tap amplitude follows the Weibull distribu⁃
tion and the tap phase follows the uniform distribution. Thus,
the stochastic variables can be expressed as

▲ Figure 1. Generating correlated complex Gaussian stochastic vari⁃
ables.

Gaussianstochasticvariables X
Complex Gaussianstochastic variables

V=X+jY

Corrtelated complexGaussian stochasticvariables W=LV
Gaussianstochasticvariables Y

+

Cholesky Decomposition
LLH=ρG

j
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W͂k = |W͂k | ejϕ͂k = | V͂k |2/βk ejϕ͂k, ϕ͂k ∈ [ - π,π], (4)

where the number of taps is assumed to be K and ϕ͂Kis the tapphase of the NGSM [8].
Due to the phase ϕ͂K with a uniformly distributed over [ - π,π],the mean of the NGSM [8] can be calculated as

E (W͂k ) = 1
2π ∫-π

π

| V͂k |
2/βk
ejφ͂kdφk = 0. (5)

The uniformly distributed tap phase denotes zero-mean in-
phase and quadrature components, which causes the absence
of LoS component in NGSM [8]. However, based on the afore⁃
mentioned analysis, the existence of LoS component is one of
the important and unique characteristics of V2V channels.
Consequently, we can conclude that it is inappropriate to im⁃
pose a uniformly distributed tap phase. To fill up the afore⁃
mentioned gaps and accurately describe the characteristics of
the V2V channel, an improved model with a non-uniform
phase distribution is described thereafter.
2.2 Improved NGSM with Non-Uniform Phase Distribution
In this section, an improved NGSM with non-uniformly dis⁃

tributed tap phase is proposed, which is based on the existing

NGSM [8]. The process to develop the improved model also
consists of three parts: non-WSS modeling, non-US modeling,
and severe fading modeling. However, the proposed model em⁃
ploys a more accurate method to represent the characteristics
of V2V channels, which extends the NGSM [8] to have the abil⁃
ity to include the LoS component.
As can be seen from the above analysis, LoS component can⁃

not be included in the NGSM [8]. This is because the tap
phase is directly gained from the separation from Gaussian sto⁃
chastic process and follows a uniform distribution in the inter⁃
val [ - π,π], which causes the absence of the LoS component.
Thus, the uniformly distributed tap phase must be changed.
Specifically, in the Weibull stochastic process, the amplitude
and the phase of complex Gaussian stochastic variables are
both transformed with complex exponentiation 2/β, and then
the complex Gaussian stochastic variables are separated into
the amplitude part and the phase part since the amplitude and
phase of the complex stochastic variables are independent on
each other. As a result of the above transformation, β affects
equivalently the amplitude part and the phase part. Conse⁃
quently, the tap amplitude follows the Weibull distribution and
the tap phase follows non-uniform distribution. Above all, the
constriction steps of the improved mode are shown in Fig. 3.
With β being increased, the resulting tap phase concentrates

within a smaller phase range, as expected. Consequently, an
impulse at zero occurs as β → ∞. Also, when β = 2, a uni⁃

▲Figure 3. The constriction steps of the improved model (V is an independent and identical complex Gaussian stochastic variable, and Z is a post-oper⁃
ation such as a persistence process).

VV Correlation Hd interpolationfilter || V ||W Separa⁃tion

ϕ (V )

||W

Z
…ρW ρG Hd interpolationfilter

W

||W = || V 2/β

▲Figure 2. The constriction steps of the NGSM [8] (V is an independent and identical complex Gaussian stochastic variable, and Z is a post-operation
such as a persistence process).
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formly distributed phase occurs, and the stochastic variables of
the improved model can be expressed as
~W'k = V͂k 2/βk = ( | V͂k | ⋅ ejϕ͂k )2/βk = | V͂k |2/βk ejϕ͂'k,
ϕ͂k ∈ [ - π,π], ϕ͂'k ∈ [ - 2π/β, 2π/β], (6)

where the number of taps is assumed to be K and | V͂K |is the tap
amplitude, which follows the Weibull distribution. ϕ͂'k is thetap phase of the improved model and follows the non-uniform
distribution, which is a linear function of the uniformly distrib⁃
uted phase. Specifically, the tap phase of the improved model
can be given by

ϕ͂'k = ϕ͂k ⋅ 2/βk. (7)
Similarly, the mean of the improved model can be calculated as

E (W͂ 'k ) = 1
2π ∫-2π/βk

2π/βk
| V͂k |

2/βk
ej
~ϕ' kdϕ͂'k | β > 2 = || V͂k

2/βk

π
(1 -

cos 4π
βk
)ej

4π
βk |
| βk > 2 ≠ 0. (8)

Equation (8) shows that as β increases, the tap phase concen⁃
trates within a smaller range, resulting in E (W͂ 'K ) ≠ 0. Further⁃
more, on comparing (5) and (8), we can conclude that the im⁃
proved model with non-uniformly tap phase no longer denotes
zero-mean in-phase and quadrature components, the Doppler
PSD will show a dominant frequency component, which is able
to describe the existence of LoS component [24]. Thus, the re⁃
sults demonstrate the advantage of our proposed method.

Further analysis shows that each tap of V2V channels exhib⁃
its serious Doppler spread due to the high mobility of vehicles,
and the phase distribution ranged from [ - π,π] is not enough
to represent the serious Doppler environment adequately. The
non-uniformly distributed tap phase that derived from the con⁃
ventional definition of the fading parameter β is more accurate⁃
ly used to describe the characteristics of V2V channels. Equa⁃
tion (8) allows further observations: the E (W͂') and β is positive⁃
ly correlated, which means that with β being increased, the sig⁃
nal becomes more deterministic and the LoS component is also
larger [24].
It is also worth noting that the transformation of phase does

not influence the amplitude of complex Gaussian stochastic vari⁃
ables, so that this improvement does not have impact on the type
of Doppler spectra and the tap correlation coefficient matrix.

3 Simulation Results and Analysis
In this section, the statistical properties of the proposed mod⁃

el in different scenarios, including Doppler PSD, PDP, and the
tap correlation coefficient matrix are simulated and compared
with those of the NGSM in [8]. To better compare the perfor⁃
mance of the two models, the following key parameters are uti⁃
lized to obtain the simulation results, which are the same as
those in [8]. Specifically, the key parameters can be set as the
carrier frequency fc = 5.12 GHz, the bandwidth BW = 10 MHz,
and the duration of each“birth and death”process state (i. e. ,
the coherence time of the channel) Tc = 0.0005 ∼ 0.001s.Moreover, all the simulation scenarios are also the same as those
in [8], including Small City (S), Urban-Antenna Outside Car
(UOC), Urban-Antenna Inside Car (UIC), Open-Area High Traf⁃
fic Density (OHT), and Open-Area Low Traffic Density (OLT).
Fig. 4 provides the comparison between the Doppler PSD of
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the model in [8] and the improved model. Due to the similar
Doppler PSD for each scenario, for simplicity, we select scenario
S to analyze the simulation results. As can be readily observed
from Fig. 4a, for scenario S, the maximum Doppler shift fD, max isabout 500 Hz and the type of Doppler PSD is“classic 3dB”.
Specially, we notice that Doppler PSD of the NGSM [8] shows
no dominant LoS component. In Fig. 4b, we show the simula⁃
tion results of the improved model for scenario S. It is obvious
that maximum Doppler shift fD, max is still 500 Hz and the Dop⁃pler PSD is also“classic 3 dB”. As expected, Doppler PSD
of the improved model has a strong narrow peak in the mid⁃
dle, which is characteristic to communications in presence of
LoS component [25]–[27]. Moreover, the energy of taps with
fading parameter β < 2 is obviously lower than that of other
taps, which is consistent with the model in [8]. This is be⁃
cause in the improved model, we also employ β < 2 to de⁃
scribe the severe fading in V2V channels. The excellent
agreement between the theoretical and measured Doppler
PSD confirms the utility of the improved model. Therefore,
the simulation results demonstrate that the improved model
also has the ability to mimic the severe fading, keeping the
advantages of the model in [8].
To further validate the utility of the proposed model, we com⁃

pare our model with measurement data and model in [7] as
shown in Fig. 5. It is clear that Doppler PSD of the model in
[7] has a dominant narrow peak in the middle to identify the
presence of LoS component, which is consistent with that of the
improved model. Therefore, we can conclude that on the basis

of maintaining the merits of the model in [8], the improved
model can mimic the existence of LoS component and better
mimic the characteristics of V2V channels.
In Table 1, we show the tap correlation coefficient matrix of

the NGSM in [8] and the improved model for scenario UIC, re⁃
spectively. The tap correlation coefficient matrix is defined as
ρ = [ri,j ] = cov ( )αi,αj

var ( )αi var ( )αj
where [ri,j ] is the coefficient be⁃

tween tap i and j, var ( ⋅ ) denotes variance and cov ( ⋅ ) de⁃
notes covariance. Since the correlation coefficient matrix is
symmetric about the diagonal, we only need to specify the up⁃
per or lower triangular part; for brevity, the lower triangular
part corresponds to correlations between taps for the improved
model, whereas the upper triangular part corresponds to corre⁃
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▲Figure 4. The Doppler PSD of different models for different scenarios. (a) Doppler PSD of the model in [8] for S scenario; (b) Doppler PSD of the im⁃
proved model for S scenario; (c) Doppler PSD of the model in [8] for OHT scenario; (d) Doppler PSD of the improved model for OHT scenario; (e) Dop⁃
pler PSD of the model in [8] for UIC scenario; (f) Doppler PSD of the improved model for UIC scenario; (g) Doppler PSD of the model in [8] for OLT
scenario; (h) Doppler PSD of the improved model for OLT scenario; (i) Doppler PSD of the model in [8] for UOC scenario; (j) Doppler PSD of the im⁃
proved model for UOC scenario.

PSD: power spectral density

▼Table 1. Correlation matrices of the non-geometrical stochastic model
(NGSM) in [8] and improved model for scenario UIC (lower/upper trian⁃
gular part: improved model/ NGSM in [8])
i , j

1
2
3
4
5
6
7

1
1.0000
0.1965
0.0573
0.0474
0.1066
0.1159
0.3249

2
0.1989
1.0000
0.1411
0.1350
0.0976
0.2363
0.1938

3
0.0555
0.1477
1.0000
0.2342
0.0152
0.1512
0.1442

4
0.0481
0.1495
0.2298
1.0000
0.2092
0.1977
0.1211

5
0.0977
0.0974
0.0106
0.2189
1.0000
0.1524
0.0012

6
0.1074
0.2329
0.1368
0.2088
0.1600
1.0000
0.2600

7
0.3504
0.1999
0.1496
0.1143
0.0000
0.2600
1.0000
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lations between taps for the NGSM in [8]. Through comparison
between the corresponding parameters under scenario UIC, we
can observe that the corresponding parameters of the improved
model only fluctuate with a few correlation coefficient values,
but most of them remain consistent. This is because the
change of phase distribution does not influence the amplitude
of complex Gaussian stochastic process, so this improvement
does not have impact on the tap correlation coefficient matrix.
The excellent agreement between the simulation results and
measured data confirms the utility of the improved model.
Therefore, the improved model also has the ability to imple⁃
ment the non-stationarity in frequency domain, maintaining the
advantages of the NGSM [8].
Fig. 6 shows a comparison between the PDP of the NGSM in

[8] and the improved model in each scenario: UIC, UOC, OHT,
S, and OLT [8]. As can be seen from the figure, both in the

NGSM [8] and the improved model, the spread delay in UIC
scenario is more severe than others. This is because in the
UIC scenario, antenna is inside the vehicles, resulting in more
obstacles in channel propagation. We can also notice that in
OLT scenario, the scattering and reflection caused by moving
vehicles are less than other scenarios with short spread delay,
and the energies are concentrated in the first tap, which is also
confirmed in the literature [27]. Furthermore, it is obvious that
PDP of two models for each scenario has some difference. The
cause for this difference is the presence of the dominant LoS
component in the improved model. Comparatively speaking,
the LoS component is successfully added in the improved mod⁃
el and the energy is more centered in the first path. In this
way, the proportion of energy in other paths has a visible de⁃
cline and the fading is more obvious, which means multipath
effect is more apparent as well. Therefore, the comparison of
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▲Figure 5. The Doppler PSD of different models. (a) (b) Doppler PSD of the improved model; (c) (d) Doppler PSD of the model in [7].
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PDP also validates that the improved model properly includes
the LoS component.
As can be seen from the above analysis, we compare the

NGSM in [8] with the improved model, and the results can be
shown in Table 2.
Table 2. shows the comparison results between the NGSM

in [8] and the improved model. We can readily observe that
both models are based on the assumption of non-WSSUS and
describe the severe fading by means of Weibull distribution.
In addition, the improved model remains the tap correlation co⁃
efficient matrices of the NGSM [8] fortunately, realizing the

correlated scattering between each tap. Moreover, from the
simulation results of the PDP, it is also obvious that both mod⁃
els implement delay dispersion well. However, compared with
the NGSM [8], the improved model includes a dominant LoS
component into the Doppler PSD and thus has the ability to de⁃
scribe the presence of LoS component. Consequently, we can
conclude that the improved model fills the aforementioned gap
and is more accurate to describe the characteristics of V2V
channels.

4 Conclusions
In this paper, a novel NGSM for non-WSSUS V2V channels

has been proposed, which is based on a conventional NGSM in
[8]. The proposed NGSM employs a method of generating non-
uniformly distributed phase in the Weibull distribution, which
extends the NGSM [8] to include the LoS component. It also
has been demonstrated by the simulation results that compared
with the NGSM [8], the proposed model has added a dominant
LoS component into Doppler PSD and thus has explicitly iden⁃
tified the presence of LoS component. Furthermore, the com⁃
parison of the PDP has shown that the energy is more centered
in the first path in the proposed model. Therefore, it has been
verified by the simulation results that the proposed model is
more accurate to describe the characteristics of V2V channels.
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a good description of the LoS component
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Abstract: We propose an access network that integrates fiber and wireless for mobile fron⁃
thaul (MFH) with simple protection capabilities, using dual-mode orbital angular momen⁃
tum (OAM) multiplexing. We experimentally demonstrate a 3.35 Gbit/s DMT-32QAM pre-
equalized system with 10 km and 15 km fiber links in the 5.9 GHz band; then there is a
link of two channels with a 0.5 m wireless link.
Keywords: OAM; fiber-wireless integrated access network

1 Introduction

Driven by emerging mobile devices and mobile multime⁃
dia, mobile data traffic is exponentially increasing. Dif⁃
ferent multiplexing technologies are researched and dis⁃
cussed. In order to provide end users with multi-gigabit

wireless link rates, fiber-wireless integrated access networks
have proven their potential for more efficient traffic offload and
flexibility [1]– [5]. Millimeter wave (MMW) that provides a
friendly infrastructure for high-throughput wireless services with
low cost, abundant bandwidth, and rapid deployment is an effi⁃
cient physical link for mobile fronthaul (MFH), which has been
extensively studied. Photonics-aided MMW generation for the
MFH that can leverage existing fiber to the home (FTTH), pas⁃
sive optical network (PON), and wavelength division multiplex⁃
ing (WDM) PON in the future[2]–[6]. However, tree-based net⁃
work topologies lack simple and cost-effective protection or re⁃
covery capabilities.
At the same time, orbital angular momentum (OAM) has been

proposed as an emerging multiplexing technique to further im⁃
prove spectral efficiency and channel capacity in radio commu⁃
nications due to mutual orthogonality of different modes [7]–
[9]. In principle, many orthogonal modes of OAM can be used

for multiplexing and demultiplexing with low crosstalk. There⁃
fore, using various antennas to generate OAM beams in the ra⁃
dio domain has been extensively studied in the research commu⁃
nity. By simultaneously transmitting different OAM modes, syn⁃
clastic uniform circular array (UCA) has attracted increasing in⁃
terest. Based on the multi-layer design, a synclastic UCA is pro⁃
posed for OAM generation and dual mode communication [8]–
[10]. The integration of OAM in the low-frequency radio domain
and optical fiber for MFH is an attractive alternative.
In this paper, we propose a fiber-wireless reliable access net⁃

work for MFH, which integrates fiber and wireless with dual-
mode OAM multiplexing to verify the performance of an optical
OAM transmission architecture based on DMT technology.
Two modes from one synclastic UCA are assigned two different
fiber links that may have simple protection capabilities. We
experimentally demonstrate a 3. 35 Gbit/s DMT-32QAM fiber-
wireless integrated system with pre-equalization (Pre-EQ) in
the 5. 9 GHz band. After 10 km and 15 km fiber transmission,
the two modes are transmitted simultaneously through a 0. 5 m
wireless link respectively.

2 Principle of Antenna
The synclastic UCA, in which the elements are placed in a

circular ring and have the same orientation, is an array configu⁃
ration of very practical interest. A typical synclastic UCA mod⁃
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el with eight elements is presented in Fig. 1 and the corre⁃
sponding free space propagation geometry with synclastic
UCAs is also illustrated. In Fig. 1b, we assume that N isotro⁃
pic elements are equally placed on the x–y plane along a cir⁃
cular ring with radius of a. The normalized field of the whole
array can be written as

En =∑n = 1
N an ⋅ /Rn

an = In ejφn = In ej ( )φ0 + n ⋅ 2πl/N

Enn' = e
( )- jkr

r ∑n = 1
N an Ine

j é
ë
ê

ù
û
úksinθcos ( )ϕn' - ϕn + φn' + φn ,

(1)

where k is the Boltzmann constant, Rn is the distance from the
nth array element to the n'-th observation element, and an is the

an = In ejφn = In ej ( )φ0 + n ⋅ 2πl/N , (2)
where In is the amplitude excitation and φn is the phase excita⁃tion of the n-th element. And φ0 is the assumed system refer⁃ence phase, N is the number of the elements of an array, and l
is the mode of the OAM.
Assuming that r ≫ a and Rn ≃ r, the electric field of the n'-thelement in the receiving array transmitted by the n-th element in

the transmitting array is

Enn' = e
( )- jkr

r ∑n = 1
N an Ine

j é
ë
ê

ù
û
úksinθcos ( )ϕn' - ϕn + φn' + φn , (3)

where φn' is the phase of the element in the receiving array.Thus, the electric field of the n'-th element in the receiving ar⁃
ray can be derived as

En' = e
( )- jkr

r ∑n = 1
N an Ine

j é
ë
ê

ù
û
úksinθcos ( )ϕn' - ϕn + φn' + φn =

é

ë
êê
e( )- jkr

r ∑n = 1
N Ine

j é
ë
ê

ù
û
úksinθcos ( )ϕn' - ϕn + 2φ0 + n ⋅ 2πl/N ù

û
úú ⋅ ejn' ⋅ 2πl/N . (4)

Finally, the phase factor of ejn' ⋅ 2πl/N is extracted from Equa⁃
tion (4), which proves the OAM generation from these equal
phase and equal amplitude UCAs theoretically.
To verify the correctness of the theory, a dual-mode OAM

multiplexing antenna is designed and fabricated (Fig. 2). And
the near field phase front of the OAM antenna is simulated and
the result is shown in Fig. 3, which indicates the reliable gen⁃
eration of the OAM beams.
While OAM has unlimited range of achievable states which

are mutually orthogonal, it is quite promising to combine it
with optical fiber for MFH to achieve high spectrum efficiency
transmission. The wireless OAM multiplexing is achieved by
the synclastic UCAs with N independent OAM modes. The

various OAM beams can be considered as a form of spatial divi⁃
sion multiplexing (SDM). The OAM beams multiplexed with
different modes propagate along the same spatial axis in free
space. The coaxially propagating OAM beams lead to inherent⁃
ly low crosstalk between OAM channels and reduce the need
for signal processing to eliminate OAM channel interference af⁃

▲Figure 1. Synclastic UCA model: (a) Top view; (b) schematic diagram
(the upper array is the receiving array and the lower array is the trans⁃
mitting array).

(a) (b)

(a) (b)

▲Figure 2. Dual-mode OAM antenna: (a) Top view; (b) explosive view.

(a) (b)

▲Figure 3. Near field phase front of the dual mode OAM antenna: (a) +
1 mode; (b) +2 modes.
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ter demultiplexing.
As we can see, OAM provides another degree of freedom to

carry information with multi-level amplitude/phase modula⁃
tion. It shows potential possibility to integrate OAM with the
current fiber-based MFH infrastructure for further increase of
system capacity.

3 Experimental Setup
An experimental setup for intensity modulation and direct de⁃

tection (IM-DD) DMT-32QAM signal transmission based on the
Mach-Zehnder modulator (MZM)9-10 is shown in Fig. 4. The
DMT signal is generated offline in Matlab in a 32-QAM modula⁃
tion format. We estimate the channel using 256 subcarriers
loaded with data and 10 training sequences. We use 1/32 sub⁃
carriers as the cyclic prefix (CP) to avoid inter-symbol interfer⁃
ence (ISI) as well. For Rx offline digital signal processing
(DSP), data without Pre-EQ are first sent for channel estimation
with intra-symbol frequency domain averaging (ISFA), and then
Pre-EQ is operated using the estimated reverse channel 11.
The experimental system consists of two independent central

offices (COs) with MZM modulators that convert the signal to
optical domain. The baseband unit (BBU) is used for dual-
mode OAM beams transmission and the end user side is used
to receive signals. Two COs are connected to both sides of a
synclastic UCA array using the 15-km and 10-km SSMF links

as Ch-1 and Ch-2 respectively. These different fiber links may
have simple protection features. The 200 Mbit/s baseband
DMT-32QAM signal is uploaded into an arbitrary waveform
generator (AWG) with 1. 2– 2. 4 GSa/s sample rate for Ch-1
and Ch-2. The amplified signal is then mixed with a 5. 9 GHz
clock and up-converted into two intermediate frequency (IF)
signals. The modulated signal through the MZM is then ampli⁃
fied by the Erbium Doped Fiber Application Amplifier (EDFA)
prior to fiber transmission. After transmission, an optical atten⁃
uator (ATT) is applied to adjust the received optical power
maintained at 0 dBm before power is injected into the photodi⁃
ode (PD). Then, the converted electrical signals are injected
into the synclastic UCA and performed in two orthogonal OAM
modes respectively. After 50-cm free space transmission, ra⁃
dio beams with different OAM modes are detected by the ac⁃
cording received antenna. Finally, the received signals are am⁃
plified and sent into an oscilloscope (OSC) at a 12. 5 GSa/s
sample rate, which is then processed by the Rx offline DSP.
In another experiment, the arbitrary waveform generator

(AWG, Tektronix 7122C) is used to generate a 1. 6 GSa/s DMT
signal with a carrier frequency of 5. 9 GHz. A 1550 nm exter⁃
nal cavity laser (ECL) is used as an optical carrier and fed into
the intensity modulator. The signal is converted into optical
domain via a MZM. The optical power is controlled by a vari⁃
able optical attenuator (VOA) before transmitting the signal
through standard single mode fiber (SSMF). At the receiver

ATT: attenuatorAWG: arbitrary waveform generatorCP: cyclic prefixDSP: digital signal processingEA: electric amplifierECL: external cavity laser

EDFA: Erbium Doped Fiber Application AmplifierFFT: fast Fourier transformIFFT: inverse fast Fourier transformISFA: intra-symbol frequency averageMZM: Mach-Zehnder modulatorOSC: oscilloscope

PD: photodiodeQAM: quadrature amplitude modulationRx: receiverSSMF: standard single-mode fiberTx: transmitter

▲Figure 4. Experimental setup for intensity modulation and direct detection (IM-DD) DMT-32QAM signal transmission based on the MZM.
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side, the optical signal is detected by a PD to achieve photo⁃
electric conversion. The electrical signal is amplified before
being transmitted to the synclastic UCA. After 40 cm free
space transmission, the electrical signal is received by the an⁃
tenna of the receiver. The received signal is then sampled us⁃
ing a 12. 5 GSa/s digital storage oscilloscope (DSO Tektronix
DSA73304D) and the off-line DSP is processed.

4 Results and Analysis
For the first experiment, Figs. 5a and 5b show the bit error

rate (BER) of Ch-1 and Ch-2 versus transmission rates in the
case of back to back (BTB). The blue lines indicate the signal
without Pre-EQ and the green lines represent the signal with
Pre-EQ. We observe that the BER performance of Ch-1 and
Ch-2 at the same transmission rate is similar with or without
Pre-EQ. As can be seen from Figs. 5a and 5b, the BER in⁃
creases as the rate increases. A DMT-32QAM signal exceed⁃
ing 1. 125 Gbit/s can be delivered below the BER of 3. 8×10-3
per channel without Pre-EQ. In addition, the use of Pre-EQ can
effectively increase the transmission rate to over 1. 625 Gbit/s.
In the case of BTB with Pre-EQ, both the channels can realize a
total rate of 3. 35 Gbit/s. Figs. 6a and 6b show the BER of Ch-1

and Ch-2 versus the transmission rate after 15 km and 10 km fi⁃
ber transmission respectively. With Pre-EQ, the transmission
rate of both channels can be effectively increased from 1. 125
Gbit/s to 1. 5 Gbit/s. For dual-mode OAM multiplexing, a total 3
Gbit/s rate can be achieved. Constellations of DMT-32QAM sig⁃
nal at 1. 375 Gbit/s without or with Pre-EQ are shown in the in⁃
sets with blue and green markers respectively. The channel re⁃
sponses of Ch-1 and Ch-2 are shown in Fig. 7, which shows that
the channel response coefficients can be flattened with Pre-EQ.
As can be seen from Fig. 8, the channel response coefficients af⁃
ter 15 km transmission exceed the channel response coefficients
after 18 km transmission with subcarrier index increasing.

BER: bit error rate Pre-EQ: pre-equalization

▲Figure 6. (a) The BER of Ch-1 vs. transmission bit rates after 15 km fi⁃
ber without and with Pre-EQ; (b) the BER of Ch-2 vs. transmission bit
rates after 10 km fiber without and with Pre-EQ.
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▲Figure 8. The electrical spectra of the received DMT-32QAM signal
without and with Pre-EQ.
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Figs. 8a–d are the spectra of the received DMT-32QAM sig⁃
nals with and without Pre-EQ respectively. It indicates that the
spectrum can be flush with the Pre-EQ as well. In this experi⁃
ment, Ch-1 and Ch-2 were simultaneously transmitted. Howev⁃
er, if one of the fiber links fails, the other link will not be affect⁃
ed. Therefore, data switching protection can be implemented
based on service priority.
For the second experiment, the BER vs. transmission rates

(Fig. 9) indicates that the signal transmission of 1. 0625 Gbit/s
can reach the 7% Forward error correction (FEC) threshold
(BER = 3. 8 × 10-3), which is even worse if the transmission
rate is increased. The electrical spectrum of the down-con⁃
verted 200 Mbaud DMT-32QAM signal and the constellations
of 1 Gbti/s and 1. 125 Gbti/s are shown in the insets respec⁃
tively.

5 Conclusions
In this paper, a fiber-wireless reliable access network for

MFH is proposed through the integration of fiber and wireless
with dual-mode OAM multiplexing. We experimentally demon⁃
strated a 3 Gbit/s DMT-32QAM fiber-optic wireless integrated
system with a synclastic UCA. The system has Pre-EQ in the
5. 9 GHz band, and both channels after 10 km and 15 km fiber
transmission are transmitted over a 0. 5-m wireless link simul⁃
taneously. The fiber-wireless reliable access network can alter⁃
natively be used for MFH.
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