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of the IEEE and ACM.

rom academia to industry, big data has become a buzzword in informa⁃
tion technology. The US Federal Government is paying much attention to
the big-data revolution. In 2012, fourteen US government departments
allocated funds to 87 big-data projects [1]. Europe has the second larg⁃

est amount of data [2], and most universities and research institutes have already es⁃
tablished big-data research programs. In Asia, especially in China, central and lo⁃
cal governments have been setting aside funds for their own big-data programs. The
big-data related 973 Projects in China are good examples of this. Industry players
have been following in the footsteps of big-data pioneers such as Google, Facebook,
Twitter, and Baidu, and more and more companies are rushing into the big-data
business. Companies have been analyzing the purchasing behavior of huge numbers
of customers and have been devising more attractive plans and policies. Big data is
already an important part of the $64 billion database and data analytics market [3].
Indeed, big data will open up commercial opportunities comparable in scale to
those created by enterprise software of the late 1980s, the internet of the 1990s, and
the social media explosion today.

However, what is big data? It has been defined in many different ways. We prefer
to define big data as data sets that are too big for current information technologies to
capture, transmit, store, process, or visualize. Although this definition is simple, it
encompasses computing complexity theory, computer architecture, operating sys⁃
tem, programming model, database technologies, algorithms, and applications. Peo⁃
ple from different fields have dramatically different understandings of big data,
which is why there is so much excitement and conjecture surrounding it.

In this special issue, we present papers that discuss big-data technology from dif⁃
ferent perspectives. These are not only high-level surveys but also reports on initial
results from big-data projects. Communication infrastructure is one of the most im⁃
portant aspects of big data. Yi Zhu and Zhengkun Mi from Nanjing University of
Posts and Telecommunications discuss content-centric networking, which is seen
as a promising approach to big-data distribution. They propose a networking archi⁃
tecture for processing big data, and this architecture is fundamentally different from
TCP/IP. Shengmei Luo et al. from the Cloud Computing & IT Institute of ZTE Cor⁃
poration present a survey of big-data analytics. They analyze challenges related to
storage, data-mining algorithms, and programming models for big data. They also
predict opportunities in the big-data era. Although there are many potential busi⁃
ness opportunities in big data, security is of the utmost importance for users and
cannot be overlooked. Ruixuan Li et al. from Huazhong University of Science and
Technology provide an overview of data security and privacy-preservation for cloud
storage. They carefully investigate confidentiality, data integrity, and data availabili⁃
ty. They also propose a feasible solution to current security problems. Shigang Chen
et al. from the University of Florida delve more deeply into data integrity. They pro⁃
pose a novel authenticated data structure called Cloud Merkle B+ tree that supports
dynamic operations such as insertion, deletion and modification. CMBT lowers over⁃
head from O(n ) to O (logn ).

Moving to big data applications, algorithms oriented towards a single machine
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are not necessarily efficient in big-data platforms because
many machines need to run concurrently for the same task.
Weisong Shi et al. from Wayne State University design a mech⁃
anism called SPBD that reduces the response time of big-data
systems. This mechanism is very feasible in practice. Zhen⁃
dong Bei et al. report their experiences with big-data applica⁃
tions that use MapReduce/Hadoop. They confirm that manual⁃
ly tuning up to 190 Hadoop configuration parameters is ex⁃
tremely time consuming, if at all possible. They then propose
an automatic performance prediction scheme based on random
forest to determine the best configuration parameter combina⁃
tions. Their experimental results show that their scheme can
predict the performance of Hadoop systems very accurately.

Challenges and opportunities exist together in the big-data
era. We believe most of these challenges will be overcome and
opportunities will be realized. Big data is a field where dreams
will take flight.
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Abstract

In this paper, we explore network architecture and key technologies for content-centric networking (CCN), an emerging networking
technology in the big-data era. We describe the structure and operation mechanism of a CCN node. Then we discuss mobility manage⁃
ment, routing strategy, and caching policy in CCN. For better network performance, we propose a probability cache replacement poli⁃
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W
1 Introduction

ith the development of new network technolo⁃
gies and information services, big data has be⁃
come the focus of attention in IT [1]. The fea⁃
tures of big data are volume, velocity and vari⁃

ety [2]. Volume refers to the massive amounts of data that have
to be stored and processed. Velocity refers to the constant up⁃
dating, caching, and delivery of data. Variety refers to the wide
range of data and abundant forms of data representation.

In current IP networks, big data can cause congestion and
server overload because IP architecture works in host-to-host
mode. However, the problems caused by big data tend to affect
the data itself, rather than the host or server. These problems
may limit data availability, reduce delivery speed and quality,
or compromise data security. Therefore, more efficient da⁃
ta-centric architectures need to be designed to solve the prob⁃
lems created by big data.

Since 2006, several new network architectures have been
proposed. These architectures stem from next-generation re⁃
search projects and include data-oriented network architec⁃
ture (DONA) [3], proposed by the UC Berkeley RAD Lab;
4WARD [4], proposed as part of the EU’s Seventh Framework
Programme; publish-subscribe internet routing paradigm
(PSIRP)[5] and content-centric networking (CCN)[6], [7], pro⁃
posed by the Palo Alto Research Center; and named data net⁃
working (NDN), proposed as part of the National Science Foun⁃

dation’s Future Internet Architecture (FIA) project. Of these
architectures, CCN is represents a sophisticated technical ad⁃
vancement and also comes under the umbrella of NDN.

In CCN, each piece of content is uniquely named, and the
content is separated from its location. If we replace traditional
routing (based on host address) with new content-based rout⁃
ing, the requested content can be obtained in the nearby CCN
node. This node caches the content, and there is no need to
forward the request to the far-away content source. The cach⁃
ing mechanism is the key technology of CCN. It can reduce the
response time for accessing content, and it can alleviate net⁃
work congestion and server overload in a big-data environment.

2 CCN Architecture and Operating
Mechanism
In current IP networks, CCN uses the content name instead

of IP address for routing. An hierarchical naming mechanism
similar to a URL is used. An example of this mechanism is nj⁃
upt.edu.cn/Video/Computer_Networks/Lecture_1.mpeg,where /
njupt.edu.cn/Video/Computer_Networks s the prefix for re⁃
trieving and forwarding the content, /njupt.edu.cn represents
the content provider, Video/ Computer_Networks represents
the content type, and /Lecture_1.mpeg represents the content
itself.

There are two kinds of packets in CCN: interest and data. In⁃
terest packets contain content identification, selector, and
nonce. The selector comprises order preference, publisher fil⁃
ter, and scope. Data packets contain signature, signed info, key
locator and stale time, and content. The signature comprises di⁃

This work is supported by National Natural Science Foundation of China
under Grant No.60872018 and No. 60902015, and Major National Science
and Technology Project No. 2011ZX03005-004-03.
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gest algorithm and witness, and the signed info comprises a
publisher ID.

An interest packet with ID is sent by the requester, and
CCN nodes forward the packet until it reaches a node that can
provide the requested content according to the maximum
matching principle. Then, the data packet is used to send the
content back to the requester via the reverse interest packet
forwarding path. This completes the communication.

The key structure of a CCN node comprises a content store
(CS), a pending interest table (PIT), and a forwarding informa⁃
tion base (FIB). The CS stores content within the node cache.
The PIT records the received interest packets for a pending re⁃
sponse to the arriving face and accompanying content. Here,
“face”is the CCN terminology for interface. The FIB indicates
the next hop for forwarding the interest packets. The requested
content is cached as much as possible in the CCN nodes dur⁃
ing backward delivery so that the content can be quickly pro⁃
vided to subsequent users. This is a completely different to the
way a traditional IP router works. Usually, a traditional IP rout⁃
er clears the cache on forwarding.

A maximum matching query is executed in CS, PIT, and
FIB in turn when an interest packet arrives at the node. If the
requested content is found in the CS, the content is sent to the
requester through the arrival face of the interest packet. If the
requested content is not found in the CS, the PIT is queried. If
the PIT contains the related content entry, the PIT indicates
that the content request has been received and waits for re⁃
sponse. In doing so, it adds the arrival face the content’s en⁃
try; otherwise, the FIB is queried further on. If the FIB has the
related content entry, the interest packet is forwarded through
the face indicated by the FIB. If no match is found in the FIB,
the interest packet is dropped.

The structure of a CCN node is shown in Fig. 1. Suppose an
interest packet with content name /njupt.edu.cn/Video/Comput⁃
er_Networks/Lecture_1.mpeg arrives. The content can be
fetched from the CS and sent back to the requester. If an inter⁃
est packet with content name /njupt.edu.cn/Video/ Signal_Sys⁃
tem/Lecture_1.mpeg arrives from face 2, the PIT has to be que⁃
ried because the CS does not have this content. The PIT al⁃
ready contains a request entry for this content, and the face
number is 3. Therefore, face 2 is added to the face field of
that entry. If an interest packet with content name /njupt.
edu.cn/ Video/ Stochastic_Process/Lecture_1.mpeg arrives,
and the content name is not contained in the CS nor PIT,
then the FIB is queried. This indicates that face 5 is the cor⁃
rect forwarding face. Then, the interest packet is forwarded
to the next node through face 5, and the requested content
name and interest-packet arrival face is added to the PIT.

For the sake of network scalability, the FIB has a mecha⁃
nism to aggregate multiple content prefixes into one entry.
This reduces the size of the FIB. However, this mechanism
cannot be used in the PIT. Reducing the size of the PIT is
an important area of research in CCN because the PIT be⁃

comes excessively large for big-data applications. To scale the
CS storage, an appropriate cache replacement policy should be
used to free the cache so that it can hold newly obtained con⁃
tent that is of higher importance. Content will be divided into
chunks in the delivery process. CS replaces and stores content
in the chunk.

For comparison, the content delivery process for an IP net⁃
work and CCN network is shown in Fig. 2. With the IP client/
server infrastructure, each piece of content delivered has a
round trip from the request user to the source server. A request
that involves a large amount of content involves a huge amount
of network traffic that is likely to cause network congestion or
server overload. With the CCN infrastructure, the user may ob⁃
tain the content from the cache of a nearby node. This elimi⁃
nates traffic further along the line to and from the source sever.
In Fig. 2, the request from user 1 goes to the source server (as
in a conventional IP network). However, the content can be
cached in routers R2, R4, R5 and R7 on its way back to user
1. If user 2 subsequently requests the same content, R2 can de⁃
liver it because there is a content copy in its cache. Similarly,
the content can be cached in R1 on the way to user 2. When
user 3 requests the same content, they can simply get it from
the neighboring router R1. This only involves one hop. It can
be seen that, as a distributional resource-caching and manag⁃
ing infrastructure, CCN is a good fit for big data. Through the
caching mechanism and content identification, terminal users
can obtain content from the network node that is as near to the
user as possible. This limits delay, congestion, and perfor⁃
mance fluctuations caused by big data.

3 Key Aspects of CCN
Mobility management, routing strategy, and caching policy

all affect the performance of a CCN.
3.1 Mobility Management

For non-real-time services, such as web pages, email, and
file sharing, the location of source server is fixed so that the
content name is unchanged. When moving to a new site, the us⁃
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▲Figure1. Structure of the CCN node.
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er can request content as before. Although some retransmis⁃
sion delay may be incurred, it practically affects the services
because they are tolerant to delay.

For real-time services, such as internet telephony, instant
messaging, and gaming, the situation is more complicated. Usu⁃
ally, both the source and the user are mobile, which means the
prefix of content name may change. CCN routers need to up⁃
date their routing tables to guarantee correct forwarding. This
causes additional time overhead, an invalid forwarding entry in
the FIB, and a huge FIB. Additional time overhead cannot be
tolerated by real-time services, which are interrupted when de⁃
lay is more than 150 ms. If many of the forwarding entries in
the FIB are invalid, incorrect forwarding will result, and net⁃
work resources will be wasted. If the FIB is huge, the content
prefixes (which change as a result of the mobility of the content
source) will be difficult to handle. The worst case scenario oc⁃
curs when the two parties in the communication move at the
same time. As with the mechanism in session initiation proto⁃
col (SIP), a fixed registry server can be set up to exchange con⁃
tent names between sides. Of course, this involves additional
registration time.

Several mobility management schemes have been proposed
for CCN. Problems with managing the mobility of both user
and content are outlined in [8], but no solution is given. In [9],
[10], proxy-based mobility (PBM) management scheme is pro⁃
posed. In this scheme, the content requested by the user is
cached before moving through the proxy server. Efficient use is
made of CCN shared content resources to reduce delay during
handover and acquisition. The drawback of this scheme is that
content request and acquisition still relies on the traditional IP
network. In [11], selective neighbor caching (SNC) is proposed

for mobility support. A group of optimal neighboring proxy
servers is selected to proactively request and store content that
the user fails to receive as the content moves through the proxy
server. When selecting a neighbor proxy, a tradeoff is made be⁃
tween the cost of acquiring the content and the cost of caching
the content in proxies. SNC can reduce delay to a large extent
but does not use CCN shared content resources. In [12], a par⁃
tial route update scheme is proposed to reduce negative effects
caused by content provider mobility. After the movement path
has been determined, routers are chosen, and their content pre⁃
fixes are updated. The cost of updating routers is reduced.
However, there has been no in-depth analysis of the tradeoff
between the number of routers updated and the routing miss
probability. In [13], a tunnel is set up between the CCN router
in the home domain and the CNN router in the foreign domain
in order to redirect the interest packet. This provides real-time
support when the content source is mobile. The evaluation in
[13] shows that the tunnel reduces delay in a network with
many nodes.
3.2 Routing Strategy

The semantics and basic processing mechanisms of IP and
CCN routing protocols are similar. Hierarchical identifier nam⁃
ing, longest matching lookup, and forwarding mechanism for
an IP network can all be used in CCN [7].

Interior router protocols, such as open shortest path first (OS⁃
PF) and intermediate system to intermediate system (IS-IS),
provide a type-length-value (TLV) option that can be easily
used by CCN to publish the content prefix (even though the
prefix is different for CCN and IP). Interior router protocols al⁃
so ignore an unknown message so that the CCN node can con⁃
nect directly to the IP network running IS-IS or OSPF. This
does not adversely affect the network.

For an existing external routing protocol, which is similar to
internal gateway protocol (IGP), border gateway protocol (BGP)
can also use TLV for interdomain announcement of address in⁃
formation. Different CCNs can be interconnected by announc⁃
ing content information to each other. This can be done by inte⁃
grating the content prefixes of the domain into the BGP.

Although existing IP routing strategies can be used in CCN,
a specially designed strategy inevitably improves the perfor⁃
mance of CCN. Until now, there have only been a few studies
on CCN routing strategy. The four strategies reported are: all
forwarding, random forwarding, ant colony forwarding, and im⁃
proved ant colony forwarding.

All forwarding is a basic strategy in which interest packets
are forwarded to all the faces matching the prefix in the FIB.
The advantage of this strategy is there is less delay during data
packet return. The drawback of this strategy is the large
amount of redundant traffic that results from the dispatching of
multiple interest packet copies. This problem worsens as the
network increases in size.

With random forwarding, one face is randomly chosen

▲Figure 2. a) IP-based network infrastructure and b) CCN-based
network infrastructure.
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among multiple matching faces indicated by the FIB. The cho⁃
sen face forwards the interest packet. Random forwarding does
not lead to any redundant traffic, but it cannot guarantee fast
and stable network performance.

Ant colony forwarding is a distributed routing selection strat⁃
egy in which the ant colony optimal algorithm sends out an ex⁃
ploratory packet to source an optimal forwarding path [14]. An
optimal path has the least number of hops to the source server
or the lightest-loaded nodes. There may be a tradeoff between
hops and load. The path is optimal in the traditional sense and
is formed by request node and all the optimal faces of the inter⁃
mediate nodes. Traffic redundancy can be reduced to some ex⁃
tent, but the path may not be optimal for CCN because content
caching in routing nodes is not taken into account with ant col⁃
ony forwarding.

In [15], a neighbor cache explore (NCE) routing strategy is
proposed. This strategy is an improvement of that in [14]. The
shortest path is found using ant colony algorithm under the con⁃
dition of a non-cache network. Then, exploratory packets are
sent to the nodes within a particular range (neighbor nodes) to
determine their caching status. Finally, a decision is made on
whether the requested content can be acquired in the nodes
along the shortest path. With NCE, the caching capability of
CCN is taken into account, but the shortest path found using
the ant colony algorithm may not contain nodes that cache the
requested content.

A reasonable CCN routing strategy helps find the node that
caches the requested content and is also as near as possible to
the requester. Using a traditional routing strategy to find the
least-cost path first is not reasonable. Future research is need⁃
ed into a probabilistic routing strategy for an opportunistic net⁃
work. In such a routing strategy, the first step involves explor⁃
ing the path that has the nearest possible node that can provide
the content.
3.3 Caching Policy

There are two kinds of CNN caching policy: cache replace⁃
ment and cache decision. The former involves selectively re⁃
placing cached content with newly arrived content. The latter
involves making a decision about caching newly arrived con⁃
tent.
3.3.1 Cache Replacement Policy

There are four classes of cache replacement mechanism that
can be found in existing caching policies: recency-based, fre⁃
quency-based, utility-based, and probability-based. Existing
CCN caching policies all originate from basic web caching poli⁃
cies.

A recency-based mechanism selects the content to be re⁃
placed when the cache is full. Content is selected according to
how much it has been used over a period of time. Least recent⁃
ly used (LRU) [16], [17] is the most common policy in this
class, and other policies can be regarded as a variation of this.

LRU stems from the web. Whenever there is a hit on a piece
of content, the content is moved to the head of the cache so
that less frequently used content is replaced when the cache is
full. The rationale for this is that recently used content will
probably be requested again. LRU is easy to implement.

CCN is a variation of LRU and uses two replacement poli⁃
cies: MRU and MFU. Most recently used (MRU) and most fre⁃
quently used (MFU) [18] target the multicache architecture of
information-centric networking. Assuming that the cache deci⁃
sion policy is to cache everywhere, the requested content is
stored in each node on the content delivery path. A hit in one
node implies a high probability that a copy of the same content
is being stored in neighbor nodes. The most recently used and
most frequently used content should be removed when the
cache is full.

The frequency-based replacement mechanism is similar to
the recency-based replacement mechanism except that the for⁃
mer takes usage, specifically, the number of visits to a piece of
content, to determine which content is to be replaced. A side
effect of this is called“cache pollution.”If a piece of content
was popular in the past, it will stay in cache for a long time,
even if it is not used any more. This will remain the case until
new content becomes more popular and more often visited. The
most frequently used content prevents newer content from en⁃
tering the cache. Several mechanisms, including an aging
mechanism, have been proposed to solve this problem, but
they all increase complexity.

LFU is used in the web [19], [20]. When new content ar⁃
rives, the least-visited content from the past should be re⁃
placed. Most frequency-based replacement approaches have
their foundations in the web are not designed for the dynamic
interests of CCN users. In [21], a new policy called recent us⁃
age frequency (RUF) is proposed for CCN. Unlike traditional
web-based policies that count content visits in the output face,
RUF counts visiting frequency using interest packets arriving
at the node. The benefit of changing the checkpoint is that
changes in user interests can be instantly detected, and cach⁃
ing policy can be promptly adapted. The content with low in⁃
stant popularity will be removed when the cache is full.

The utility-based replacement mechanism uses a utility val⁃
ue, for example, content size or content lifetime, as an index to
decide which content should be replaced. The choice of utility
parameter and calculation of utility value affects the perfor⁃
mance and complexity of the mechanism. An example of a utili⁃
ty-based replacement mechanism is size-based policy used in
the web [22]. Document size is taken as the utility parameter
on the basis that a user tends to request small-sized content.
With this rationale, larger content should be removed first. For
the content of similar size, an LRU policy is used.

An age-based cooperative (ABC) policy has been proposed
for CCN [23]. The age of content is taken as the utility parame⁃
ter. The distance of the content from the requester and the pop⁃
ularity of the content allows a node to calculate a unique age
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for each piece of content in its cache. This indicates the life⁃
time of the content. Only when a timeout event occurs is the
corresponding content removed; otherwise, it should be re⁃
tained in the cache.

A probability-based replacement mechanism reduces the
complexity of a policy but does not sacrifice performance too
much. Evaluating performance, however, is a little complex be⁃
cause performance differs in different network environments.
Uniform random replacement (UNIF) is a probability-based
policy that is used in the web to randomly select content to be
replaced with uniform distribution.

Randomized replacement (RR) policy is one attempt at a
probability-based replacement policy for CCN [24]. N pieces
of content are selected randomly from the cache, and the least
useful piece of content is removed. The usefulness of content
can be determined by any utility function. The remaining M
(M < N ) contents are retained in the cache. The next time
round, N -M new samples are drawn from the cache, and the
replacement mechanism is executed again.
3.3.2 Cache Decision Policy

Cache decision policy is used to determine whether the ar⁃
riving content should actually be stored in the cache. Less at⁃
tention has been given to this type of policy than has been giv⁃
en to cache replacement policy. Caching everywhere, also
called leaving copy everywhere (LCE), is the default policy for
CCN. However, LCE is not a good policy because it increases
redundancy and increases the probability of misses. As with
replacement policies, current CCN decision policies derive
from existing web policies [25]. These web decision policies in⁃
clude LCE, leave copy down (LCD), move copy down (MCD),
and leave copy probability (LCP).

LCE is a commonly used decision policy in multilevel cache
architectures. All the middle nodes on the content-delivery
path cache the content copy, which is hit in the level i node.

With LCD, the content copy that is hit in the level i node is
cached only in the downstream node (i.e. level i -1 node). The
content copy eventually goes down from level L to level 1 and
is cached thereafter at least every i -1 requests.

MCD is an improvement on LCD. The copy hit in the level i
node is moved to the downstream node (level i -1 node), and
the copy in the level i node is deleted.

With LCP, the content copy hit in the level i node is cached
in the nodes on the content-delivery path with probability p.

Existing CCN decision policies include WAVE,
less-for-more, and ProbCache. WAVE is an example of popu⁃
larity-based and collaborative in-network caching for CCN
[26]. With WAVE, content is divided into chunks (Fig. 3). If a
user requests chunk x and gets a hit in node i, chunk x is sent
back to the requester and, at the same time, is stored in the
next node (node i -1). If a request for the same content gets an⁃
other hit in node i -1, then chunk x is stored in node i -2, and
chunks x+1 and x+2 are stored in node i -1. The number of

stored chunks increases exponentially with an increase in the
number of request for chunk x. With this policy, the relevance
of requests between chunks is taken into consideration. When
a user requests a chunk of content, there is a high probability
they will request the rest of the chunks. Therefore, pushing
the rest of the chunks to a node nearest user reduces.

Less-for-more policy is an improvement on LCE proposed
in [27]. By storing the content in specific nodes on the back⁃
ward path can achieve the goal of gaining maximum benefit
with minimum copy storage.

Assuming there are M paths from node i to j, and node x is
on the mth path, m /M is the importance of node x. When there
is a backward delivery of content, the content copy is stored in
the selected node according to node’s importance. v3 is the
key node on the delivery path (Fig. 4). When v3 stores the
copy of the content, clients A to approximately C can acquire
the content via the path with the least hops. Thus, nodes v1
and v2 need not store a copy and can remain free to store other
content. Both hit probability and network utilization are high
for CCN, and there are many different types of content copies
provided by the limited nodes.

In [28], a probabilistic algorithm for distributed content
caching is proposed. This algorithm, called ProbCache, counts

▲Figure 3. WAVE CCN decision policy topology.
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▲Figure 4. An example less-for-more topology.
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the number of nodes through which an interest packet and data
packet have passed. It saves this number in the head of the
packet in order to evaluate the capability of the path to cache
content. The capability indicator, based on path length and
multiplexed content flow, is a probabilistic value that can be
used to decide whether content needs to be stored or not.

4 Improved CCN Caching Policies
Here, we describe two caching policies specifically for CCN.

The first policy is a replacement policy that reduces the proba⁃
bility of missed requests for low-popularity content. The policy
balances the stored proportion of different classes of content in
cache. The second policy is a decision policy that performs bet⁃
ter than traditional cache decision policies because it extends
content survival time in the network.
4.1 Replacement Policy Based on Content Popularity

Requests for content always follow a certain popularity dis⁃
tribution. To balance the load in a CCN, a good replacement
policy needs to balance the proportions of content (with differ⁃
ent popularities) that is cached in network nodes. Unfortunate⁃
ly, all existing CCN replacement policies previously mentioned
in this paper ignore the issue of content popularity, and this
leads to relatively poor performance.

In [24], a replacement policy based on popularity preference
is proposed. Two chunks are selected randomly, and the more
popular chunk is replaced. The goal of this policy is to cache
less-popular content longer and guarantee the uniform distri⁃
bution of content with different popularities. A drawback of
this policy is that less popular chunks may not be replaced for
a long period of time.

We propose a replacement policy based on content populari⁃
ty probability (PP) [29]. PP policy is suitable for highly concen⁃
trated content requests. It can improve performance for most
content by sacrificing a little performance for the most popular
content. Assuming that each replacement removes the chunk
at the tail of the cache queue, the chunk position indicates the
chunk’s replacement priority. If a new chunk is to be cached,
the PP decides where to insert it according to its popularity. A
less popular chunk is inserted the nearer to the top of the
queue. In this way, PP policy can extend the time in cache of
less popular content and thus reduce the probability a request
for this content will be missed. It solves the problems faced by
the policy in [24].
4.1.1 Description of Proposed Policy

Assuming the cache comprises C chunks, when a chunk
with class k popularity is hit, it is inserted at the i th position
with probability pk (i ). This probability is given by

where, K is the sum of content popularity classes, and a and β
are probability adjustment factors. The probability adjustment
factor a is given by

Existing chunks in the i th (or later) positions in the cache
shift one place backward in the order, and the chunk at the
queue tail is removed if the cache is full. A chunk in a physi⁃
cal router is always shifted by simply modifying the pointer
that indicates the position of the corresponding chunk. The
chunk itself is not moved, so time overhead is reduced. In (1)
and (2), the recommended value of β is [1], [2]. As β increas⁃
es, low-popularity content at the front of cache queue is more
likely to be replaced.
4.1.2 Evaluation of the Performance of the Proposed Policy

We compared PP and LRU for user-generated video, which
is typical big data. We used Matlab to run a simulation on re⁃
quest miss probability. Fig. 5 shows the network topology.

The simulation parameters were taken from [30]. The net⁃
work is a triple-level tandem architecture. The CCN provided
a total of M content files, where M = 40,000. These files were
divided into K classes, where K = 400. Each class had m con⁃
tent files, where m = 100, and each file was divided into 10 kB
chunks. Requests for content in class k are generated accord⁃
ing to a Poisson process with intensity

where λ1 is the request rate at the first level (λ1 = 40 pieces of
content per second in simulation), and qk follows the Zipf distri⁃
bution, which describes the popularity of arrival requests for
content in class k [30]. The Zipf distribution is given by

where α is the concentrations of content popularity. A larger α
means the requests are more concentrated in the first several
classes of content. Fig. 6 shows the performance of PP and
LRU in the first-level CCN node.

The RMP of content increases as k increases. PP and LRU
perform well only for first several classes (i.e. those comprising
content with a small k, for example, k ＜ 2). As α increases,
LRU only performs well for the most popular classes but per⁃
forms poorly for classes with class id k > 2. An increase in α
means there are more concentrated requests for the first sever⁃

▲Figure 5. L -level CCN network topology.
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i = 0
C-1β(k-1)



al classes, but LRU cannot adapt to variations in content popu⁃
larity. PP increases cache hits because it has an adaptive con⁃
tent popularity distribution policy. When α = 1.2, this improve⁃
ment is slight, but as α increases, the improvement is greater.
This means that PP is more suited to a network with highly con⁃
centrated content requests. When α = 2, the RMP for k = 1
class is worse than the LRU for that class. The RMP for k ≥ 2
classes shows definite improvement. This improvement is
caused by the decrease in hits on the k = 1 class). PP sacrific⁃
es request hits on popular classes but slightly increases the hit
distance of k = 1. It does this in order to improve performance
for other classes and shorten their hit distances [29].
4.2 Probability Cache with Evicted Copy Up Decision

Policy
LCD and MCD reduce the number of copies in the cache

and extend the time needed to cache them. However, in anL-level tandem network, only after at leastL -1 requests can a
copy be moved to the level 1 node. It is no good for users to ac⁃
cess the content from a nearby node. LCP is potentially a bet⁃
ter policy because it increases the amount of popular content
cached in nearby nodes and reduces the hit distance. However,
storage efficiency is reduced, and the time needed to cache the
requested content decreased because LCP leads to greater re⁃
dundancy.

To tackle the above problems, we propose a policy called
probability cache with evicted copy up (PCECU). This policy
is designed to keep the copies as long as possible in order to in⁃
crease the hit probability. In the meantime, it also increases
the amount of popular content cached near the user in order to
reduce hop count and delay during acquisition.
4.2.1 Description of Proposed Policy

If a request for a chunk receives a hit at level i , then the
chunk is moved to the level 1 node with probability p and is de⁃

leted from the level i node. (The chunk is not deleted if node i
is the original server). The chunk remains cached in level i
with probability 1-p. Except for the level 1 node, no node on
the backward delivery path caches the chunk while delivering
it to level 1. If the content chunk cached in level i node is elim⁃
inated from the cache to make way for new chunks, this chunk
is moved to its upstream node (i.e. i + 1 node). The chunk is
then cached in the head of the i + 1 node.
4.2.2 Evaluation of the Performance of the Proposed Policy

In our Matlab simulation, we delivered UGC in a 3-level
tandem CCN (Fig. 5). The performance parameters were the
source server hit probability (SSHP) for the k th content chunk,
and the average hit distance (AHD). The CCN provided a total
of M content files, where M = 40,000. These files were divided
into K classes, where K = 400. Each class comprised m con⁃
tent files, where m = 100, and each file was divided into 10 kB
chunks. Requests for content in class k were generated accord⁃
ing to a Poisson process with intensity given by (3). The defini⁃
tion of λ1 and qk were the same as in section 4.1. In this simula⁃
tion, λ 1 = 40 pieces of content per second , and 5 × 107 re⁃
quests for first-level chunks are randomly generated.

Fig. 7 shows that LCE always performs the worst, and LCP
performs the second worst but improves as p decreases. PCE⁃
CU definitely improves CCN performance it allows probability
caching and extends caching time.

5 Conclusion
CCN is a promising network infrastructure for the big-data

era. It is content-centric, not host centric in the traditional IP
network. A request for content can get a hit in a nearby node
and does not need to travel far away to the source server. This
alleviates network congestion and significantly reduces delay.

At present, key aspects of CCN being studied include cach⁃
ing policy, naming mechanism, content retrieval, routing strate⁃
gy, mobility management, and security. Much attention has
been paid to CCN at home and aboard. CCN could potentially
revolutionize the internet by providing full-scale network sup⁃
port for big data.

▲Figure 6. Node performance of PP and LRU.
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Abstract

With the rapid development of the internet, internet of things, mobile internet, and cloud computing, the amount of data in circulation
has grown rapidly. More social information has contributed to the growth of big data, and data has become a core asset. Big data is
challenging in terms of effective storage, efficient computation and analysis, and deep data mining. In this paper, we discuss the signif⁃
icance of big data and discuss key technologies and problems in big-data analytics. We also discuss the future prospects of big-data
analytics.
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1 Introduction
ollowing on the heels of the PC and internet, cloud
computing will be the third wave of IT and will fun⁃
damentally change production and business models.
Cloud computing improves data convergence, stor⁃

age, and processing and makes it easier to extract value from
data. More and more intelligent terminals and sensing devices
are being connected to networks, and data is rapidly becoming
more varied and extensive (Fig. 1).

Data-processing technologies have developed steadily for a
long time, but big data has suddenly caused two significant
changes. Now, all data can be saved. This means that applica⁃
tions that require data to be accumulated prior to implementa⁃
tion can be more easily implemented. Also, there has been a

shift from data shortage to data flood. Such a flood has created
new challenges for data applications. Simply acquiring data
from search engines is no longer sufficient for today’s applica⁃
tions. It is increasingly difficult to efficiently obtain and pro⁃
cess useful data from a mass of data.

In 2012 Hype Cycle for Emerging Technologies, Gartner
stated that cloud computing was falling into a“trough of disil⁃
lusionment,”meaning that technology was set to mature after
years of being hyped (Fig. 2) [1]. Big data is rapidly moving
from the phase of“technology trigger”to the phase of“peak of
inflated expectations.”Technological breakthroughs in big da⁃
ta will continue to be made so that big data will be widely used
in the next two to five years.

2 Definition and Features of Big Data
Big data implies a collection of data sets that are so large

and complex that they are difficult to manage using traditional
database management tools or data-processing applications
[2]. Compared with traditional data, big data has greater vol⁃
ume; it is more varied; and it derives from a greater range of
sources. Big data is not a simple mass of data nor is it only a
cloud computing application. The key to big data is deriving
valuable information from a mass of data. The features of big
data can be summarized as the“four Vs”: volume, variety, ve⁃
locity, and value (Fig. 3).
2.1 Volume

Because of the decreasing cost of generating data, the world⁃

F

▲Figure 1. A big-data scenario.
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wide volume of data has grown sharply. Ubiquitous mobile de⁃
vices and wireless sensors are generating data every minute,
and bulk data exchanges are occurring every second between
billions of the internet services. Scientific applications, video
surveillance, medical records, enterprise operational data, dis⁃
crete manufacturing, and e-commerce are all sources of big da⁃
ta. In 2011, the International Data Corporation claimed that
“The world’s information is doubling every two years”[4]. In
that year, the world generated a staggering 1.8 ZB (1021 B) of
data, an increase of 0.6 ZB year-on-year. By 2020, the world
will generate up to 35 ZB of data, and this poses significant
challenges for storage (Fig. 4 [4]).
2.2 Variety

Data may be structured, unstructured or semi-structured,
and all three types of data are frequently and extensively inter⁃
changed. Structured data only accounts for 20% of the big data

stored in databases. Data from
the internet—including data cre⁃
ated by users, data exchanged in
social networks, and data from
physical sensing devices and the
internet of things—is dynamic
and unstructured. Unstructured
data accounts for 80% of big data
stored in databases.
2.3 Velocity

Velocity refers to the high re⁃
quirements on real-time process⁃
ing and quasi-real-time analysis
of big data. With traditional data
warehousing and business intelli⁃
gence, real-time requirements
are lower. In the big-data era,
the value of data decreases rapid⁃
ly over time, so data needs to be
exploited as soon as possible.
2.4 Value

Structured data of an enterprise has traditionally been used
for statistics and historical analysis. However, big data in⁃
volves extracting valuable information from mass data to pre⁃
dict future trends and make decisions. In addition, big data
has low value density. For example, continuous video surveil⁃
lance may produce a great deal of data, but only a few seconds
of the video may actually be useful.

3 Challenges with Big-Data Analytics
Traditionally, data originates from a single source and has

relatively low volume. Storing, managing, and analyzing such
data does not present great challenges, and most processing is
done through relational databases and data warehouses. In a
big-data environment, the volume of data is so great that tradi⁃
tional information processing systems cannot cope with stor⁃
age, mining, and analysis. Traditional business intelligence
software lacks effective tools and methods for processing and
analyzing unstructured data. Here, we discuss some problems

▲Figure 2. Gartner 2012 hype cycle.
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▲Figure 3. The“four Vs”of big data. ▲Figure 4. Forecast of the volume of global data.

3D bioprinting
Quantum computing

Human augmentation
In-memory analiytics

Text analytics
Home health monitoring

Hosted virtual desktops
Virtual worlds

Mobile OTA payment
Media tablets

Consumerization
Biometric authentication methods

Idea management
Consumer telematics

Speech recognition
Predictive analytics

Technologytrigger Peak ofinflatedexpectations
Trough ofDisillusionment Slope of enlightenment Plateau ofproductivity

As of July 2012

Time

expectations

Plateau will be reached in:
less than 2 years 2 to 5 years 5 to 10 years more than 10 years obsolete before plateau

Automatic content recognition
3D scannersAutonomous vehicles

Mobile robots
Internet of Things

Natural-language question answeringSilicon Anode BatteriesSpeech-to-speech translation
Crowdsourcing

GamificationBig data
HTML5Hybrid cloud computingWireless power

3D printingBYODComplex-event processingSocial analyticsPrivate cloud computingApplication storesAugmented realityIn-memory database management systems
Activity streamsNFC paymentAudio mining/Speech analytics

Gesture Control
Mesh Networks: SensorMachine-to-machine communication servicesCloud computingNFC

InternetTV

Volume Variety

Velocity Value

Big data

Exponential data growth.Unstructured dataaccounts for over 80percent of the total, andgrows 10-50 times fasterthan structured data

High efficiency of dataprocessing. Supportsinteractive andquasi-real-time dataanalysis

A variety of data types,including relational data,unstructured andsemi-structured data suchaslogs, texts, images, andsensor information

Derives valuableinformation from massdata, andidentifies thefuture developmenttrends and modes 20202015201120102009

40
3530
2520
1510
5
0

Zet
tab

yte
(ZB

)

Year

0.8 1.2 1.8
7.9

35

June 2013 Vol.11 No.2ZTE COMMUNICATIONSZTE COMMUNICATIONS12

Special Topic

Big-Data Analytics: Challenges, Key Technologies and Prospects
Shengmei Luo, Zhikun Wang, and Zhiping Wang



in big-data analytics.
3.1 Extensive Data Sources and Poor Data Quality

Big-data scenarios are characterized by heterogeneous data
sources, such as transaction records, text, images, and videos.
Such data is described in different ways, and the data input
rate may reach up to hundreds of megabits or even gigabits per
second. Traditional methods for describing structured data are
not suitable for describing big data. In addition, big data is eas⁃
ily affected by noise and may be lost or inconsistent. Filtering
and integrating incomplete, noisy, and inconsistent data is a
prerequisite for efficiently storing and processing big data.
3.2 Highly Efficient Storage of Big Data

The way that big data is stored affects not only cost but anal⁃
ysis and processing efficiency. Big data is often measured in
petabytes or even exabytes and cannot be handled by enter⁃
prise storage area networks or network-attached storage. To
meet service and analysis requirements in the big-data era, re⁃
liable, high-performance, high-availability, low-cost storage
solutions need to be developed. Because big data comes from
various sources, the same data may exist in the system and
cause absolute redundancy. Detecting and eliminating redun⁃
dancy increases storage space and is a fundamental require⁃
ment for big-data storage platforms.
3.3 Efficiently Processing Unstructured and

Semi-Structured Data
Enterprise data is mainly processed in relational databases

and data warehouses; however, such databases and warehouses
are unsatisfactory for processing unstructured or semi-struc⁃
tured big data. With big data, read/write operations need to be
highly concurrent for a mass number of users; storage of and
access to big data needs to be highly efficient; and the system
must be highly scalable. As the size of datasets increases, algo⁃
rithms may become inefficient, and the atomicity, consistency,
isolation, durability (ACID) features of relational databases are
resource intensive. The CAP theorem states that it is impossi⁃
ble for a distributed computer system to simultaneously guaran⁃
tee consistency, availability, and partition tolerance [5]. Be⁃
cause consistency is required in parallel relational databases,
these databases are not highly scalable or available. High sys⁃
tem scalability is the most important requirement for big-data
analytics, and highly extensible data analysis techniques must
be developed.
3.4 Mass Data Mining

With an increase in the size of data sets, more and more ma⁃
chine learning algorithms and data-mining algorithms for big
data have emerged. Research has shown that for larger data
sets, machine learning is more accurate and there is less differ⁃
ence between machine-learning algorithms. However, large da⁃
ta sets are problematic for traditional machine-learning as

well as data-mining algorithms. In fact, most traditional da⁃
ta-mining algorithms are rendered invalid by big data sets. Ma⁃
chine-learning and data-mining algorithms with difficulty lev⁃
els of O(n), O(n log n), O (n2), and O (n3) can be used for small
data sets. However, when the size of a data set reaches pet⁃
abytes, serial algorithms may fail to compute within an accept⁃
able timeframe. Effective machine-learning and data-mining
algorithms need to be developed for big data sets.

4 Big-Data Analytics

4.1 Architecture
A typical big-data processing system includes collection

and preprocessing, storage, analysis, mining, and value appli⁃
cation. Fig. 5 shows the architecture of a big-data system. In
the data-source layer, data comes from enterprises, industry,
the internet, and the internet of things. In the data-collection
layer, the collected data is preprocessed. This preprocessing in⁃
cludes data cleanup and heterogeneous data processing. In the
data-storage layer, structured, unstructured, and semi-struc⁃
tured data is stored and managed. In the data-processing lay⁃
er, data is analyzed and mined so that users can analyze servic⁃
es, such as common telecommunications and internet services,
on the platform.
4.2 Big-Data Technology

4.2.1 Collection and Preprocessing
Converting the format of mass amounts of data is expensive,

and adds to the difficulty of data collection. Traditional da⁃
ta-collection tools have become obsolete, and most internet
companies have their own big-data collection systems. Exam⁃
ples of such systems are Apache Chukwa [6], Facebook Scribe
[7], Cloudera Flume [8], and Linkedin Kafka [9].

Cleaning and extracting technologies are used to clean out
damaged, redundant, and useless mass data in networks and
extract quality data for analysis. Hadoop is used to expedite da⁃
ta cleaning, conversion, and loading and to improve preprocess⁃
ing of parallel data [10]. Big-data collection and preprocessing

SNS: social networking services
▲Figure 5. Big-data architecture.
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technologies are also designed to optimize the quality of multi⁃
source and multimode data. These technologies perform the
computations necessary for the integration of multimode data.
They transform high-quality data into information, control the
quality of information derived from different sources, and lay
the foundation for data analysis.
4.2.2 Storage

Unstructured and semi-structured data account for 80% of
stored big data. At present, big-data storage is based on inex⁃
pensive X86 server cluster systems that are highly scalable us⁃
ing certain methods.

Unstructured data is stored in distributed file systems. Un⁃
like the traditional Network File System (NFS), a distributed
file system separates control streams from data streams in or⁃
der to improve scalability [11]. In a distributed file system, the
metadata servers manage all the metadata and cluster informa⁃
tion of data-storage servers. For example, the capacities of
Google File System (GFS) [12], Hadoop Distributed File Sys⁃
tem (HDFS) [10], Lustre [13], and Ceph [14] can be up to 10
PB or even 100 PB. These storage systems provide file access
semantics through POSIX interfaces. If a metadata server fails
in a storage system of this kind, the whole file system fails to
provide services to users. The processing and storage capacity
of a single-node metadata server is also quite limited. As the
amount of data traffic in the system increases, the processing
capability of metadata servers becomes a bottleneck for system
scalability.

Metadata servers can therefore be used in active/standby
mode (Fig. 6). In normal conditions, the active metadata server
processes all requests, manages the whole distributed file sys⁃
tem, and regularly sends data to the standby metadata server
for synchronization. If the active server fails, the standby serv⁃
er takes over all activities without interrupting services. Data
that has not been sent to the standby server may be lost. Using
this mode, single-point failures can be solved, but the system
cannot be scaled. Therefore, a highly scalable metadata server
cluster is critical in a distributed file system. The design of

such a cluster includes static subtree partitioning, static hash⁃
ing, dynamic subtree partitioning, and dynamic hashing [15].

Big data includes semi-structured data, which is more struc⁃
tured than plain-text data but has more flexible models than
data in relational databases. Semi-structured data does not re⁃
quire strict database transactions. It mainly involves simple
single-table query, and in some cases, it has low consistency
requirements. Therefore, database transaction management is
a burden in heavily loaded databases. The NoSQL database is,
broadly speaking, a non-relational database in which the link
between relational database and ACID theory is broken.
NoSQL data storage does not require a fixed-table structure or
connection operations, and this provides significant advantages
in terms of access to big data.

In NoSQL databases, relational data storage models are dis⁃
carded in favor of a schema-free principle that supports dis⁃
tributed horizontal expansion and big data. There are many
NoSQL database products and open-source projects, including
Dynamo [16], BigTable [17], Cassandra [18], and MongoDB
[19]. Fig. 7 shows four types of NoSQL databases based on the
data model. From left to right, key-value, column-oriented,
graph-oriented, and document-oriented databases are in as⁃
cending order of complexity and in descending order of scal⁃
ability (Fig. 7). A database can be selected according to the ap⁃
plication scenario.

NoSQL systems are not yet mature: Most are open-source
projects that have little commercial support. NoSQL systems
lack unified application program interfaces (APIs) and do not
support SQL, which is costly in terms of learning and applica⁃
tion migration.
4.2.3 Processing

Processing large data sets with mixed loads is complex, and
certain processing requirements should be met (Table 1).

The data warehouse is the primary means of processing the
traditional structured enterprise data. In the big-data era, the
data warehouse has changed in terms of
•distributed architecture. A typical data warehouse includes

complicated data processing and comprehensive analysis;
therefore, the system should be capable of high I/O process⁃
ing, and the storage system should provide sufficient I/O
bandwidth. Most data warehouses use massive parallel pro⁃
cessing (MPP) architecture for scalability and to improve ac⁃

▲Figure 6. Architecture of a metadata server cluster in active/standby
mode. ▲Figure 7. NoSQL database models.
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cess efficiency.
• storage model. There are two methods for storing physical

data in databases: row and column. Row storage is used in
traditional databases where OLTP applications read and
write in rows and have low data traffic. Column storage is
used in data warehouses where most OLAP applications do
not need to select all columns. This method of storage can re⁃
duce unnecessary I/O consumption and makes data compres⁃
sion easier. A high data compression ratio can be achieved
because the data in a column is the same type.

• hardware platform. Traditional databases are mainly found
on midrange computers. If data traffic increases sharply, the
cost of upgrading hardware can increase significantly. In the
big-data era, parallel data warehouses are based on univer⁃
sal X86 servers.
Big unstructured data is mainly processed using a distribut⁃

ed computing architecture (Fig. 8). This architecture, located
at the distributed storage layer, encompasses parallel comput⁃
ing, task scheduling, fault tolerance, data distribution, and
load balancing. It provides computation services for the upper
layer. The language layer encapsulates service interfaces and
provides SQL-like programming interfaces. The SQL-like lan⁃
guages vary with the computing architectures.

There are three types of distributed computing based on dif⁃
ferent computation models:
1) MapReduce. This model can be expressed as (input key, in⁃

put value) → (output key, output value). The output key/val⁃
ue pairs are processed, and the input key/value pairs are
generated using the MAP or Reduce functions. This model
has a simple logic and is widely used [20].

2) Bulk Synchronous Parallel (BSP) model [21]. This is an iter⁃
ative computation model that is similar to a simple computa⁃
tion model; however, the difference lies in communication.
In this model, all nodes are synchronized after each round of
computation. This is suitable for iterative scenarios. Google
Pregel, for example, is based on BSP architecture [22].

3) Directed Acyclic Graph (DAG) model. This model uses
DAG to describe complicated computing processes and rela⁃
tionships between them. Microsoft uses this computing mod⁃
el in its Dryad project [23].
Real-time stream processing platforms such as Yahoo S4

[24] and Twitter Storm [25] have been created to meet big-data
processing requirements. These platforms process a data
stream in real time in the memory and do not retain much data.
4.2.4 Mining

Big-data mining technology is used to effectively extract val⁃
ue from big data. Such technology includes parallel data min⁃
ing, search engine, recommendation engine, and social net⁃
work analysis.

Parallel data mining greatly increases the speed of big-data
mining by implementing data-mining algorithms in parallel.
Hadoop [10] and HDFS aid in this implementation. The da⁃
ta-mining algorithms include parallel classification algorithm
and parallel clustering algorithm. Fig. 9 shows a parallel da⁃
ta-mining system architecture based on cloud computing plat⁃
forms.

A search engine is an information retrieval system that col⁃
lects data from various services or application systems. It

▼Table 1. Big data processing requirements

Feature
High scalability
High performance
Low cost
Fault tolerance
Easy to useand open interfaces
Downward compatibility

Description
Scale-out scalability, support for large-scale parallel dataprocessing
Rapid response to mass-data query and analysis requirements
Based on universal hardware servers, high price/performance ratio
Independent of hardware reliability, some (rather than all)operations are performed in the case of a fault
Compatible with traditional SQL interfaces, support for query andmultidimensional data analysis
Support for traditional BI tools

▲Figure 8. Service system of a distributed computing architecture.

GFS: Google File System HDFS: Hadoop Distributed File System
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stores, processes, and reorganizes the data and provides users
with query functions and results. The search engine is an im⁃
portant tool for data management after the big data has been
obtained by a storage system. The search engine allows users
to input simple queries and obtain useful collections of infor⁃
mation. Fig. 10 shows the architecture of a universal search en⁃
gine comprising many technology modules. The key technolo⁃
gies include the Web crawler, document understanding, docu⁃
ment indexing, relevance computing, and user understanding.

The recommendation engine helps users to obtain personal⁃
ized services or content from a mass of information. It is the
driver of the transition from a search era to a discovery era.
The main challenges for recommendation systems are cold
start, scarcity, and scalability. The quality of recommendations
depends not only on the models and algorithms but also on
non-technical factors, such as product form and service mode.

Fig. 11 shows the typical architecture of a recommendation
system, including the user operation database, data-mining en⁃
gine, data warehouse, recommendation model library, recom⁃
mendation engine, and user interaction agent. Together, these
subsystems, databases, and basic operations provide users with
personalized services. The main algorithms in a recommenda⁃
tion engine are content-based filtering algorithm, collabora⁃
tive-filtering algorithm, and relevance-analysis algorithm.

Social network analysis is a new concept for analyzing new
problems. It is based on the relationships between members
and provides the methods and tools for interactive data mining.
It displays crowd-sourced intelligence and ideas and is impor⁃
tant for social filtering, marketing, recommendations, and
searching. Social network analysis involves user relationship,
topic, interest, identification, influence, and emotion analysis.
It also involves community discovery.

5 Prospects of Big-Data Analytics

5.1 Representing and Understanding Multisource and
Multimode Data

Big data comes from different sources and comes in different
formats. During preprocessing, different attributes of the data

need to be determined for multidimensional description and al⁃
so to improve explainability and flexibly so that analysis re⁃
quirements are met. In the future, research needs to be done
on semantic analysis, network data context resolution, and visu⁃
al media analysis and learning. Theories and methods of intrin⁃
sic data representation and mapping from high-dimensional
data space to low-dimensional manifold need to be developed
to resolve and integrate heterogeneous network data.
5.2 Low-Cost, Highly Efficient Data Storage Technology

The storage of big data affects not only the efficiency of data
analysis and processing but also cost. With the emergence of
big data, research into parallel data compression, distributed
data de-duplication, thin provisioning, automated tiered stor⁃
age (ATS), energy-saving, and freeing up of storage space
needs to be done. This will reduce the storage pressure on serv⁃
ers, increase transmission efficiency, improve data analysis,
and reduce costs.
5.3 New Parallel Computing Model and Big-Data

Architecture
Big data seriously affects computation and storage. Big data

is so large that the existing computation methods
and algorithms cannot compute within an accept⁃
able timeframe. Therefore, new processing meth⁃
ods are required.

With unstructured data processing and
large-scale parallel processing, non-relational
data analysis models have greatly improved
search and analysis of mass internet data. Such
models include MapReduce and have become
commonplace for big-data analysis [20]. Howev⁃
er, MapReduce still has many performance prob⁃
lems. To make parallel computation more effi⁃
cient for big data, more effective and useful pro⁃▲Figure 10. Search engine architecture.

▲Figure 11. Intelligent recommendation system architecture.
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gramming models and architectures need to be developed. Hy⁃
brid programming models and architecture have already been
developed. These include MapReduce [20], BSP [21], Message
Passing Interface (MPI) [26], Compute Unified Device Archi⁃
tecture (CUDA) [27], and shared-memory parallel program⁃
ming and computation models [28].
5.4 Multidimensional and Multimode Data Mining and

Knowledge Discovery
Big data includes multidimensional and multimode data. At⁃

tributes and dimensions can be reduced in big-data mining to
classify data nodes and measure data relevance and integration
mechanisms. Data-mining algorithms can meet the special re⁃
quirements of big data, expand the scope of data-mining appli⁃
cations, and satisfy the requirements of users at different da⁃
ta-mining terminals. Application-oriented data-mining algo⁃
rithms should be developed according to the application envi⁃
ronment and an understanding of semantics. With natural lan⁃
guage processing and machine learning, knowledge derived
from big data can be more practically used in commerce and
science.

6 Summary
With the rise of social networks and the widespread applica⁃

tion of cloud computing, mobile internet, and the internet of
things, big data has become the focus of attention. There are
various types of big data, and processing methods are becom⁃
ing more complex. This has created many challenges. Tradi⁃
tional data-processing architectures such as relational databas⁃
es and data warehouses struggle to process big data. Systems
tailored to big data have distributed storage, MapReduce paral⁃
lel computing, and data mining. However, these are in a fledg⁃
ling state. To improve big-data analysis, research on represen⁃
tation, measurement, and semantics for big data must be under⁃
taken. The cost of storing big data should also be reduced, and
flexible, highly efficient big-data computing architectures and
data-mining algorithms should be developed.
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1 Introduction

ith the recent development of information tech⁃
nology, various types of cloud storage plat⁃
forms have appeared. These platforms are of⁃
ten convenient, scalable, and cost-effective,

so cloud computing services are widely used. Amazon’s EC2/
S3, Google’s MapReduce/AppEngine, Microsoft’s Azure, IBM’s
Blue Cloud and Salesforce’s CRM are well-known cloud ser⁃
vice platforms. In China, the cloud platforms of Sinochem
Group and Wuxi and Dongying municipal governments have
appeared. At the same time, the national strategy for cloud stor⁃
age and utility computing has been developing. Utility comput⁃
ing service models based on cloud storage have many new
characteristics. New models based on cloud storage use a vari⁃
ety of techniques designed to tightly manage resources and pro⁃
vide users with flexible services. These new service models
are likely to have a knock-on effect and cause significant
changes within the industry. They will give rise to many new
security issues that need to be addressed. At present, cloud
storage is only really applied in scenarios where a high level of
security is not required. Privacy and security are significant ob⁃
stacles in the development of utility computing based on cloud
storage. Security vulnerabilities of cloud service providers
such as Amazon, Google, and Microsoft are widely publicized,
and much attention has been drawn to these vulnerabilities. In
[1], cloud security and privacy issues are detailed. The Cloud

Security Alliance (CSA) has made recommendations for solv⁃
ing problems in cloud computing applications. In [2], the Euro⁃
pean Network and Information Security Agency (ENISA) de⁃
tailed the risks to data and benefits of data security in cloud
computing applications. In [3], EMC Corporation’s RSA Secu⁃
rity Division analyzed the most basic security issues in the
cloud infrastructure. Domestic Chinese counterparts have also
widely discussed the issue of cloud security [4]. Satisfactory so⁃
lutions to cloud security and privacy problems will be a strong
driving force for the overall development of cloud storage ser⁃
vices. Solving these problems is also theoretically and practi⁃
cally important to vigorously promote the national digital infra⁃
structure and national information security.

2 Cloud Storage: Concepts, Applications
and Security

2.1 Concepts
Cloud computing involves the development of distributed

processing, parallel processing, and grid computing. With
cloud computing, huge computing programs are automatically
split into smaller subroutines via the network. Processing and
analysis is referred to multiple servers in a large system, and
results are returned to the user. The network service provider
can process massive amounts of information in seconds—a ca⁃
pability that is equal to that of powerful supercomputer net⁃
works.

Cloud storage is an extension of cloud computing and is one
of a large variety of storage devices found in networks.
Through the use of application software and clustering, grid
technology, distributed file system, or other functions, cloud
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under grants 61173170 and 60873225, National High Technology
Research and Development Program of China under grant
2007AA01Z403, and Innovation Fund of Huazhong University of Science
and Technology under grants 2013QN120, 2012TS052 and 2012TS053.
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storage works with other storage devices to provide a service
access function and a whole data-storage system. When the
cloud processing core requires large-scale data storage and
management, a large number of storage devices need to be con⁃
figured, and a cloud storage system needs to be set up. Thus,
cloud storage is a cloud computing system in which data stor⁃
age and management is at the core.

Cloud storage systems differ from traditional storage systems
in that they are designed for multiple types of online storage
services. Traditional storage systems are designed for specific
applications, such as high-performance computing or transac⁃
tion processing. In terms of performance indexing, cloud stor⁃
age services are primarily indexed according to data security,
reliability, and efficiency. Cloud storage systems are suitable
for large-scale applications, a wide range of services, and com⁃
plex network environments. In terms of data management,
cloud storage systems provide traditional file access similar to
POSIX, but cloud storage also supports mass data management
and public services.
2.2 Applications

Cloud storage is effective, flexible, low-cost, and easy to
manage. Cloud storage can be used in either enterprise applica⁃
tions or personal applications, depending on the type of service
and user orientation.

In enterprises, cloud storage is used for storage space leas⁃
ing, remote data backup, disaster recovery, and video surveil⁃
lance. With an IDC data center, operators can lease storage
space to enterprises and institutions that do not wish to pur⁃
chase mass-storage devices. A high-performance, high-capac⁃
ity cloud storage system and remote data backup software also
allows an operator to help enterprises and institutions build
their own remote-backup and disaster-recovery systems as
well as remote real-time video surveillance and playback sys⁃
tems.

Cloud storage applications for individuals include network
disks, online document editing, and online games. Network
disks are used to upload and download files when a user is stor⁃
ing and backing up personal data over the internet. With on⁃
line document editing, a user can simply access a web page,
such as Google Docs, to edit, manage, and transmit documen⁃
tation. Cloud computing and storage can also be used to build
a huge game server cluster so that all players are managed as a
game server group, and gaming becomes more exciting.
2.3 Security

Because cloud storage is large-scale, complex, and dynam⁃
ic, it creates many new security and privacy problems. These
problems include unauthorized access to data, threats to confi⁃
dentiality, threats to data integrity, unavailability of data, and
lack of privacy.

To prevent unauthorized access to the storage system, a pro⁃
vider needs to confirm the user's identity and verify whether

that user has the permission to access resources or perform
certain operations. The user submits an access request to the
cloud storage provider through storage access interfaces.

When using a cloud storage service, a user uploads their lo⁃
cal data to the storage server and downloads the data when
they need it. In this process, data passes through a public
cloud, private cloud, and internet transmission line. Data may
be stolen or altered when stored in the server. In this case, the
confidentiality of the user's data is compromised.

In a both traditional and cloud storage environments, data in⁃
tegrity is remotely verified to prevent data tampering and coun⁃
terfeiting. However, in a cloud environment, users do not have
absolute control over their data, and there is a greater need to
verify the integrity of the data. When the user updates their da⁃
ta in the cloud, the server must promptly update the data.
Therefore, real-time verification of integrity is essential.

Preventing data from being lost and ensuring the sustained,
effective use of data are important responsibilities of a cloud
storage provider. This requires the provision of strategies that
ensure data availability, backup, and recovery.

Users often disclose personal information, such as credit
card numbers or user name, when purchasing storage services.
These need to be protected. A user's digital identity, certifi⁃
cates, access, and operation records also need to be protected.
A storage service provider needs mechanisms to guarantee the
privacy of user information.

3 Architecture for Ensuring Security and
Privacy in a Cloud Storage System
In [5], a secure cloud storage architecture is proposed. This

architecture comprises business application layer, application
interface layer, platform software layer, and infrastructure lay⁃
er (Fig. 1). These layers provide information service manage⁃
ment, statistical analysis, and a variety of safety measures.

In the access layer, an authorized user can log on to the
cloud storage system via a standard public application inter⁃
face to use cloud storage services. Different cloud storage pro⁃
viders have different types of access methods. The application
interface layer is the SaaS layer of cloud computing services.
Different cloud storage providers can develop different applica⁃
tion interfaces and provide different application services based
on the type of business. However, security problems may arise
in access control and single sign on (SSO). The infrastructure
management layer is the core of the cloud. It includes clusters,
distributed file systems, and grid computing and allows cooper⁃
ation between storage devices in the cloud. Content distribu⁃
tion systems and encryption of stored data ensures that data in
the cloud is not accessed by unauthorized users. Various da⁃
ta-backup and disaster-recovery measures ensure that data
stored in the cloud is not lost. In this layer, there may be prob⁃
lems with data confidentiality, integrity, availability, and intru⁃
sion. The data-storage layer is the fundamental part of cloud
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storage. In the data-storage layer, huge amounts of data are
managed in a unified way. The data-storage is also used for vir⁃
tual management of storage, monitoring hardware, and fixing
faults. In this layer, security problems arise in virtualization
and in the firewall.

For a user uploading their data to a cloud storage system,
privacy mainly depends on whether the cloud storage provider
supports encryption, differential privacy protection, compulso⁃
ry destruction of agreement, or data privacy management.
However, cloud storage providers may also snoop on a user’s
data or analyze the privacy preferences of users. To fully pro⁃
tect user privacy, data needs to be encrypted, anonymized, or
scrambled before being uploaded to the cloud.

4 Data Security in Cloud Storage
Existing technologies for controlling access to data, encrypt⁃

ing data, and ensuring data integrity and availability have been
transplanted to cloud storage. Experts have proposed different
models for ensuring data security in different cloud systems.
The key technologies in these models relate to access control,
data confidentiality, data integrity authentication, and data
availability.

To control access to encrypted data, the owner of the data
maintains encryption keys and manually sends them to users

who want access to the data. This
has become a bottleneck in the
cloud storage environment. In [6], a
new cryptographic access control
scheme, called attribute-based ac⁃
cess control for cloud storage
(AB-ACCS), was proposed. Each
user’s private key is labeled with a
set of attributes, and data is en⁃
crypted with an attribute condition
so that the user can only decrypt
the data if their attributes satisfy
the data’s condition. In [7], the au⁃
thors consider the complexity of
fine-grained access control for a
large number of users in the cloud
and propose a secure and efficient
revocation scheme based on a mod⁃
ified ciphertext-policy attri⁃
bute-based encryption (CP-ABE)
algorithm. This algorithm is used to
establish fine-grained access con⁃
trol in which users are revoked ac⁃
cording to Shamir’s theory of se⁃
cret sharing. With a single sign-on
(SSO), any authorized user can log
in to the cloud storage system
through a standard common appli⁃

cation interface.
In a cloud storage environment, internal administrator’s

privileged mode is potentially a serious threat to user privacy
data. To guarantee data privacy when administrator privileged
mode is used, a variety of protection methods have been pro⁃
posed. Attribute-based encryption (ABE) includes key-policy
attribute-based encryption (KP-ABE) [8] as well as CP-ABE
[9]. In ABE, decryption rules are contained in the encryption
algorithm, and frequent distribution of keys in the access-con⁃
trol-based ciphertext is unnecessary. When the access control
policy is changed, the data owner encrypts the data again. In
[10], a method based on proxy re-encryption is proposed. A
semi-trusted agent with proxy key can re-encrypt a ciphertext;
however, the agent cannot gain the corresponding plaintext or
compute the decryption key of either party in the authorization
process [11]. In [12], a fully homomorphic encryption (FHE)
mechanism is proposed. FHE permits a specific algebraic oper⁃
ation based on ciphertext, and the result is still encrypted.
That is to say, retrieval and comparison of the encrypted data
ends with the correct results, but the data is not decrypted
throughout the whole process. The FHE scheme requires a
huge amount of computation and is not always easy to imple⁃
ment with existing technology.

In [13], proofs of retrievability (POR) are proposed. A POR
scheme allows an archive or backup service (prover) to pro⁃

▲Figure 1. Architecture for ensuring security and privacy in a cloud storage system.
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duce a concise proof that a user (verifier) can retrieve a target
file. The POR model verifies data integrity without the user
having to download fi les themselves. A drawback of our pro⁃
posed POR scheme is that the target file requires processing
prior to being stored with the prover. This step creates compu⁃
tational overhead and increases the storage requirements on
the prover. In addition, the POR scheme is based on static
files, so the scope of its application is smaller. In [14], a flexi⁃
ble distributed scheme based on POR is proposed. This
scheme assumes that operations are dynamic and data integrity
is publicly verified. With Merkle Harsh Tree (MHT), the new
scheme supports secure, efficient update, deleting, and ap⁃
pending of data blocks. The improved scheme supports public
data-integrity verification and authorized third-party integrity
verification.

A variety of data backup and disaster recovery measures
guarantee that data stored in cloud is not be lost. These mea⁃
sures ensure that cloud storage is secure and stable. To coun⁃
ter theft of legacy data, the United States Department of De⁃
fense proposes reset and special processing [15]. In [16], a
new scheme called Safe Vanish is proposed. This scheme pre⁃
vents hopping attacks by extending the length of key shares
and significantly increasing the cost of mounting an attack.
The authors of [16] also propose using the public key cryptosys⁃
tem to protect against sniffing.

Access control technology is more suited to a fine-grained
cloud storage environment, and this creates large overhead.
Data confidentiality is ensured by a variety of encryption meth⁃
ods, and confidentiality is considered in relation to access con⁃
trol. A data integrity verification scheme eliminates user con⁃
cern throughout the data storage process. Researchers have
paid attention to availability but are now also paying attention
to security throughout the storage process. Security mecha⁃
nisms create efficiency problems, and the trade-off between
security and efficiency need to be further researched.

5 Ensuring Privacy in Cloud Storage
In a cloud storage system, privacy can be lost because of da⁃

ta outsourcing and service leasing. User data is stored in the
cloud environment and is managed by the cloud storage provid⁃
er. The security of this data depends on the level of technology
used by the service providers.

In [17], a system called Arivat is proposed. This system is
based on MapReduce and is designed to provide strong securi⁃
ty and privacy for distributed computations on sensitive data.
Mandatory access control and differential privacy are integrat⁃
ed in a novel way. In [18], the author proposes privacy manage⁃
ment across the whole data lifecycle and uses a mandatory data
destruction protocol to control user data. Dissolver is a proto⁃
type system based on Xen virtual machine monitor and CHA⁃
OS system [18]. It ensures that the user’s text data only exists
in a private operating space and the user’s key only exists in

the memory space of the virtual machine monitor. Data in the
memory and the user’s key are destroyed at a time specified
by the user.

The system ensures the server-side privacy of user data
throughout the data’s lifecycle. In [19], a cloud storage frame⁃
work is proposed to ensure data privacy and security. This
framework has a multitree structure for indexing. An extirpa⁃
tion-based key derivation algorithm (EKDA) is used for key
management, and discrete algorithm-based search on encrypt⁃
ed keyword (DLSEK) is used for data sharing and ciphertext re⁃
trieval. Lazy revocation is incorporated into the framework to
deal with changes in user access rights and dynamic data oper⁃
ations. In [20], a mechanism with differential privacy is incor⁃
porated in the Map-Reduce computation model to analyze ser⁃
vice efficiency and security of the mass data. A decision-tree
generation algorithm is also incorporated into the computation⁃
al model. Together, these measures satisfy ε-differential priva⁃
cy.

Generally speaking, users distrust or only partly trust the
cloud storage environment because as storage“tenants,”they
lack complete control over their data. A service provider has
the potential to violate the privacy of user data, so the data
needs to be processed before being uploaded to the cloud. Typ⁃
ically, data is encrypted, obfuscated, or anonymized before be⁃
ing uploaded.

Encrypting data negatively affects the processing of the da⁃
ta. Improving the speed and efficiency of ciphertext processing
and retrieval is the focus of current research. In [21]-[23], the
authors have done extended research on privacy preservation
in the cloud and propose ciphertext retrieval solutions. In [24],
a computable encryption scheme based on vector and matrix
calculations (CESVMC) is proposed. In this scheme, cloud da⁃
ta is divided into two main categories: string and numeric. En⁃
crypted strings can be retrieved using fuzzy retrieval, and the
four basic arithmetic operations can be performed on numeric
data.

Anonymous technology includes k-anonymity, L-diversity
anonymous, and T-closeness anonymous. K-anonymity guar⁃
antees that each sensitive attribute is hidden in the scale of k
groups [25]. This means that the probability of recognizing the
individual does not exceed 1/k. The level of privacy depends
on the size of k. The statistical characteristics of the data are
retained as much as possible; however, k-anonymity is not on⁃
ly applicable to sensitive data. An attacker could mount a con⁃
sistency attack or background-knowledge attack to confirm a
link between sensitive data and personal data. This would con⁃
stitute a breach of privacy. L-diversity anonymous ensures
that each group’s sensitive attributes have at least L different
values [26]. This means that an attack has a maximum proba⁃
bility of 1/L of recognizing a user’s sensitive information.
T-closeness anonymous is based on L-diversity anonymous
[27]. In T-closeness anonymous, the distribution of the sensi⁃
tive attribute is taken into account, and the distribution differ⁃
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ences between sensitive properties and values in groups does
not exceed T. Anonymous technology is mainly used for data⁃
base privacy, location privacy, and trajectory privacy, but we
propose applying it cloud storage privacy.

In [28], a privacy manager that scrambles user data in the
client is proposed. The privacy manager protects and monitors
privacy according to the user’s preferences. The privacy-pre⁃
serving method in [24] supports data dyeing based on the nor⁃
mal cloud model in [10]. This method can be used to protect
documents, images, videos, software, and other types of data. It
also involves much less computation than traditional encryp⁃
tion or decryption. In [29], a novel privacy-preserving da⁃
ta-perturbation algorithm NETPA is proposed for clustering.
The primitive data set can be perturbed by changing the value
of neighboring main attributes, which is found in each data ob⁃
ject, with the average attribute value of data objects in the data
set’s k-nearest neighborhood. This perturbation strategy is
used to maintain stable k-nearest neighbor relations in primi⁃
tive data. NETPA effectively stops privacy breaches. In [30], a
novel data privacy protection mechanism based on partitioning
and classification was proposed. The mechanism partitions the
original data into a small, locally deployed block and a large,
remotely deployed block. Then, data dyeing and data encryp⁃
tion are used according to the different security requirements
of the data. This safeguards the privacy of data in the cloud, in⁃
creases flexibility, and reduces overhead.

Much attention has been focused on safeguarding data at the
storage provider’s side; however, dynamic privacy needs at
the user side have largely been ignored. Encryption, access
control strategies, and other security mechanisms generally
safeguard the privacy of data. There are many factors that al⁃
low privacy breaches, and user privacy requirements vary wide⁃
ly. Traditional authentication and security management strate⁃
gies are insufficient for data stored in the cloud.

6 Conclusion
In this paper, we have described an architecture that en⁃

sures data privacy and security in cloud storage. We have also
discussed access control and data integrity, confidentiality,
availability, and privacy technologies. Cloud storage systems
are moving towards unlimited bandwidth, capacity, and pro⁃
cessing power, and data must be securely accessible anytime
and anywhere. Because of changing demands, existing technol⁃
ogy cannot ensure the privacy and security of data stored in the
cloud. Further research needs to be done on scalability of se⁃
cure storage and secure storage management in a large, com⁃
plex cloud.

Storage devices are provided by a number of different ser⁃
vice providers and shared by a large number of users. Frequent
equipment deployment, data operations, and data access make
the cloud a dynamic environment. Cloud data storage and man⁃
agement therefore needs to be safe but also highly scalable.

Intentional breaches of privacy call for dynamic countermea⁃
sures in a real-time cloud storage system. With frequent
changes in computer technology, the means of breaching data
privacy are constantly changing; consequently, security re⁃
quirements are also changing. Privacy-preservation strategies
need to be constantly devised for cloud storage systems.

An optimal balance must also be struck between security
and availability in a cloud storage system. Security and avail⁃
ability exist in a contradictory relationship, and increasing
safety often decreases availability. The foremost requirement
of the data owner is security, and access limitations need to be
imposed on applications. Further research is needed into the
effects of security on data availability.

References
[1] T. Mather, S. Kumaraswamy, S. Latif,“Cloud Security and Privacy,”USA: O’

Reilly Media, 2009.
[2] D. Catteddu, G. Hogben,“Cloud Computing: Benefits, Risks and Recommenda⁃

tions for Information Security,”Europe: European Network and Information Se⁃
curity Agency (ENISA), 2009.

[3] S. Curry, J. Darbyshire, D. W. Fisher, et al,“Infrastructure Security: Getting to
the Bottom of Compliance in the Cloud,”The Security Division of EMC, March
2010.

[4] D. G. Feng, M. Zhang, Y. Zhang, et al,“Study on Cloud Computing Security,”Journal of Software, vol.22 no.1, pp. 71-83, 2011.
[5] J. Y. Liu, C. Wang, X. D. Xue,“Cloud Storage Security,”ZTE Technology Jour⁃nal , vol.18 no.6, pp. 30-33, 2012.
[6] C. Hong, M. Zhang, D. G. Feng,“AB-ACCS: A Cryptographic Access Control

Scheme for Cloud Storage,”Journal of Computer Research and Development,
vol.47, pp. 259-265, 2010.

[7] Z. Q. Lv, H. Cheng, M. Zhang, et al,“A secure and efficient revocation scheme
for fine-grained access control in cloud storage,”in Proc. of 4th IEEE Interna⁃tional Conference on Cloud Computing Technology and Science (CloudCom),
Taipei, 2012, pp. 545-550.

[8] S. C. Yu, C. Wang, K. Ren, et al,“Attribute based data sharing with attribute re⁃
vocation ,”in proc. of the 5th ACM Symp. on Information, Comput. and Com⁃
mun. Security, Beijing, 2010, pp. 261-270.

[9] J. Bethencourt, A. Sahai, B. Waters,“Ciphertext-Policy Attribute-Based En⁃
cryption,”IEEE Symp. on Security and Privacy, California, 2007, pp. 321-334.

[10] J. Li, G. S. Zhao, X. F. Chen, et al,“Fine-Grained Data Access Control Sys⁃
tems with User Accountability in Cloud Computing,”in proc. of the 2th Int.Conference on Cloud Comput., Indiana, 2010, pp. 89-96.

[11] L. Wang, L. Wang, M. Mambo, et al,“New identity-based proxy re-encryption
schemes to prevent collusion attacks,” in proc. of Pairing-Based Cryp⁃tograghy-Pairing, Ishikawa, 2010, pp. 327-346.

[12] C. Centry,“A fully homorphic encryption scheme,”Stanford University, Califor⁃
nia, September 2009.

[13] A. Juels, Burton S. Kaliski Jr,“Pors: proofs of retrievability for large files,”inproc. of the 2007 ACM Conf. on Compu. and Commun. Security, Virginia,
USA, 2007, pp. 584-597.

[14] C. Wang, Q. Wang, K. Ren, et al,“Ensuring Data Storage Security in Cloud
Computing,”IACR Cryptology ePrint Archive (IACR), 2009, 81.

[15] Y. M. Huo, H. Y. Wang, L. Hu, et al,“A Cloud Storage Architecture Model for
Data-Intensive Applications,”Computer and Management (CAMAN), Wuhan,
2011, pp. 1-4.

[16] L. F. Zeng, Z. Shi, S. J. Xu, et al,“SafeVanish: An Improved Data Self-Destruc⁃
tion for Protecting Data Privacy,”in proc. of second IEEE ont. conf. on cloudcompu. technology and science (CloudCom), Indiana, 2010, pp. 521-528.

[17] I. Roy, H. Ramadan, S. Setty, et al. Airavat: Security and privacy for map re⁃
duce, in proc. of the 7th USENIX conf. on networked syst. design and imple⁃mentation, SanJose, 2010, pp. 297-312.

[18] F. Z. Zhang，J. Chen，H. B. Chen，et al,“Lifetime Privacy and Self-Destruction
of Data in the Cloud,”Journal of Computer Research and Development, vol.48

Data Security and Privacy in Cloud Storage
Xinhua Dong, Ruixuan Li, Wanwan Zhou, Dongjie Liao, and Shuoyi Zhao



Special Topic

June 2013 Vol.11 No.2 ZTE COMMUNICATIONSZTE COMMUNICATIONS 23

no.7,2011, pp. 1155-1167.
[19] R. W. Huang，X. L. Gui，S. Yu，et al,“Design of Cloud Storage Framework with

Privacy-Preserving,”Journal of XI’AN Jiaotong University, vol.45 no.10,
2011, pp. 1-6.

[20] S. Y. Yang, S. Q. Wang,“Research of Data Privacy & Security in Map-Reduce
Model ,”Computer Science, vol.39 no.12, 2012, pp. 153-157.

[21] S. Ananthi, M. S. Sendil, S. Karthik,“Privacy Preserving Keyword Search over
Encrypted Cloud Data,”Advances in Computing and Communications, 2011,
pp. 480-487.

[22] H. Hu, J. Xu, C. Ren, et al,“Proc. Private Queries over Untrusted Data Cloud
through Privacy Homomorphism,”in Proc. the 27th IEEE Int. Conf. on DataEngineering (ICDE), Hannover, Germany, 2011.

[23] N. Cao, C. Wang, M, Li, et al,“Privacy-preserving multi-keyword ranked
search over encrypted cloud data,”in 2011 Proc. IEEE INFOCOM, Shanghai,
2011, pp. 829-837.

[24] R. W. Huang，X. L. Gui，S. Yu，et al,“Privacy-Preserving Computable Encryp⁃
tion Scheme of Cloud Computing,”Chinese Journal of Computers, vol.34 no.12,
2011, pp. 2391-2402.

[25] P. Samarati, L. Sweeney,“Protecting privacy when disclosing information：
k-anonymity and its enforcement through generalization and suppression,”In⁃ternational Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
vol. 10 no. 5, 2002, pp. 557-570.

[26] A. Machanavajjhala, J. Gehrke, D. Kifer, et al,“L-diversity: Privacy beyond
k-anonymity,”ACM Trans on Knowledge Discovery from Data (TKDD), vol. 1
no. 1, 2007, pp. 24-33.

[27] L. Ninghui, L. Tiancheng, S. Venkatasubramanian,“t-Closeness: Privacy be⁃
yond k-anonymity and l-diversity,”in Proc. of the 23rd Int. Conf. on Data En⁃gineering (ICDE), Istanbul, Turkey, 2007, pp. 106-115.

[28] M. Mowbray, S. Pearson,“A client-based privacy manager for cloud comput⁃
ing,”in Proc. of the 4th Int. ICST Conf. on Commu, NewYork, USA, 2009.

[29] W. W. Ni, L. Z. Xu, Z.H. Chong, et al,“A Privacy-Preserving Data Perturba⁃
tion Algorithm Based on Neighborhood Entropy,”Journal of Computer Re⁃search and Development, vol.46 no.3, 2009, pp. 498-504.

[30] X. L. Xu, J. L. Zhou, G. Yang,“Data Privacy Protection Mechanism for Cloud
Storage Based on Data Partition and Classification,”Computer Science, vol.40
no.2, 2013, pp. 98-102.

Manuscript received: May 15,2013

Xinhua Dong (xhDong@hust.edu.cn) is a PhD student in the School of Computer
Science and Technology, Huazhong University of Science and Technology, Whuan,
China. He received his MS degree in computer science from HUST in 2008. His re⁃
search interests include information retrieval, cloud security, and big data manage⁃
ment. He is a student member of the CCF.
Ruixuan Li (rxli@hust.edu.cn) received his PhD in computer science from Hua⁃
zhong University of Science and Technology, Whuan, China, in 2004. He is current⁃
ly a professor in the School of Computer Science and Technology, HUST, and an ad⁃
junct associate professor at Concordia University, Canada. From 2009-2010, he
was a visiting researcher at the University of Toronto. His research interests include
cloud computing, big data management, social networking, and distributed system
security. He has published more than 100 papers in refereed journals and confer⁃
ence proceedings. He has also co-authored two books and hold 14 China patents of
invention. He is a member of IEEE and ACM and a senior member of the CCF.
Wanwan Zhou (zhoumila_wanwan@163.com) is an MS student in the School of
Computer Science and Technology, Huazhong University of Science and Technolo⁃
gy, Wuhan, China. She received her BS degree in computer science from Wuhan
University of Science and Technology, China, in 2012. Her research interests in⁃
clude cloud computing and big data security.
Dongjie Liao (sxxj0301@163.com) is an MS student in the School of Computer Sci⁃
ence and Technology, Huazhong University of Science and Technology, Wuhan, Chi⁃
na. He received his BS degree from HUST in 2007. His research interests include
cloud computing, Hadoop, and information retrieval. He has participated in many
projects, and in 2010, was awarded second prize for outstanding software for engi⁃
neering design (Hubei). In 2010, he also won first prize of for software for engineer⁃
ing design (Wuhan).
Shuoyi Zhao (zhaoshuoyi0508@vip.qq.com) is an MS student in the School of Com⁃
puter Science and Technology, Huazhong University of Science and Technology,
Wuhan, China. He received his BS degree in computer science from Hunan Normal
University, China, in 2011. His research interests include cloud computing, big da⁃
ta security, and information retrieval.

BiographiesBiographies

Data Security and Privacy in Cloud Storage
Xinhua Dong, Ruixuan Li, Wanwan Zhou, Dongjie Liao, and Shuoyi Zhao

••••
ZTE Makes Industry Breakthrough with 1 Gbps
LTE-Advanced

ZTE Corporation achieved a wireless data transmission rate of 1 Gbps in a live demonstration at Mobile Asia Expo in
Shanghai. This represents a global breakthrough in the development of next-generation LTE-A networks.

In the demonstration, ZTE used carrier aggregation technology with four carrier frequencies on the F band and D band.
With carrier aggregation, two or more carrier frequencies sharing the same or different bands are aggregated into one chan⁃
nel. This increases peak transmission speed of TD-LTE cells. ZTE used three carrier frequencies in the 2.6 G band and
one carrier in the 1.9 G band to complete the 1 Gbps demonstration.

ZTE leads the global telecommunications industry in TD-LTE 4G networks. In February, ZTE demonstrated the first
F+D cross-band CA transmission, achieving speeds of 430 Mbps. In January, ZTE and China Mobile completed D-band
carrier aggregation testing in a trial network in Guangzhou. An outdoor transmission speed of 223 Mbps was achieved.

Carrier aggregation counters signal interference between neighboring cells that share the same band. By balancing the
load between the primary carrier and secondary carrier, network capacity can be increased, and operators can provide cus⁃
tomers with higher network speeds and richer user experience. Carrier aggregation is helping the telecommunications in⁃
dustry meet the challenges associated with surging data traffic and is making operator TD-LTE networks more competi⁃
tive. (ZTE Corporation)
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Abstract

Data security is a significant issue in cloud storage systems. After outsourcing data to cloud servers, clients lose physical control over
the data. To guarantee clients that their data is intact on the server side, some mechanism is needed for clients to periodically check
the integrity of their data. Proof of retrievability (PoR) is designed to ensure data integrity. However, most prior PoR schemes focus on
static data, and existing dynamic PoR is inefficient. In this paper, we propose a new version of dynamic PoR that is based on a B+ tree
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1 Introduction
loud storage is an online storage model. A cloud
storage business provides data access and storage
services with pay-as-you-go options. Developers
and users can easily adapt resources to their needs

and do not need to know the physical location or configuration
of the system that delivers services. This elasticity, provided
without any need for investment, is attracting more and more
people to use cloud storage. Although it is as a promising ser⁃
vice model, cloud storage also creates security problems. One
of the main problems is the integrity of data stored in the
cloud. After outsourcing the data to an offsite storage system
and deleting the local copies, a client is relieved of the burden
of storage. At the same time, it loses its physical control over
the data. A cloud storage system is maintained by a third party
who rarely has an infallible security system. Therefore, it is ex⁃
tremely important for the clients to have an effective way of pe⁃
riodically checking the integrity of their data. Many schemes
have been proposed to address this issue [1]-[7]. These
schemes fall into two categories according to design goal: proof
of retrievability (PoR) [1], [2], [4], [6] and provable data posses⁃
sion (PDP) [3], [7]. The PoR scheme was proposed in [4]. The
design goal was to ensure that clients could retrieve data from
the server side. In [3], a similar scheme, called PDP was pro⁃
posed. In this scheme, clients are used to demonstrate that
files are stored correctly at the server side. PDP is weaker than
PoR because PDP assurance is weaker than that in PoR. PDP
also does not guarantee that clients can retrieve their data in⁃

tact. With PDP, clients query the server periodically, and the
server returns a proof to guarantee that a certain percentage (e.
g. 99%) of the file is intact. However, if a very small amount of
the file is lost or corrupted, clients may not be able to detect
and retrieve the file intact. With PoR, clients may not detect
corruption, but they can still recover the file with the help of
an erasure code. In this paper, we mainly consider PoR.

Another important concern is support for dynamic updates.
In a cloud storage system, clients should not only be able to ac⁃
cess data but also dynamically modify, delete, or insert data.
Most of previous works only focus on static data files [2], [4],
[6], [7]. Although a dynamic PoR model is proposed in [1], un⁃
fortunately, the scheme’s performance is not tightly bounded.

In this paper, we propose a dynamic new PoR scheme based
on a modified Merkle hash tree (MHT) and Boneh-Lynn-Sha⁃
cham (BLS) signature construction [8]. We design a dynamic
PoR model for the cloud storage system and propose a new da⁃
ta structure called Cloud Merkle B + Tree (CMBT). When
CMBT is combined with BLS construction, the worst-case per⁃
formance scenario is O (logn ).

In section 2, we discuss the system model and security for a
typical cloud storage system. In section 3, we introduce back⁃
ground research. In section 4, we present our dynamic PoR
scheme. In section 5, we analyze the results of simulations run
on our storage system.

2 System Model and Security
A typical cloud storage system includes storage servers and
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clients. Clients have limited storage space but have a large
amount of data to be stored. Cloud storage servers have a huge
amount of storage space that can be made available on a
pay-as-you-go basis. Cloud storage servers are maintained by
a cloud service provider (CSP) such as Amazon or Google. Cli⁃
ents divide the data files into blocks that are placed into cloud
storage servers. Clients delete local copies and only retain a
small amount of metadata. In addition, a storage service is not
static; clients can delete, insert into, or otherwise modify a
block.

A CSP is a third party that does not have infallible security.
We propose the following semi-trust model: In normal cases,
the CSP operates correctly and does not deliberately delete or
modify client data. However, management errors, Byzantine
failures, and external intrusions may cause the CSP to inadver⁃
tently lose or corrupt hosted data. When these errors occur, the
CSP tries to salvage its reputation by hiding the true extent of
data loss.

Our new dynamic PoR scheme solves efficiency problems in
existing dynamic PoR. With our scheme, file corruptions can
be detected with high probability, even if a CSP tries to hide
them. Files can also be dynamically updated without affecting
the probability of detecting file corruption.

To simplify our discussion, we treat cloud storage servers as
one entity (the server) and clients as the other entity (the cli⁃
ent).

3 Related Work
PoR was first formalized in [4]. In PoR,“sentinel”blocks

are randomly embedded in the outsourced file, and the posi⁃
tion of the blocks is hidden by encryption. In this scheme, stat⁃
ic data corruption can be effectively detected. However, data
cannot be updated, and the number of queries a client can
send is fixed.

PDP was first proposed in [3]. This scheme is used to ensure
the integrity of outsourced data and makes use of RSA-based
homomorphic tags. However, it cannot be used in dynamic sce⁃
narios. In [7], a version of dynamic PDP is introduced, but it al⁃
so cannot be used in fully dynamic scenarios.

In [2], an improved PoR scheme, called Compact PoR, is in⁃
troduced with rigorous security proofs [2]. Using the BLS signa⁃
ture, proofs are aggregated into a small value, and public verifi⁃
cation is supported. However, this scheme is impractical and
unsecure in dynamic scenarios. There are two reasons for this:
1) block signatures contain the indices of blocks, and 2) replay
attacks are not prevented. If a client deletes or inserts a block
with index i , then any block with index j , j > i will have to
change its index to j - 1 or j + 1. The client has to re-sign all
the blocks whose indices have been changed, and this makes
the scheme impractical in terms of dynamic updates.

In [1], another dynamic PoR scheme is defined. In this
scheme, the BLS signature and MHT are modified so that integ⁃

rity can be verified in cloud storage [9]. In order to build an
MHT over a large piece of data (e.g. a file), the client first di⁃
vides the file into data blocks mi , 1 ≤ i ≤ n and computes the
hash value for each block. This hash value is given by ni = H
(mi ). We call ni the“block tag”of mi . Then, the client con⁃
structs a binary tree whose leaf nodes are the hashes of the
block tags. Nodes that are further up in the tree are the hashes
of their respective children. Finally, the client generates a root
R based on the MHT and takes the signature of the root sigsk(R ) as metadata.

Using a classic MHT is inefficient. After inserting or delet⁃
ing some blocks, the MHT becomes unbalanced. If the client
keeps appending blocks to the tail of the file, the height of the
tree increases linearly. As a result, the worst-case scenario in
an integrity check would be O (n ) instead of O (log n ) [1],
where n is the total number of blocks.

4 Our Scheme

4.1 Overview
Our scheme comprises three stages: 1) preprocessing, 2) ver⁃

ification, and 3) updating. In the preprocessing stage, the cli⁃
ent encodes the file with an erasure code and divides the en⁃
coded file into blocks. This is done before the file is out⁃
sourced to the server. Then, an authenticated data structure is
constructed, and the metadata is generated. The client only
keeps the metadata and outsources other data to the server. In
the verification stage, the client periodically checks the integri⁃
ty of its data. This is done after outsourcing to the server. The
client queries the server with a subset of the data blocks and
requires the server to provide a proof. By verifying the proof
against the metadata, the client can accurately detect file cor⁃
ruption. In the update stage, the client sends the server a re⁃
quest to update the file. After each update, the server proves to
the client that the update has been successful.
4.2 Model

Our scheme can be described by the following algorithms:
•KeyGen (1k ) → (pk, sk). This is an algorithm run by the cli⁃

ent. The input is a security parameter, and the output is a
public key pk and a private key sk. The client stores sk and
sends pk to the server.

•Prepare (sk, F ′, Ftags ) → (ɸ, sig sk (ɭ (R )),CMBT ). This algo⁃
rithm is executed by the client. The input is an encoded fileF ′, which is created by a sequence of blocks mi , 0 ≤ i ≤n ; the block tag set Ftags = {H (mi ), 0 ≤ i ≤ n}; and sk. The
output is a signature set ɸ, which is an ordered collection of
signatures {σi } on {mi }, 0 ≤ i ≤ n. We define the signature
set in subsection 4.3. The client also constructs a CMBT by
using Ftags and signs the label value of root sig sk(ɭ (R )) by us⁃
ing sk.

•GenChallenge (n ) →Q. This algorithm is executed by the cli⁃
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ent. The input is the total number of blocks, and the output
is a query Q that contains a set of IDs I = {i 1, i 2, ... , ik }. The
query is sent to the server as a request to verify the integrity
of blocks with index i , for i ∈I.

•GenProof (Q, CMBT, F ′, Ftags , ɸ) →P. This algorithm is exe⁃
cuted by the server. The input is Q, CMBT, F ′, Ftags , and ɸ.
The output is a proof P that allows the client to check the in⁃
tegrity of the blocks in Q.

•Verify (pk, Q, P, ɭ (R )) → (TRUE, FALSE ). This algorithm
is executed by the client. After receiving the proof P, the cli⁃
ent checks the integrity of blocks in Q. The client then out⁃
puts TRUE if the integrity of the blocks is confirmed; other⁃
wise, it outputs FALSE.

•UpdateRequest ( ) →Request. This algorithm is executed by
the client. Nothing is input. The output is an update requestR that contains an Order ∈ {Insert, Delete, Modify } and an
index number i. If Order is Modify or Insert, then R should
also contain a new file block m* and its signature σ*.

•Update (F ′, Ftags , ɸ, R ) → (Pold , Pnew ). This algorithm is exe⁃
cuted by the server. After receiving the R from the client,
the algorithm takes F ′, Ftags , ɸ, and R as input and outputs
two proofs: Pold and Pnew .

•UpdateVerify (Pold, Pnew) → (TRUE, FALSE ). This algorithm
is executed by the client. With Pold and Pnew , the client out⁃
puts TRUE if the server’s behaviors are honest in the up⁃
date process; otherwise, it outputs FALSE.

4.3 Preprocessing
Before outsourcing the files to the server, the client encodesF to F ′using an erasure code. Then, the client runs KeyGen

(1k ) to create a pair of keys and uses Prepare (sk, F, Ftags) to
generate ɸ, a CMBT, and the metadata sigsk (ɭ (R )).

We use the same BLS signature as that defined in [1]. For a
bilinear map e : G × G →GT, sk and pk are defined as x ∈ Zpand v =g x∈G, respectively, where g is a generator of G. For
each mi , i ∈ [1, n ], the signature on mi is defined as σ i = [H
(mi )u mi ]x, where u is a generator of G. We denote the set of the
signature as ɸ = {σi }, 1 ≤i ≤n.

MHT [9] has been widely used for checking memory integri⁃
ty [10], [11] and certificate revocation [12], [13] because it is
easy to realize and has O (log n ) complexity in both worst-case
and usual scenarios. However, using the classic MHT in cloud
storage may cause problems (section 3). Therefore, we develop
an authenticated data structure based on a B+ tree and MHT.

We call this new structure a cloud Merkle B + tree (CMBT).
We choose a third-order B+ tree1 and require each data node
to store three elements at most.

We treat the sequence of block tags H(m 1),H(m 2), ... ,H(m n)as elements and insert them into a B+ tree sequentially. Then,
we obtain a B+ tree (Fig. 1) and base the CMBT on it.

For each node w in a CMBT, the following values are stored:
• left (w ), middle (w ), and right (w ). For an index node, these

variables represent the left child, middle child, and right
child of the node, respectively. If the node only has two chil⁃
dren, then right(w) will be 0. For a data node, these variants
represent the elements the node stores (from left to right). If
a corresponding position has no element, 0 is set.

• r (w ). This is the rank of node. For an index node w, r (w )
stores the number of elements that belong to the subtree
whose root is w. For a data node w, r (w ) stores the number
of elements that belong to w. Fig. 1 shows the rank for each
node. The rank for node d 1 is 2 because from d 1 we can visit
two elements: H(m1) and H(m2).• t (w ). Keys are not stored in an index node because the
CMBT does not need to be searched. Instead, the type of the
node is stored as t (w), where

•ɭ (w ). This is the label of node. To define ɭ (w ), first we de⁃
fine a collision-resistant hash function h (*) that has two in⁃
puts: h(a, b) = h(a‖b), where‖means concatenation. Then,
we extend the function to more than two inputs: h(a1, a2 , ... ,a n -1, a n ) = h(a 1‖a 2‖...‖a n -1‖a n ). Then, ɭ (w) = h (ɭ (left
(w )), ɭ(middle (w )), ɭ (right (w )), t (w ), r (w ). For each elemente that contains a block m, the value of the element is given
by ɭ (e) = h (H (m)).
With above definitions, the client can construct a CMBT

and obtain the label value of the root R. Then, the client signs
the root label ɭ (R ) using its private key: sigsk (ɭ (R )) ← (ɭ (R ))sk.
Next, the client outsources F, ɸ, the CMBT, and sig sk (ɭ (R )) to
the server.
4.4 Query

Suppose F ′, ɸ , CMBT, and sig sk ( ɭ (R )) have been out⁃
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▲Figure 1. A cloud Merkle B+ tree.

1 A B+ tree [14] differs from a B tree in the following three respects:1. A B+ tree has two types of nodes: index and data. Index nodes store keys, and datanodes store elements. A B tree only has data nodes.2. Data nodes in a B+ tree are linked by a doubly linked list whereas data nodes in a Btree are not linked.3. The capacity of data nodes and index nodes can differ in a B+ tree whereas the capacityof nodes in a B tree should be the same. In a B+ tree of order n , index nodes (except forthe root node) can hold a maximum of n -1 keys and a minimum of「n = 2 -1⌉ keys.Each data node can contain a maximum of c elements and a minimum of「n = 2⌉elements (c and n can differ). The root node can hold a maximum of n children and aminimum of two children.

t (w)= 0 if w has 2 children or contains 2 elements
1 if w has 3 children of contains 2 elements{

H(m 1)H (m 2)2
t (d 1) = 0

H(m 3)H (m 4)2
t (d 2) = 0

H(m 5)H (m 6)2
t (d 3) = 0

H(m 7)H (m 8)2
t (d 4) = 0

H(m 9)H(m10)3
t (d 5) = 1

H(m11)
d 1 d 2 d 3 d 4 d 5

t (n 2) = 04
n 2 n 3

t (n 3) = 17

t (n 1) = 011
n 1
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sourced to the server. The client only stores the metadata and
number of blocks n, and it generates a query to check the integ⁃
rity of a series of random blocks whose index numbers belong
to the set I = {i 1, i 2, ... , ik}. The client uses the GenChallenge
(n )→ Q algorithm to generate a Q. For each index number i ∈I, the client chooses a random element vi ← Zp . Then, Q = {(i,vi )}, i1≤ I ≤ ik .

After receiving Q, the server executes GenProof (Q, CMBT,F, Ftags, ɸ) → P to generate a proof P by first computing μ andσ :

Then, the server generates a sequence of messages for each
block tag H (mi ) in the block tag set S = {H (mi ), i∈I }. Sup⁃
pose {w 1, w 2, w 3 , ... ,wh , w h+1} is the path from the root node to
the element H (mi ), where i∈[i1, ik ]; h is the height of the
CMBT ; and wj is the parent node of wj+1. For each node wj , j ∈
[1, h ], the server provides a message Mj that is a 2-tuple val⁃
ue. We define nj +1 and n′j +1 as neighbors of wj +1 , and n ( j +1) is
always to the left of n′j +1. We denote T as a set of nodal informa⁃
tion that is given by

If w j +1 has only one sibling, then T (n′j +1) = NULL. The loca⁃
tion relationship between nj+1 and wj +1 is given by

Therefore, a message for wj is given by

The message sequence for element H (mi ) is given by γ i =
{M1, M2, ... , Mh}, and for all elements in set I, the message set
is given by Γ = {γ i1, ... , γ ik}. Therefore, P = {μ, σ, S, Γ } .

If the client only wants to check the integrity of one block in⁃
stead of a group of blocks, the proof of a single block with in⁃
dex i is given by

4.5 Verification
After receiving proof P from the server, the client executesVerify (pk, Q, P, ɭ (R )) (Algorithm 1) to check the integrity of

the blocks whose indices belong to I. In Algorithm 1, {w 1,w 2,w 3, ... , wh ,wh + 1} is the node sequence from the root to the ele⁃
ment H (mi ). To compute wj , 1 ≤ j ≤h, the client first deter⁃
mines how many children wj has. Then, the client inputs the
children’s values and their locational relationship p (1) into

the GetValue function in order to compute wj . The computa⁃
tion continues until the root node is reached. During the proce⁃
dure, the client can verify the index number idx of the block
tag H(mi ).

4.6 Updates
Here, we show that our scheme can be used to delete, insert

into, or otherwise modify blocks. We assume that F ′, ɸ, and
CMBT have been generated and stored in the server.

Suppose the client wants to update the j th block, 1 ≤ j ≤n. The client first executes UpdateRequest ( ) → Request to
generate an update request and send it to the server. Upon re⁃
ceiving the modification request, the server updates the block
and executes Update (F ′, Ftags, ɸ, R ) to generate Pold and Pnew.With Pold and Pnew, the client executes UpdateVerify (Pold, Pnew)to ensure the correctness of the update.

Suppose a client wants to modify the j th block, 1 ≤ j ≤ n,
from mj to m′j. The client generates an update request Re⁃
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μ = ∑υi mi∈Zp (1)ik

i = i 1

σ = ∏ σi (2)i = i 1

υi
ik

T = {ɭ (nj+1), r (nj +1), t (nj +1), p (nj +1)}
T = {ɭ(n′j +1), r (n′j +1), t (n′j +1), p (n′j +1)} (3)

nj +1

n′j +1

p (nj +1) = (4){ 0 if nj +1 is to the left of wj +11 if nj +1 is to the right of wj +1

Mj = T , T (5){ }n′j +1nj +1

Query (i ) = {υ imi , συ ii , H (mi ), γi } (6)

AlgorithmAlgorithm 11 Verify (pk, Q, P, ɭ (R )) → (TRUE, FALSE )
1: Verify e (σ, g) = e (∏ik H(mi )vi·u μ, υ )
2: forfor i from i1 to ik do
3: γi = {M1, M2, ... , Mh}, Mj = {T , T n′j +1}
4: T = {ɭ (n′j +1), r (n′j +1), t (n′j +1), p (n′j +1)}
5: T n′j +1 = {ɭ (n′j +1), r (n′j +1), t (n′j +1), p (n′j +1)}
6: idx = 1
7: forfor j from h down to 1 dodo
8: ifif T n′j +1 ≠ NULL thenthen
9: r (wj ) = r (wj +1) + r (nj +1) + r (n′j +1)
10: t (wj ) = 1
11: ɭ (wj ) = GetValue (T , T n′j +1)
12: ifif p(n′j +1) = 0 thenthen
13: idx = idx + r (n′j +1)
14: end ifend if
15: elseelse
16: r (wj ) = r (wj +1) + r (nj +1)17: t (wj ) = 0
18: ɭ (wj ) = GetValue (T )
19: end ifend if
20: ifif p (nj +1) = 0 thenthen
21: idx = idx + r (nj +1)22: end ifend if
23: end forend for
24: ifif ɭ (w1) = ɭ (R ) AND idx = i thenthen
25: ifif i = ik then
26: return TRUE
27: end ifend if
28: elseelse
29: return FALSE
30: end ifend if
31: end forend for

? i =i1

n j +1

n j +1

n j +1

n j +1
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quest = {Modify, j , m′j , σ′j } and sends it to the server. The serv⁃
er updates the block, reconstructs the CMBT, and generates
the proof Pold = Query (i ) (6). With Pold , the client can check
the integrity of mj (Algorithm 1) and construct a partial CMBT
(Fig. 2). The partial CMBT is constructed from the query on
the CMBT in Fig. 1. The client obtains enough information to
update the CMBT from the partial CMBT. In this case, the cli⁃

ent computes the new root Rnew using Pold. The server only
needs to send Pnew = R′, which is the new root node to the cli⁃
ent. After verifying the correctness of R′, the client signs the
new root sig sk (ɭ (R′)) and sends it back.

The procedure for insertion is similar to that for modifica⁃
tion. The only difference is that when a new element is insert⁃
ed into a data node that already contains three elements, the
data node splits in two. The procedure keeps going until one in⁃
dex node has only two children or we need to generate a new
root and increase the height of the tree by one. With the partial
CMBT constructed from Pold = Query (i ), the client has enough
information to compute Rnew. After verifying the correctness ofR′, the client signs the new root sig sk (ɭ (R′)) and sends it back.

The procedure for deletion differs from that for insertion and
modification. Deleting an element from a data node with two el⁃
ements makes the data node deficient. Therefore, borrow or
merge operations need to be performed to keep the tree bal⁃
anced [14] Because the partial CMBT is constructed from thePold , the client may not acquire enough information to finish
these operations and compute Rnew. Accordingly, the server
needs to send another Pnew to help the client verify the correct⁃
ness of R′. Here, we define another algorithms: AlgorithmQuerynew (i ) is used to return the proof of the i th element in the
updated CMBT.

Using Pold , the client can generate a partial CMBT that con⁃
tains the node sequence {wi } and its siblings {ni, n′i }, i ∈ [1, h
+ 1]. The element that the client wants to delete is denotedwh+1. There are three cases of deletion:
1) If the leaf node wh contains three elements, then the client

only needs to delete wh+1 and generate R′based on Pold. Oth⁃
erwise, the client keeps searching the node sequence from

wh to w1 until it finds wj , j ∈ [1, h ]. The right or left sibling
nodes of wj has three children or wj itself has three children.

2) If one sibling of wj has three children, then the client needs
to borrow a child from its sibling to generate a new node.
However, Pold does not contain the information of this child.
The client will therefore use Querynew (i ) and Query (k ) to ac⁃
quire additional information to delete wh + 1 and generate a
new root. The index number of the element that belongs to
the subtree (whose root is the sibling node) is given by k.
The client can obtain k easily from Pold. The information
from Querynew (i ) can be verified by Pold.3) If wj has three children, the client deletes the element and
merges two children. By using Query new (i ), the client ac⁃
quires enough information to generate the new root. If the
client cannot find the node until it reaches the root, the cli⁃
ent generates a new root. In this case, the CMBT height de⁃
creases by one. Here, we do not provide the complete algo⁃
rithm, but the complexity of the deletion is O (log n).

5 Simulation Results
In Table 1, we show the performance of our scheme and that

of existing PoR schemes on a feature-by-feature basis. Our ex⁃
periment ran on a system with an Intel Core 2 2.53 GHz pro⁃

cessor, 4 GB RAM, and a 7200 RPM TOSHIBA 120 GB SATA
driver. Algorithms were implemented using C++.

We evaluated the performance of our scheme in terms of
overhead. Using precious analysis, we determined that the
overhead of PoRs depends on the block size and the number of
messages (hashes) sent to the client. As in [3], detecting 1%
file corruption with 99% confidence requires querying a con⁃
stant 460 blocks. Accordingly, if the block size is fixed, perfor⁃
mance is determined by the overhead in sending messages to
prove the index of a block in the tree. In our experiment, we
send messages using SHA1 with an output of 160 bits. The av⁃
erage overhead of our scheme and that in [1] is similar; there⁃
fore, in Fig. 3, we show the maximum overhead of proving a
block in the CMBT and MHT.

The client divides the encoded file F′into 128 blocks and
uses these blocks to construct the MHT and the CMBT. Then,
the client outsources F′and the MHT, and CMBT to the server.
If the client keeps appending blocks to the tail of F′, the maxi⁃
mum overhead between the MHT and CMBT is as shown in
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▲Figure 2. Partial CMBT constructed from Pold = Query (4).

▼Table 1. Performance of existing PoR schemes

Features
Dynamic updates
Public verification

Worst comm. complexity
Avg. comm. complexity

Schemes
[4]
No
No

O (1)
O (1)

[2]
No
Yes
O (1)
O (1)

[1]
Yes
Yes
O (n)

O (log n)

Our Scheme
Yes
Yes

O (log n)
O (log n)

H (m 3)2 H(m 4)t (d 1) = 02

t (n 2) = 04

d 1 t (d 2) = 0 d 2

t (n 3) = 17
n 2 n 3

t (n 1) = 011
n 1
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Fig. 3. The x axis shows the number of blocks that the client
appends to the encoded file after initialization. The y axis
shows the overhead for proving a block in the tree. From Fig.
3, the worst-case overhead for the MHT increases linearly
with the number of block inserted. The worst-case overhead
for MHT is given by O(n ).

6 Conclusion
Cloud storage creates security issues, especially in terms of

data integrity. In this paper, we extend the static PoR scheme
so that it can be used for dynamic scenarios. We propose a new
authentication data structure called Cloud Merkle B+ tree. The
worst-case overhead for existing dynamic PoR scheme is given
by O (n ); however, the worst-case overhead for our scheme is
given by O(logn ).
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CMBT: Cloud Merkle B+ tree MHT: Merkle hash tree

▲Figure 3. Maximum overhead for proving one block in the MHT
and CMBT.
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Abstract

Many applications, such as those in genomics, are designed for one machine. This is not problematic if the input data set is small and
can fit into the memory of a single powerful machine. However, the application and its algorithms are limited by the capacity and per⁃
formance of the machine (the application cannot run in parallel). A single machine cannot handle very large data sets. In recent re⁃
search, cloud computing and MapReduce have been used together to store and process big data. There are three main steps in han⁃
dling data in the cloud: 1) the user uploads the data, 2) the data is processed, and 3) results are returned. When the size of the data
reaches a certain scale, transmission time becomes the dominant factor; however, most research to date has only been focused on re⁃
ducing the processing time. Also, it is generally assumed that the data is already stored in the cloud. This assumption does not hold be⁃
cause many organizations now store their data locally. In this paper, we propose SPBD (pronounced“speed”) to minimize overall user
wait time. We abstract overall processing time as an optimization problem and derive the optimal solution. When evaluated on our pri⁃
vate cloud platform, SPBD is shown to reduce user wait time by up to 34% for a traditional WordCount application and up to 31% for
a metagenomic application.
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1 Introduction

ecent improvements in genomic technology have al⁃
lowed researchers to cheaply sequence significant⁃
ly more data than before. However, storing and pro⁃
cessing mass data derived from next-generation se⁃

quencing (NGS) is challenging. In our research facility at
Wayne State University, the Illumina HiSeq sequencing sys⁃
tem can generate about 250 million reads (about 60 GB) per
run [1]. It usually has eight lanes, each of which can handle 12
samples at most. In total, we can have 96 samples (i.e. 96 read
files), each of which is 60 GB (pair-end read) for one run. It
takes several days to generate the data, and with
state-of-the-art Novalign alignment software, it takes two
days to process the data [2].

If security is not a strict requirement, a cloud can be used to
store and process a large data set. A cloud provides highly
available, almost unlimited data storage and elastic computing
power. There are also no up-front costs. When dealing with a
large data set, a parallel programming model is usually the
most effective computing model. Google MapReduce [3] and
Microsoft Dryad [4] are among the most widely used frame⁃
works for parallelizing genomic applications [5]-[8]. Using a
cloud and parallel computing is not always easy for biologists,

who are often not experts in computer science. However, re⁃
cent attempts have been made to improve the usability of cloud
and parallel computing for these scientists [9], [10].

In practice, the place where data is usually generated is dif⁃
ferent to that where it is processed and analyzed [11]. There⁃
fore, results of the data analysis are usually obtained by mov⁃
ing the data to the data center; running the analysis software in⁃
side the data center, cloud or local cluster; and downloading
the results to the scientist’s local machine.

Methods such as scp shell command, ftp client, and web
(http) are often used by domain scientists to transfer data to re⁃
mote sites. Even when the data is large, such methods are still
used. Most domain scientists are not aware of other methods,
such as GridFTP. One of the most significant issues with trans⁃
ferring a large file over the network is failure. Traditional data
transfer methods do not handle failure well.

In this paper, we focus on cloud MapReduce, for example,
Amazon Elastic MapReduce (EMR). We use the Hadoop imple⁃
mentation of MapReduce as our framework; therefore, the ap⁃
plications are of the MapReduce-compatible variety only. In
this context, the data is usually moved to Amazon S3 by the
AWS management console, s3cmd, BucketExplorer, or Cloud⁃
Berry Explorer. Amazon announced its support for objects larg⁃
er than 5 GB in November 2010; however, at that time, many
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S3 clients did not support the new multipart upload feature.
This feature was only recently supported in the newest (beta)
s3cmd client, which was released in April 2012.

Having narrowed down the context, we now describe how da⁃
ta is moved to HDFS. Traditionally, the most popular method
of moving or copying data from a local machine to HDFS is to
use Hadoop dfs-put <filename> or distcp shell command.
With Amazon EMR, data is first moved to Amazon S3. In this
process, command-line interface (cli) tools, such as s3cmd
and S3-Util, are used. Graphical user interface (GUI) tools,
such as CloudBerry Explorer and Bucket Explorer, are also
used. Then, either GUIbased AWS Management Console or
Amazon EMR Ruby Client (based on cli) is used to create a
job flow for running a MapReduce application with the upload⁃
ed data.

With mass data, Amazon suggests using their physical im⁃
port/export service. Users can store up to 4 TB of data in an eS⁃
ATA or USB 2.0 portable hard drive and have it couriered to
the nearest Amazon site. In general, there are many other tools,
such as Pentaho [1] and Apache Sqoop, that can be used to
transfer data to and from HDFS.

Most current work on MapReduce for cloud is focused on ei⁃
ther improving the processing time t proc of the software [5], [6],
[8] or improving the data transmission time t trans only [13]. In
this paper, we aim to minimize user wait time, also called re⁃
sponse time t res. This is the time from when the user starts up⁃
loading their data to when the results are ready to be returned
or downloaded. We do not take into account the time taken to
transfer the results from the cloud to the user because in our
context, the size of the results is often much smaller than that
of the input data.

Many people argue that we should only focus on t proc because
the data only needs to be transferred once (at most). Neverthe⁃
less, in research on large NGS data, alignment or mapping
tools—which deal directly with large data in the pipeline men⁃
tioned in [14]—are usually run only once or twice because of
lengthy runs and high cost. Consequently, it is crucial to mini⁃
mize tres.Movement of data from the user to the data center cannot be
avoided; therefore, we propose streamlined processing of the
data. Our approach involves splitting the user data into smaller
parts that are streamlined to the data center. As soon as the
first part arrives, the system starts processing it and keeps re⁃
ceiving subsequent parts. After all the parts have been pro⁃
cessed, the system merges the results and sends them back to
the user.

We implemented a prototype of SPBD and evaluated it with
two MapReduce applications: WordCount and metagenomic.
The results showed that SPBD improves t res of WordCount by
34% and improves t res of the metagenomic application by 31%
for 32 GB of input data.

In this paper, we try to minimize t res when using MapRe⁃
duce-style software to analyze a large NGS data set in a cloud

with a Hadoop framework. Our proposed system is shown in
Fig. 1.

In section 2, we describe our approach in detail and formu⁃
late problems. In section 3, we describe the design and imple⁃
mentation of SPBD. In section 4, we give the results of our ex⁃
periments on SPBD. In section 5, we discuss future research di⁃
rections.

2 Our Approach
We propose adapting the pipeline processing model for the

CPU to our scenario. In the pipeline model, a CPU instruction
is equivalent to completely processing a partition of data in our
context. This processing is denoted Pi , where i is the number
of the partition. In this paper, the terms partition and chunk
can be used interchangeably. Each Pi only has transmission
and processing stages, not many stages, as in a CPU instruc⁃
tion. All stages of a CPU instruction have the same clock cy⁃
cle, that is, the time taken to complete a stage. In our proposal,
this time is arbitrary.

Instead of waiting until after all the data has been moved to
the cloud before analyzing it, we start analyzing the chunks as
soon as they arrive. While the first chunk is being analyzed,
the second chunk is being received. When the first chunk has
been processed, the second chunk is ready to be processed.
While processing the second chunk of data, the next chunk is
received. This continues until the last chunk has been pro⁃
cessed. Depending on the application, an additional merge pro⁃
cess can be run after the last chunk has been processed or as
soon as the first chunk has been processed. The output results
can be merged after all chunks have been processed. Although
defined by application developers, such a merge process is usu⁃
ally simple in practice (Fig. 2). The time taken to execute the
merge process is denoted t merg.How large, then, should each chunk be to achieve an opti⁃
mal t res? Or how many partitions should the input data be divid⁃
ed into? To answer these questions, we need to compute t res. In
Fig. 2, all the stages are the same size; however, in practice,
this is not necessarily the case. In the overlapping periods,
where receiving and processing occurs at the same time, any
stage that requires more time to execute would be used to com⁃
pute tres. Consider two possible cases: t trans > t proc and t trans ≤ t
proc. For simplicity, we assume that all partitions are the same

▲Figure 1. Overview of proposed system.

Ehternet/Internet

Hadoop Master
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size, and t trans and t proc of a partition are the same as those of
other partitions. The merge period contributes to the calcula⁃
tion of tres only after the last chunk has been processed. All ex⁃
ecutions (if any) in the merge period that take place before the
last chunk has been processed are masked by either the data
transmission stage or processing stage.

If t trans > t proc (Fig. 3), t res can be given by

where N is the number of partitions.
In this case, t trans dominates, so the system always finishes

processing all the received data and waits for the next chunk.
If ttrans ≤ t proc (Fig. 4), t res can be given by

In this case, the data is ready to be processed, but the sys⁃
tem has to wait until the previous chunks have been processed
because tproc is longer.

In the cases shown in Fig. 3 and Fig. 4, the next chunk of da⁃
ta is transmitted as soon as the previous one has finished. In
general, t res is given by

In (3), t trans, t proc and t merg are a function of N. As N increases,
both t trans and tproc decrease, but t merg increases. In sum, t res is al⁃
so a function of N. The problem is now one of simple optimiza⁃
tion: Given fixed input data, find N so that tres is at its mini⁃
mum.

In reality, the problem is how to identify all the components
in the equation given that the system only receives data of
known size and a data-analysis application.

3 System Design and Implementation

3.1 Design
Here, we discuss the proposed SPBD system for realizing

the previously mentioned idea. The inputs for our system are
input data, a data-analysis application, and a path to a local
folder for storing the output. The data is at the user’s site out⁃
side the cloud. Like Amazon EMR, there is a pool of data-anal⁃
ysis applications in the cloud for users to choose from. This
makes sense because in genomics, researchers often have a col⁃
lection of data-analysis applications to choose from. These ap⁃
plications include Galaxy and BLAST. Moreover, even if the
user wishes to use a special application, it should not be a
problem because the time to upload the new application is neg⁃
ligible, and the application can be used many times.

Originally, we assumed that the data-analysis software was
a partitionable MapReduce application, that is, a MapReduce
job that can process input data in parallel, and chunks of input
are independent. In fact, all MapReduce-style jobs are like
this because all map tasks are independent. Consequently, our
method can be used for any MapReduce job.

The output of our system is also the output of the selected
applications. The system takes the input data from the user,
transfers it to the cloud, runs the selected applications, and re⁃
turns the results. The user only needs to specify the path to the
local input and output folders. The user also needs to provide
the names and other parameters of the applications. The prog⁃
ress of jobs/applications in the cloud can be monitored via a
built-in Hadoop website. Once the jobs have finished, the out⁃
put data is typically written to HDFS or Amazon S3. However,
in our system, the output data can be returned to the user if
they wish.

There are two approaches to identifying all the terms in (3):
static and dynamic. Using the static approach, the functions of
the terms in (3) are fixed. If t trans = 1000/N + 20, it remains the
same all the time. With the dynamic approach, such an as⁃
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▲Figure 2. Streamlined processing.

▲Figure 3. t res calculation for t trans > t proc.

▲Figure 4. t res calculation for t trans ≤ t proc.

t res = ttrans + (N - 1) × t res + t proc + t merg= t proc + N × t trans + t merg (1)

t res = t trans + N × tproc + t merg (2)

t res = min(tproc; t trans ) + N × max(tproc; t trans) + t merg (3)

t trans1 t proc1

t trans2 t proc2

t trans3 t proc3

t proc4 t proc4 t merge
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sumption is abandoned, and ttrans is more realistic. The status
of the network is not identical at different time points because
of congestion or diverse network traffic. Also, in a virtualized
cloud environment, the run time for the same applications with
the same-sized input may not be similar at different time
points. This dissimilarity occurs because of differences in the
statuses of virtual machines, load, and network and also be⁃
cause of differences in the data content itself.

Revisiting (3), t proc, t trans and t merg are not direct functions ofN but are, in fact, functions of the size p of the partition. There⁃
fore, we need to change the variables of these terms from p toN (or vice versa). If we assume that all partitions are the same
size, and S is the size of all the input data, the relationship be⁃
tween p and N is given by

If the terms of (3) are substituted into (4), t res becomes a func⁃
tion of S or p.

In practice, t merg is not easily estimated, so we remove it from
(3). In our implementation, the input data is partitioned and
processed by a specific data-analysis application. After that,
the outputs of all partitions go to the merging process to pro⁃
duce the final result. It is therefore difficult to determine the re⁃
lationship between tmerg and S because this relationship de⁃
pends heavily on the output of the data-analysis applications.
In section 5, we show that the tmerg forms of different applica⁃
tions are different.

We assume that t proc and t trans are linear with respect to S.
Therefore, without loss of generality, we give the following de⁃
notations:

In our context, a and c are always greater than 0 because tprocand t trans are monotonically increasing functions of S. The parti⁃
tion size p is also greater than 0. To obtain the minimum t res,we need to know when t proc is greater than, less than, or equal
to t trans. This allows us to remove the maximum and minimum
functions in (3).

We have the following two cases: a > c and a < c. In the for⁃
mer case, (3) becomes

•When , finding the minimum t res is
inconsequential because t res is a constant.

•When for d ≥ 0, , then t res is at a

minimum.
•When for d < 0, there is no minimum.

However, this is not likely because we did not consider tmerg ,
which is in the form tmerg =еN + f = + f for е >0. In this
case, t merg is a large value. When N increases, t merg increases
as well.

•When for b > 0, , then t res is at a
minimum.

In the latter case, (3) becomes

Similar to the former case, we can derive p in order to mini⁃
mize t res.After obtaining p for each subcase in equation (7), we can
calculate t res for each subcase and compare these t res values to
obtain the overall minimum t res.At this stage, we can fine-tune p by monitoring the network
status and analysis progress. For example, the network keeps
changing over time, so t trans for the incoming partition is most
likely different from ttrans for the previous partitions.
3.2 Implementation

SPBD is implemented in Java using a client-server model.
The server is the portal of the cloud, and the client keeps send⁃
ing data. The server decides when its buffer has enough data
(the size of the partition) and begins processing so that an opti⁃
mal overall t res is achieved. The problem is deciding how many
partitions/chunks the input data needs to be divided into. In
other words, when should the system start processing a chunk?

The client provides an interface so that a user can specify
their job (application names and parameters). The path to the
local input data is included in the parameters. The job specifi⁃
cation is similar to that of Amazon EMR Ruby Client. Other in⁃
formation, such as the IP address of the server, credentials and
access keys, is specified in a configuration file. Before sending
the large input file, the client sends the job specification and
data size to the server. After receiving an acknowledgement
from the server, the client starts transferring the input data us⁃
ing TCP.

We implement the server using a static or dynamic ap⁃
proach. With the static approach, we run all available applica⁃
tions in the pool offline. The applications are run with different
sets of data of differing size, and using linear regression, all the
functions in (3) are identified. In section 4, we show that the as⁃
sumption of linearity holds in practice because the R-squared
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p = S /N (4)

ttrans = ap + btproc = cp + d (5){

( )
cp + +d +Sa
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ap + + b + ScdSp d -ba-cp <

+1 (ap +b) = +1 (cp +d ) (6)Sp ( )Sp d -ba-cp =
bSp d -ba-cp >{

d -ba-cp =

d -ba-cp < d Sap =

d -ba-cp <

esp

d -ba-cp > d Scp =

( )
ap + +b +Sc
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cp + + d + SabSp d-ba-cp <

+1 (ap +b) = +1 (cp +d ) (7)Sp ( )Sp d-ba-cp =
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values are very close to 1. This indicates a good-fitting model.
With the dynamic approach, the terms in (3) are identified

online when executing the job. At the server side, the input da⁃
ta is divided into two parts that are nearly the same size. The
first part is used to learn tproc and t trans. The second part is pro⁃
cessed in a streamlined way using the computed optimal size.

The administrator (at the server side) specifies a number of
samples when starting SPBD. This number is used to identify
different sample sizes in our linear regression process. The
size of the first sample partition is denoted init_size and is giv⁃
en by

The size of the ith sample partition is double that of the (i -
1)th sample partition. Algorithm 1 is used in the receiving
function at the server. With this approach, it is difficult to
learn tmerg because the sizes of partitions are different.

In addition, we fine-tune SPBD by monitoring t proc and t trans⁃after computing the optimal partition size. If the optimal parti⁃
tion size is obtained when tproc = t trans for│tproc - t trans│> thresh⁃
old, then we update the optimal size accordingly. For example,
if a > c and tproc is greater than t trans, we decrease the size of the
partition.

In this implementation, SPBD does not send the result back
to the user because it the result is simple. When using Amazon
EMR, the results are stored in S3, and there are many
easy-to-use graphical tools that can be used to interact with
S3 as if it were a local file system.

4 Evaluation
We evaluate SPBD on WordCount and a metagenomic appli⁃

cation. The former is a simple and typical MapReduce applica⁃
tion that is useful in gaining insight into SPBD. It also shows
that our approach is not necessarily limited to genomics. The
latter is chosen from many genomic applications because it
deals with large data sets. In addition, its outputs are
fixed-sized matrices, which shows that the merge process is
very different for different applications.

Our testbed configurations are described in Table 1. The lo⁃
cal network speed is 100 Mbps, and the computing cluster
runs Hadoop 0.20.203 on the Eucalyptus platform.

To use SPBD, the developer needs to write 76 lines of code
for the merge part of WordCount and 152 lines of code for the
merge part of the metagenomic application. It is not difficult to

write these parts, and most likely, involves only a slight modifi⁃
cation of the reduce parts in the original applications.

4.1 Detailed Experimental Results: WordCount
We intentionally did more experiments with WordCount be⁃

cause it is more popular than a metagenomic application.
WordCount is a MapReduce application that is included in the
example jar file distributed with Hadoop. The application is
used to count the number of occurrences of all words in an in⁃
put file. The input data used in our experiments is the data
dump from Wikimedia [2].

Experiments are performed to show the relationship betweenp and t proc and to show the relationship between partition size
and t trans (Fig. 5). The same input data is used. The linear re⁃
gression functions and R-square values are shown for t proc andttrans . The size of the input data is between 5 GB and 2 GB. Fig.
5 shows that if the same input data (i.e. the same content) is
partitioned into different sizes, both t proc and t trans of each parti⁃
tion can be modeled with linear regression. At each data point
in Fig. 5, the input data is cut into partitions of the same size.
The linear functions obtained with particular input data may
differ from those obtained with other input data.

Fig. 6 shows t merg for 1 GB and 2 GB input data and varying
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init _size = (8)S
2SAMPLE NUM -1-2

▼Table 1. Testbed configuration

Type
Client
Master
Slaves

Number
1
1
4

CPU (GHz)
3.6
2.4
2.4

Memory (GB)
24
16
16

HDD
72 TB

850 GB
＞320 GB

OS
Solaris
CentOS
CentOS

AlgorithAlgorithmm 11. SPBD Algorithm
InputInput: size of the input data S, init_size and SAMPLE_NUM
OutputOutput: nonepartition_size = init _size ;accumulated_size = 0;
repeatrepeat

bytesRead = Read from socket to buffer;
write buffer to HDFS;
accumulated_size+ = bytesRead;
partition_num = 0;
whilewhile accumulated_size ≥ partition_size dodo

record ttrans for the received partition;
create and submit a new job asynchronously to
Hadoop to process the received partition;
ifif partition_num < SAMPLE_NUM - 1
thenthen partition_size* = 2;
endend
else ifelse if partition_num == SAMPLE_NUM -1 thenthen
Start a new thread to compute the
optimized size for a partition;
the optimized size will be used to update
the partition_size
endend
accumulated size = 0
partition_num++;

endend
untiluntil BUFFER_SIZE ! = bytesRead ;
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N. When S remains the same and N increases, tmerg generally
increases also. Fig. 7 shows the relationship between S, t proc,and ttrans. The content of all input data varies.

In Fig. 7, S is measured is measure in gigabytes whereas in
Fig. 5, S is measured in megabytes. Therefore, the linear func⁃
tion parameters are significantly different. Also, the input data
content used for Fig. 5 is different from that used for Fig. 7.
The values obtained the experiments shown by Fig. 5 and
Fig. 7 are the averages of several runs.

Our experiments confirmed that the relationship between S,tproc and t trans is linear regardless of the content of the data. The
relationship between p, t proc and t trans is also linear regardless of
the content of the data. Also, t proc and t trans, which derive from
linear regression, are different for different runs. Consequent⁃
ly, we should not use the same computed optimized p between
different runs.

After verifying the linear assumption, we experimented with
our SPBD system and mimicked a real scenario. The input da⁃
ta is stored in the client machine, which acts as the storage
server at the client side (Table 1). This machine also contains
SPBD client code. The master node runs the SPBD server code
and accepts job submissions. This master node is also the mas⁃
ter node of Hadoop. The remaining nodes are computing
nodes. In reality, both the master and slaves are in the cloud,

and the master and slaves are connected to the client through
the internet. However, in our experiments, the master, slaves,
and client are all on the same local network. This does not af⁃
fect the applicability of SPBD because SPBD learns the func⁃
tions through measurement.

Using the static approach, we evaluate SPBD with varying p.
In this experiment, we ran WordCount with 32 GB of data. The
results show that varying p for the same input data significant⁃
ly changes t res (Fig. 8). In addition, as p increases, t res decreas⁃
es at first and then increases. This suggests that there is an op⁃
timal tres with respect to an appropriate p.

To study the bandwidth between the client and the Hadoop
master node, we ran WordCount on our local Hadoop testbed,
and 16 GB of data was transferred from different machines in
the network. The results are shown in Table 2. Bandwidth does
affect the performance of the system but not very significantly.
SPBD outperforms the traditional approach in all cases.

To determine the benefit of SPBD, we used the dynamic ap⁃
proach with SAMPLE_NUM = 3. The NO-SPBD configuration
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▲Figure 5. t proc , t proc and their linear regression functions for S = 2 GB.

▲Figure 6. Linear regression functions of the merge process
for S = 1 GB and S = 2 GB.

▲Figure 7. Linear regression functions for WordCount. when S varies.

▲Figure 8. t res of WordCount when static approach is used
and p is varied.

▼Table 2. SPBD for different network bandwidths
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89.9
67.3
5.00

SPBD (s)
2153
2247
2325

NO-SPBD (s)
2865
3021
3105

250
200
150
100
50
0 25002000150010005000

Size of one partition (MB)

Exe
cut

ion
tim

e(s
)

◆ ◆
◆

◆

◆

■
■

■

■

■y = 0.0777x + 55.979R 2 = 0.9963
y = 0.0996x + 1.9583R 2 = 0.9998

◆ ■Execution time Transmission time
Linear (Execution time) Linear (Transmission time)

180

35
Number of partitions

Exe
cut

ion
tim

e(s
)

302520151050

160
140
120

80
60
40
20
0

◆ ◆ ◆
◆

◆

■
■ ■

■ ■

y = 0.6035x +94.917R 2 = 0.8098

y = 1.5716x +119.81R 2 = 0.9981

◆ ■S = 2 GB S = 1 GB
Linear (S = 2 GB) Linear (S = 1 GB)

3500

35
Size of input data (GB)

Tim
e(s

)

302520151050

3000
2500
2000
1500
1000
500

0

y = 78.685x + 113.23R 2 = 0.995

y = 103.58x + 4.9403R 2 = 1

◆◆
◆

◆

◆

◆

■

■

■

■
■

■

◆ ■Processing time Transmission time
Linear (Processing time) Linear (Transmission time)

5000

12
Size of a partition (GB)

Res
pon

set
ime

(s)

86421

4800
4600
4400
4200
4000
3800

100



June 2013 Vol.11 No.2ZTE COMMUNICATIONSZTE COMMUNICATIONS36

is computed by making p the same as S, and the SPBD values
already include t merg. In other words, the outputs for the two
configurations are the same (Fig. 9). As the size of input data
increases, SPBD provides greater improvement (Fig. 9). For ex⁃
ample, when S = 32 GB, t res with SPBD is only 66% that of
the existing approach.

Finally, we experimented with Amazon EMR. The results
show that the assumption of a linear relationship between t transand S holds. However, we do not discuss it here.
4.2 Detailed Experimental Results: The Metagenomic

Application
Metagenomics is the study of genetic material sampled di⁃

rectly from the habitats of microorganisms [16]. In our experi⁃
ment, we used a metagenomic application developed by a bio⁃
informatics research group [4]. The input data for this applica⁃
tion was generated using MetaSim [18]. Availability of input
data was also an important reason to select this tool for our ex⁃
periment.

As with the previous experiments on WordCount, we verify
the linear relationship between input data and t proc and the lin⁃
ear relationship between input data and t trans. We study the
merging process and determine the benefit of SPBD.

Fig. 10 shows measured t proc and t trans when S varies. Linear
regression is also applied to the data. As in the WordCount ex⁃
periments, the assumption of linearity holds. Table 3 shows tmergfor 1 GB of data and varying N. This time, t merg is almost con⁃
stant, unlike in the WordCount experiments. This is because
the output of the metagenomics application is only a small
number of small matrices, and these matrices are independent
of S. Therefore, combining the matrices in parallel takes only
small and almost constant amount of time. This experiment al⁃
so demonstrates that t merg is difficult to estimate and depends
heavily on particular applications.

Last, we ran a modified metagenomics application with
SPBD and without SPBD and on different data sets. For S = 32
GB, tres for SPBD improved 31% compared to tres for NO-SPBD.

When S is less than 8 GB, SPBD performance is a little

worse than that of NO-SPBD (Fig. 11). This indicates that
SPBD is only beneficial with big data. If S of an application is
less than a certain value, it is good to upload all the input data
to the cloud and processing it afterward. We determine that
this value is 1 GB.

5 Conclusion
In this paper, we have discussed state-of-the-art tech⁃

niques for analyzing large data sets in genomics. These tech⁃
niques involve combining a cloud with a parallel processing
framework, such as MapReduce or Dryad. We proposed, imple⁃
mented, and evaluated SPBD, which is a system that automati⁃
cally transfers and processes large data in the MapReduce
cloud. Our experimental results show that SPBD significantly
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▲Figure 9. Benefit of SPBD in WordCount when the dynamic
approach is used.

▲Figure 10. Measured t proc and linear functions of the metagenomic
application when S varies.

▼Table 3. t merg for S = 1 GB
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▲Figure 11. Benefits of SPBD in the modified metagegomic application
when the dynamic approach is used.
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improves t res when a large data set is analyzed.
We took an empirical approach to deriving the coefficients

needed to compute t res, and we continued refining the parame⁃
ters after determining the optimal partition size. Our solution is
resilient to changes of system parameters, such as load or net⁃
work traffic. Although we did not experiment with other jobs or
interferences in the system, SPBD should also benefit a practi⁃
cal multiuser system. In future work, we plan to extend SPBD
to handle more than one input file, and we plan to improve the
linear model by using, for example, piecewise regression. We
also plan to test SPBD with more applications or, better yet,
with a benchmark for large data. Instead of TCP, we might al⁃
so apply GridFTP or other state-of-the-art data transmission
protocols to SPBD.
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ZTE Cloud Radio Solution to Usher in New Era of
High-Performance LTE Networks

ZTE showcased its innovative cloud radio solution for 4G network optimization at the Mobile Asia Expo in Shanghai.
ZTE’s cloud radio solution comprises cloud scheduling and cloud coordination modules. These allow an operator to

build a high-performance LTE network, deliver improved user-experience, and resolve key engineering challenges in 4G
network deployment. ZTE’s cloud scheduling module has a central scheduler that manages network resources in real
time and unifies network scheduling. The cloud coordination module allows seamless, borderless coordination across the
whole network and improves user experience. Cloud scheduling and cloud coordination allow coordination at the cell and
user levels respectively. Dual-level coordination helps operators build smooth LTE networks. (ZTE Corporation)
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Abstract

MapReduce is a programming model for processing large data sets, and Hadoop is the most popular open-source implementation of
MapReduce. To achieve high performance, up to 190 Hadoop configuration parameters must be manually tunned. This is not only
time-consuming but also error-pron. In this paper, we propose a new performance model based on random forest, a recently devel⁃
oped machine-learning algorithm. The model, called RFMS, is used to predict the performance of a Hadoop system according to the
system’s configuration parameters. RFMS is created from 2000 distinct fine-grained performance observations with different Hadoop
configurations. We test RFMS against the measured performance of representative workloads from the Hadoop Micro-benchmark
suite. The results show that the prediction accuracy of RFMS achieves 95% on average and up to 99%. This new, highly accurate pre⁃
diction model can be used to automatically optimize the performance of Hadoop systems.
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1 Introduction
he MapReduce programming model is widely used
in big-data applications because it is simple to pro⁃
gram and can handle large data sets. A popular
open-source implementation of MapReduce is

Apache Hadoop, which has been used for web indexing [1], ma⁃
chine learning [2], log file analysis [3], financial analysis [4],
and bioinformatics research [5].

With Hadoop, a programmer needs to manually tune up to
190 parameters to ensure high system performance. However,
without in-depth knowledge of the Hadoop system, the pro⁃
grammer may find such a task tedious and may even seriously
degrade system performance. This issue has been confirmed by
many researchers [6]-[9].

It is therefore desirable to automatically tune the configura⁃
tion parameters. To this end, a performance prediction model
based on historical observation is required. The key to improv⁃
ing performance is to use a highly accurate model with low run⁃
time overhead. Many researchers have tried to construct such a
model. In [10], a set of cost-based mathematical functions is
used to estimate the fine-grained run time of phases within the
map and to reduce tasks when a job is executed. In [6], a
course-grained SVM regression model is used to estimate the
completion time of jobs that belong to a cluster. This estima⁃

tion depends on the allocation of resources, parameter settings,
and size of input data.

However, these models are not accurate enough because of
their assumptions about cluster node homogeneity and
over-simplifications. For example, the local and remote CPU
and I/O costs during each phase of executing a MapReduce job
differs according to the Hadoop parameter settings, even in ho⁃
mogenous nodes in a cluster. If we define operational cost as
microseconds per megabyte, variations in parameter settings
give rise to variations in operational cost (Fig. 1). Also, Hadoop
involves complicated multiphase processing. As well as con⁃
taining map and reduce phases, a MapReduce workflow also
contains fine-grained phases such as read, collect, spill,
merge, shuffle, sort, and write. Each phase performs finer
grained operations with different costs. For example, a spill
phase involves combining, compression, and writing. All the
above factors may be intertwined to contest underlying comput⁃
ing resources, such as CPU and I/O. In such a context, if a
model is overly simplistic, it is definitely in accurate.

We propose a model to predict the performance of a Hadoop
system. This model is based on fine-grained operations and us⁃
es a random forest algorithm. Random forest is a recently de⁃
veloped non-parametric regression model. Unlike traditional
regression models, random forest combines tree predictions so
that each tree depends on the values of a random vector sam⁃

T
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pled independently. This random vector has the same distribu⁃
tion for all trees in the forest [11]. We use random forest for
two reasons: 1) it does not make linear assumptions between
parameters (in our case, the configuration parameters), and 2)
it can deal with a large number of configuration parameters,
even when there are complex interactions.

In our proposal, a lightweight performance profiler captures
the time taken to execute tasks and the size of the data pro⁃
cessed in each phase. We construct a fine-grained model for
predicting the performance of a Hadoop system. This model is
used to accurately estimate phase-level performance under
various workloads and without assuming cluster nodes are ho⁃
mogenous. We evaluate RFMS under different workloads gen⁃
erated by Hadoop Micro-benchmark suite. The results show
that RFMS provides prediction accuracy of 95% on average
and up to 99%.

In section 2, we describe related work. In section 3, we intro⁃
duce our approach based on random forest. In section 4, we de⁃
scribe our experimental methodology. In section 5, we provide
experimental results and describe some applications of our ap⁃
proach. Section 6 concludes the paper.

2 Related Work

2.1 Analyzing MapReduce Performance
Analyzing the performance of a MapReduce distributed sys⁃

tem is challenging because a system potentially comprises sev⁃
eral thousand of programs running on thousands of machines.
Low-level performance details are hidden from users by using
a high level dataflow model [9]. Several approaches have been
taken to understand user-defined workload behavior in a Ma⁃
pReduce system [12]-[14]. With these approaches, informa⁃
tion collected from previous job execution logs is used to iden⁃

tify performance bottle⁃
necks. For example, Ha⁃
doop job history files are
often used to analyze per⁃
formance bottlenecks in a
Hadoop system.

Log files are often not
exposed to developers, and
this means that system per⁃
formance often not opti⁃
mal. In [9], logs are lever⁃
aged through automatic log
analysis to improve perfor⁃
mance. Such an approach
can be used to show the
dataflow breakdown of the
map/reduce phases for var⁃
ious jobs, but human in⁃
volvement is still needed

for hotspot detection.
Performance analysis based on dataflow appears to be suit⁃

able for Hadoop; however, the focus is on monitoring the data⁃
flow process, and the user needs to identify possible bottle⁃
necks in a Hadoop cluster. Furthermore, a dataflow approach
cannot be used to evaluate performance when configuration pa⁃
rameters are randomly set. Our model is based on workflow
analysis and uses a random forest to predict the running time
of each phase. This is a precise model that can be used to
guide the setting of configuration parameters.
2.2 Automatic Configuration

Various approaches have been taken to automatically config⁃
ure distributed data processing systems [15]-[18]. The
pay-per-use utility model of cloud computing creates new op⁃
portunities to deploy the MapReduce framework. However,
choosing which configuration parameter settings will result in
high performance is complex [19]. Automatic approaches to
setting configuration parameters in Hadoop systems have there⁃
fore been the focus of attention recently.

The first model for predicting the performance of a Hadoop
system with automatically set parameters is described in [10].
The model describes the fine-grained dataflow and cost for
phases within map and reduces tasks [10]. However, it as⁃
sumes that the costs for CPU and I/O in each phase of execut⁃
ing a MapReduce job are the same for all nodes in a cluster. In
practice, this assumption is not true (Fig. 1).

AROMA [6] uses a performance model based on support
vector machine (SVM) to integrate aspects of resource provi⁃
sioning and auto-configuration for Hadoop jobs. Based on allo⁃
cated resources, configuration parameters, and the size of in⁃
put data, AROMA can estimate the completion time of jobs be⁃
longing to a cluster. However, unlike fine-grained cost estima⁃
tion models, it cannot quantitatively analyze the data processes
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of each phase of a distributed system dataflow.

3 Performance Model Based on Random
Forest
In this section, we describe how to capture the execution fea⁃

tures of a job. We then use these features to construct a Ha⁃
doop performance model based on a random forest.
3.1 Job Characterization

RFMS uses dynamic tools to collect run-time monitoring in⁃
formation without modifying MapReduce workloads on Ha⁃
doop. One such tool is BTrace—a safe, dynamic tracing tool
that runs on the Java platform and captures the execution fea⁃
tures of a MapReduce job [20].

The execution of a MapReduce job can be broken into the
map and reduce stages. The map stage can be further divided
into reading, map processing, buffer data collecting, spilling,
and merging phases. Similarly, the reduce stage can be divided
into shuffling, sorting, reduce processing, and writing phases.
Each phase is part of the overall execution of the job in Ha⁃
doop.

When Hadoop runs a MapReduce job, BTrace traces speci⁃
fied Java classes to generate a task feature file. A feature file is
a detailed representation of the task execution that captures in⁃
formation at the phase level. The feature file generally logs exe⁃
cution time, input data size, and output data size. However, the
shuffle phase of the reduce stage requires special attention be⁃
cause it contains multiple operations, such as network transfer⁃
ring and merging. To simplify the operations in the phase and
better analyze the result, BTrace only records the timing of net⁃
work transferring, and the timing of merging is added to the
next phase, called sort. This phase only has merging opera⁃
tions. When a job is finished, RFMS collects the feature files
of all tasks and produces a statistical result of the three charac⁃
teristics of each phase of a job.
3.2 Building a Performance Model

As described in [10], the performance model for a MapRe⁃
duce job can be given as

where F is the performance estimation model for a MapReduce
job ( p , d , r , c ) that runs program p on input data d and uses
cluster resources r and configuration parameter settings c.

Because a MapReduce workflow comprises nine phases,
each of which is denoted Phases , the performance model for a
whole MapReduce job can be given by

where FPhases is the performance model for each phase, and dsis the size of the data processed in Phases . The size of the ini⁃

tial input data in the map and reduce stage determines the size
of ds . The parameter settings related to Phases are given by cs .
The performance model for each phase can be estimated by

where

and

In (3), FPerTaskPhases is the performance of Phases when ex⁃
ecuting a single map or reduce task, and numTotalWaves is
the total number of task execution waves.

In (4), totalTaskSlots is the sum of the task slots numTask⁃SlotPerNode allocated for map and reduce tasks in each node
of a cluster. The total number of map or reduce tasks is num⁃Tasks. In the reduce stage, numTasks is a configurable parame⁃
ter. In the map stage, the configurability of numTasks depends
on the size of input data d. The number of map tasks is given
by

where totalDataSize is the size of input data d, and SplitData⁃Size is the size of the input split of each map task. (The default
is 64 MB if uncompressed.)

In (5), numNodes is the total number of nodes in a cluster.
Function (3) allows us to estimate FPerTaskPhases ; thus, it

is necessary to learn n phase performance models for a work⁃
load. These models are used to analyze the workflow so that we
can use (2) to evaluate overall performance.

More importantly, by building a performance model for FPer⁃TaskPhase, we can estimate Pf when the size of the input data
is small. In turn, we can predict the workload performance
when the size of the input data is larger by calculating numTo⁃talWaves in the map and reduce stage.

In [21], FPerTaskPhases is calculated using a set of func⁃
tions based on a constant cost assumption (a cost-based mod⁃
el). It is assumed that the local and remote CPU and I/O costs
per phase in executing a MapReduce job are equal across all
the nodes in a cluster with the same hardware resource. Howev⁃
er, varying the configuration parameters may vary these costs
and prove this assumption false.

RFMS addresses this problem by using a machine learning
technique to construct FPerTaskPhases models for different
phases. RFMS uses the random forest (RF) regression model to
estimate FPerTaskPhases of a workload with varying configura⁃
tion parameters. RF methodology is precise when there are re⁃
gression problems and performs consistently well [11]. Applica⁃
tions that use RFs demonstrate that RF is one of the best of
available methodologies for modeling the performance of com⁃
plex Hadoop workloads in the cloud environment [22]. RFMS
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Pf = F (p , d , r , c ) (1)

Pf = FPhases (p, ds , r, cs ) (2)
s =1
∑

9

FPhases = FPerTaskPhases × numTotalWaves (3)

numTotalWaves =「numTasks / totalTaskSlots⌉ (4)

totalTaskSlots = numNodes × numTaskSlotPerNode (5)

mapNumTasks = totalDataSize /SplitDataSize (6)
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can produce importance measures for each variable [23].
These measures indicate which variables have the strongest ef⁃
fect on the dependent variables being investigated. RFMS can
capture the time taken to execute the phases of Hadoop work⁃
loads with varying configuration parameters. The ten configura⁃
tion parameters that are important to overall performance in a
Hadoop system are listed in Table 1. These parameters are
used as feature candidates to train RFMS. For given input da⁃
ta, the size of the uncompressed split data for each map task,
given by USDFMT, does not change in the map stage. Thus,
the size of the split data is not used to train RFMS. However,
the input data (shuffle bytes) for each reduce task changes ac⁃
cording to the mapred.reduce.tasks parameter. Furthermore,
the size of the shuffle bytes significantly affects the execution
time of a reduce task. Therefore, the shuffle bytes for each re⁃
duce task ShuffleByteEachTask should be used as a feature
candidate for the reduce stage. ShuffleByteEachTask is given
by

where

and

Selectivity can be defined as the statistical ratio of the out⁃
put size to input size for a stage or operation in a workload. In
(7), SelectivityMstage is the map stage selectivity. Because map,
combine, and compress operations reduce the input data size,SelectivityMstage can be calculated using (8). In (8), Selectivity⁃
Map, SelectivityCombine, and SelectivityCompress are operation selectiv⁃
ity. These three selectivities are determined by related opera⁃
tion, and they can be calculated using (9). In (9), OperationSe⁃lectivityOfTask is the ratio of output size to input size of an op⁃
eration in a task, and n is the number of map tasks in a given
workload. OperationSelectivityOfTask can be calculated using
the data captured by our profiler in a feature file. The combine
and compress operations are optional, and the value of Selectiv⁃ityCombine and SelectivityCompress is set at 1 if the user does not
specify these operations.

An RF can be defined as a collection of tree-structured pre⁃
dictors [11]:

where hk is the k th individual tree, hk (.) is the tree’s predic⁃
tion, and Ntrees is the number of trees. The samples of the total
training set are given by X = {Fck, Ptk}, where k = 1, ... , Nsamples.The predictor features are given by Fck , and the phase time is
given by Ptk . The total training set is divided into two indepen⁃
dent subsets: one to train the predictor hk and the other to test

the predictor’s accuracy. In (10), θk are random variables. The
nature and dimensionality of θk depends on randomness in the
construction of N trees. This randomness may be caused by the
random selection of Ntrees training records drawn from X with re⁃
placement. It may also be caused by m try, the random number
of different features tried at each split of a tree.

In RF regression, it is difficult to define the predictor fea⁃
tures Fck that allow the base predictors to be trained to accu⁃
rately predict the target on the out-of-bag data. When select⁃
ing important features, importance is assessed by replacing
each feature with random noise and observing the increase in
the mean squared error (MSE) for the out-of-bag validation.
The features are then sorted by relative importance, and an im⁃
portant subset of features can be abstracted. The RF is itera⁃
tively retrained, and each time, the least important features are
removed. In practice, N trees and M try are used to tune the RF
model and minimize the MSE. Lower MSE can make the model
better fit the training data. N trees and M try are tuned using
scripts that iteratively change each parameter one-by-one and
regenerate the regression model. The optimum value of M tryranges from 6 to 10, and the optimal value of Ntrees ranges from
500 to 1000.

We use a stepwise regression model for the data sets collect⁃
ed from our test bed comprising Hadoop nodes. In section 5,
we discuss the accuracy of the prediction against the training
data and provide out-of-bag accuracy statistics.

4 Experiment Methodology
The experiments are performed on a test bed comprising ten

Sugon servers and a gigabit Ethernet network. Each server has
a quad-core Intel(R) Xeon(R) CPU E5-2407 0 at 2.20 GHz
and 32 GB PC3 memory. The cluster is virtualized by Xen 3.0.
We create a pool of virtual machines (VMs) from the virtual⁃
ized service cluster. Each has eight virtual CPUs and 8 GB
memory. We then run the VMs as Hadoop nodes. Each VM us⁃
es SUSE Linux Enterprise Server 11 and Hadoop 1.0.4.

We designate one server to host the master VM node and
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ShuffleByteEachTask = USDFMT ×SelectivityMstage × mapNumTask
reduceNumTask

SelectivityMstage = SelectivityMap × SelectivityCombine × SelectivityCompress

Selectivityoperation = OperationSelectivityOfTaski /n (9)∑
i =1

n( )

▼Table 1. Configuration parameters selected for testing

Configuration Parameters
io.sort.factor
mapred.job.shuffle.merge.percent
mapred.output.compress
mapred.inmem.merge.threshold
mapred.reduce.tasks
io.sort.spill.percent
mapred.job.shuffle.input.buffer.percent
io.sort.record.percent
io.sort.mb
mapred.compress.map.output

Default
10
0.66
false
1000
1
0.8
0.7
0.05
100
false

Test Range
10-100
0.2-0.9
true or false
10-1000
1-100
0.5-0.9
0.0-0.8
0.01-0.5
(0.25-0.65)* taskMem(mapred.child.java.opts)
true or false

RF = {hk (X, θk), k = 1, ... , Ntrees } (10)

(7)

(8)
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use the remaining servers to host the nine slave VM nodes.
The master node runs the JobTracker and the NameNode.
Each slave node runs both the TaskTracker and the DataNode.
Each VM is initially configured with four map slots, four re⁃
duce slots, and 300 MB memory per task. The data block is set
at 64 MB. The RFMS profile component needs to run on each
slave VM node so that BTrace can capture the task execution
times. Other components of RFMS can run on a separate VM
or standalone machine because RFMS processes the gathered
features offline.

We run representative Hadoop workloads, such as TeraSort,
to test the precision of RFMS with 10 different configuration
parameters (Table 1). We use Hadoop benchmark to produce
data of various sizes.

5 Results and Analysis

5.1 The Constant-Cost Assumption
We test the constant-cost assumption by comparing six cost

features of TeraSort. Six different configurations were used (Ta⁃
ble 2). First, we randomly varied the configuration parameter
values up to 4325 times when running TeraSort. The parame⁃
ters generated within the test range are listed in Table 1. To ob⁃
tain credible results, we use the profiler in [10] to capture ev⁃
ery cost feature. We use the plots of the TeraSort benchmark to
show the results. Then, we select six cost features from a total
of 12 cost features. These six cost features comprise CPU fea⁃
tures (REDUCE_CPU, PARTITION_CPU and MERGE_CPU)
and I/O features (READ_LOCAL_IO, WRITE_LOCAL_IO
and NETWORK). From 4325 configurations, we select six that
have typical cost distributions.

Fig. 2 shows six different values for each cost feature when
configuration settings are varied. (Note the log scale on the
y-axis.) For example, REDUCE_CPU ranges from 6610 to
9318 ms/MB, and MERGE_CPU ranges from 0.81 to 427 ms/
MB. These values have significantly changed, and this indi⁃
cates that cost features are affected by variations in the configu⁃
ration settings.

Although we do not show the cost features of other work⁃
loads from Hadoop benchmark, from our observations, these
features have similar properties to each other. Therefore, we
believe the constant-cost assumption is false for the 12 opera⁃
tions in a MapReduce workflow.

Furthermore, we determine whether the inconstant cost val⁃
ue affects the accuracy of performance prediction. Fig. 3 shows
the NetworkTransferTime distribution against the cost for NET⁃
WORK when transferring 2040 MB data. This distribution is
derived from actual measurement. NetworkTransferTime is the
time taken to transfer networks in the shuffle phase and is giv⁃
en by

where dShuffleSize is total shuffle size [21]. In Fig. 3, Network⁃TransferTime is significantly affected by inconstant Network⁃cost. We set dShuffleSize at a constant 2040 MB. The total
shuffle size is generated by a map phase with 10 GB input da⁃
ta. The cost of the network transfer is csNetworkcost.

Using (11), we can predict NetworkTransferTime when the
configuration parameters are varied. We set csNetworkCost at
a constant 8.826963634 ms/MB observed with default configu⁃
ration parameters. In Fig. 4, predicted NetworkTransferTime is
plotted against the real measurement of NetworkTransferTime.
The predictions shown in Fig. 4 are poor, which suggests that
the constant-cost assumption is false.
5.2 Accuracy of RFMS

Fig. 5 shows phase timing predicted using RFMS against the
measured phase timing for a TeraSort workload with 10G input
data. The phase timing is measured in 100 groups of experi⁃
ments.

In Fig. 5, phase timing predicted using RFMS is similar to
the measured phase timing for a MapReduce workflow. Our
prediction model is reasonably accurate. Although the predic⁃
tions for read timing are not particularly accurate, the affected
performance range is only between 2000 and 2500, which is
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▼Table 2. The six types of configuration parameter settings

Parameters

io.sort.factor
mapred.job.shuffle.merge.percent
mapred.output.compress
mapred.inmem.merge.threshold
mapred.reduce.tasks
io.sort.spill.percent
mapred.job.shuffle.input.buffer.percent
io.sort.record.percent
io.sort.mb
mapred.compress.map.output

Configurations
1
31
0.29
false
825
1
0.5
0.22
0.01
96
false

2
61
0.24
false
720
97
0.89
0.26
0.12
120
false

3
75
0.61
true
717
79
0.57
0.89
0.03
108
true

4
14
0.28
true
268
1
0.72
0.36
0.27
131
true

5
50
0.3
false
969
66
0.7
0.23
0.11
91
false

6
40
0.89
true
469
2
0.78
0.59
0.32
107
true

▲Figure 2. Costs for six types of parameter settings using Terasort
benchmark.
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low. To quantitatively evaluate the accuracy of our RFMS mod⁃
el, we use the relative error Er , given by

Where Prei is the i th value predicted by RFMS, Reali is the i th
value actually measured, and n is the total number of tests. Pre⁃
cisely, we use average relative error
of 100 predictions to represent the
prediction error rate between each
real and corresponding predicted val⁃
ue, selected from different ranges of
phase timing distribution.

The error rates for the nine phases
that we experimented with were cal⁃
culated using Er and are shown in
the Table 3. The error rate varies
from 0.566% to 7.169%. All are less
than 8% , and the average is 5% .
This indicates that our RFMS predic⁃
tions are close to the measured
phase timing.

6 Conclusion
In this paper, we have confirmed

that varying the configuration param⁃
eter values significantly affects the
precision of a cost-based model.
Therefore, we have designed RFMS,
a phase-based workflow perfor⁃
mance analysis model for precisely
tuning Hadoop parameters. We fo⁃
cused on non-transparent perfor⁃
mance tuning for various Hadoop
workflow processes.

RFMS prediction is significantly
better than that provided by a

cost-based model. The average accuracy reaches 95%, which
is reasonably good. Besides being accurate, our approach has
several other advantages in practice. It has an improved, light⁃
weight workload in-depth profiler that collects key task execu⁃
tion information from an unmodified MapReduce/Hadoop work⁃
load. It also has a novel dataflow analysis mechanism for Ha⁃
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▲Figure 3. Network transfer time for 2040 MB of data with inconstant
network cost.

▲Figure 4. Predicted network transfer time vs. measured network
transfer time.

▲Figure 5. The best RF model for predicting phase timing.
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doop.
However, there are several

aspects of RFMS that need to
be improved. We would like
to further investigate the po⁃
tential for self-configuration.
We also need to reduce the
RFMS overhead for online
Hadoop self-tuning.
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▼Table 3. Relative Error of RFMS

Phase Name
Read
map

collect
spill

merge
shuffle

sort
reduce
write
Avg.

Relative Error (%)
6.053
4.865
0.566
1.893
6.583
7.169
4.593
4.353
3.458
4.393
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1 Introduction
lustering is a method of unsupervised learning that
is widely used in exploratory data analysis [1]. Re⁃
cently, a spectral clustering algorithm was shown to
be more effective than many other traditional algo⁃

rithms in detecting clusters. Extracting valuable information
from an ocean of data is a hot research topic, and applications
of spectral clustering range from computer vision and informa⁃
tion retrieval to social science and biology [1], [2]. Spectral
clustering cannot be adequately scaled in terms of computa⁃
tional time and memory use to deal with massive datasets. For
example, a quadratic resource bottleneck occurs when comput⁃
ing pairwise similarities and the number of data instances n

(Table 1) is large. A considerable amount of time is needed to
compute the first k (Table 1) eigenvectors of a Laplacian ma⁃
trix; therefore, it is necessary to develop dataset-oriented par⁃

allel implementations [2], [3]. In [4], message passing interface
(MPI) is used to parallelize the spectral clustering algorithm.
MapReduce is better than MPI and can automatically split
mass data with Hadoop Distributed File System (HDFS). Better
load balancing and data parallelism improve the scalability
and efficiency of the machine clusters when a dataset is large.
Therefore, a MapReduce framework is more suitable for han⁃
dling this problem.

MapReduce is a programming model and associated imple⁃
mentation for processing large datasets [5]. Users specify the
computational rules in forms of a Map function that processes
a <key, value> pair to generate a set of intermediate <key, val⁃ue> pairs. A Reduce function merges all intermediate values
associated with the same key. Programs written in this way can
be executed in parallel on large commodity machine clusters.
The underlying runtime system automatically partitions the in⁃
put data, schedules the program’s execution, handles machine
failures, and manages intermachine communication. This al⁃
lows programmers who are inexperienced with parallel to easi⁃
ly use the resources of a large machine cluster. The overall
flow of a common MapReduce operation is shown in Fig. 1.
Both Google and Hadoop provide MapReduce runtimes that
are flexible and tolerant to faults.

In this paper, we propose a parallel spectral clustering im⁃
plementation (PSCI) that is based on Hadoop MapReduce and
that can be applied to massive datasets. By constructing prop⁃
er <key, value> pairs, the proposed implementation can be effi⁃
ciently executed in parallel. Tests on benchmark networks
show the effectiveness of PSCI in detecting communities. We
analyze a real social network dataset of about two million verti⁃
ces and two billion edges crawled from Sina Weibo (a popular

Symbol
n
K
T
G
V
E
W
D
S
L
T
Q

Quantity
number of data instances

number of desired clusters
number of nearest neighbors

graph
vertex set
edge set

adjacency matrix
degree matrix

similarity matrix
Laplician matrix

real symmetric tridiagonal matrix
Modularity

▼Table 1. Notation used in this paper

Clustering is one of the most widely used techniques for explor⁃
atory data analysis. Spectral clustering algorithm, a popular
modern clustering algorithm, has been shown to be more effec⁃
tive in detecting clusters than many traditional algorithms. It
has applications ranging from computer vision and information
retrieval to social science and biology. With the size of databas⁃
es soaring, clustering algorithms have scaling computational
time and memory use. In this paper, we propose a parallel spec⁃
tral clustering implementation based on MapReduce. Both the
computation and data storage are distributed, which solves the
scalability problems for most existing algorithms. We empirical⁃
ly analyze the proposed implementation on both benchmark net⁃
works and a real social network dataset of about two million ver⁃
tices and two billion edges crawled from Sina Weibo. It is
shown that the proposed implementation scales well, speeds up
the clustering without sacrificing quality, and processes mas⁃
sive datasets efficiently on commodity machine clusters.

spectral clustering; parallel implementation; massive dataset;
Hadoop MapReduce; data mining
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Twitter-like microblog popular in China) to show the efficien⁃
cy and practicability of PSCI for massive datasets.

In section 2, we give a brief overview of spectral clustering
algorithm in order to understand particular bottlenecks and to
analyze the parallel parts of the algorithm. In section 3, we pro⁃
pose PSCI based on the Hadoop MapReduce framework. In
section 4, we show the results of tests on PSCI and evaluate its
clustering quality and scalability (in terms of runtime speedup
and scale up). Concluding remarks are made in section 5.

2 Spectral Clustering Algorithm
The most common spectral clustering algorithm is graph La⁃

placian matrix [1], [6]. We assume that G = (V, E ) is a weight⁃
ed undirected graph with vertex set V = {v1, v2, ... , vn} and
edge set E = {e1, e2, ... , em}. Each edge between vertices vi andvj has a non-negative weight wij≥ 0 and wij = wji . The adjacen⁃
cy matrix of the graph is

where wij = 0 means that vi and vj are not connected along an
edge. Then, the degree of a vi can be defined as

where the sum in (2) only runs over all vertices that are adja⁃
cent v i , on account that the weight wij = 0 for all other verticesvj . The degree matrix of the graph is

where the degrees d 1, d 2, ... , d n are on the diagonal. Based on
the adjacency matrix and degree matrix, an un-normalized
graph Laplacian matrix is given by L = D - W, and the normal⁃
ized graph Laplacian matrix is given by

We now assume that a dataset comprises n in⁃
stances x1, x2 , ... , x n , which can be arbitrary ob⁃
jects. The pairwise similarity between x i and x j is
given by sij = s (x i , x j ) and can be measured by a
similarity function that is non-negative and sym⁃
metric. The corresponding similarity matrix is giv⁃
en by

An example of a similarity function is the Gauss⁃
ian function

where the parameter σ controls the number of the
neighbors. Nevertheless, sij in network is usually
defined as

If we replace W in (4) with S, we obtain the new formula in a
spectral clustering algorithm:

Furthermore, one often reduces the matrix S to a sparse one
by considering only significant relationship between instances
for conserving the computational time. A summary of the spec⁃
tral clustering algorithm is shown here [1].

Generally, it is useful to change representation of the ab⁃
stract data points xi to points yi ∈Rk due to the properties of
graph Laplacian matrix. It enhances the cluster performance,
so that clusters can be trivially detected in the new representa⁃
tion. In particular, the simple k-means clustering algorithm de⁃
tects the clusters without any difficulties.

▲Figure 1. MapReduce execution overview.

W = (wij )i, j = 1, ... , n (1)

di = ∑ wij (2)n
j =1

D = diag (d 1, d 2, ... , d n) (3)

L sym = D -1/2LD -1/2 = I - D -1/2WD -1/2 (4)

sij = (7)0 otherwise{1 if vertices i and j are connected

( )sij = (6)
‖xi -xj‖2σ 2-exp if i ≠j

0 otherwise{

L sym = I - D -1/2SD -1/2 (8)

AlgorithmAlgorithm 11. Spectral Clustering Algorithm
InputInput: the similarity matrix S∈R n ×n, and the number of desired clusters k.
OutputOutput: k Clusters.
ProcedureProcedure:

1. Construct a similarity graph and let W be its weighted adjacency matrix.
2. Compute the normalized Laplacian matrix L sym .
3. Compute the first k eigenvectors u1, u2, ... uk of L sym .
4. Let U∈R n×k be the matrix containing the vectors u1, u2, ... uk as columns.
5. Form the matrix T∈R n ×k from U by normalizing the rows to norm 1.
6. For i = 1, ... , n, yi∈R k be the vector corresponding to the i th row of T.
7. Cluster the points (yi )i = 1, ... , n with the k-Means algorithm into clusters C1,

C2, ... , Ck.
8. Output clusters A1, A2, ... , Ak with Ai = { j yj∈Ci }.

AlgorithmAlgorithm 22. k-Means Algorithm
InputInput: the dataset comprised of instances, and the number of desired clusters k.

split 0
split 1
split 2
split 3
split 4

Outputfile 0

Outputfile 1

(3) read worker (4) local write

worker

worker

worker (6) write

worker

(5) remove read

Inputfiles Mapphase Intermediate files(on local disks) Reducephase Outputfiles

Master

Userprogram

(1) fork
(1) fork

(1) fork

(2) assign reduce(2) assign map

S = (sij )i, j = 1, ... , n (5)
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3 Parallel Implementation Based
on MapReduce
There are three intensive computing processes in a spectral

clustering algorithm: construction of the Laplacian matrix, com⁃
putation of the first k eigenvectors, and calculation of distanc⁃
es in k-means. Therefore, after preprocessing the original data⁃
set, we reasonably segment the similarity matrix computation
and sparse computation by data point index in order to con⁃
struct the Laplacian matrix. When calculating the eigenvec⁃
tors, we put the Laplacian matrix on an HDFS and launch dis⁃
tributed Lanczos operations to get the first k eigenvectors of
the Laplacian matrix. Finally, we make parallel k-means clus⁃
tering algorithms on the eigenvector’s transposed matrix to get
the final clustering results. The entire process of our parallel
implementation is shown in Fig. 2.
3.1 Construction of the Laplacian Matrix

The Laplacian matrix is constructed in two steps: computa⁃
tion of similarity matrix and sparsification of the similarity ma⁃
trix. Fortunately, both computation of the pairwise similarities
and t-nearest neighbors of one object are not related to the
computation of those of other objects. Therefore,
the computations for different objects can be done
in parallel via dataset partitioning (Fig. 3).
3.1.1 Mapper: Calculation of Similarity

InputInput: <key, value> pair, where key is the
unique index and features of one object and value
is the index and corresponding features of each oth⁃
er object whose index is greater.

OutputOutput: <key ′, value ′> pair, where key ′is the
index of one object, and value′is the index of each
other object and its similarity with the object inkey′.
3.1.2 Reducer: Construction of the Sparse Matrix

InputInput: <key, value> pair, where key is the index
of one object and value is the index of each other
object and its similarity with the object in key.

OutputOutput: <key ′, value ′> pair, where key ′is the
index of one object and value’is the index and cor⁃
responding similarity of each other object among

t-nearest neighbors of the object in key′.
3.2 Computation of First k Eigenvectors

After we have calculated and stored the Laplacian matrix,
we must parallelize the eigensolver. The Lanczos algorithm is
an iterative algorithm. It is an adaptation of power methods
and is used to find eigenvalues and eigenvectors of a square
matrix or the singular value decompositions of a rectangular
matrix. It is particularly useful for finding decompositions of
very large sparse matrices.

The Lanczos iteration converts the Laplacian matrix Ln×n into

▲Figure 2. Parallel spectral clustering implementation process.

▲Figure 3. Laplacian matrix construction.

AlgorithmAlgorithm 33. Lanczos Algorithm
InputInput: the Laplacian matrix.
OutputOutput: a tridiagonal matrix T and a Q matrix.
Procedure:Procedure:

1. Initialization.
q 0 ← 0, β 0 ← 0.
q 1 ← random vector normalized 1.

2. Iteration.
For k = 1, 2, ... , m
wk = Lsym qk -βkqk -1.αk = (wk , qk ).
wk = wk - αkqk.βk+1 = ‖wk‖.
qk+1 = wk /βk+1.

3. Return.
Q n×m = ( q1, q2, q3, ... , qm -1, qm ).

α1 β2 0
β2 α2 β3β3 α3 βm -1βm -1 αm -1 βm
0 βm αm

→
→

→ → →

→

→→
→ → →

→

→

Similarity matrix

Sparse matrix

Laplacian matrix

Laplacian

Lanczos iteration

QR iteration

Normalization

Lanczos

Centriodsinitialization

k-Means iteration

k -Means

Output
Clusteringresults

Input
Initialdataset

split 0
split 1

…

splitm

<1, 2, … n ><2, 3, … n >

<n -1, n >Init
ial

dat
ase

t Map task

…

…

Map task

…

Reducetask

Reducetask

Laplacinmatrix Output

Input files Map phase:Calculate similarity Combine phase Output filesReduce phase:Construct sparse matrix

OutputOutput: k Clusters.
ProcedureProcedure:

1. k initial group centroids (so-called“Means”) are randomly selected
from the dataset.

2. k clusters are created by associating every object with the nearest
centroid.

3. The positions of the k centroids are recalculated when all objects have
been assigned.

4. Step 2 and 3 are repeated until the centroids no longer move
(or convergence is reached).
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a real symmetric tridiagonal matrix Tm ×m (m＜n), through which
eigenvalues and eigenvectors can be easily solved by methods
such as QR Iteration. A <eigenvalue, eigenvector > pair of L,
which is (λk , Qn ×mvk ), corresponds to the <eigenvalue, eigenvec⁃tor > pair of T, which is (λk , vk ). In each iteration of the Lanc⁃
zos algorithm, matrix-vector multiplication is the most inten⁃
sive calculation, and can be done in parallel via matrix parti⁃
tioning (Fig. 4).
3.2.1 Mapper: Matrix-Vector Multiplication

InputInput: Global vector V. <key, value > pair, where key is the
line index of matrix, and value is the content corresponding to
the index in key.

OutputOutput: <key′, value′> pair, where key′is NULL , and val⁃ue ′is the line index and multiplication result between value
and vector V.
3.2.2 Reducer: Construction of the Multiplication Result

InputInput: <key, value> pair, where key is NULL, and value is
all the partial results.

OutputOutput: <key′, value′> pair, where key′is NULL, and val⁃ue′is the final result vector of matrix-vector multiplication.
3.3 Parallel k-Means Algorithm

Computations of the distances between one object and the
centers are not related to computations of the distances be⁃
tween other objects and corresponding centers [7].
Therefore, the computation of distances between
different objects and centers can be done in paral⁃
lel. The new centers, which will be used in the
next iteration, should be updated in each itera⁃
tion. Therefore, the iterative procedures must be
executed serially (Fig. 5).
3.3.1 Mapper: Associate Every Instance with

the Nearest Center
InputInput: Global variable centers, <key, value >

pair, where key is the index of one instance andvalue is the feature (i.e. the dimension values) cor⁃
responding to the instance in key.

OutputOutput: <key′, value′> pair, where key′is the
index of the nearest center of the instance and val⁃ue′is the index and feature of the instance.
3.3.2 Combiner: Calculation of the Sum and

Quadratic Sum of Values of Each Dimension
of Instances and its Number Assigned to the
Same Center on Local Disk

InputInput: <key, value> pair, where key is the in⁃
dex of the center, and value is the index and fea⁃
ture of each instance assigned to the same center

OutputOutput: <key′, value′> pair, where key′is the
index of the center, and value′is the sum and qua⁃

dratic sum of values of each dimension of instances and its
number with the same center.
3.3.3 Reducer: Calculate the New Centers and

Iteration Condition.
InpuInput: <key, value> pair, where key is the index of the cen⁃

ter and value comprises the sum and quadratic sum of the val⁃
ues in each dimension of instances with the same center from
all hosts, and the number of those instances.

OutputOutput: <key′, value′> pair, where key′is the index of the
new center and value′is the features representing the new cen⁃
ter.

4 Empirical Analysis
We designed our experiments to validate the scalability and

quality of parallel implementation in PSCI. Our experiments
are based on both computer-generated benchmark networks
and a real social network dataset of 1,628,853 vertices and
176,620,423 edges crawled from Sina Weibo beforehand. We
ran the experiments on IBM Blade Cluster with 10 compute
nodes. All the nodes were identical, and each was configured
with a CPU faster than 2 GHz and memory greater than 8 GB.
Hadoop version 0.20.0 and Java 1.6.0 were used as the MapRe⁃
duce system for all experiments.

To test the performance of parallel implementation, we use

▲Figure 4. Matrix-Vector multiplication.

▲Figure 5. Parallel k -means algorithm.
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Modularity as an evaluation function. Modularity is a property
of a network and a specific proposed division of that network
into communities [8], [9]. It measures whether the division is
good in the sense that there are many more edges within com⁃
munities but only a few in between. The higher the Modulari⁃
tyscore, the better the clustering quality. Generally, this score
falls between 0.3 and 0.7 in social networks [9].

If G = (V, E ) with the adjacency matrix A is constructed of

then we assume that the vertices are divided into communities
so that vertex u belongs to community cu. The Modularity Q is

Also,

where e ij (i ≠j ) is the fraction of edges that join vertices in
community i to vertices in community j, and e ii is the fraction
of edges in the same community i. The δ function δ(i, j ) is 1 ifi = j and 0 otherwise; du is the degree of vertex u ; ai is the frac⁃
tion of ends of edges that are attached to vertices in communityi and m is the number of edges in the graph.
4.1 Experiments on Benchmark Networks

Benchmark networks are standard measures for communi⁃
ty-detection algorithms [10]. Here, we generate the benchmark
networks with parameters <k > = 120, β = 1, γ =2, μ = 0.2,kmax = 1000, s min = 500, and s max = 2000. First, we test perfor⁃
mance of PSCI with network sizes ranging from 20,000 to
500000. The results are shown in Fig. 6 and Fig. 7. Modulari⁃
ty is high for different network sizes and falls between 0.4 and
0.7. This supports the results in [9]. Fig. 7 shows that PSCI has
very good scalability. Computational time almost becomes lin⁃
ear as the network grows above 100,000. This means that PSCI
has good scalability and treats massive datasets efficiently.

When determining the speedup with different machine num⁃
bers on a benchmark network of 500,000 instances (Fig. 8), we
see that in the beginning, the implementation has nearly linear
substantial speedup as the number of machines increases.
Then, there is a slowdown caused by the overhead time of
framework startup and required intermachine communication.
4.2 Experiments on Real Networks

Here, we analyze the quality and speedup on a real social
network of 1,628,853 vertices and 176,620,423 edges crawled

from Sina Weibo. The edge represents the following relation⁃
ship between one vertex and another. Table 2 shows Modulari⁃
ty and runtimes of processing on the real social network on 10
machines. The visual clustering using the adjacency matrix
plot is shown in Fig. 9. The results indicate that our parallel

▲Figure 6. Modularity of clustering results with different network sizes.

▲Figure 7. Runtimes of PSCI for different network sizes.

PSCI: parallel spectral clustering implementation

▲Figure 8. The runtimes of PSCI with the increasing number of machines.

PSCI: parallel spectral clustering implementation
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implementation speeds up the clustering process without sacri⁃
ficing quality.

In addition, the runtime for dealing with Picasa (a dataset of
637,137 images) on 16 machines is nearly 15,000 seconds [4].
This parallelizes the spectral clustering algorithm based on
MPI. As a consequence, our implementation is faster for paral⁃
lel processing because both the dataset and spectral clustering
algorithm are both distributed.

5 Conclusion
The spectral clustering algorithm is one of the most impor⁃

tant modern algorithms and has been shown to be more effec⁃
tive in community detection than many traditional algorithms.
However, the growing amount of data in applications makes
spectral clustering of massive datasets challenging. In this pa⁃
per, we propose a parallel spectral clustering implementation
based on MapReduce. In our PSCI, both the computation and
data storage are distributed, and this solves the problems of
most of the existing algorithms mentioned at the outset of this
paper. By empirically analyzing both benchmark networks and
a real massive social network dataset, we show that the pro⁃
posed implementation has high Modularity across different net⁃
work sizes; it reduces the computational time so that it is al⁃
most linear; and the substantial speedup is nearly linear as the
number of machines increases within a certain range. The im⁃
plementation scales well, speeds up clustering without sacrific⁃

ing quality, and processes massive datasets efficiently on com⁃
modity machine clusters.

▼Table 2. Modularity and runtimes on the real network

Modularity

0.50044

Runtime (s)
Total time

3976.31518
Lanczos

3136.38745
Parallel k -Means

522.09389

▲Figure 9. A visual clustering result using the adjacency matrix plot of
the real network. The horizontal and vertical coordinates represent
the vertices, and the diagonal is a clear line that indicates the good
quality of the clustering.
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The naive Bayes (NB) model has been successfully used to tack⁃
le spam, and is very accurate. However, there is still room for
improvement. We use a train on or near error (TONE) method in
online NB to enhance the performance of NB and reduce the
number of training emails. We conducted an experiment to de⁃
termine the performance of the improved algorithm by plotting
(1-ROCA)% curves. The results show that the proposed method
improves the performance of original NB.

spam filtering; online naive Bayes; train-on or near error

Abstract

Keywords

DOI: 10.3969/j.issn.1673-5188.2013.02.008
http://www.cnki.net/kcms/detail/34.1294.TN.20130605.1527.002.html, published online June 5, 2013

1 Introduction
mail is an efficient communication technology and
one of the most widely used internet applications.
However, spam is a drain on network resources and
is often detrimental to user experience. Some peo⁃

ple use spam for malicious purposes, so spam filtering is a hot⁃
spot in current research.

The body of the email contains essential information and is
arguably the most important part of the email. Content-based
filtering is a reliable method for combating spam. Machine
learning provides more accurate prediction and is an attractive
solution for content-based filtering. However, there is no con⁃
sensus about which learning algorithms are best [1].

Machine learning techniques are usually based on genera⁃
tive models, such as naive Bayes (NB), or discriminative mod⁃
els, such as support vector machines (SVMs). For most
large-scale tasks, discriminative models perform better than

generative models [2]. This is especially true when there is suf⁃
ficient training data. In TREC spam track, the Bogofilter is a
fast Bayesian spam filter that is used as the baseline [3]. Many
researchers have achieved state-of-the-art spam filtering us⁃
ing SVMs; however, SVMs typically require training time that
is quadratic in the number of training examples [4]. SVMs are
not suitable for online filtering because they are not updated in
real time. With the Bayesian method, filtering is inaccurate,
but only linear training time is required, and robustness is less
likely to be affected by bad data [5], [6]. The Bayesian filtering
system is easy to deploy because it is simple and lightweight
[7].

In this paper, we propose an improved online NB classifier.
Online NB is often used in spam filtering, but unlike SMV, it
can update itself in real time according to spam behavior. In
the original NB model, training data is passively accepted. Up⁃
dating the training data is expensive for most classifiers, and
this practice has been strongly discouraged by industry [8].
Train on or near error (TONE) is a sample-selection method
that can be used to discard useless examples [9]. Only parts of
examples are trained using TONE. When TONE is applied to
the online NB model and tested with several large spam data
sets, the online model performs better than the original NB
model. In particular, the number of examples needed to train
an effective classifier decreases.

In section 2, we review the framework of an online learning
model for spam filtering. In section 3, we describe online NB
models based on TONE. In section 4, we show that the im⁃
proved algorithm is much more efficient than the original NB
algorithm. Section 5 concludes the paper.

2 Online Learning Model for Spam Filtering
Many models used in traditional machine-learning applica⁃

tions operate in pool-based (offline) mode [10]. The model is
trained on a large data set and the examples are reclassified
without retraining. The process of an offline learning model
tends to be optimal for all the training data, but the online
mode has an online learning process that can adapt to a chang⁃
ing environment. Online learning algorithms update the learn⁃
er with new received examples; that is, they can use an old hy⁃
pothesis (if one exists) as the starting point for retraining and
adapting to changes in data.

Spam filtering is typically done online (Fig. 1). Emails are
viewed as a stream, not as a pool, when entering the system
one by one. The filter makes a spam or ham prediction for each
email. Next, the user reads the message and perhaps gives
feedback to the learning-based filter. The filter uses a label to
update the feature library and retrain the learner. Ideally, this
improves future predictive performance. Large-scale and on⁃
line classification problems can be solved with a classifier that

This work is supported by National Natural Science Foundation of China
under Grant NO. 60903083, Research fund for the doctoral program of
higher education of China under Grant NO.20092303120005,and the
Research Fund of ZTE Corporation.
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allows online training and classification [11]. In a changing en⁃
vironment, an online NB learner is typically used for spam fil⁃
tering, which proceeds incrementally [12]. An online NB learn⁃
er only has linear training time and can be easily deployed in
an online setting with incremental updates.

3 Online NB Model Based on TONE

3.1 Bayesian Spam Filtering
Naive Bayes is popular in industry probably because of its

simplicity and the ease with which it can be implemented. Its
linear computational complexity and high accuracy are compa⁃
rable to that of more elaborate learning algorithms.

Here, we give notations for the NB model. In an example da⁃
ta set {(X (1), y(1)) ... (X(m ), y (m )) ...｝, X (m ) denotes a vector contain⁃
ing features of the m th example. The corresponding label isy (m). The spam likelihood P ( y = spam |X ) is calculated using
the Bayesian formula:

Similarly, the ham likelihood is calculated using

To model P ( y |X ), xi is conditionally independent for a giv⁃
en y. This assumption is called the NB assumption. The result⁃
ing algorithm is called the NB classifier and is give by

In spam filtering, there is no need to estimate P (X ). The
quotient of (1) and (2) is given by

We can use (4) to classify the email as spam or something

else. In (4), P (spam) is the a priori probability of spam, andP ( x i | y = spam) is expressed as a frequency in the spam cate⁃
gory. The as priori probability of spam is given by

and P ( x i | y = spam) is given by

where Nspam is the number of spams, and N ham is the number of
hams. The situation for ham is similar to that for spam.
3.2 The Model

The proposed NB algorithm works fairly well, but there is a
simple tweak that makes it work much better, especially for
text classification. If a feature only occurs in ham, then P ( x i |y = spam) may be zero. To avoid this, we can use Laplace
smoothing, given by

To avoid underflow in the practical calculation, we use a log⁃
arithm. Therefore, (4) is transformed into

We can now classify the email by Pprime. If Pprime is greater
than 0, the mail is predicted to be spam; otherwise, it is ham.

To apply TONE algorithm, we use the logistic function to
convert Pprime into a score of 0~1. Equation (9) maps Pprime to a
score of between 0 and approximately 1. The scale parameter
ensures that P prime is not too big:

To meet the spam filter’s requirements, the online filter
should update itself at the appropriate time. Spam filtering
needs to be highly scalable because it involves large amounts
of high-dimensional data. Content-based spam detection often
requires training the learner. In original NB, there is no need
to update the learner; however, in improved online NB, TONE
can be applied to the training process (called thick threshold
training) [13]. TONE is developed from train on error (TOE).
There are two scenarios in which the learner training mode can
be activated using this approach: 1) when samples have been
misclassified by the filter and 2) when correctly classified sam⁃
ples fall within a predefined boundary. We improve the predict⁃
ing ability of NB by introducing an online NB method based on
TONE. The improved algorithm, called called NB-TONE, is

▲Figure 1. The online spam filtering scenario.

P(y = spam |X ) = (1)P (spam) P (X | y =spam)P (X )

P ( y=ham |X ) = (2)P (ham) P (X | y =ham)P (X )

P (X |y ) = P (x1| y )P (x2| y )P (x3| y ) ... P (x n| y )= P (x i| y ) (3)
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cheap and does not result in performance loss.
With TONE, examples that have the least classification con⁃

fidence are chosen. The parameter c is a thick threshold for
training. Regardless of how the email is classified, if the score
does not exceed the thick threshold, the email is not well clas⁃
sified, and the learner has to be trained and updated. On the
other hand, TONE can also make a classifier more robust so
that overfitting is averted. If the example is far from the hyper⁃
plane, the classifier predicts the example with higher confi⁃
dence, and such examples do not need training. TONE is a
sample-selection method that reduces the number of training
examples and cuts down training time.
AlgorithAlgorithmm 1. NB-TONE
1: forfor each mail {<X (i ) , y (i )>, ... } i =1, 2, ...
2: A new message arrives
3: Eq.8 // calculate the Pprime5: Eq.9 // Pprime mapping to score
7: ifif (score > 0.5) thenthen
8: X (i ) is spam
9: elseelse
10: X (i ) is ham
11: endifendif
12: ifif (|score -0.5| < c or X (i ) is misclassified) thenthen
13: train model by <X (i ) , y (i ) >
14: endifendif
15: end forend for

4 Evaluations and Results
In section 3, online NB spam filtering based on TONE was

proposed. Here, we test the algorithm on large benchmark sets
of email data.
4.1 Data Sets

Two benchmark data sets were used, both of which were
from TREC spam filtering competitions. These data sets were
trec05p, which contained 92,189 messages in English [3], and
trec06p, which contained 37,822 messages in English [14]. For
a fair comparison, each data set was ordered, and we compared
our method with the original model. (1-ROCA)% was used as
the standard performance measure.
4.2 Feature Space

Feature extraction is important for machine learning. An ap⁃
propriate feature extraction method greatly improves the accu⁃
racy of the learner. In [15], character-level n-grams are valid
and robust for a variety of spam detection methods [16]. Here,
an email is represented as a vector that has a unique dimen⁃
sion for each possible substring of n characters. With the
4-gram feature extraction method, only the first 3000 features
of each email were extracted, and the same features were re⁃

moved from each email.
4.3 Classification Performance

In our experiments on NB-TONE, we found that the sam⁃
pling threshold c ranged from 0.01 to 0.50. We used the param⁃
eter ε = 10-5, and the scale parameter was 2500.

We examined the difference between pure NB and
NB-TONE. For NB-TONE, c = 0.15 and c = 0.25. Note that ifc = 0.5, the algorithm degenerates into pure NB. The train%
represents the overall percentage of training data. The results
in Table 1 show that NB-TONE comprehensively outperforms

pure NB. Moreover, NB-TONE can cut down the number of
training examples and reduce computational cost.
4.4 Parameter Sensitivity

Fig. 2 shows the effect of c on (1-ROCA)% performance.
The results indicate a that (1-ROCA)% performance varies
with respect to c. From c = 0 to 0.15, the number of examples
increases and performance improves. However, as c approach⁃
es 0.5, performance worsens.

5 Conclusion
We improved traditional online naive Bayes by using TONE.

In the online process, the classifier updates itself at the appro⁃

▼Table 1. NB-TONE beats pure NB on trec05p and trec06p

NB-TONE
NB-TONE
Pure NB

NB-TONE
NB-TONE
Pure NB

c
0.15
0.25
0.50
0.15
0.25
0.50

Corpus
trec05p
trec05p
trec05p
trec06p
trec06p
trec06p

Lam%
0.47
0.54
0.72
0.48
0.55
0.95

(1-ROCA)%
0.0284
0.0263
0.0486
0.0396
0.0520
0.1138

Train%
22.91
51.77
100.0
17.25
42.39
100.0

▲Figure 2. NB-TONE on data set results reported as (1-ROCA)%
by threshold c .
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priate time. This method improves classification and low-confi⁃
dence method and reduces the number of labels needed for
high performance. Furthermore, the approach is well suited to
this domain because spam filtering is inherently an online
task. Our experiment shows that our NB-TONE is reliable.
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Smart refueling can reduce costs and lower the possibility of an
emergency. Refueling intelligence can only be obtained by min⁃
ing historical refueling behaviors from big data; however, with⁃
out devices, such as fuel tank cursors, and cooperation from
drivers, these behaviors are hard to detect. Thus, detecting refu⁃
eling behaviors from big data derived from easy-to-approach
trajectories is one of the most efficient retrieve evidences for re⁃
search of refueling behaviors. In this paper, we describe a com⁃
plete procedure for detecting refueling behavior in big data de⁃
rived from freight trajectories. This procedure involves the inte⁃
gration of spatial data mining and machine-learning tech⁃
niques. The key part of the methodology is a pattern detector
that extends the naive Bayes classifier. By drawing on the spa⁃
tial and temporal characteristics of freight trajectories, refueling
behaviors can be identified with high accuracy. Further, we
present a refueling prediction and recommendation system to
show how our refueling detector can be used practically in big
data. Our experiments on real trajectories show that our refuel⁃
ing detector is accurate, and the system performs well.

spatial data mining; trajectory processing; big data
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1 Introduction
esearch into smart refueling has become more im⁃
portant as drivers become more sensitive to fluctu⁃
ating fuel prices. Previous research has been heavi⁃
ly focused on the use of theoretical models to ana⁃

lyze refueling behavior in small sets of experimental data

[1]-[5]. However, intelligence on refueling behaviors can also
be directly obtained from massive trajectories. Collective refu⁃
eling intelligence is useful because refueling behaviors are
summarized as a result of smart decisions by experienced
freight drivers. Traffic systems using collective intelligence
have performed well, both in scientific research and in re⁃
al-world applications [6]. However, without additional devices
and cooperation from drivers, refueling records are hard to col⁃
late and are often inaccurate. Traditional methods for monitor⁃
ing refueling behaviors, such as floating cursors in a fuel tank,
are not widely used because of the cost of equipment and main⁃
tenance. Thus, there are not huge volumes of refueling records,
and we have to turn to trajectories to obtain data. Embedded
GPS equipment has become common in the freight and logis⁃
tics industries.

With elaborate algorithms, patterns can be recognized in tra⁃
jectories; for example, we can identify whether a car is moving
or not. If a car has stopped near a gas station, it is likely refuel⁃
ing. However, the subtle distinction between refueling and ca⁃
sual parking cannot be made.
1.1 Motivations

We have designed algorithms that can accurately identify re⁃
fueling stops along trajectories. To benefit drivers, we have al⁃
so built a refueling prediction and recommendation system
based on collective intelligence. The main motivations of our
research are no additional cost and powerful collective intelli⁃
gence. We design the refueling-detection algorithms only by
mining mass data from trajectories, and no additional devices
are required. GPS is already installed in most cars; hence, our
algorithms can be widely used without having to install, test,
and maintain new devices. This saves costs. We were also in⁃
spired to design our data-mining algorithms partly because of
successful use of collective intelligence in taxi services. Simi⁃
larly, in the logistics and freight industries, refueling behaviors
derived from collective intelligence can reveal industrial ad⁃
vantages and disadvantages.
1.2 Challenges and Contributions

Given enough spatial, temporal, and other information, a de⁃
tector can follow simple rules, including rules about spatial
constraints and constraints on traveled distance, to identify po⁃
tential refueling stops. However, such methods rarely work
well in practice because of a lack of valid prior knowledge.
One crucial problem of all naive methods is the lack of reliable
prior knowledge and training data set. To our knowledge, there
are no publicly available records on refueling behavior, espe⁃
cially for the freight industry. Some data on refueling has been
collected as part of research into fuel consumption and vehicle
efficiency rather than refueling behavior [1]. Without custom⁃
ized sensors in the fuel tanks of cars, such information can on⁃
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ly be obtained if drivers are willing to cooperate. This contrib⁃
utes to data inaccuracy and deficiency. Also, for rules-based
decisions, prior knowledge extends further than simply routes
and spatial distribution of gas stations. A solution therefore
needs to be found for reliably collecting prior knowledge about
refueling behavior. As well as valid prior knowledge, there are
no training data sets because nothing can be directly observed
from the spatial trajectories. Detectors cannot be optimized
without training. Prior knowledge may offer the foundation for
constructing a training data set.

The major drawback of naive methods is that they neglect
the mutual influence of consecutive stops at nearby gas sta⁃
tions. For example, there may be two gas stations that are spa⁃
tially and temporally close along a trajectory. The car has trav⁃
eled such a distance from its last refueling stop that it is likely
the driver will refuel at one of these gas stations. The detectors
must classify one of these two eligible candidates as the refuel⁃
ing stop. Using a naive method, the first eligible candidate
where the car firstly stopped by is classified as a refueling
stop, and the result of this classification affects the other candi⁃
date. If the first stop near the first gas station is treated as the
refueling stop, then the traveled distance from the last refuel⁃
ing stop is diminished for the next stop, and this makes the sec⁃
ond candidate ineligible, even though the stop may be a possi⁃
ble alternative refueling stop [2]. The multiple hypothesis
mechanism can handle this problem.

To overcome the above problems, we introduce several ad⁃
vanced data-mining and AI techniques, and we elaborate our
algorithms. First, we propose a hill-climbing algorithm in local
search and optimization. This algorithm is used to generate reli⁃
able prior knowledge about refueling behavior and construct
the training data set. Then, we use a naive Bayes classifier al⁃
gorithm to detect refueling stops with regard to multiple hy⁃
potheses. Last, we suggest that our detector has good extensi⁃
bility by suggesting possible applications. Through abundant
evaluations and data analysis, we show the robustness of our al⁃
gorithms. The main contributions of this paper are
•a new method of inferring reliable prior knowledge about re⁃

fueling behavior. This prior knowledge is derived from his⁃
torical freight trajectories

•a method for determining freight refueling patterns based on
our observations and processing of spatial trajectory data sets

•a solution to accurately detecting refueling stops along a sin⁃
gle trajectory. This solution is based on naive Bayes.

•a real-time stream processing and batch-processing frame⁃
work for processing and mining trajectory data

•a practical application for recommending refueling alterna⁃
tives to drivers. This application is an extension of our detec⁃
tion algorithms.
The remainder of this paper is organized as follows: In sec⁃

tion 2, we define terms used in this paper and outline prob⁃
lems. In section 3, we describe our methods. In section 4, we
introduce a prediction and recommendation application based

on our proposed algorithms. In section 5, we describe the de⁃
sign of our system. In section 6, we present our experimental
results. In section 7, we discuss related work. Section 8 con⁃
cludes the paper.

2 Definitions
The data set for freight trajectories is similar to that for

non-freight trajectories [7]. However, the interests of freight
and non-freight sectors are slightly different, and both look for
different patterns. This means that different measurements are
used, and there are differences between freight GPS records
and non-freight GPS records.

Freight GPS record: A GPS record data reported by a freight
car. In our research, a GPS record r i contains a time stamp t s ,longitude lon, latitude lat, and odometer reading odm and is
given by ri = {tsi , loni , lati , odmi }.

Single freight trip: An integrated, temporally continuous se⁃
ries of freight GPS records form a single freight trip, which is
given by T = {r 1 , r 2 , ... , r i }. A freight trajectory must have a
distinct origin and destination. The time stamp and odometer
reading of the first freight GPS record are minimums. Typical⁃
ly, a trip starts after an unusually long period of parking and
ends with another unusually long period of parking that is also
considered the start of the next trip.

Gas station location: The gas station location is given bygsi = {gsid i , lon i , lat i , rfcount i }. The last attribute rfcount i is
the number of refueling behaviors that occur at a gas station
within a certain timeframe of the data set. The GPS coordinates
of a gas station are an approximate location generated after
map digitalization.

Vehicular stop: Vehicular stops emerge along the freight tra⁃
jectories. A vehicular stop contains a set of continuous GPS re⁃
cords. A vehicular stop has the following attributes: locations,
time stamp for when the stop begins, stopping interval, and
minimum bound rectangle (MBR). This vehicular stop is given
by VSi = {xi, y i , ts i , ti i , x , x , y , y }, where (X i , Yi ) is
the expected coordinates of the stop, ts is when the stop be⁃
gins, and tii is how long the stop lasts. The boundary of the
MBR of GPS records for this stop is given by MBR = (x , x ,y , y ). We divide the vehicular stops into the following two
definitions.

Refueling stop: This is a specific kind of vehicular stop that
occurs when the driver refuels during a stop. Refueling stops
are distinct from other stops in that they only occur around gas
stations. A refueling is given by rsi = {υsi , gsk } where the j th ve⁃
hicular stop is identified as the i th refueling stop, and the driv⁃
er refueled at gas station k.

Casual stop: a stop that is not a refueling stop. The main dif⁃
ference between a casual stop and a refueling stop is that the
former may occur near a gas station or not; however, the latter
occur at a gas station. A casual stop is given by csi = {υsi }.With enough prior definitions, we can now state our prob⁃
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lem: Sets of vehicular stops extracted from trajectories must be
correctly classified as refueling stops or casual stops.

In the following, we base our algorithms and applications on
the definitions above.

3 Methodology

3.1 Extracting Prior Knowledge and Constructing the
Training Data Set

When a given a vehicular stop is fed to the classifier, the
classifier can correctly identify this stop as either casual or re⁃
fueling. This is the goal of our algorithm. To optimize the clas⁃
sifier, reliable prior knowledge needs to be retrieved. Essential
prior knowledge is factors affecting the classifier parameters.
For our data set, these factors can be observed from odometer
readings and temporal intervals. With prior knowledge, it is
possible to predict how far a car has to travel from the refuel⁃
ing stop before it has to refuel. It should also be possible to pre⁃
dict how long the refueling stop will last.

The predicted distance a car travels from the last refueling
stop before refueling is υ, and the time of a refueling stop is τ.
These parameters tend to converge to two constants for the
same route. The greatest distance a car can drive on a full tank
is mainly determined by the load of the car, the capacity of the
tank, the driver’s driving habits, highway conditions, and dis⁃
tribution of gas stations. In long-distance transport, refueling
behavior is usually unique for the same driver using the same
vehicle on the same route. The driver is always optimizing
their decisions to gain the maximum benefit. A refueling pro⁃
cess comprises pumping the gas and paying. Hence, the time
of the whole process only decreases by a relatively small
amount.

Because the patterns are known, a reasonable method is re⁃
quired to calculate these variables. Authentic patterns can be
mined from data obtained from real refueling stops. We pro⁃
pose a naive method with hill climbing algorithm to approxi⁃
mate these variables. Algorithm 1 is the naive method for a giv⁃
en υ.
AlgorithmAlgorithm 11. Naive Bayes (VS ;υ )
Require:Require:VS = {vs 1, vs 2 , ... , vsn }, a set of vehicular stops, whenvsi = {x , y , odm, ti , gsid , gsdis , lastdis , r i = 0}.υ , the spatial parameter.
Ensure:Ensure:VS = {vs 1, vs 2 , ... , vsn }, where vsi .r i is determined.RS = {rs 1, rs 2, ... , rs m1}, a set of refueling stops.CS = {cs 1, cs 2, ... ,cs m2}, a set of casual stops.
1: lastodm = 0, m1 = 0, m2 = 0, RS ← null, CS ← null ;
2: forfor i = 1; i ≤ n; i ++ dodo
3: vsi .lastdis = vsi .odm - lastodm;

4: ifif vsi .lastdis > υ thenthen
5: lastodm = vsi .odm;
6: vsi .ri = 1;
7: rsm1 = vsi ;8: RS :add (rsm1);9: m1 = m1 +1;
10: elseelse
11: csm 2 = vsi ;12: CS.add (csm 2);13: m2 = m2 +1;
14: end ifend if
15: end forend for
16: returnreturn {VS , RS , CS };

The main drawback of the naive method is that it cannot dis⁃
tinguish between nearby refueling stops and casual stops. How⁃
ever, it can give reliable answers for highly distinguishable
events. For example, there is a car which stops consecutively
at two gas stations at a distance of more than υ apart and with⁃
out other stops near them. In this case, we can confidently de⁃
tect two reliable refueling stops and mine the patterns. Never⁃
theless, we have to eliminate indistinguishable neighbors of
the refueling stops.
3.1.1 Eliminating Indistinguishable Neighbors

For each refueling stop detected using the naive Bayes meth⁃
od, there are neighboring stops that can be either refueling
stops or casual stops. These neighboring stops are located at a
distance d0 and time t0 from the refueling stop. These neighbor⁃
ing stops are indistinguishable, so we proceed to the elimina⁃
tion of the pool of this detection and its neighbors without con⁃
sidering these indistinguishable stops in our hill climbing algo⁃
rithm. Then, we obtain the remaining set of refueling stopsRS remain and casual stops CSremain.After eliminating unreliable detections, we calculate the dis⁃
tance between the patterns from real data υ using

If ι is small enough, we can confidently say that υ corre⁃
sponds to authentic patterns. Initially, υ cannot be determined
from raw trajectories data set because of the first problem men⁃
tioned in section 1. To overcome this problem, we propose a
hill-climbing algorithm to approximate the best υ with the low⁃
est possible ι. The hill-climbing algorithm is shown in Algo⁃
rithm 2.
AlgorithmAlgorithm 22. Hill-Climbing ({VS }, υinit , increment )
Require:Require:

{VS } = {VS 1, VS 2, ... , VSn }, a set of trajectory, whenVS i = {vs 1i, vs 2i , ... , vsni}υ init , an randomly initial spatial parameter.increment, a constant stands for the increment in iterations.

ι = RS remain . last dis－υ (1)
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Ensure:Ensure:υ best , the best spatial parameter.
1: υ best = υ init ;2: whilewhile υcurrent ≠υbest dodo
3: υcurrent = υ best ;4: ι 1 ← DistCal ({VS }, υ current );5: ι 2 ← DistCal ({VS }, υ current － increment );
6: ι 3 ← DistCal ({VS }, υ current + increment );
7: υ best ← argmin{ι 1, ι 2, ι 3,};8: end while
9: return υ best ;

The algorithm extracts υ best , which produces the smallest ι
from {υ, υ － increment, υ + increment} in line 7. The sub-al⁃
gorithm DistCal is shown in Algorithm 3. The eliminations pro⁃
cess in the algorithm conforms to the definition of eliminating
indistinguishable neighbors previously given.
AlgorithmAlgorithm 33. DistCal ({VS }, V)
Require:Require:

{VS } = {VS 1, VS 2, ... ,VS n}, a set of trajectory, when
{VS i } = {vs 1i, vs 2i , ... , vsni }υ, a given spatial parameter.

Ensure:Ensure:ι, the distance between real data and given spatial parame⁃
ter.
1: ι ← null ;
2: forfor i = 1; i ≤ n ; i ++ do
3: {VS i , RS i , CS i } ← NaiveMethod (VS i , υ );
4: ifif RS i = null then
5: ι current =｜VSi .allodm -υ｜;
6: elseelse
7: {RS , CS }Eliminations (VS i , RS i , CS i );8: ι current = |RS . lastdis-υ ;|
9: end ifend if
10: ι:add(ι current );11: end forend for
12: returnreturn ι ;

The hill-climbing algorithm starts from a randomly initiated
spatial parameter υ init from [ υ , υ ] and then iterates until υ
reaches a local minimum. This algorithm can generate a reli⁃
able spatial parameter because of its convergence. The number
of vehicular stops in a single trajectory with VSi is given bynmax. Then, regardless of how υ changes, the number of detected
refueling stops nr lies in [0, n max]. As υ decreases, nr increases
until it reaches nmax. However, υ continues to decrease, which
makes increase when (VSi × allodm)/nmax

is a constant. The results are the same when υ continually in⁃
creases. Hence, the best approximated υ can be obtained from

the real data set as ι decreases.
3.1.2 Constructing the Training Data Set

When υ best has been determined, we can construct the train⁃
ing data set for the naive Bayes classifier. First, we use the na⁃
ive method on the real data set with υ = υ best. Then, we elimi⁃
nate indistinguishable neighbors in the outcome {VS } and ob⁃
tain the training data set, which comprises {RS remain} and {CS re⁃
main}. The set {RS remain} is the set of positive examples in the na⁃
ive Bayes classifier, and {CS remain} is the set of negative exam⁃
ples in the naïve Bayes classifier.
3.2 A Naive Bayes Classifier with Multiple Hypotheses

Detecting refueling stops can be thought of as a classifica⁃
tion problem. An event is unambiguously classified according
to evidence derived from observations. A classifier should be
able to correctly identify whether a given vsi is a refueling stop
or casual stop by observing the time of the stop and distances
traveled from last refueling.
3.2.1 A Naive Bayes Classifier Framework

We use a naive Bayes classification framework [8]-[12],
which is based on Bayes’formula [13], [14] and is given by

where Y is the class variable and X is the attribute for each Xicomprising d attributes [9]. From our observations, X = {x1, x2},where d = 2, x1 = vsi × lastdis and x2 = vsi × ti ; and Y = {y1, y2},where y 1 = 0 is a casual stop, and y 1 = 1 is a refueling stop.
Then, classification problem can be briefly expressed as vsi ×ri = argmax (P (Y = yi｜X)). However, before using (2), P (Y ),
P (Y｜X ) has to be calculated first. In all circumstances, P (X )
is a constant [8], [9].

Given a raw data set, P (Y ) can be directly observed and cal⁃
culated. However, construction of training data set requires in⁃
distinguishable neighbors to be eliminated. Hence, we have to
eliminate the effects of data loss. There are np positive exam⁃
ples and nn negative examples, so we know that we have elimi⁃
nated nv indistinguishable stops, of which there are nr refueling
stops that have been detected using the naive Bayes method.
Then, we can calculate and

If we assume Gaussian distributions of continuous attributesx1, x2 (section 3.1), the class-conditional probability for any at⁃
tribute Xi can be expressed as

where μ ij can be estimated using the sample mean x i of Xi for

ι ≈ -υVSi .allodmn max

P (Y｜X ) = (2)P (Y ) ∏d P (X i｜Y )P (X )i =1

P (Xi = xi｜Y = yj ) = exp (3)1
2πσij

(xi-μij )2

2σ 2ij
-
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all training data that belong to the class yj , and σ 2ij can be esti⁃
mated using the sample variance of the same subset of training
data [8].

The naive Bayes classifier is suitable for detecting refueling
stops based on similar observations from our data set and the
characteristics of the naive Bayes classifier [9].

The naive Bayes Classifier is not sensitive to isolated noise
points because the class-conditional probabilities are estimat⁃
ed over all data. A single observation of location data may be
erroneous due to errors in the GPS receivers, odometer, and
other sensors. However, these noises are eliminated by averag⁃
ing out.

The naive Bayes classifier is not sensitive to irrelevant attri⁃
butes. In our data set, the distance from last refueling and the
length of time spent at a stop are only loosely related.
3.2.2 Multiple-Hypotheses Framework

A naive Bayes classifier does not yet solve the problem of in⁃
distinguishable neighbors. We propose a framework that com⁃
bines multiple hypotheses with a naive Bayes classifier to over⁃
come this problem.

For a set of stops and neighboring stops (including both refu⁃
eling and casual stops) within a distance of d 0 and time t 0, it
needs to be determined whether there is only refueling stop in
a set or whether there is no refueling stop in a set.

For a set of neighboring stops VS of sizes m, there are m+1
possible results from the following equation:

where k = 0 indicates that none of m is a refueling stop, andk ≠ 0 indicates that the kth vehicular stop is a refueling stop.
We solve the indistinguishable neighbor problem by calculat⁃
ing all possible situations in (4) and determining the highest
probability by using argmax{P ′}1×(m +1).
AlgorithmAlgorithm 44 the Naive Bayes Classifier and Multiple Hypothe⁃
sis Combined Framework
Require:Require:VS = {υs 1, υs 2, ... , υsn }, when υsi =

{x, y, odm, ti, gsid, gsdis, lastdis, ri = 0}.
{μ ij }, {σ ij }, the set of parameters from the training data.d 0, t 0, two parameters to determine neighbors.

Ensure:Ensure:S = {υs 1, υs 2, ... , υsn }, when υsi .ri is determined.
1: forfor i = 1; i ≤n ; i ++ do
2: NeighborSet i1×m ←GetNeighborSet (υsi );3: ifif NeighborSet i1×m = null thenthen
4: υsi.ri = argmax (P (Y =yj｜X ));
5: elseelse
6: k = argmax{P′}1×(m+1);

7: forfor j = 0; j < m; j ++ do
8: ifif j +1 ≠ k thenthen
9: υsi +j .ri = y 1 = 0;
10: elseelse
11: υsi +j .ri = y 2 = 1;
12: end ifend if
13: end forend for
14: i =i + m ;
15: end ifend if
16: end forend for
17: returnreturn VS;

4 The Application
In this section, we describe an application that uses the pre⁃

viously mentioned algorithms to output reliable indications of
refueling behavior. Combining gas station background informa⁃
tion and collective intelligence derived from drivers, the appli⁃
cation, called refueling prediction and recommendation, pro⁃
vides optimized refueling choices. The application is straight⁃
forward. With well-designed logical models, we show how refu⁃
eling behavior can be determined by mining driver intelligence
from freight trajectory data.

Given real-time information about the car, and given back⁃
ground information from other sources, the application tells a
driver when and where they should refuel.

The real-time information of a car changes when the car
needs refueling. This information includes the distance from
where the car last refueled. This attribute is exactly the same
as that used in the above algorithms. However, here it is moni⁃
tored in real time in order to provide instant evidence for our
recommendation. The real-time spatial attribute of a specific
time stamp t is dt . The statistical spatial constant parametersμc and σc are the successions of the definition in section 3.2.1.
These constant parameters can be computed from the set of de⁃
termined refueling stops by using the above algorithms.

Background information can also dominate the recommenda⁃
tion. Background information has two major parameters which
represent the popularity of one gas station and the distance of
one gas station from the real-time location of one car. The pop⁃
ularity of one gas station can be obtained by using the Naive
Bayes Classifier with Multiple Hypothesis Algorithm on a mas⁃
sive data set and then collecting the results. It emits a possibili⁃
ty show that how likely a refueling will happen on one specific
gas station. And the distance of one gas station from the instant
location of one car can be used to estimate how likely the car
will take a refueling action when it arrives at this gas station,
in other words, refueling prediction. The popularity of a gas sta⁃
tion i and the distance between this gas station and the car’s
instant location at time t are denoted by Pgi and dti , respectively.

By integrating real-time and background information, we
can model the problem in this prediction and recommendation
system. Given dt of a car at time t, what is the probability P tgi

Pk′= (4)∏ma =1 P (Y a = y1｜X a ), k = 0
P (Yk =y2｜Xk )∏ma =1, a≠k P (Y a =y1｜X a), k≠0{

k

yj
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that the car will refuel at gas station i with background informa⁃
tion Pgi and dti ? This probability can be computed using

In order to recommend a specific gas station to this car at
time t, we can compute (5) for all gas stations and recommend
the gas station with the highest probability argmax{Ptgi }. In this
real application, we construct the set of candidate gas stations
with direction and distance thresholds in order to eliminate in⁃
valid candidates for efficiently computing (5).

5 System Framework
Our framework of a refueling detection and recommendation/

prediction system comprises data preprocessor, knowledge dis⁃
covery, and intelligence generator (Fig. 1). This design is gen⁃
eral and scalable. We embed our refueling detector and recom⁃
mendation/prediction into the framework.

The data preprocessor contains a spout and bolts in a Storm
cluster that is especially designed to preprocess data from spa⁃
tial trajectories. The spout continually emits GPS measure⁃
ments; however, the level of the bolts is determined by logical
complexity of the preprocessing tasks. In our system, these
bolts clean unqualified GPS records, reorganize the trajectory,
and extract vehicular stops. This module constantly receives
GPS records and transforms them into trajectories, and the last
bolts extract vehicular stops along each trajectory. The output
of the last bolts is fed to the next knowledge-discovery module.

The knowledge-discovery module is built on the Hadoop
batch-processing platform. This module is mainly responsible
for carrying out the most computationally expensive tasks in
the system. The batch-processing platform runs these tasks
routinely, or only in certain conditions, at low frequency and
with latency, unlike the real-time data preprocessor and intel⁃
ligence generator components. In our case, the naive Bayes
classifier with multiple hypotheses algorithm is implemented

in MapReduce and run in the Hadoop clusters. The output of
algorithms is stored in database systems as knowledge and ex⁃
perience extracted from big data.

The intelligence generator comprises real-time applications
that interact with users. It also comprises a spout and bolts,
which are located inside the Storm cluster. The intelligence
generator and data preprocessor may even share the same
spout. However, the data preprocessor digests all the data from
the source while the intelligence generator extracts and puri⁃
fies real-time information from the data source with some of
bolts to handle data selections and transformations. Further, af⁃
ter real-time information is captured, the application in a bolt
is connected to database systems where knowledge and experi⁃
ence are stored. By combing real-time information and back⁃
ground knowledge, applications in the intelligence generator
can accurately provide recommendations in real time. In our
case, the bolts in the intelligence generator monitor real-time
information for each car, and our recommendation/prediction
algorithm is applied to every bolt. Then, a recommendation is
made as to whether the driver should refuel.

These three components are highly integrated and are all
built on scalable, fault-tolerant distributed systems on Hadoop
and Storm platforms. Comprehensive use of these platforms
means our system can provide both real-time services and
complex data-mining services. Additional applications can be
easily integrated into the existing framework in the form of Ha⁃
doop MapReduce jobs or Storm bolts, taking the advantage of
reusable resources.

6 Performance Evaluation

6.1 Data Descriptions
The GPS data set was collected from 14,800 cars involved in

the logistics and freight industries in China. Each car constant⁃
ly reported its location about every 15 s. The data was collect⁃
ed from October 2009 to April 2012, and real-time data is still
incrementing by several Gigabytes every day. Tables 1 shows
the data information of the dataset, Tables 2 shows the fields in
each record.

Because of the variety of freight routes, our trajectory data
set covers most of China. Fig. 2 shows an example route from
our data set. This route originates in Shenzhen and ends in
Shanghai. The driving distance is about 2000 km.

Besides, we have location information of gas stations all
round the country. These massive data of gas stations contain
location records of 114,000 stations in China. The number of
gas stations matches our knowledge of the number of all gas
stations in China. Fig. 3 shows the spatial distributions of all
these gas stations.
6.2 Experiment Settings

In the initial part of our experiment, we selected a part of

Ptgi = Pgi × exp (5)1
2πσc

(dt +dti -μc)2

2σ 2c
-

i

▲Figure 1. Integrated system framework.
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our data set of 1000 cars. This raw data was 12 GB. First, we
input this data into the data preprocessor module and collected
the output of several vehicular stops from different routes. Sec⁃
ond, we ran our Naive Bayes Classifier with Multiple Hypothe⁃
sis algorithm with υ init = 700. Then, we obtained the result of a
set of determined refueling stops with spatial statistical param⁃
eters μc and σc. Third, we randomly chose 3000 instant records
from different cars and ran our prediction and recommendation
application. The input for was instant information from these
cars and background information generated in previous proce⁃
dures. By the end of the three stages, we had obtained 3000 in⁃
stant records from different cars and routes and recommended
a gas station for each car.
6.3 Performance Evaluation

Given the 3000 instant records and 3000 gas stations gener⁃
ated by our application, we designed an indicator called drift
to measure the differences between ground truth and assigned
recommendations. For the ith instant record, gr (i ) is the recom⁃
mended gas station, and gt (i ) is the actual gas station where
the car refueled. Then, drifti can be obtained for the ith instant
record:

The distance (gr (i ), gt (i )) function returns driving distanc⁃
es, recommended gas station gr (i ), and actual gas station gt (i ),
which are calculated from historical trajectories instead of
straight-line distances.

Fig. 4 shows the cumulative distribution function of driftimeasurements for all 3000 samples. This result shows that our
recommendation/prediction system is precise, and nearby alter⁃
native gas stations can be accurately recommended for refuel⁃
ing. More than 50% of our recommendations were close to the

actual gas stations with no drifts. More than 60% of the recom⁃
mendations drifted within 100 kilometers. Almost 85% of rec⁃
ommendations drifted within 300 kilometers. Assuming an av⁃
erage speed of 120 km/h on highway in China, we provided
85% of users with alternative refueling gas stations within a
driving time of around 2.5 hours. This is acceptable because
the assigned alternative gas stations are always more attractive
to drivers because they provide better services.

However, 15% of recommendations were far away from the
actual refueling spots. These should be considered failed rec⁃
ommendations. Possible causes of failed recommendations are
unavoidable random corruption in raw GPS records and insuffi⁃
cient experimental data. Although some unqualified records
could be removed in the data-cleaning process, defective
odometer readings and abrupt discontinuance of trajectories af⁃
fect the precision of the refueling detector. This may have a
detrimental impact on our recommendation system. A partial
data set in the big data may cause bias in when calculating the
popularity of gas stations. This leads to a lack of equilibrium in
the statistical distribution. Accuracy can be improved by drop⁃
ping inaccurate raw data and adding more reliable raw data in
trade of larger system scale.

7 Related Work
Much previous research has been centered on obtaining

▼Table 1. Dataset descriptions

Data information
Name
Number of cars
Time spanning
Volume

GPS location report
14,800
2009.10-2012.04
300 Gigabytes

▼Table 2. Data fields

Data fields
Longitude
Latitude
Odometer reading
Time stamp

Float
Float
Float

Datetime

◀Figure 2.
A route from Shenzhen
to Shanghai.

Figure 3. ▶
Spatial distribution of

gas stations in China.

▲Figure 4. Cumulative distribution of drift .

drifti = distance (gr (i ), gt (i )). (6)
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knowledge from large numbers of trajectories and has resulted
in the creation of route recommendation systems and traffic
prediction systems [6], [7]. Research on refueling behavior has
also been done [1], [3]-[5], [8], [10], [11], [13].

In [1], refueling behavior of gasoline-car drivers was ana⁃
lyzed, and it was found that refueling behavior is strongly corre⁃
lated to characteristics how a car is driven. This research
spurred us to use algorithms that detect refueling stops based
on the driving distance. Analysis of refuel availability in [3],
[4] model of optimization of refueling stations locating in [5]
presented research on spatial distribution of gasoline stations
and quantified refuel availability in order to optimizing the lo⁃
cating of gasoline stations. Our refueling recommendation/pre⁃
diction system evaluates refueling availability with spatial dis⁃
tributions of gasoline stations combined with their popularity
among all drivers. However, such previous research work did
not use a huge amount of trajectories data, which means that
these research results limited in a small range both spatially
and temporally. In comparison, our system is based on a big
volume of real trajectories data. Moreover, we introduced the
classification methodologies for data mining [8]-[11] into our
algorithms to achieve high accuracy under the scope of data un⁃
certainty.

A smart route service system for taxicab drivers based on a
large amount of historical taxi trajectories was proposed in [6],
as well as a graph model to estimate traffic conditions. Our re⁃
search work shared the same designing ideas with [6] in the da⁃
ta preprocessing model. However, we further integrated batch
processing platform Hadoop and real-time stream processing
platform to process big data for real-time applications. Our ar⁃
chitecture and framework have a systematically advantage in
generality and scalability.

8 Conclusion
In this paper, we have integrated machine-learning and da⁃

ta-mining techniques to create a refueling detection algorithm
called Naive Bayes Classifier with Multiple Hypotheses. This
algorithm detects whether a car has refueled. We have also de⁃
signed a practical application to recommend refueling alterna⁃
tives. This application is based on real-time information taken
from a vehicular trajectory and background knowledge about
the distribution of gas stations and driver experience. Further⁃
more, we have developed a general framework for integrating
Storm real-time processing platform and Hadoop batch-pro⁃
cessing platform in order to process and data mine the trajecto⁃
ry under the scope of real-time big data. Our experiment
shows that, our recommendation/prediction system recom⁃
mends acceptable gas station alternatives with low drifts.
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