k : > Open Access Standards for Telecom Service Capabilities
(Yang Yong et al.

Open Access Standards for
Telecom Service Capabilities

Yang Yong, Jia Xia, Dong Zhenjiang

(ZTE Corporation, Shenzhen 518057, P. R. China)

»

Abstract:

Among the open access standards for telecom service capabilities, Java Community
Process (JCP) and Parlay series are two mainstream standards, which provide service
capability opening standards at different levels for different user objects. The JCP
specifications include Java Specification Request (JSR) 21, JSR 32, JSR 116 and
JSR 289 especially for Java application developers, while Parlay brings out
specifications including Parlay and ParlayX. The service capability open technologies
feature different benefits and vitality due to their diversified implementations. As the
community of service developers is continuously growing and the demands for
integrated service development become more and more manifest, fast, effective and
easy—to-use open access technologies for telecom service capabilities have become
a very important research subject.

pen access to telecom service
capabilities has long been a hot
topic in the development of
telecom technologies!™. Its
objective is to open the telecom
capabilities to allow easier and more
effective development of telecom
services, thus enriching the value added
telecom services and promoting the
development of telecom business.

This article analyzes the different
modes and specifications for developing
services and open access to service
capabilities.

1 Computer Telephony
Integration (CTI)

CTI technology!® for open access to
telecom service capabilities can be
traced back to the traditional Intelligent

54 sune 2009 vol.7 No.2 | FATEENININZNIEINS

| DAEMAG\2009-05-22/VOLADF1 FIT—7PPS/P1

Network (IN) and Private Branch
Exchange (PBX) based CTI technology.
CTI has two major specifications. One is
the Telephony Application Programming
Interface (TAPI), a product of Microsoft
and Intel. It provides a set of Application
Programming Interfaces (API) for
programming and supports CTI
applications on the Windows platform. Its
advantages include the connection
between Windows—based applications
and telephony system. The other is the
Telephony Service Application
Programming Interface (TSAPI) created
commonly by Novell and AT&T. Thanks
to the participation of AT&T, TSAPI is
perfectly compatible with the existing
telephony exchanges.

As a functional supplement for PBX,
CTl based call center service has been
widely developed and used.

2 IN

The purpose of IN® is not only providing
a variety of services but also releasing
new services in an easy, fast and
cost—effective way. As a result, IN
provides users with new services by
using a brand-new method, that is,
establishing a central Service Control
Point (SCP) and database, and then
setting up a centralized service
management service and Service
Creation Environment (SCE).

IN defines a complete overall service
architecture, which consists of Service
Switching Point (SSP), SCP, Service
Management Point (SMP), Service Data
Point (SDP) and SCE. It is an architecture
to generate and provide telecom
services and a system to create and
realize various new services in a fast,
easy, flexible and effective manner.

The system aims to serve all
networks. In other words, it provides
services for not only the existing Public
Switched Telephone Network (PSTN),
Packet Switched Public Data Network

(PSPDN) and Narrowband Integrated
Services Digital Network (N-ISDN), but
also the Broadband Integrated Services
Digital Network (B—ISDN), Public Land
Mobile Network (PLMN) and Internet.

IN aims to provide various new
supplementary services in a fast, easy
and flexible manner through
service—independent standard
communications between functional
blocks/entities and by taking advantage
of existing resources. The goal will be
reached progressively.

The international and domestic INs
under construction are at Capability
Level 1 (CS-1) now, where the IN service
provisioning is limited to PSTN and
N-ISDN and within the same network.
However, users have demands for
service management and service
creation, along with the network
development and because of the
complexity of the actual network
operation. So, many new services are
added to CS-2, including the
inter—network interconnection service,
call party handling service (such as Call
Forwarding and Call Waiting), terminal
mobility and more.

CS-1 and CS-2 Recommendations
have been standardized, and the ITU-T
is setting about the studies of CS-3. In
addition to CS-3, the IN Long—Term
Architecture (LTA) is also under study.
LTA is put forward to cater for the rapid
progress of technologies, fast growth of
users’ service demands, interconnection
between various services and
competition mechanism introduced into
the communication market. Its goal is to
introduce a new communication network
control and regulation system that flexibly
adapts to new technology development
and meets potential service demands.

So, the development of IN is based
on the development of services, and
expands gradually to the domains of
mobile communication and broadband
communication. It shall also be
integrated with the telecom management
network to provide a more flexible
communication system suitable for newer
technologies.

The recent development is the use of
integrated IN system, in which the same
IN network can be connected with
different protocols including GSM,
CDMA, PSTN, Parlay and HTTP, and the

D:\EMAG\2009-05-22/VOL7\DF1.FIT——7PPS/P2

Open Access Standards for Telecom Service Capabilities

Yang Yong et al.

service logic processing is independent
of network type.

The birth of IN enables separate call
control from services and greatly
facilitates the development of services. In
traditional IN system, however, the SCE
is still tightly bound with the SCP, and
there is neither uniform standard nor
openness. Generally, only the
developers of telecom vendors develop
intelligent services using their own SCE.

3 Java Community Process
(JCP)

JCP is a Java—based development
organization engaged in the
establishment of Java specifications. The
early Java-based CTI specifications is
the Java Telephony Application
Programming Interface (JTAPI)
developed in 1996 by a workgroup of
researchers from Intel, Lucent, Nortel
Networks, Novell and Sun Microsystems.

JTAPI is a Java—based application
programming interface for computer
telephony application. It consists of a set
of language packs, with the core pack
providing a basic framework for simple
telephony process, for example, making
call, answering call or hanging up, and
other extension packs providing
additional telephony features. JTAPI can
be used in different computer platforms,
just like the TAPI. The relationship
between them is something like the
relationship between Open Database
Connection (ODBC) and Java Database
Connection (JDBC).

The JCP organization continues to
perfect the Java—based specifications
and defines them as the JCP standard,
releasing in succession many Java
specifications for opening telecom
service capabilities™'". The following
sections introduce the Java
specifications in detail.

3.1 Java Specification Request (JSR) 21
The JSR 21 specification!'? is called
"Java APIs for Integrated Networks
(JAIN) Java Call Control Application
Programming Interface" in full, which is a
Java interface used to establish, monitor,
control, manipulate and release
communication session under the
PSTN/packet/wireless environment. It
provides third—party applications with

EZZ8

network element capabilities including
core network and peripheral devices.
Java Call Control (JCC) can be triggered
or invoked during a session setup,
basically similar to the mode of service
invocation in IN or Advanced Intelligent
Network (AIN). Therefore, JCC allows
programmers to develop applications
that can run on any platform supporting
those APls. And, service providers can
fast and effectively provide service
subscribers with the services of their own
or by buying services from a third party.
APIs defined in the JCC specifications
are inherited from JTAPI.

JCC API does not open the telecom
network signaling architecture but
encapsulates network capabilities, which
allows the capabilities to be represented
and used in a safe, manageable and
chargeable manner using a visual object
technology. This method allows
independent service developers to
develop telecom service with no negative
impact on the network security and
reliability. JCC APIs are defined with
related and interactive object sets, which
modularize different physical and logical
elements or related functions involved in
a session. The applications interact with
the objects through object—oriented
procedure charts. JCC APIs can control
voice calls, as well as data and
multimedia sessions.

Structurally the JCC APIs fall into
three types:

(1) Basic call control: This Java pack
includes the basic tools for initiating and
answering calls.

(2) Core call control: This Java pack
includes the tools for monitoring,
initiating, answering, processing and
manipulating calls, as well as some tools
that invoke other applications and return
results during the process of a call. It can
meet the requirements of most basic call
and value—added service
implementations.

(8) Extended call control: This Java
pack provides some extended granular
call control functions. Unlike Java
Coordination and Transaction (JCAT), in
particular, JCC supports all universal AIN
applications and the integration with
other voice/data and next generation
services.

The applications developed with the
above packs can be executed on the

FAEICEINNZNIERE | June 2009 Vol.7 No.2| BB

N
mem/

switch platform or across multiple
platforms in a collaborative and
distributed way.

JCC API provides only the Java API
definitions, while the interface
implementations must be made by the
equipment vendor. This set of APIs
shields the network transfer layer and fits
for any type of network including PSTN,
IP or wireless network. Also, it does not
concern the underlying communication
protocols or signaling, which can be
Media Gateway Control Protocol
(MGCP)¥, Session Initiation Protocol
(SIP) or Signaling System No.7 (SS7).
The application developers do not need
to have the network information.

Therefore, the key purpose of JSR 21
is to enable third—party Java developers
to develop call services. However, the
API defined in the specification is a
bottom layer—oriented operation interface
for the call control signaling, and the
application developers must have basic
telecommunication knowledge. In
addition, the SIP-based applications
developed with JCC API are usually
limited by the expandability of API
because of the high expandability of SIP.

3.2JSR 32

The full name of JSR 32/* is JAIN SIP API
Specification, which is the interface
specification defined and developed by
the JCP organization for SIP applications,
providing the developers with RFC
3261-compatible Java—based standard
SIP service interfaces.

The JSR 32 specification
standardizes the interface to the generic
transactional model defined by the SIP
protocol, providing access to dialog
functionality from the transaction
interface. The architecture is developed
for the J2SE environment therefore is
event-based utilizing the
Listener/Provider event model. It defines
various factory classes for creating
Request and Response messages and
SIP headers. It defines universal interface
for each supported header, which can be
added to Request or Response
messages respectively. These messages
are passed via a transaction to the
Listener/Provider model to listen to the
coming events, including the response to
arequest or a new request. In addition,
the JAIN SIP is designed to be

Open Access Standards for Telecom Service Capabilities
Yang Yong et al.

extendable with universal extension
header interfaces defined, so that the
unsupported SIP header domain can be
used in the processing specification.

It is notable that the default handling
for SIP message resend is dependent of
the application type, and all resend
operations are processed by the protocol
stacks in the User Agent (UA).

Since JAIN SIP APl is a complete
definition of the SIP standard, any
SIP-based program may utilize the JAIN
SIP API as a standard Java interface into
any JAIN SIP certified stacks. This means
the versatility in SIP stack implementation
can be achieved by using the JAIN SIP
API for application servers, SIP
telephones, gateways and gateway
controllers, SIP servers, SIP-based
services, SIP billing solutions,
development kits, SIP test tools, SIP user
agents and SIP network administrators.
In a typical SIP network, the JAIN SIP
interface is used as an agent server,
media gateway and client. JAIN SIP APIs
cover more than those required by user
agent or client software.

JAIN SIP APIs provide basic classes
in four packs, including:

(1) javax.sip: This package contains
the key interfaces of the basic
architecture provided from the view point
of the application developers and
protocol vendor.

(2) javax.sip.address: This package
contains the interfaces used to present
the address components in the SIP.

(8) javax.sip.header: This package
contains all the headers interfaces
supported by this specification.

(4) javax.sip.message: This package
contains the interfaces used to present
the SIP message body.

Compared with the JSR 21
specification, JSR 32 specification aims
specially at the SIP networks such as
next generation network or IP Multimedia
Subsystem (IMS). They also provide the
developers with a Java SIP stack and
related interfaces. These interfaces are
protocol layer interfaces, while in the JSR
21 specification they are interfaces at the
functional operation level, much higher
than the level with the JSR 32
specification. The interfaces provided by
JSR 32 allow developers to get or to
manipulate all fields including SIP header
domain and all SIP message contents

B56 une 2009 vol.7 No.2 | FAFEENNNZNIOIS

| DAEMAG\2009-05-22/VOLADF1 FIT—7PPS/P3

including SIP message body.

3.3JSR 116

The full name of JSR 116! is SIP Servlet
Specification V1.0, which is a set of SIP
container based SIP application
development standards.

SIP Servlet is a Java—based
application component, which is
managed by SIP container and which
also implements SIP signaling
processing. Just like other Java—based
components, Servletis a
platform-independent Java class and
can be dynamically loaded to run on a
Java—based SIP application server.
Containers are the extension of the server
that provides the Servlet function. With
the Servlet containers, Servlet interacts
with clients through the exchange of
request messages and response
messages. SIP Servlet container is a part
of the application server, receiving and
transmitting request/response messages
for the network layer services. It
determines which application is triggered
by the received SIP message and in what
order to trigger. Meanwhile, SIP Servlet
container has the Servlet lifecycle
management function, and is also
responsible for the support of User
Datagram Protocol (UDP), Transfer
Control Protocol (TCP) as required by the
SIP specification for all SIP network
elements, optional support of Transport
Layer Security (TLS) and Stream Control
Transmission Protocol (SCTP), etc. SIP
Servlet is primarily used to develop
SIP-based applications. Currently, the
SIP-based applications are the call type
applications, instant messaging, online
SIP short message, as well as SIP short
messaging deriving from SIP Message
method. The interface specification used
to develop SIP applications provides
developers with RFC 3261-compatible
Java-based standard SIP service
interfaces.

Within JSR 116, the major functions of
SIP Servlet container are application
management, SIP message processing
and tool functions (SIP session and
application session, SIP factory and
agent). JSR 116 is an SIP application
development tool that is specific to SIP
and provides container type SIP
application management. In terms of
interface encapsulation degree, it is a

kind of interface specification between
JSR 21 and JSR 32. It provides not only
method—level operation interface but
also protocol-layer data operation
interface. In terms of application
development, its flexibility and usability
are perfect. JSR 116 is the standard
version 1.0 of the SIP container product,
and JSR 289 Version 1.1 has been
published. Compared with JSR 116,
there is no change with the framework
but improvement on some interface
definitions. The latest SIP Servlet
specification is Version 1.1. Refer to JSR
289" for more details.

In addition, the SIP Servlet
specification defines only interfaces that
are based on the SIP Servlet to develop
SIP applications. As we know, most
telecom applications involve voice,
number receiving, conference and other
basic telecom function, while the SIP
Servlet specification including JSR 116
and JSR 289 has not defined interfaces
related with those functions. Therefore,
the JCP organization published in 2007
JSR 309"®—Java Media Server Control,
which defines the functional interfaces
related with media server control to work
with the Java—based SIP application
development.

In addition to the above
specifications, JCP also defined a Java
specification for service execution
environment, JAIN Service Logic
Execution Environment (SLEE) V1.0.
JAIN SLEE is an integral part of the JAIN
API set. Itis located in the core as the
logic execution environment for
applications. Refer to JSSR22" for details.

4 Parlay Related

Specifications
The Parlay organization was established
in 1999 as a non—for—profit organization
with participations from 65 telecom and
IT companies, dedicating to define
Parlay APIs as a set of open,
technology—independent and
expandable APls, so that third—party
service developers and independent
software vendors can develop services
with the Parlay APIs. Till now several
versions of Parlay specifications have
been published. Open Service
Architecture (OSA) is referenced in the
3GPP and 3GPP2 mobile service

7\ D:\EMAG\2009-05-22/VOL7\DF1.FIT——7PPS/P4

Open Access Standards for Telecom Service Capabilities

Yang Yong et al.

architecture, while Parlay is just the API
part in OSA.

The definitions of the Parlay APIs?
are described with the Interface
Description Language (IDL), and the
APls are implemented with the
distributed Corba midware technology.

The Parlay organization makes
researches on the part of open interface
and cares not about the basic telecom
network structure and technology. The
interface is located between the service
provisioning network part and the core
network part. While the Parlay
organization works on the research of
Parlay 2 standards, 3GPP and ETSI
launch the researches on
3G-network—based application
development APIs. The research work is
overlapped to a large extent, and 3GPP
and ETSI find soon that Parlay can be
used in their 3G network APIs. So, Parlay
is introduced into the 3GPP/ETSI
standard framework and named as OSA,
and 3GPP/ETSI provides further
complements for the Parlay standards.
Now 3GPP has published API standard
Release 5, and ETSI and Parlay Group
have also published related versions,
with the latest version, Parlay 6.0.

When the Parlay APl is upgraded to
Parlay 4.0, the Parlay organization found
that the Parlay specifications are quite
complicated for IT R&D personnel, and it
was not easy to work with the Parlay

EZZ8

protocol specifications to develop
applications on telecom networks. For
this reason, 3GPP puts forward the
ParlayX specification?". The ParlayX
protocol further abstracts the APIs on the
basis of the original Parlay API protocols,
and uses Web-service—based Web
Service Description Language (WSDL) to
describe the APIs, so that the IT R&D
personnel is provided with a clearer,
cleaner, abstract and
easy—to—understand telecom service
development interface. In this way, the IT
R&D personnel do not need professional
knowledge of telecom network and can
develop and apply the next generation
network services with the ParlayX
protocol interface. It is a promotion to the
development of the next generation
network services.

After Parlay 4.1 has been developed
to ParlayX, it gradually divides into two
branches. The original Parlay
specification continues its progress till
the latest 6.0, while the ParlayX
specification also evolves, from version
2.0, 2.1, 2.2 till the latest ParlayX 3.0.

4.1 Parlay Specification

The Parlay specification defines multiple
sets of Service Capability Features
(SCFs), each of which has a set of APIs
for opening service capabilities. As
shown in Figure 1, the logical structure of
Parlay/OSA consists of four major parts:

Parlay
Applications
Service Plane
Parlay Parlay Service
Framework Capability Features Parlay GW
SIP SIP/MGCP
Control Plane Softswitch Media Server

Transport Plane

Core Transport Network (IP Network)

Access Plane

Access
Gateway

Access
Gateway

Figure 1. »
Logical structure of
Parlay/OSA.

GW: Gateway
MGCP: Media gateway control protocol

SIP: Session Initiated Protocol

FAEICEVINNZNIERS] | June 2009 Vol.7 No.2| B

N
Hwﬂm/

Jcc JAIN SIP
+ +
Application Application
SIP Servlet
Application Application

JAIN: Java APIs for Integrated Networks
JCC: Java Call Control
SIP: Session Initiated Protocol

A Figure 2. Comparison between JCC&JAIN
SIP application mode and SIP Servlet
application mode.

Parlay application, Parlay/OSA
framework, Service Capability Server
(SCS) and core network. A Parlay
Gateway is made up of the framework
and service capability servers.

Parlay 4.0, taken as an example,
defines 11 SCFs in total. They are call
control, user interaction, mobility
management, terminal capabilities, data
session control, normal message,
connectivity management, account
management, billing, policy
management, representation and
availability management.

The open structure of 3G network is a
prerequisite for Parlay Gateway to control
network resources. The Call Session
Control Function (CSCF) equipment is
the core in the 3G IMS network. It is
dependent of the underlying bearer
protocol, implements call control, media
gateway access control, resource
allocation, protocol processing, routing
and other functions, and can provide
users with the services available in the
existing networks.

The applications that are developed
on the basis of the Parlay Gateway
provide a residential and execution
environment for service logics, and the
development platform is provided for the
third—party service developers through
the APIs available with the Parlay
Gateway. Parlay Gateway is the principal

Open Access Standards for Telecom Service Capabilities
Yang Yong et al.

in the service provisioning plane and also
the core for service provisioning and
development. It helps the service plane
provide rich services with various
resources of the underlying network. This
architecture enables separate services
from call control, and separate call
control from bearer, so as to implement
relatively—independent service function
and upper—layer services unrelated to
underlying network, making services
available in a flexible and effective way.

4.2 ParlayX Specification

The Parlay organization simplifies the
Parlay APIs to provide those APIs for
third parties in forms of Web services,
resulting in the ParlayX specification. The
first version of the ParlayX 1.0 was
officially released in April 2003, and the
latest specification version is ParlayX 3.0.

Take the ParlayX 2.0 specification as
an example, where the multiple sets of
service capabilities are defined,
including third—party call, call
notification, short message, multimedia
short message, voice call, terminal
status, terminal location, account
management, call processing, payment,
multimedia conference, address list
management and presence.

The ParlayX makes high—degree
abstraction and encapsulation for the
original Parlay APIs and defines a set of
powerful yet simple, abstract and
imaginative telecom capability APIs, so
that the telecom developers and IT
developers can understand and grasp
them quickly and then develop creative
telecom application software.

The ParlayX works in forms of Web
services, and the openness of the Web
services makes the ParlayX more
acceptable and recognizable by IT
developers. The interaction between the
applications developed with ParlayX
APls and the server implementing
ParlayX Web service (also called the
ParlayX gateway) is implemented
through the Extensible Markup Language
(XML) based message exchange. The
message exchange is initiated by the
application and follows the synchronous
Request/Response model. The response
from the ParlayX Web service serve to
the application is optional, depending on
actual requirements.

However, asynchronous messages

B8 uune 2009 vol.7 No.2 | FATEENINZNIOIS

| DAEMAG\2009-05-22/VOLADF1 FIT—7PPS/P5

must be defined for the message
notification services, where application
server acts as the passive party, to
implement the message transfer from
ParlayX gateway to applications.

The encapsulation of the ParlayX APIs
is much higher than that of the Parlay
APIs. For example, with the Parlay APIs,
at least three times API invoking is
needed at the application side to initiate
a call: createCall— routeReq (A) —
routeReq (B). With the ParlayX, only one
time APl invoking “makeACall” is
enough. Such high encapsulation
simplifies the efforts greatly for the
developers.

However, insufficient continuous call
control, low user interaction capability
and lack of user authentication are
challenges for the ParlayX. Relevant
organizations are working on its
improvement.

5 Comparison of Service
Capability Open Access

Technologies
First, JSR 21 and JSR 32 are used for the
independent development of
applications, while JSR 116, due to the
introduction of container, allows bearing
the operation of multiple applications, as
shown in Figure 2. Meanwhile, the
container in JSR 116 can be combined
with the HTTP container to develop some
Web-based integrated SIP applications.
Another difference between JSR 32 and
JSR 116 lies in JAIN SIP defined by JSR
32 is J2SE application oriented while the
SIP Servlet specification defined by JSR
116 is J2EE application oriented.

Second, the operation mode for the
JCP series based applications is
different from Parlay based applications.
In terms of application deployment and
running mode, the operation of
Parlay/ParlayX applications is in a
distributed mode since the
Parlay/ParlayX is implemented on the
basis of distributed technologies.

For the applications that are
developed on the basis of the JCC, JAIN
SIP and SIP Servlet specifications,
however, the APl implementations and
applications are executed by the same
Java virtual machine, which are bound
together physically. The difference
between them is illustrated in Figure 3.

Open Access Standards for Telecom Service Capabilities

Yang Yong et al.

Application Application
Application \—4
JCC & JAIN SIP lOP/SOAP
& SIP Servlet
Java
Parlay/ParlayX GW
SS7/SIP
SS7/SIP
PSTN/NGN/IMS
PSTN/NGN/IMS
GW: Gateway NGN: Next Generation Network
IIOP: Internet Inter ORB Protocol PSTN: Public Switched Telephone Network <Figure 3.
IMS: IP Multimedia Subsystem SIP: Session Initiated Protocol Operation mode of JCP
JAIN: Java APIs for Integrated Networks SOAP: Simple Obiject Access Protocol P licati d Parl
JCC: Java Call Control $57: Signaling System No.7 applications and rariay
applications.

As shown in Figure 3, the applications
based on JSR series specifications
interconnect with core network element in
their deployment, and the interface in
between is standard SS7 or SIP. In
contrast, the applications based on
Parlay/ParlayX specifications
interconnect with the IIOP/SOAP or
Parlay/ParlayX gateway in their
deployment, adapted into standard SS7
or SIP through the Parlay/ParlayX
gateway.

In contrast, the distributed
deployment is more advantageous than
the centralized application mode. But,
the shortcoming of distributed
deployment is that the developers have
to grasp the Corba or Web service
technology in addition to familiarity with
basic call signaling knowledge, raising
higher requirements for the developers to
some extent. Meanwhile, the JCP series
specifications (JCC, JAIN SIP and SIP
Servlet) define only the interface for
application function development but do
not tap into the authentication access,
access control and other functions for the
applications. So, it is applicable for only
the application development in some
trustable domains. The Parlay
specification provides not only the basic
call capability but also a complete
development, operation and
management system for the applications,
including authentication access, access
control, and lifecycle management. In
particular, the ParlayX also has some
basic functions on service access and

7\ D:\EMAG\2009-05-22/VOL7\DF1.FIT——7PPS/P6

control through the extension of SOAP
header. Most things have two handles;
simplicity and flexibility are usually
mutually exclusive.

Third, in terms of technological
implementation, the JSR series define
Java APl implementations which inherit
the across—platform characteristics with
Java language. The Parlay API
implementation is based on Corba
midware technology, which is a platform
across technology, independent of the
operating system and programming
language. In other words, even when the
application and service are running on
different operating systems, it is possible
to use a different programming language
to implement API functions and invoking.
ParlayX is implemented on the basis of
Web service technology, which features

EZZ8

more advantageous openness and can
be implemented with different
programming languages. For application
developers, an interface technology
across platforms and independent of
language is definitely more acceptable.

Undoubtedly different service
capability opening technologies shall not
be simply judged, and each of them has
its own merits. Service developers at
different levels can choose a suitable
technology to develop telecom
applications for specific service
requirements.

The specifications are also compared
in terms of AP| encapsulation degree, as
shown in Figure 4. At a higher level,
interface encapsulation falls into two
categories: Operation level API
encapsulation and protocol layer API
encapsulation. JCC and Parlay/ParlayX
provide operation level APls, with higher
degree API encapsulation and API
implementation independent of specific
protocol. JAIN SIP and SIP Servlet
provide protocol layer APls and API
encapsulation specific to SIP, which, to
some extent, is equivalent to a Java
version SIP protocol stack. So, the SIP
Servlet provides higher level APIs than
JAIN SIP specification. For the
application developers, it is easier to use
interface technology of higher
encapsulation degree in their application
development.

Finally, the specifications are
compared in terms of vitality, as shown in
Figure 5. The specifications established
by two organizations JCP and Parlay are
continuing their growth. For the time

API Encapsulation Degree

Degree Il
ParlayX
Jjcc Parlay
Degree | Sip
JAIN-SIP Serviet
API

API: Application Programming Interface JCC: Java Call Control

JAIN: Java APIs for Integrated Networks

SIP: Session Initiated Protocol

A Figure 4. Comparison of API encapsulation between different specifications.

FAICE IO | June 2009 Vol.7 No.2| 5O

opien e |

Open Access Standards for Telecom Service Capabilities
Yang Yong et al.

Vitality
Degree |l
SIp ParlayX
Servlet Parlay
Degree |
Jcc JAIN-SIP
API

API: Application Programming Inferface JCC: Java Call Control
JAIN: Java APIs for Integrated Networks

SIP: Session Initiated Protocol

A Figure 5. Vitality comparison between the specifications.

being, there are not many supports or
positive response to JCC and JAIN SIP
from the equipment vendors, while SIP
Servlet product has won clear supports
from quite some vendors. And, many
vendors are supporting Parlay/ParlayX, in
which the Parlay Gateway products from
Ericsson are being used most widely.
Vendors’ supports for ParlayX are even
more popular.

On the whole, vendors’ supports for
Parlay/ParlayX are better than those for
the JCP specification. However, the JCP
organization has researched service
capability openness and also made
in—dept study on service execution
environment, resulting in the
specifications like JAIN SLEE. The
specifications stimulate the development
and popularization of JCC, JAIN SIP and
other specifications, which will be
specially introduced in future.

6 Conclusions

In terms of the implementation of open
access technologies for telecom service
capabilities, especially the interfacing
techniques, different interfaces are
provided with different technologies. As
mentioned above, higher encapsulation
rate allows easier interface—based
applications; and lower encapsulation
rate allows interface functions with higher
flexibility and interface—based
application implementation with higher
complexity. Therefore, technologies
cannot be simply classified as good or
not. Actually, the application developers
on different levels with various demands

should be provided with matching open
service interfaces to fulfill open access to
service capabilities at different levels and
granularity.

The cycles of service development
are shortened continuously along with
the gradual opening of service
capabilities. The groups of service
development personnel are expanded
continuously, and the coupling
relationship and interactions between
services are getting more and more
complex. Therefore, how to achieve the
orderly monitoring and management
between services, between service
capabilities and between service and
capability are important issues for
research on the next generation of
service creation environment and
execution environment based on the
distributed, open Information and
Communication Technology (ICT)
convergence environment.

References
[1] , -
[J1. ,2004, 20(1): 41-46 .
[2] , _NGN
[J1. , 2004, 6(5): 71-74.
(3] - 1.

, 2005, 21(2): 5-10.

[4] FALCARIN P, LICCIARDI C A. Analysis of NGN
service creation technologies [J]. IEC Annual Review
of Communications, 2003, 56(6): 100-110.

[5] LICCIARDI C A, FALCARIN P. Next generation
networks: the services offering standpoint [R].
Eurescom Project P1109. 2002.

[6] LAGO P, LICCIARDI C A, CANAL G, et al. An
architecture for IN=Internet hybrid services [J].
Computer Networks Journal, 2001, 35(5): 537-549.

[7] BOETSELAARS L, et al. CD-ROM: enabling
technologies for IN-Internet integration [R]. Eurescom
Project P909 Deliverable 4. 2001.

[8] , .CTI [J].

, 2001, 27(6): 36-38, 41.

[9] . [J1.

60 June 2009 Vol.7 No.2 | FATESNVINNSNIENS

I DAEMAG\2009-05-22/VOL7\DF1.FIT——7PPS/P7

2004(1): 34-38.

[10] JAIN. A set of Java APIs for integrated networks [R].
Telcordia Technologies Inc. 1999.

[11] The JAIN APIs: Integrated network APIs for the Java
platform [R/OL]. White Paper. 2000. On-line at http://
java.sun.com/products/jain.

[12] JSR21- JAIN Java Call Control (JCC) Application
Programming Interface (API), Version 1.0 [S]. JCP.
2001.

[13] ARANGO M, DUGAN A, HUITEMA C, et al. Media
Gateway Control Protocol (MGCP), Version 1.0 [R].
RFC 2705.1999.

[14] ROSENBERG J, SCHULZRINNE H, CAMARILLO G,
et al. SIP: Session Initiation Protocol [S]. RFC 3261.
2002.

[15] JSR32-JSIP API Specification v1.2, Final Release
[S]. JCP. 2006.

[16] JSR116— SIP Servlet AP, Version 1.0 [S]. JCP. 2003.

[17] JSR289-SIP Servlet Specification v1.1, Final Release
[S]. JCP. 2008.

[18] JSR309-Java Media Server Control [S]. JCP. 2008.

[19] JSR22-JAIN SLEE 1.0 Specification, Final Release
[S]. JCP. 2004.

[20] ETSI ES 201 915-1 v1.1.1. Open Service Access;
Application Programming Interface. Part 1-Part 12
[S]. 2001.

[21] Parlay APIs 4.0: ParlayX webservices [R]. White
Paper. Parlay Group, 2002.

Biographies
47 YangYong N

Yang Yong received his
doctoral degree from Southeast
University, and now is a senior
engineer at ZTE Corporation. He
has been engaged in the study
of Intelligent Networks (INs) and
Parlay/ParlayX gateways. His
current research interests
o M include service delivery
%:‘, Al % platforms, evolution of NGN and
o ' IMS, and multimedia
techniques. He has applied for seven patents and
more than ten papers.

V/4

Jaxia N
Jia Xia received her master’s
degree from Dalian University of
Technology. She is responsible
for the pre—research on next
generation service networks at
ZTE Corporation. She has been
engaged in the research and
development of fixed IN
services, broadband services
and IMS services. Her research
interests include service
networks, SDP, SOA, service engine and mobile
Internet. She has published five papers on service
network evolution.

47 Dong Zhenjiang NG

Dong Zhenjiang received his
master’s degree from the
Harbin Institute of Technology,
and now works for ZTE
Corporation. He has been
engaged in the development,
design and planning of switch
and IN networks. His research
interests include SDP, P2P,
service engine, 3G services and
~ ICT. He has participated in or
resided over multiple research projects sponsored

y the National Development and Reform Commission
of China. He has published more than 10 papers on
value-added services.

T T

