(
k : > Paralll Processing Design for LTE PUSCH Demodulafion and Decoding Based on Mulf-Core Processor
(Zhang Ziran et al.

Parallel Processing Design for LTE
PUSCH Demodulation and Decoding
Based on Multi-Core Processor

Zhang Ziran, Li Jun, Li Changxiao

(ZTE Corporation, Shenzhen 518057, P. R. China)

i)

Abstract:
I The Long Term Evolution (LTE) system imposes high requirements for dispatching
delay. Moreover, very large air interface rate of LTE requires good processing
I capability for the devices processing the baseband signals. Consequently, the

single —core processor cannot meet the requirements of LTE system. This paper

analyzes how to use multi—core processors to achieve parallel processing of uplink

demodulation and decoding in LTE systems and designs an approach to parallel
I processing. The test results prove that this approach works quite well.

ong Term Evolution (LTE) refers to
the long term evolution of 3G
systems. According to LTE
protocols, the uplink Hybrid
Automatic Repeat—Request (HARQ)
delay, from the time eNodeB finishes
receiving Physical Uplink Shared
Channel (PUSCH) subframes to the time
the Acknowledge (ACK) or
Non-Acknowledge (NACK) message is
sent via the downlink, should be no more
than 3 ms. In order to verify such delay in
case of single—core processor, tests
have been conducted under the
following conditions: single core
processors are used to process
demodulation and decoding serially on
the uplink, the User Equipment (UE) type
is category 5, the Transport Block (TB)
size is 75,056 bits, virtual Multiple—Input

B4 varch 2009 Vol.7 No.1 | FATESIVVNNIS/NIIORS

| DAEMAG\2009-02-21/VOLADF1 FIT—5PPS/P1

Multiple—Output (MIMO) is used on the
uplink and the rate at the air interface
reaches 150 Mb/s. The test results show
that the total processing delay cannot
meet the requirements specified in the
protocol. As a result, multi-core
processors are introduced to perform
demodulation and decoding parallelly on
the uplink so as to shorten the
processing time, allowing the delay to
meet the minimum requirement of the
protocol, i.e. 3 ms.[®

1 Architecture and Principle
of Multi-Core Processor

1.1 Architecture

Multi—core processor technology is a
new technology recently introduced in
Central Processing Unit (CPU) design. It
allows two or more processor cores
integrated onto one chip to enhance the
processing capability of the chip.

In this paper, we take example of
three—core processor, i.e. three cores
integrated onto one chip. The three
cores, called Core,, Core, and Core,
respectively, share the memory and other
peripheral devices, and each of them is
configured with a high—speed L2 cache
to decrease the bottleneck effect which
may occur when the three cores access
the memory at the same time. Any shared
resource (e.g. a segment of codes or
data in Double Data Rate Two (DDR2))
can be shared or excluded via
semaphores. All cores run their own
Real-Time Operating Systems (RTOSs)
and communicate with each other
through semaphores. A task on a core
can communicate with another task on
the same core. Hence, specific
applications are realized with this
cooperative communication between
tasks. By dividing an application into

Parallel Processing Design for LTE PUSCH Demodulation and Decoding Based on Multi-Core Processor

Zhang Ziran et al.

Core, A | A, ‘ A, ‘
Core, ‘ B, ‘ B, | B; ‘
Core, | (e} | (&} ‘ G,
o 1 T, T, <Figure 1._ .
Assembly line processing of
multi-core processor.
Coreg—A, Corey—B, Core,—C,
Core-A, Core-B, Core,~C,
Core,—A; Core,—B; Core,—C;
A B C
(a)
Coreg—A, Corey—B, Core,~G
Core—-A, Core,-B, Core,—C,
/
Core,~A, Core,~B, Core,~C, /
A B C .
B <«Figure 2.

Distributed processing of
multi—core processor.

several tasks that can run parallelly on
different cores, the data can be
processed simultaneously, thus the
system’s processing capability is
enhanced.

1.2 Principle of Parallel Processing of
Multi-Core Processor
A critical issue in applying multi—-core
technology is how to convert the serial
processing of a single—core processor
into the parallel processing of a
multi—core processor. Suppose a serial
processing task involves three modules
A, B and C, and their processing times
are T,, T, and T;respectively. It can
achieve parallel processing with a
multi—core processor in one of the
following two ways.

1.2.1 Assembly Line Processing
The first way is called assembly line
processing, with which the tasks of three
modules A, B and C are processed by
Core,, Core; and Core, respectively.

The assembly line processing goes

7\ D\EMAG\2009-02-21/VOL7\DF1.FIT——5PPS/P2

as follows: First, divide each module into
three sub—processes respectively. That
is to say, divide module A into A,, A, and
As;, module B into B4, B, and B;, and
module C into C,, C, and C,. After a
sub—process of module A is completed,
it will be sent to module B for processing;
similarly, after a sub—process of

module B is completed, it will be sent to
module C for processing, thus all
sub—processes are processed in an
assembly line way, as shown in Figure 1.
The core in the rear does not have to wait
for all sub—processes of the core in front
of it to complete before it begins
processing; instead, after the core in the
front completes a sub—process, it gives
the sub—process to the one behind it for
processing. In this way, parallel

EZZ8

processing is realized.

1.2.2 Distributed Processing

In the distributed processing method,
each core processes module A, Band C
simultaneously. For a UE, if a single—core
processor can meet the delay
requirement for processing module A, B
or C, athree—core processor (i.e. Core,,
Core, and Core,) can be used to process
the three modules in a distributed way.
As each core processes module A, B
and C parallelly, more than one UE can
be distributed on different cores for load
sharing, thus parallel processing is
achieved. The processing is illustrated in
Figure 2.

The difference between Figure 2 (a)
and (b) is as follows: In 2(a), module B
has to wait for processing until all
sub—processes of module A are
completed; while in 2(b), module A and B
can be processed at the same time.

2 Analysis and Design of
Parallel Processing of LTE
PUSCH Based on
Multi-Core Processor

2.1 PUSCH Overview
PUSCH is used to transmit service data.
Itis shared by multiple UEs and
dispatched with Media Access Control
(MAC) dispatcher.

At the UE side, the processing of
PUSCH is illustrated in Figure 3.

The demodulation and decoding
flowchart of PUSCH is shown in Figure 4.

2.2 System Delay Requirement

2.2.1 Delay Requirement for Uplink
HARQ in LTE System
The minimum delay requirement for
uplink HARQ in LTE systems is 3 ms. The
delay refers to the duration when eNodeB
begins to process data packets received
from Uplink Shared Channel (UL-SCH)
and responds with ACK or NACK

— Scramblin Modulation Transform %?:%ngte SCST;EQ? A —
¢ Mapper Precoder Mapper Generation

SC-FDMA: Single Carrier Frequency Division Multiple Access

A Figure 3. Processing of PUSCH.

FAISEVINNZNIOINS March 2009 Vol.7 No.1 | 5B

N
mem/

Parallel Processing Design for LTE PUSCH Demaodulation and Decoding Based on Mulfi-Core Processor

Zhang Ziran et al.

> Demodulation| > Descrambling Block

Decascading

Rate
Deadaption

HARQ

’| combination

Turbo
Decoding

Code

l Desplitting

CRC of
8

HARQ: Hybrid Automatic Repeat-Request

TB: Transport Block CRC: Cyclic Redundancy Check

A Figure 4. Demodulation and decoding flowchart of PUSCH.

V Table 1. Processing time of single—core
processor

Function Processing Time (ms)
Channel Estimation 0.63
MIMO Decoding 0.94
IDFT 0.60
Demodulation 0.30
Descrambling 0.33
Demultiplexing 0.30
Rate De—Adaption 2.62
CRC of que Block, Block 02

Connection, CRC of TB

Total 592

MIMO: Multiple-Input Multiple—Output
CRC: Cyclic Redundancy Check

message via the air interface. The
processing at eNodeB includes channel
estimation, MIMO decoding, Inverse
Discrete Fourier Transform (IDFT),
demodulation and decoding.

2.2.2 Delay Test Based on Single—Core
Processor
The delay test of a single—core
processor (CPU frequency: 1 GHz) is
conducted under the following
conditions: a cell with 20 MHz
bandwidth, 1,200 sub-carriers,
4 receiving antennas at eNodeB side,
2 transmitting antennas at UE side, virtual
MIMO for uplink receiving, 2 code words,
TB size of 75,056 bits, 64 Quadrature
Amplitude Modulation (64QAM) scheme,
and a peak rate of 150 Mb/s. The test
results are listed in Table 1, which show
the total processing time of 5.92 ms,
more than the given 3 ms. Therefore, the
single—core processor cannot meet the
system’s delay requirement.

2.3 Feasibility Analysis of Parallel
Processing
With a multi-core processor, parallel
processing can be achieved. The
feasibility of parallel processing is
analyzed as follows:
e Demodulation: This process can be

divided among multiple cores based on
modulation symbols and every core
needs to generate the entire scrambling
sequence. Therefore, the cores can start
demodulation before getting all
modulation symbols.

® Descrambling: This process can be
divided among multiple cores by soft bit.
Hence, it can start before all soft bits are
given. Each core must generate the
entire scrambling sequence.

¢ Control and data demultiplexing:
This process can only be divided among
multiple cores by the user. Various
users’ demultiplexing tasks can be
processed by different cores. As it is
quite complicate to divide the
demultiplexing task of a user among
multiple cores and deinterleaving of
different Single Carrier Frequency
Division Multiple Access (SC-FDMA)
symbols within a Transmission Time
Interval (TTI) is involved, the
demultiplexing process cannot begin
until all symbols of a TTl are collected.

¢ Rate de—adaption: This process
can be divided among multiple cores by
code block. That is to say, the code
blocks of different users can be

processed by different cores, and the
code blocks of a user can also be
processed by different cores.

® CRC of code block: This process
can be divided among multiple cores by
code block. That is to say, the code
blocks of different users can be
processed by different cores, and the
code blocks of a user can also be
processed by different cores. Once a
code block rather than all code blocks is
decoded, the CRC check can be
performed for the decoded block.

® Code block connection: This
process can only be divided among
multiple cores by the user. The task of
one user can only be processed by one
core. Once a code block rather than all
code blocks is decoded, this process
can be performed for the decoded block.

e CRC of TB: This process can only
be divided among multiple cores by the
user. The task of one user can only be
processed by one core. It can start only
after all TBs are decoded.

2.4 Design of Parallel Processing Based
on Multi-Core Processor
The parallel processing of demodulation

Core, Core, Core,
IDFT Result Core, Core, Core,
Core,
Core, Core, Core,
Demodulation Descrambling Demultiplexing Rate Deadaption
Divided by Divided by cannot be divided, Divided by Code
Symbol Symbol waiting for descrambling Block
result of an entire TTI
Core, Core, Core,
Core, Core, Core,
Core, >
Core, Core, Core,
Rate Deadaption CRC Code Block Connection CRC of TB cannot
Divided by Code Divided by Code Divided by Code Block be divided
Block Block
CRC: Cyclic Redundancy Check IDFT: Inverse Discrete Fourier Transform TB: Transport Block TTI: Transmission Time Interval

AFigure 5. Parallel processing of demodulation and decoding.

B6 March 2009 Vol.7 No.1 | TSNV NIS/NIONS

| DAEMAG\2009-02-21/VOLADF1 FIT—5PPS/P3

Take Process Parameter

No
Decide if assignment is
required

Yes

Calculate and pack assignment
parameters and put them into the
pool of Core, and Core,

Invoke ProcessFunc fo process the
assignment assig

Invoke ProcessFunc fo process the
nment

Wait the processing results of
Core, and Core,

S

and decoding is illustrated in Figure 5.

In Figure 5, Core, acts as the
dispatching core, and Core; and Core,
are non—dispatching cores. The
principles for dispatching a dispatching
core are as follows: If the processing
resources required by new users can be
provided by a single core, the processes
of all the new users will be shared among
all cores by UE; otherwise, the process of
the user occupying the most resources
will be broken down into
sub-processes for parallel processing.

2.4.1 Processing of Dispatching Core

In the dispatching core, each process
function (e.g. ProcessFunc) is invoked by
the function ProcessDispatch. The flow of
ProcessDispatch function of Corey is
illustrated in Figure 6.

Core, first dispatches a process. If it
can complete the process by itself, it
directly invokes the ProcessFunc
function to do the processing. If this
process has to be assigned to other
cores, Core, packs the parameters and
puts them in the parameter pools of Core;
and Core,, notifying Core; and Core, of
processing. Meanwhile Core, invokes
ProcessFunc to process the

7\ D:\EMAG\2009-02-21/VOL7\DF1.FIT——5PPS/P4

<Figure 6.
Processing flow of dispatching
core.

sub—process assigned to it. Finally,
Core, waits and collects the processed
data from Core, and Core, to do the

]
Parallel Processing Design for LTE PUSCH Demodulation and Decoding Based on Multi-Core Processor jm m M M

Zhang Ziran et al.

final processing.

2.4.2 Processing of Non-Dispatching
Core
Unlike the dispatching core, the
non-dispatching core has a high priority
task DispatchTsk, which is specially
used for processing the sub—process
assigned by Core, and triggered by the
dispatching core Core,. DispatchTsk
takes input parameters of ProcessFunc
from the parameter pool, and then
invokes ProcessFunc to process the
assigned sub—process. After a
non-dispatching core completes a
sub—process, it labels the sub—process
with a completion tag and notifies the
dispatching core. To reduce the waiting
time of the dispatching core, the priority
of DispatchTsk is set to be higher than
the service processing tasks of the
non-dispatching core itself, enabling
DispatchTsk to be responded timely.
When DispatchTsk does not take control
over a none—dispatching core, the core
will process the tasks of its own. Figure 7
shows such a processing flow.

3 Result Analysis

To evaluate the performance of parallel

The parameter pool is L

No

Take process parameter
from the pool

Invoke ProcessFunc to
process the assignment

Set a completion tag and

Figure 7.
Processing flow of
non-dispatching core.

notify dispatching core

=

FATEENNNIZNIOINE March 2009 Vol.7 No.1| 57

Parallel Processing Design for LTE PUSCH Demaodulation and Decoding Based on Mulfi-Core Processor
Zhang Ziran et al.

e oorfent i |

V Table 2. Serial processing vs. parallel processing in rate de—adaption (1] .bsp 2001 M].
Transport] N . R [12] DSP .
Block Quantity of Code Processing Time of Single-Core Processing Time of 3—Core Efficiency Rafio M. 2001,
) . Blocks Processor (Cycles) Processor (Cycles)
Size (bit)
75,056 13 2,600,447 1,001,607 2.6
48,944 9 1,867,429 625,102 2.98
24,472 5 905,015 544,364 2 Biographies -~
12,236 3 395,125 133,879 295 ## Zhangziran I

processing, we have conducted related
tests and measured the processing times
of rate de—adaption when a single—core
processor (for serial processing) and a
multi—core processor (for parallel
processing) are used respectively. The
test results are shown in Table 2.

The data in Table 2 indicate parallel
processing with a three—core processor
is over 2.6 times faster than serial
processing with a single—core processor
in most cases. Therefore, parallel
processing with multi—core processor
can greatly shorten the processing time
of a LTE system during uplink
demodulation and decoding. This no
doubt offers a new approach for wireless
communication system design.

4 Conclusion

The future communication systems
require much higher peak rate for the air
interface but very short processing
delay. One critical issue of
communication systems is how to

O

improve the processing speed and
capability and decrease the processing
delay". This paper analyzes parallel
processing and suggests an approach to
use multi-core processors to process
uplink demodulation and decoding of
LTE systems in parallel. The test results
demonstrate that this approach does
work quite well.

References

[1] 3GPP TSG RAN1#50bis .Timing and HARQ [S]. 2007.

[2] 3GPP TS36.212 v8.1.0. Multiplexing and Channel
Coding [S]. 2007.

[3] 3GPP TS36.211 v8.1.0. Physical Channels and
Modulation [S]. 2007.

[4] 3GPP TS36.201 v8.1.0. Physical Layer: General
Description [S]. 2007.

[56] 3GPP TS36.204 v8.0.0. Base Station (BS) Radio
Transmission and Reception [S]. 2007.

[6] 3GPP TS36.306 v8.0.0. User Equipment (UE) Radio
Access Capabilities [S]. 2007.

7] . .OFDM M.
: ,2000.
(8]) [M].
, 1992
[9] TANENBAUM A'S. M.
: . 1999.

[10] HOLMA H, TOSKALA A. WCDMA for UMTS—-HSPA
evolution and LTE [M]. 4th ed. New York, NY, USA:
John Wiley & Sons Itd, 2007.

Li Jun

Zhang Ziran graduated from
University of Electronic Science
and Technology of China. He is
now a senior engineer in ZTE
Corporation, mainly engaged in
research of frontier technologies
of such wireless communication
systems as UMTS and LTE. He
has published 5 papers and

| applied for 2 patents.

Li Jun graduated from
Huazhong University of Science
and Technology. He is now a
senior engineer in ZTE
Corporation, mainly engaged in
research of frontier technologies
of such wireless communication
systems as UMTS and LTE.

Li Changxiao graduated from
University of Electronic Science
and Technology of China. He is
now an engineer in ZTE
Corporation, mainly engaged in
research of frontier technologies
of such wireless communication
systems as UMTS and LTE.

Roundup

ZTE Rolls Out New Unified Open Environment Platform

ZTE Corporation (ZTE), a leading global provider of

management. UOE defines a common API for several

telecommunications equipment and network solutions, on
February 12, 2009, released a unique Unified Open
Environment (UOE) platform that will make it easier for
telecom operators to develop and offer new mobile services
and stay competitive in their respective markets. The ZTE
UOE service platform is aimed at addressing future global
demand for network expansion and application development.
The new ZTE UOE network solution comprises an open
module service capability and service development
environment, two of its key features that allow modular
deployment of different service networks. With an open
module service capability, it provides telecom operators a
unified management platform for integrated service
management operation and monitoring, and unified content

international organizations, including Parlay/OSA and JCP,
two technical industry consortiums that specify APIs for the
telephone network. UOE’s service development environment
offers an integrated development environment and an open
service interface, providing external IT developers and
telecom operators a wide range of development tools to meet
their specific business and individual requirements.

With the extraordinary features of UOE platform, telecom
operators can effectively implement in—house developed
network services in a converged infrastructure, as well as
partner with equipment vendors to develop unique value
added services, such as mobile newspaper, mobile stock
exchange, instant mobile news, video conferencing, voice
mail and BlackBerry applications.

B8 March 2009 Vol.7 No.1 | FATEESIVVNNINIONS

I DAEMAG\2009-02-21/VOL7\DF1.FIT——5PPS/P5

