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Abstract:

Routing lookup is an important technology for IP transmission
network and IP—-based packet switching network. Although the
multi—branch trie tree lookup —algorithm is a fast and efficient
routing lookup algorithm, it consumes large memory. The
multi—level index lookup —algorithm, as an improved
multi—branch trie tree lookup algorithm, is proposed. It expands
the original two—level index to multi-level index and introduces
a continuous flag bit storage method that is able to extremely
reduce memory overhead of routing index table while not
obviously affecting the lookup efficiency.

outing lookup is an important technology for IP
transmission network and IP—based packet switching
network. The multi—-branch trie tree lookup-algorithm ™ is
a fast and efficient routing lookup algorithm, which looks
up the index table, one after another, of a trie tree structure
according to a certain bit segment in an IP address to find the
corresponding route. An improved algorithm is proposed that
introduces an index compression mechanism and is referred to
as "two-level multi-branch compression trie tree algorithm".

1 Best—match Rule of Routing Lookup
There are 4 assumptions followed by their respective
mathematical expressions:

(1) Assume that an IP address a falls within the index range
of route A. Then Ais the route of g, i.e., Amatches a. The
mathematical expression is:

if @ & Apsie=Auar , then ae A

Here, AL and Au er @re the network prefix and mask of A.
ae Ameans that abelongsto A, i.e., Ais the route of a. The
default route is one of any IP addresses.

(2) Assume the index range of route A includes the index
range of route B. Then A is the sub—match route of B. The
mathematical expression is:

if Apfx,/en >Bpfx,/en and Baddr & Apfx,/en = Aaddr ,then BCA

Here, BC Ameans Bis a subset of A, i.e., Aincludes B. Any
route is the subset of the default route.

(8) Assume the route A has the longest mask among all
routes of address a, then A is the best—-match route of a. That is,
the longest—mask route or the route that performs effective
transfer for a. When a performs route lookup, the result should
be A. The mathematical expression is:

if Apscen =Max(Xon en), X € Ra={a e A}, then ae =A

Here, R, is the set of all routes for a in the routing table. If
ae A, there must be Ae R,. ae =Athen indicates that A is the
best route for a.

(4) Assume the route A has the longest mask among all
sub—match routes of route B. Then A is the longest—-mask
sub-match route of B. The mathematical expression is:

if At ien =Max(Xps en), X € {BC X'}, then BC =A

Here, BC =A indicates that A is the longest—-mask
sub-match route of B.

The best—-match rule of routing lookup is referred to as the
longest—mask match rule. To search for a route corresponding
to an address, if several routes are there to be used, the one
with the longest mask is selected.

2 Principle of Segmented Index Table

The segmented index table uses the mapping space of an
address to directly locate the routing table and uses index to
indicate the prefix address space of a route, thus establishing
one—to—many relationship between address and index. If the
memory issue is taken out of account, we can set up an index
array to indicate the IPv4 all-address space. This index table is
then called "All-1P Address Mapping Index Table", as shown in
Figure 1. The routing table is divided into two parts. The route
index table on the left is responsible for fast routing lookup. The
next hop table on the right stores transfer information such as
the next hop of a route, which is usually referred to as the routing
table. The index table is composed of 4 294 967 296 index
entries, indicating IPv4 addresses from 0x00000000 through
OxFFFFFFFF by turn. Every entry of the index table is used to
store the pointer of the corresponding next hop table. To use IP
address to search for a route, take the IP address as the array
subscript in the index table to retrieve the corresponding routing
table entry. For example, to find the route for the IP address
1.2.3.4, the 0x01020304th entry is taken out from the index table.
This entry corresponds to the route 0x01020300/24 through next
hop table. Each index table entry uniquely corresponds to a
routing table (in the case there is no corresponding route, the
pointer is "Null"), a route however corresponds to several index
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Routing Index Table
0x00000000

Next Hop Table

0x01020300

0x01020300/24
0x01020304

0x010203FF

OXFFFFFFFF

AFigure 1. All-IP address mapping index table.

table entries. In Figure 1, route 0x01020300/24 corresponds to
256 indexes from 0x01020300 through 0x010203FF.

In the all-IP address mapping index table, the number of
index entries to which a route corresponds depends on the
route’s mask length. If the route’s mask is pfx_len, then the
route corresponds to 2%-°%& gntries of index table.

If an index corresponds to several routes, that is, these
routes have overlapping index ranges, then the index will select
the route with the longest mask. In Figure 2, the routes
0x01020300/24, 0x01020300/16 and 0x01020304/32 in the
routing table are routes of address 0x01020304, and the third
route will be selected as it has the longest mask.

3 Two-level Index Table

3.1 Structure of Two-level Index Table

The all-IP address mapping index table undoubtedly has high
efficiency in routing lookup (it’s accurate "positioning" to be
exact, rather than "lookup"). However, the memory consumption
is huge. As the index table has 4G entries and each entry stores
4 bytes of next hop table pointer, the whole index table
consumes 16 GB of memory, which is beyond feasibility for the
time. Virtually the routing table adopts level-by—level indexing,
that is, a multi—level index table links to and locates a route. This
algorithm is derived from the multi-branch trie tree

lookup algorithm proposed by Gupta. Huang and others then
introduced index compression mechanism into that algorithm
and that index mechanism is usually referred to as

"‘two—level index".

The two—-level index table is made up of two levels of index,
as shown in Figure 3. Level-one index features invariable step
length and its entries comprise of two parts: pointer and flag.
The pointer takes the multiplex mode, i.e., the level one index
table may either point to the routing table directly or point to the
level-two index table, which then points to the routing table. The
flag indicates the step length of the level-two index table. If flag
is 0, the index table points to the routing table directly. The
level-two index employs index compression mechanism and
selects proper step length based on route’s mask length. (The

length of IP address that can be represented by certain level of
index table is called the step length of this level of index table). If
the step length of certain level of index table is n, then the index
table has 2"index table entries.

For easy description, we use the 24-8 mode to demonstrate
this point. That is, the step length of the level-one index table is
24 while the maximum step length of the level-two index table is
8. We’ll again try searching for address 0x01020304 as an
example. Since the step length of the level-one index table is
24, we take the first 3 bytes 0x010203 of the address as the
array subscript of the level-one index table. The corresponding
flag of index table is 6, indicating that the pointer entry of level
one index table doesn’t point to the routing table directly, but to
a level-two index table with the step length of 6. Therefore, the
owest 1 byte will locate its offset in the level-two index table.
Since the step length in question is 6, the offset value is the high
6 bits of the last 1 byte, namely, 0x04>>2, and what stored at
this position is the pointer of the corresponding route. As the
total step length of two levels of index table is 30, the level-two
index points to a route with the maximum mask of 30 in length.
That is to say, the total step length of index table must not be
shorter than the route’s mask. If the mask length of a route is
shorter than step length of the level-one index, there is no need
to add a level-two index table and the corresponding flag in the
level-one index table is 0. That is indicating the index entry
points directly to the routing table.

3.2 Memory Overhead of Two-Level Index
We’ Il take the 20—-12 two-level index table as example. If the
routing table supports up to 1 K routes, then the whole index
table will consume maximal. memory in the case that each route
has a corresponding largest two—level index table pointing to it
and in that case the index table will need 2°+2"x1 K=5 M index
entries. Obviously, this number makes enormous improvement
over the 4G entries mentioned before for all-IP address
mapping index table. Now we know that level-by-level
indexing saves memory space greatly, and this is because:

e the mask length of route is not always 32;

Routing Index Table Next Hop Table
0x00000000
0x01020300
0x01020300/24
0x01020304 b
0x010203FF 0x01020300/16
0x01020304/32
0x0102FFFF
OXFFFFFFFFF

A Figure 2. Schematic diagram of longest-mask matches.
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Routing Table

the previous section.

e Change the 4—byte pointer of index entry
into 2-byte array label.

® The flag field in two-level index table is

defined to contain 1 byte only, it virtually occupies
4 bytes because of the byte alignment need. The

0x01020000/16

actual memory consumption of flag field may be

decreased if the flag bit is stored continuously.
® Give up index compression technique, that

0x01020300/30

is, make index step length invariable. The index

compression technique doesn’t really decrease
memory overhead that much if the index step

Level 1 Index Table
Flag  Index
0x01020304

0 \

A
0x010203 ———>| 6
AN
AN
\\
\_Level 2 Index Table
Y
¥
0x04>>2

length is short, it will complicate algorithm
instead. Meanwhile, the index blocks with
invariable step length can be suitable for any
memory management mode.

A Figure 3. Schematic diagram of routing lookup with two—level index table.

e number of route entries supported by program is limited.

Why the level-by—level index table saves memory space?
Because it doesn’t have to map all IP address space but just
part of it according to the route in the routing table. Thus, the
sample space of address is associated to some extent to the
sample space of route. Should a two—level index table be used
to represent an IPv4 all address space, it’s necessary that each
level-one index be attached with one largest level-two index
table. That totals to 2%°+2"x2%=4 097 M index table entries. In a
word, the level-by—-level index table saves memory because of
its partial mapping of the IP address.

The level-by-level index table follows suit in using IP
address to locate the routing table directly, with different
number of attempts though. The all-IP address mapping needs
just one attempt of location while the two-level index needs two
at most. However, it’s still direct location and the lookup
efficiency is not obviously degraded.

Nevertheless, the two-level index table sometimes is not
adaptable. Such index structure still needs large memory
space. To represent an address route with 32—bit mask,
memory space of 2?x4=16 K bytes should be applied for as the
second level of index table, which can result in great memory
waste. Besides, as the second level of index adopts
compression mechanism, which saves on memory though, it’s
hard to predict the size of the index table. In addition, it is
difficult to fit to the memory management mode of memory pool
set technology.

4 Multi—level Index Table

4.1 Structure of Multi-level Index Table

As the multi-layer multi—-branch trie tree, multi-level index also
searches for routing table by segmented address location. It
has made the following improvements to the memory drawback
in two—level index.

e | ocate routing table by serially connecting multi-level
index tables. This algorithm makes use of more specific IP
address space and is able to effectively reduce memory
consumption of index table, according to analysis covered in

In a multi—level index table, indices at the

same level have the same step length. Indices at
different levels may have different step lengths. Total step length
of all index tables at different levels for an IPv4 routing table is
32. The entry of a multi-level index table is called "index entry",
which is a 16—bit serial number. The serial number can be
multiplexed and it means the array subscript of routing table or
the array subscript of the index descriptor table of next-level
index. Here the routing table is a narrow-sense one that stores
information framework array, such as next hop. The array made
up of index entries is called "index block" that corresponds to
the index table in two-level index algorithm and represents
several specific bits in route prefix. What makes it different is
that the step length of each level in a multi-level index is fixed
(while the number of entries of the second level index in the
two-level index algorithm is not fixed). Therefore, each level of
index block has fixed size, thus the memory space consumed
by each index block is predictable and the code complexity is
reduced.

Since the serial number of index entry is multiplexing, one
flag bit is needed to distinguish index entry meaning. If this flag
exists as a member of the index entry, it will occupy at least one
byte (more if considering byte alignment). To save space, we
associate each index block to a flag bit block as shown in
Figure 4. Each bit of flag bit block logically corresponds to an
entry in index block to distinguish content of index entry
attribute. If there are 8 entries of index block, the corresponding
flag bit block is 1 byte in size, that is, 8 bits.

To strengthen the association between flag bit block and
index block, we put their start addresses into the same one
framework, which is called "index descriptor". As shown in
Figure 4, the two pointers of index descriptor point to the flag bit
block and index block respectively. Each bit in the flag bit block
corresponds to one entry in the index block. For example,
meaning of the fifth index entry in the index block depends on
the fifth bit in the flag bit block. With the introduction of the index
descriptor, the index block and its corresponding flag bit block
can be located—but indirectly with the index descriptor. The
flag bit block is an array stored in the form of bytes. If the offset,
i.e., array subscript of address in index block, is known, we can
divide the subscript by 8 to obtain the subscript of
corresponding flag bit block. Then we divide the subscript by 8
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Index Descriptor
7 Flag Bit Block 0
e ——— | [[[ ][]
Block
Index Block
7

AFigure 4. Correlation between flag bit and index.

and keep the residue to get the corresponding bits.

Each level of index may possibly contain multiple
descriptors that are exist in the form of arrays and are called
"index descriptor table". Each level of index has a unique index
descriptor table that is used to store all descriptors of this level.
The index descriptor can be used to locate index block.
Therefore, we may record the subscript of descriptor, to which
the index block corresponds, in index descriptor table (as
shown in Figure 5), when it comes to connect to the next level of

routing table index, the flag bit array is not needed. The index
descriptor table is still used to associate index block, the flag bit
block pointer in descriptor table is set to "NULL" though.

® The index descriptor stores pointer of index block and flag
bit block instead of array instances. Therefore, the use of index
descriptor becomes more flexible as its structure can stand
independent of step length of index table. Descriptors of all
levels of index table may have the same structure and the
number of levels and step length is customizable.

4.2 Overhead of Multi-level Index
Here is the formula for maximum memory overhead of
multi—level index:
L=2"+2" "Mt 42 M’ (1)
Xot X+ +X,=32 (x,<32,i<n <32) 2)
Where L is the memory overhead of index table, M is the
number of route entries, n+1 is the number of route levels, and
X, X1+ X, are step lengths of all levels of index by turn. The size
of the first—level index table is irrelevant to route capacity.
Therefore, the memory overhead of the first—level index table is
related to the step length x, of first—level index only and there
are 2" entries of index. Memory overhead of the second and
third levels (and more) are related to route capacity and in the
worst case, the number of all levels of index tables (except the
first level) is the routing table capacity M. Therefore, L means
the maximum number of index entries in the index table that the
index table needs. The issue of smallest maximum memory
overhead L boils down approximately to the problem of
obtaining the extreme conditional value from the above formula.
We then come to:

index block. The multi-level index algorithm locates a

route by linking descriptor table, index block, and flag
bit block to each other:

® The index descriptor table is used to locate
index block and the corresponding flag bit block.

® The bit corresponding is used to address and
index table to calculate the offset in this level of index
block and retrieve the serial number. Then if it’s the
routing table serial number is decided based on
whether the corresponding flag bit is set or not.

e |f the stored value in index is the serial number of
sub-level index table, this serial number is taken as
the array subscript of sub—level index descriptor table
and the corresponding index descriptor is retrieved.
The above steps are then repeated.

If compared to Figure 3, the multi-level index table
is obviously more complex with more index levels and
the descriptor table is added to the connection of all
levels of index table. This node is added because
each entry of index table (block) is changed from
pointer to index.

The following issues in Figure 5 should be noted.

e For the sake of consistency of structure and

n-level Flag Bit Block

code implementation, the first—level index block and L

the first-level flag bit block are associated to each
other with index descriptor. There is only one entry in

(n+1)-level Index
Descriptor Table

n-level Index
Descriptor Table

n-level Index Block

(n+1)-level Index Block Routing Table

n-level Index Table

(n+1)-level Index Table

the first—level index descriptor table.

e Since the last entry of index block always stores ~ AFigure 5. Multi-level index correlation.
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¥V Table 1. Maximum memory overhead of multi-level index

memory overhead. The "/" in Table 2 means

Number of Index Levels

Maximum Memory Overhead under Different Route Table Capacities/MB

the overhead is too large to have the

necessity of counting.

. K x aK 8K 16K 32K 64K We can also conclude from Table 1 that
20,6,6 2.3 2.7 31 4.2 6.4 10.8 19.5 the more index levels there are, the smaller
18,7.7 10 15 25 45 8.5 16.5 325 the maximum memory overhead will be.
20,4.4.4 . 03 05 30 5 i A% However, it’s not necgssarlly true that we

should have as more index levels as
17.5.5.5 05 0.7 1.0 20 318 74 145 possible. This is because as the index level
16,4,4,4,4 0.3 0.5 0.8 15 2.9 5.6 mn increases, the efficiency of routing lookup is

¥V Table 2. Maximum memory overhead of multi-level index

Number of Index Levels

Maximum Memory Overhead under Different Route Table Capacities/MB

compromised to some extent, which can be
proved by the figures given in Table 3. That
is to say, we should take memory overhead
and lookup efficiency into account while

and Index Length 1K 2K 4K 8K 16K 32K 64K trying to increase index levels. In an extreme
16,16 257 513 1025 2 049 / / / case if there are 32 index levels, the
2012 - 0 o o - o o m_ulh—br_anch trie tree W|||_be dow_ngraded to
binary trie tree. For more information on
2 ® & &* g o G x lookup performance of multi—branch trie tree
and binary trie tree, refer to [3].
¥ Table 3. Number of clock cycles needed by index table lookup
Number of Clock Cycles Needed for Optimal Match under .
Numbézr c:jf Index Lep]lels Different Number of Route Entries Avercllge Average 5 Conclusions
Index Lengt C Time/, : . .
andindexteng 100 200 400 800 1600 yee el Multi—level index has more index levels and
20,12 208 203 220 248 235 o4 120 shorter step length than two-level index.
Therefore, it can largely reduce the mapping
20,6,6 299 215 245 253 248 252 1.26 , ) .
space of route prefix address in the index
17,555 292 262 240 234 280 262 1.31 table and thus save on memory effectively.
16,4,4,4,4 302 251 262 284 267 273 1.36 As index adopts index serial number
multiplexing, it saves half of the index
X _32+nlogM 3) storage space as compared to the pointer approach. The flag
T block again avoids the problem that actual memory assumption
32-logM . is far greater than the space required by variant, which can be
=——=— (i=1,2--n) (4)
n+1 caused by the approach of byte—by—byte storage and byte

Where logM is the routing table capacity with the
base—number being 2. Transform formulas (3) and (4) and we
get:

Xo—X;=logM (5)

Formulas (1) and (2) tell us that: if routing table capacity is
M, we get the smallest maximum memory overhead for the
index table when step length of the first level index logM is
longer than any step length of the rest levels of index.

Based on formula (1), Table 1 lists the memory overhead of
several typical index configurations under the condition of
different numbers of route entries.

In the first column of Table 1 is index levels and index length.
'20,6,6" means there are 3 levels in index table and their
respective step lengths are 20, 6 and 6. The first row lists the
route table capacities, that is, the maximum route entries that the
routing table supports. This table tells us the maximum memory
overhead in the unit of mega—bytes needed by index table
under the conditions of different index lengths and different
routing table capacities. Table 2 lists the maximum memory
overhead corresponding to two—level index table. In case the
same routing table capacity, the maximum memory overhead of
two-level index table is far greater than that of multi-level index
table. In other words, multi—level index table has better
performance than two—level index table regarding maximum

alignment. Multi-level index needs no index compression due
to its short step length and thus makes itself less as
independent on the memory management mode. Therefore, the
advantage is that, the number of routing index levels and index
step length can be set flexibly in accordance with the routing
table capacity.
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