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Abstract: Fiber-to-the-Room (FTTR) networks with multi-access point (AP) coordination face significant challenges in implementing Joint
Transmission (JT), particularly the high overhead of Channel State Information (CSI) acquisition. While the centralized wireless access net-
work (C-WAN) architecture inherently provides high-precision synchronization through fiber-based clock distribution and centralized sched-
uling, efficient JT still requires accurate CSI with low signaling cost. In this paper, we propose a deep learning-based hybrid model that syner-
gistically integrates temporal prediction and spatial reconstruction to exploit spatiotemporal correlations in indoor channels. By leveraging the
centralized data and computational capability of the C-WAN architecture, the model reduces sounding frequency and the number of antennas
required per sounding instance. Experimental results on a real-world synchronized channel dataset show that the proposed method lowers
over-the-air resource consumption while maintaining JT performance close to that achieved with ideal CSI, offering a practical low-overhead
solution for high-performance FTTR systems.
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1 Introduction
n recent years, the extensive deployment of Fiber-to-the-
Home (FTTH) has enabled gigabit and even multi-gigabit
bandwidth capabilities for household access networks'".
However, the in-home wireless segment, constrained by
issues such as uncontrolled medium competition over the air
interface, has increasingly become a performance bottleneck
affecting user experience. It often fails to deliver the high-
speed, low-latency, and reliable connectivity promised by
FTTH, thereby limiting the end-to-end network performance

P To fundamentally address the wireless

perceived by users
coverage and capacity challenges in this last segment of the in-
home network, Fiber-to-the-Room (FTTR) technology has
emerged and is being widely deployed. This trend marks a
new era of high-density, multi-access point (AP) coordinated
deployment for home Wi-Fi systems'”.

In a typical FTTR system, a Main FTTR Unit (MFU) is con-
nected via fiber or hybrid fiber to Subordinate FTTR Units
(SFUs) deployed in individual rooms, forming a star topology.
This architecture, by independently deploying SFUs in each
room, significantly mitigates signal attenuation caused by ob-

stacles like walls, achieves seamless high-speed coverage

throughout the entire household, and greatly enhances net-
work coverage capability and achievable data rates. However,
the deployment of high-density APs also introduces a series of
new challenges, the most critical being how to effectively
achieve coordination among multiple SFUs to avoid co-
channel interference and exploit potential cooperative gain.
Multi-AP  coordinated transmission, particularly Joint
Transmission (JT) technology, is regarded as the key to un-
locking the performance potential of FTTR networks. JT al-
lows multiple SFUs to cooperatively serve the same Station
(STA) on the same time-frequency resources*. Through co-
herent superposition of signals over the air, the Signal-to-
Noise Ratio (SNR) at the receiver is significantly improved,
thereby enhancing throughput and spectral efficiency". How-
ever, the practical deployment of JT technology faces two core
challenges'®. First is the PHY layer synchronization chal-
lenge. JT requires the participating transmitters to maintain
high consistency in frequency, time and phase. Any Carrier
Frequency Offset (CFO) or transmission timing deviation can
disrupt the coherence of the signals, leading to a loss of com-
bining gain, or even triggering a negative cooperation effect,
resulting in performance degradation'”. Second is the Chan-
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nel State Information (CSI) acquisition overhead challenge.
The performance of JT highly depends on accurate and timely
downlink CSI. Traditional methods require frequent over-the-
air sounding to acquire CSI, which consumes substantial wire-
less resources and generates significant signaling overhead in
high-density AP scenarios, consequently reducing the effec-
tive throughput of the system.

For the first challenge, when multiple Analog-to-Digital
Converters (ADCs) on a single AP use the same source clock
and are managed uniformly by a local processor, there is no
time-frequency synchronization problem among the antennas.
However, when extended to multiple APs, each AP employs
an independent local oscillator, introducing CFOs between
antennas of different APs, which severely affects JT perfor-
mance. To address the synchronization problem in distributed
multi-AP systems, Ref. [8] proposed that subordinate APs
could perform frequency calibration and time synchronization
based on the Null Data Packet Announcement (NDPA) frame
sent by the master AP. However, this imposes high computa-
tional requirements on the subordinate APs, and non-ideal
factors over the air make it difficult to guarantee the calibra-
tion effectiveness. Ref. [9] proposed that subordinate APs
calibrate their local oscillators by snooping the directional
synchronization signals sent by the master AP to achieve
time-frequency synchronization. However, this method intro-
duces additional delay and over-the-air overhead. Meanwhile,
Ref. [10] proposed a pre-calibration matrix to compensate for
random phase offsets among distributed arrays, yet this solu-
tion requires manual calibration efforts. Although Ref. [11] in-
troduced a master controller (MC)-based architecture that im-
proves AP scheduling for JT, it fails to address the fundamen-
tal synchronization requirement for simultaneous multi-AP
transmissions, consequently forcing sequential channel
sounding across APs and resulting in even greater over-the-
air overhead. These synchronization approaches share a com-
mon limitation: their reliance solely on over-the-air signaling
mechanisms without leveraging the underlying FTTR infra-
structure inevitably leads to substantial overhead. This funda-
mental constraint underscores the necessity of an
architecture-level solution.

For the second challenge, as noted by Ref. [12], the inher-
ent correlations of wireless channels across spatial, fre-
quency, and temporal domains allow CNN-based techniques
(originally successful in high-resolution image inpainting) to
be adapted for pilot reduction and CSI interpolation. Simi-
larly, DL-based schemes have been proven effective in com-
pressing CSI feedback payload by exploiting these physical
correlations'”. For instance, Ref. [14] introduced a one-sided
deep learning framework that leverages plug-and-play priors
to recover CSI from linear projections, effectively capturing
spatial and frequency-domain characteristics without requir-
ing joint encoder-decoder training. Meanwhile, in high-
mobility scenarios, the method proposed in Ref. [15] esti-
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mates full downlink CSI from partial uplink measurements by
exploiting both spatial correlation and temporal dependency,
demonstrating strong performance even with incomplete CSI.
While these data-driven approaches have shown promise,
they are predominantly designed and evaluated within the
context of independent APs. A critical limitation of such
frameworks is their inherent lack of architectural support for
system-wide time-frequency synchronization and unified trig-
gering. Consequently, they fail to coherently align and exploit
the rich spatial correlation across multiple, distributed APs,
which is precisely the key to unlocking the full performance
potential of coordinated systems like JT. This architectural
gap underscores the necessity of a deeply integrated solution
that co-designs the network architecture and the learning al-
gorithm, which is the core contribution of our proposed C-
WAN framework.

This paper aims to address the aforementioned challenges
by proposing a low-overhead JT solution coupled with the C-
WAN architecture of FTTR. The C-WAN architecture uses

6l enabling high-

the MFU as the centralized control center
precision clock distribution and joint triggering to each SFU
through the fiber fronthaul network. This solves the multi-
node synchronization problem at the physical layer, laying a
solid foundation for the application of JT technology. Further-
more, this paper focuses on overcoming the CSI acquisition
overhead challenge under the C-WAN architecture. We fully
utilize the characteristic of centralized computing power at the
MFU and the inherent spatiotemporal correlation of indoor
channels to propose a DL-based CSI acquisition framework.
The core of this framework is a hybrid deep learning model. It
employs a temporal prediction branch and a spatial recon-
struction branch to leverage historical CSI sequences for pre-
dicting future channel states and utilize observations from a
subset of antennas to reconstruct full-dimensional CSI, respec-
tively. The temporal prediction branch serves as the core com-
ponent that delivers accurate estimates of future channel
states, while the spatial reconstruction branch plays a comple-
mentary yet crucial role in both accelerating loss function con-
vergence and providing performance improvements. This ap-
proach can substantially reduce the frequency of sounding
and the number of antennas required per sounding instance,
thereby significantly lowering over-the-air resource overhead
while guaranteeing JT performance.

The remainder of this paper is organized as follows. Section
2 introduces the system model and formally defines the key
challenges in JT implementation. Section 3 presents the C-
WAN architecture and elaborates on its inherent advantages
for overcoming synchronization limitations. Section 4 details
the proposed deep learning-based CSI acquisition framework,
including the hybrid model design and specialized loss func-
tion. Section 5 provides comprehensive experimental results
and performance analysis. Finally, Section 6 concludes the pa-
per with summary remarks and future research directions.
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2 System Model and Challenges in JT Imple-
mentation

2.1 FTTR System Architecture and JT Transmission
Model

A typical FTTR system, as shown in Fig. 1, consists of one
MFU and K SFUs distributed in different rooms, connected
via a fiber network in a star topology. The MFU acts as the
control center of the system, responsible for network manage-
ment, resource scheduling, and data exchange; while the SFUs
serve as distributed wireless access points, responsible for sig-
nal transmission and reception.

Within this architecture, JT is employed as a key technique
to enhance the quality of service for STAs. Its core idea is that
multiple SFUs cooperatively transmit the same data stream to
the STA on the same time-frequency resource block. Under
ideal conditions, these signals combine coherently at the STA’s
receiver, significantly enhancing the SNR.

For quantitative analysis, we establish the following JT sys-
tem model for the general case. Consider K SFUs participating
in JT transmission to a single STA. The received signal at the
STA can be expressed as:

y = imhkeﬁ*sk+n (1),

=1

where P,, h,, and 6, represent the transmit power, complex
channel gain, and phase offset (relative to a common refer-
ence) of the k-th SFU, respectively. Here, s, denotes the trans-

mitted symbol of k-th SFU satisfying E[| s |2] =1, and n is the

additive white Gaussian noise (AWGN) with power a'i. Under
ideal synchronization conditions (i.e., perfect frequency, time,

07-18) and narrowband

and phase alignment among all SFUs
channel assumptions neglecting Inter-Symbol Interference
(ISI), the expression simplifies as the phase terms become co-
herent. In this case, the power of the useful signal component

is given by:

K 2
S P,

K=l

(2).

For comparison, in non-cooperative transmission (where
each SFU independently transmits non-coherent signals to the

STA), the bY Y non - coop =
K
2 /P, h,s, + n, and the total received power is simply the

i=1
sum of the individual received power from each independent

. K
hnk: Prx, non — coop zk = 1P

ditional coherent combining gain, expressed as P_/P

received signal is given

2
k|hk| . In contrast, JT achieves ad-
X, non = coop?
which is typically greater than 1. This gain significantly en-
hances both spectral efficiency and transmission reliability
compared to non-cooperative transmission.
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Figure 1. Typical Fiber-to-the-Room (FTTR) system

2.2 Key Challenges in JT Implementation

Although JT offers significant theoretical gains, its imple-
mentation in traditional distributed FTTR architectures (Fig.
2a), where SFUs operate independently, faces two major chal-
lenges: the PHY layer synchronization challenge and the CSI
acquisition overhead challenge.

2.2.1 PHY Layer Synchronization Challenge

Each SFU uses an independent local oscillator, whose in-
herent crystal oscillator drift introduces CFOs (Af,). Simulta-
neously, the lack of a unified transmission trigger mechanism
among distributed nodes introduces random transmission de-
lay deviations (Az,), which subsequently translate into phase
offsets (A, = 2mf,Az,). In this case, the received signal be-

comes time-varying:

y(t)= i«/ﬁkhks(l_ﬁ)é(hhﬂb‘) (3),

k=1

where 5(t) is the transmitted symbol waveform, 7, is the propa-
gation delay, f, is the carrier frequency, and ¢, is the initial
phase. Considering the two-SFU (K =2) scenario, the re-
ceived power can be expanded as:

2 2
P (t)=P\|h| + Pyh,| +
2 /PP, |h hy|cos(2mAf - 1 + Ad) (4),
where Af = Af, = Af, and Ap = Ap, — Ad,. The cosine time-
varying term in this expression indicates that the received

power fluctuates periodically at the difference frequency Af,
causing unstable SNR and increased Bit Error Rate (BER),
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Figure 2. (a) Traditional distributed Fiber-to-the-Room (FTTR) architecture; (b) FTTR/centralized wireless access network (C-WAN) architecture

which severely disrupts the coherent combining effect of JT.

2.2.2 CSI Acquisition Overhead Challenge

The performance of JT also highly depends on accurate and
timely downlink CSI. Each SFU needs to perform precoding
based on CSI to adjust its beam direction precisely towards
the target STA!"". However, acquiring the joint CSI for mul-
tiple APs requires frequent over-the-air sounding procedures.

In the traditional distributed architecture, to perform multi-
AP channel sounding, a leading AP is needed to coordinate
other APs to send Null Data Packet (NDP) frames in a roughly
synchronized manner to the STA. The STA then needs to feed
back the measured CSI. This process introduces substantial
over-the-air signaling overhead and feedback delay, consum-
ing significant air interface resources and severely constrain-
ing the system’ s effective throughput. Furthermore, it is diffi-
cult to guarantee the simultaneity of CSI measurements across
distributed nodes, and CSI aging occurs during backhaul and
processing, leading to precoding distortion that also signifi-
cantly reduces JT gain.

3 C-WAN Architecture and its Enabling
Role for JT

The aforementioned limitations indicate that addressing the
implementation challenges of JT necessitates innovation at the
network architecture level. A novel C-WAN architecture pres-
ents a viable solution to these challenges®”.

3.1 C-WAN Architecture Overview

The innovation of C-WAN over the traditional FTTR archi-
tecture lies in its master-slave control and functional recon-
figuration. As shown in Fig. 2b, this architecture comprises
two core functional layers. The first is MFU (the central pro-
cessing unit), which acts as the role of the traditional home
gateway while also integrating baseband processing capabili-
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ties and a centralized controller. All core signal processing
(e.g., channel coding, precoding, scheduling) and coordination
algorithms are completed within the MFU. The second layer is
formed by SFUs (distributed radio units): The functionality of
the SFUs deployed in various rooms is simplified, primarily
handling radio frequency transmission and reception and
simple PHY layer functions. They are connected to the MFU
via a fiber fronthaul network.

This architecture transforms the traditional problem of dis-
tributed AP coordination into a centralized computing prob-
lem within a single central processing unit, thereby making
high-precision JT feasible at the system level.

3.2 Solution of C-WAN to JT Synchronization Challenge

The C-WAN architecture addresses the issues of CFO and
transmission timing synchronization at their root through the
following mechanisms.

3.2.1 High-Precision Clock Distribution and Frequency Offset
Elimination

C-WAN leverages the low-loss, high-stability physical char-
acteristics of fiber links to distribute a unified reference clock
from the MFU to all SFUs. Protocols like White Rabbit, which
utilize precise hardware timestamps and delay compensation
algorithms, can be employed to achieve sub-nanosecond clock
synchronization accuracy. Measurements indicate that this
scheme can achieve clock synchronization with a standard de-
viation below 100 ps in FTTR scenarios™.

Taking the 160 MHz channel bandwidth in the IEEE
802.11ax standard as an example, its sampling period is 6.25 ns.
The synchronization error of C-WAN (100 ps) constitutes only
about 1.6% of the sampling period, far below the typical sym-
bol synchronization tolerance required for JT (usually <10%).
This means the local oscillators of all SFUs can be effectively
locked to the same frequency reference, eliminating CFO and

laying a solid foundation for phase coherence®.
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3.2.2 Centralized Scheduling and Joint Triggering

In the C-WAN architecture, the MFU acts as the sole sched-
uling center, possessing the capability to accurately measure
and compensate for the fiber transmission delay of signals to
each SFU. When JT transmission is required, the MFU issues
joint trigger commands containing precise transmission time-
stamps to each SFU. Each SFU adjusts its transmission timing
according to these instructions, thereby achieving symbol-
level transmission synchronization and eliminating the phase

deviation (A¢) caused by trigger randomness' ™.

3.3 C-WAN Support for Data and Computing Centralization

The value of C-WAN extends beyond solving the synchroni-
zation problem; it creates uniquely favorable conditions for de-
ploying advanced algorithms such as deep learning to over-
come the CSI overhead challenge. This advantage stems from
three facets of centralization: 1) Data centralization: The MFU
centralizes the raw In-Phase/Quadrature (IQ) or CSI data from
all SFUs, naturally forming a global, consistent joint channel
dataset. This provides the essential and unique data founda-
tion for training deep learning models that require multi-AP
data as input, which is difficult to obtain in a distributed archi-
tecture. 2) Computing power centralization: The MFU can inte-
grate substantial computational resources, which are neces-
sary for handling the computational load for deep learning
model training and inference. 3) Control centralization: The
centralized scheduler in the MFU may directly and rapidly is-
sue unified precoding matrices and transmission instructions
to all SFUs based on the prediction results of the deep learn-
ing model. This avoids the delays and inconsistencies associ-
ated with distributed decision-making, ensuring that the pre-
dicted CSI is applied timely and accurately.

On this basis, the next section will elaborate in detail on
how deep learning can be leveraged within the C-WAN archi-
tecture to significantly reduce CSI acquisition overhead.

4 Deep Learning-Based Low-Overhead CSI

Acquisition Method

Although the C-WAN architecture solves the JT synchroni-
zation challenge and aggregates computing and data resources
at the MFU, adopting the traditional full-dimensional, periodic
channel sounding method would still impose immense over-
the-air overhead, severely constraining the effective through-
put of the FTTR system.

Fortunately, the indoor FTTR C-WAN scenario provides
three advantageous conditions for optimizing CSI acquisi-
tion. First, temporal correlation arises from the low mobility
of STAs, leading to slow channel variation and small Dop-
pler shifts. Historical CSI sequences contain the potential
for predicting future CSI®¥. Second, spatial correlation is
inherent because the positions of SFUs are fixed after de-
ployment, and the channel responses between their antenna
arrays exhibit structural properties in the spatial domain.
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This structure exists not only within individual SFUs but
also between different SFUs. Therefore, the MFU may infer
the channel state of all antennas using observations from a
subset of antennas per SFU. Third, protocol adaptability al-
lows the MFU to select clusters of antennas that contribute
more significantly to channel reconstruction to participate
in the sounding process, based on learned iterative weights.
Since the C-WAN architecture virtualizes all SFUs as one
large AP, this adjustment is transparent to the STA side, re-
quires no additional signaling overhead, and offers excel-
lent compatibility.

Leveraging the above advantages, this section proposes a
deep learning-based low-overhead CSI acquisition framework
that fully integrates with the FTTR C-WAN architecture®’,
Its goal is to significantly extend the sounding period by uti-
lizing historical CSI to predict future CSI, while maintaining
JT performance. Furthermore, during sounding, it uses obser-
vations from a small number of antennas to reconstruct the
CSI for all antennas, reducing the resource occupation per

sounding instance.

4.1 Problem Definition
The traditional scheme requires full-dimensional sounding

every T meaning all antennas across all SFUs participate

frame?

in probing. Its overhead is:

N X KX Ly

OH,,, o< T

(5),

frame

where N, denotes the number of sounding antennas per SFU,
K is the total number of SFUs, and L, represents the number
of Long Training Field (LTF) symbols required per antenna.
The objective of this paper is to reduce the overhead to:

11

proposed = ? x E X OHfu]l (6)9

OH
where T > 1 is the sounding period extension factor, and R =
N,/N, > 1 is the antenna compression ratio (N, is the number
of antennas actually participating in sounding), corresponding
to the proportion of required HE-LTF symbols®®. Specifically,
this paper addresses the following problem: Given the histori-
cal L . CSI sequence of all antennas ﬁ(t -L+ 1),~-,ﬁ(t)

and the partial antenna observations H, (¢ + 1) at time instant

frame

t + 1, the objective is to learn a mapping function f( -; @)

that accurately estimates the full-dimensional CSI at

timet + 1:
A+ 0)=f({H(- L+ 1) H ()],
Hy(1+1);0) (7).
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4.2 Hybrid Deep Learning Model Design

To fully exploit the advantage of the C-WAN architecture in
acquiring global CSI, this paper proposes a dual-branch hy-
brid deep learning model. It achieves high-precision estima-
tion and reconstruction of full-dimensional CSI by synergisti-
cally utilizing the temporal and spatial correlation of the chan-
nel. This model enables accurate CSI estimation with reduced
sounding overhead, thereby improving the overall throughput
of JT transmission.

The structure of this hybrid model is shown in Fig. 3. It
adopts a dual-branch parallel processing architecture, com-
prising three core components: a spatial reconstruction
branch, a temporal prediction branch, and an adaptive fusion
module. The outputs of the spatial reconstruction branch and
the temporal prediction branch are fused using adaptive
weighting, collaboratively leveraging the temporal and spatial
correlations of the channel. Finally, the complete CSI matrix
is output through convolutional layers, dimension reshaping,
and complex number reconstruction, achieving high-precision

estimation of the full-dimensional CSI.

1) Spatial Reconstruction Branch: The purpose of this branch
is to recover missing spatial information from the partial an-
tenna observations. Leveraging the global channel information
characteristic provided by the C-WAN architecture, the model
selects the half of the antennas per SFU that contribute most to
the reconstruction (based on the loss function) for sounding.
This effectively reduces the dimensionality of the original CSI
matrix. The original matrix, which encompasses all antennas,
has dimensions [N, ANT,, ANT ,NUM, f, . After reduc-
tion, the matrix contains only partial antenna observations, with

dimensions [ N, ANT, /2, ANT,, NUM,../....ic. ] This reduc-

tion lowers the overhead of the sounding process. Here, N de-
notes the batch size; ANT, and ANT, are the number of anten-
nas in the x- and y-directions of the array, respectively; NUM

ubcarrier ]

is the number of transmitters, and f is the number of

ubcarrier

OFDM subcarriers. After preprocessing steps such as com-
plex number separation and spatial dimension flattening, the

-
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Figure 3. Hybrid model architecture that fuses CNN and ResNet
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core of the perception branch lies in multi-level feature learn-
ing. The model employs a combination of deconvolutional lay-
ers, convolutional layers, and residual blocks for feature ex-
traction, ultimately generating the Spatial Feature Map.

2) Temporal Prediction Branch: Targeting the characteristics
of indoor FTTR scenarios where STA movement is slow, chan-
nel variation is continuous, and Doppler shift is low, this branch
aims to predict the channel state by leveraging the temporal cor-
relation of historical CSI sequences””. The input to this branch
is the historical complete CSI matrix spanning T, time steps,
with dimensions [N - T, ANT , ANT , NUM,, [, micr }- After
data preprocessing including complex number separation and
spatial dimension flattening, a feature representation is ob-
tained. The core of the temporal prediction branch lies in
multi-scale temporal modeling. The model employs two suc-
cessive dilated residual blocks and a 1X1 convolutional block.
This design allows the model to expand its temporal receptive
field, enabling it to capture time dependencies at various
scales. The output dimension of each dilated residual block re-
mains consistent, ensuring uniformity in feature dimensions
and ultimately generating the Temporal Feature Map. The in-
troduction of dilated convolutions allows the model to gain
richer temporal context information without a significant in-
crease in the number of parameters, thus improving the accu-
racy of temporal prediction®,

3) Adaptive Fusion Module: To exploit the complementarity
of spatial and temporal information, the model integrates an
adaptive weighted fusion module. This module combines the
outputs of the spatial reconstruction branch and the temporal
prediction branch for more precise CSI estimation. The fusion
formula is as follows:
soc Fspatial + (l - 0[) . Ftcmpoml (S)a

reconstructed

where F_ ., represents the output features of the spatial re-
construction branch, F . represents the output features of
the temporal prediction branch, and « is a trainable weight pa-
rameter initialized to 0.5. Through the end-to-end training pro-
cess, the model can adaptively learn the optimal weight ratio
between spatial and temporal information. The fused features
undergo further deep feature optimization through two addi-
tional residual blocks. Finally, the complete CSI matrix with
dimensions [ N, ANT , ANT , NUM,, f ] is output via 1X1 con-
volutional layers, dimension reshaping, and complex number
reconstruction.

4.3 Loss Function Design

The optimization objective of this paper is to maximize the
JT transmission performance, rather than directly minimize
the Mean Squared Error (MSE) between the predicted CSI H
and the true CSI H. Therefore, we design a Signal-to-
Interference-plus-Noise Ratio (SINR) -oriented loss function
based on the precoding matrix, constructed as follows.

ZHANG Yang, CEN Zihan, ZHAN Wen, CHEN Xiang

Our design employs Zero-Forcing (ZF) precoding, a choice
motivated by the generally high-SNR conditions inherent in
FTTR deployments due to dense AP placement and short
transmission distances. Under such propagation environ-
ments, ZF not only achieves near-optimal performance but
also benefits model training through its sensitivity to channel
inaccuracies.

The loss function construction proceeds as follows. First,
based on the true CSI matrix H and the predicted CSI matrix

H, the precoding matrices are calculated using ZF precoding:

W= H"(HH")" 9),
N ~ A A -1
W= A"(An") (10).

Subsequently, the predicted precoding matrix W is used for
signal transmission, and the received signal power and inter-
ference components are calculated. The useful received signal
power is:

P, = |||

2
(11).

P
Due to the mismatch between the precoding matrix and the
true channel, additional interference is introduced. The

equivalent noise power P_ . includes the thermal noise power

P, (which can be estimated via Received Signal Strength Indi-
cator (RSSI)) and the aforementioned interference power.
Finally, the loss function is defined as the negative value of
the sum of achievable spectral efficiency across all subcarri-
ers, aiming to optimize the overall throughput of the JT trans-

mission. The SINR on the i-th subcarrier is:

R
SINR, = %L = — (12),

Pnnise,i
zj #1

A

aw

+o!?
ij

where o represents the thermal noise power, obtainable by
measuring background noise power during packet intervals.
The overall loss function is:

1
L= —N—Elogzu + SINR,) (13).

sci=1

This loss function directly penalizes the SINR degradation
caused by precoding mismatch due to CSI prediction errors,
reflecting the fundamental requirements of the communication
system for high throughput and reliable transmission.

4.4 Synergistic Integration of Hybrid Model Within
FTTR C-WAN Architecture
As illustrated in Fig. 3, the proposed low-overhead sound-
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ing process operates as follows: leveraging the C-WAN’ s
logical abstraction of all SFUs as a single virtual AP, the
MFU initiates a coordinated sounding process. It transmits
an NDPA frame declaring a reduced number of antennas (a
subset determined by the model’ s spatial reconstruction ca-
pability). Subsequently, the MFU uses its synchronized trig-
gering mechanism to instruct the selected antennas across
different SFUs to transmit NDP frames simultaneously. From
the perspective of the STA, this process is indistinguishable
from a standard sounding procedure; it responds with a Com-
pressed Beamforming (CBF) report based on the declared an-
tenna count, remaining unaware of the underlying antenna se-
lection strategy.

Upon receiving the STA’ s feedback, the MFU, housing the
centralized computational resources, executes the hybrid
model. The model fuses the limited real-time observations
from the partial antenna sounding with the rich historical
channel information available in the centralized dataset.
Through its temporal prediction and spatial reconstruction
branches, it reconstructs the full-dimensional CSI for all an-
tennas involved in the JT transmission. This end-to-end pro-
cess, from coordinated partial sounding to centralized CSI re-
construction, achieves a significant reduction in over-the-air
overhead while maintaining full backward compatibility with
existing standards, as no changes are required at the STA side.

5 Experimental Results and Analysis

This section presents a comprehensive evaluation of the
proposed C-WAN architecture and hybrid deep learning
model for low-overhead JT in FTTR networks. The experi-
ments are designed to validate the effectiveness of our solu-
tion in addressing both synchronization challenges and CSI
acquisition overhead. Through systematic testing on a real-
world synchronized channel dataset, we demonstrate the per-
formance of our approach in terms of CSI estimation accu-
racy, spectral efficiency, and overall system throughput com-
pared to baseline methods.

5.1 Channel Model and Dataset

In our experimental setup, which is based on the C-WAN
architecture where the MFU acts as the central controller for
acquiring downlink JT precoding CSI, we leverage the channel
reciprocity of TDD systems''®. Since direct downlink CSI ac-
quisition through STA feedback is complex and introduces sig-
nificant overhead, we use uplink channel sounding measure-
ments as a practical substitute to generate the training data for
the proposed model.

This study utilizes a real-world channel dataset (espargos-
0005 for model development and validation. This dataset
was collected using 4 distributed ESPARGOS antenna arrays
(each with 8 antennas) deployed around the perimeter of a
room, acting as receivers (simulating 4 SFUs). A moving trans-
mit antenna (simulating a STA) transmitted Wi-Fi signals
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within a 7X7X3 meter laboratory. Using a common external
clock and synchronous triggering mechanism, all arrays syn-
chronously collected CSI at a sampling rate of 100 Hz, simu-
lating the synchronous multi-AP channel measurement envi-
ronment of the C-WAN architecture. Thus, the channel of the
k-th SFU at time ¢ can be represented as a matrix M € C" ™",
where the number of antennas per SFU N, = 8 and the number
of subcarriers N, = 117. The dataset contains CSI samples for
186 879 time instances. To strictly simulate the actual online
prediction scenario, the data is split chronologically into a
training set (70%), a validation set (15%), and a test set (15%).

Model performance is evaluated using two key metrics: the
Normalized Mean Squared Error (NMSE) for assessing CSI es-
timation accuracy, and the spectral efficiency loss function
(defined in Section 4) for quantifying the impact of predicted
CSI on JT transmission performance. The NMSE is calculated
between the predicted channel matrix H and the true channel
matrix H, serving as a key metric to quantify the accuracy of

N 2
H—H]F

our CSI estimation, with the expression NMSE = |2
.

In simulations, we select the following three baseline meth-
ods for comparison: 1) the Full Sounding (Oracle) Method,
which assumes perfect and real-time full-dimensional CSI is
available and thus represents the theoretical upper bound of
JT transmission performance, used to measure the gap be-
tween the proposed method and optimal performance; 2) the
Temporal Prediction Method, an ablated version of the fusion
model that disables the spatial reconstruction branch (i.e., the
H, (¢ + 1) input), and can only rely on historical information

up to time ¢ — 1 to predict the channel at time t; 3) the Spatial
Reconstruction Branch, a counterpart ablation that retains
only the spatial reconstruction branch while disabling the
temporal prediction component, thereby estimating the full
CSI solely from the partial antenna observations H, (¢ + 1) at
the current time instant without leveraging any historical
channel information.

5.2 Model Training Results Analysis

To validate the effectiveness of the proposed hybrid deep
learning model, we trained the model using the Adam opti-
mizer with a batch size of 64. Fig. 4a shows the change in
NMSE on the training and test sets versus training iterations,
while Fig. 4b shows the convergence curve of the spectral effi-
ciency loss function L. It can be observed that both loss func-
tions decrease steadily with iterations, and the validation loss
does not show a significant increase, indicating good general-
ization capability of the model. The spectral efficiency loss on
the training and test sets eventually converges to similar val-
ues, further proving the strong adaptability and stability of
the model.

As shown in Fig. 5a, we conducted experiments with vary-
ing numbers of sounding antennas (N, = 1, 2, 4, 6) to evaluate
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their impact on CSI reconstruction performance. The results
demonstrate that under the C-WAN architecture, the channel
CSI exhibits significant spatial correlation, with larger N, val-
ues yielding better prediction accuracy. In Fig. 5b, we further
compare two antenna selection strategies: random selection
and structured selection. Due to the close proximity of an-
tenna arrays in the dataset, the difference in loss function con-
vergence between these strategies was minimal. Considering
the FTTR deployment scenario where APs are distributed
across different rooms and antennas within the same AP pos-
sess stronger spatial correlation, we adopted N, = 4 with a

structured selection approach, which used one antenna from

each of the two antenna arrays per AP, for subsequent experi-
ments. This configuration maintains a balance between recon-
struction accuracy and practical deployment constraints.

Fig. 6a illustrates the evolution of trainable weights in the
model’ s adaptive fusion module across training iterations,
where the temporal prediction branch ultimately achieves an
average weight of 0.98 after multiple iterations. This result in-
dicates that in indoor low-mobility scenarios, channel varia-
tions exhibit strong temporal correlation. Relying solely on the
historical CSI sequence is sufficient to make highly accurate
estimates of the future channel state, while the corrective ef-
fect of the observations from the partial antennas at the cur-

ZTE COMMUNICATIONS
December 2025 Vol. 23 No. 4

| 73



Special Topic | C-WAN for FTTR: Enabling Low-Overhead Joint Transmission with Deep Learning

ZHANG Yang, CEN Zihan, ZHAN Wen, CHEN Xiang

1.0 , .
gaadd

SOOOOOEEEEEEEE
=B

0.8 a —6— a (spatial reconstruction branch)

o - B - 1-a (temporal prediction branch)

Weight o

0.8 . . . . .
—&—Main model

07k - & ~Temporal prediction branch

' ~+£-—Spatial reconstruction branch

Validation loss

0.1 ; ; ’ ’ '
0

Figure 6. (a) Adaptive fusion weight « for the temporal branch and (b) performance comparison of model variants

rent moment is relatively limited. This finding empirically sup-
ports a new paradigm for channel acquisition dominated by
prediction and assisted by sounding, suggesting that the
sounding period can be significantly extended, thereby offer-
ing the potential for substantially reducing system overhead.

Although the temporal prediction branch dominates the
model, the spatial reconstruction branch still provides indis-
pensable value. To quantitatively evaluate its contribution, we
conduct an ablation study comparing three model variants: the
temporal-prediction-only model, the spatial-reconstruction-
only model, and the full hybrid model with adaptive a. As il-
lustrated in Fig. 6b, the inclusion of the spatial branch accel-
erates the convergence of the loss function and yields measur-
able performance gains. These results confirm the unique role
of the spatial reconstruction branch in feature enhancement
and training stabilization.

5.3 System Performance Evaluation

To further evaluate the practical effectiveness of the pro-
posed method in the JT transmission scenario, we compared
the Spectral Efficiency (SE) achievable by the system after
employing the predicted CSI for precoding. Fig. 7 shows the
Cumulative Distribution Function (CDF) curves of the SE on
the test set for the proposed hybrid model and the two base-
line methods.

The results show that the Oracle scheme with complete real-
time CSI achieves the optimal spectral efficiency, represent-
ing the theoretical upper bound for JT transmission perfor-
mance. The SE curve of the proposed hybrid model is the clos-
est to the Oracle performance among all practical (non-oracle)
methods, with a median SE gap of less than 5%, indicating
that the hybrid model can effectively maintain JT gain even
with low sounding overhead.
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Notably, the simplified model with only the temporal predic-
tion branch (i.e., ablated spatial reconstruction branch) per-
forms the worst. This further confirms the important role of the
spatial reconstruction branch in compensating for instanta-
neous channel information and improving the completeness of

CSI estimation.

6 Conclusions

This paper addresses the critical challenges associated with
implementing efficient JT in FTTR networks. To overcome
physical layer synchronization issues, the proposed C-WAN
architecture leverages a fiber fronthaul network to provide
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Figure 7. Cumulative Distribution Function (CDF) of achievable spec-
tral efficiency for different CSI acquisition methods
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high-precision clock distribution and coordinated transmis-
sion triggering. This approach effectively eliminates carrier
frequency offsets and timing deviations, establishing a robust
PHY-layer foundation for JT. To mitigate the overhead of CSI
acquisition, we develop a hybrid deep learning model that uti-
lizes the centralized data, computation, and control capabili-
ties of the C-WAN architecture, along with inherent spatiotem-
poral correlations in indoor channels. By integrating temporal
prediction and spatial reconstruction branches, the model
achieves highly accurate CSI estimates while drastically re-
ducing the need for frequent sounding. Experimental results
based on a real-world synchronized channel dataset demon-
strate that the proposed solution significantly reduces over-
the-air resource consumption while maintaining JT perfor-
mance close to that achieved with ideal CSI. This work offers
a practical and efficient framework for high-performance coor-
dinated transmission in next-generation FTTR systems. Future
work will explore transfer learning and domain adaptation
techniques to fine-tune or train the model on test sets of vary-
ing scenario scales, thereby enhancing its generalization capa-
bility across diverse deployment environments. Additionally,
assessing the feasibility and effectiveness of deploying our al-
gorithm on hardware platforms will also be considered as part
of future work.
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