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Abstract: Fiber-to-the-Room (FTTR) networks with multi-access point (AP) coordination face significant challenges in implementing Joint 
Transmission (JT), particularly the high overhead of Channel State Information (CSI) acquisition. While the centralized wireless access net‐
work (C-WAN) architecture inherently provides high-precision synchronization through fiber-based clock distribution and centralized sched‐
uling, efficient JT still requires accurate CSI with low signaling cost. In this paper, we propose a deep learning-based hybrid model that syner‐
gistically integrates temporal prediction and spatial reconstruction to exploit spatiotemporal correlations in indoor channels. By leveraging the 
centralized data and computational capability of the C-WAN architecture, the model reduces sounding frequency and the number of antennas 
required per sounding instance. Experimental results on a real-world synchronized channel dataset show that the proposed method lowers 
over-the-air resource consumption while maintaining JT performance close to that achieved with ideal CSI, offering a practical low-overhead 
solution for high-performance FTTR systems.
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1 Introduction

In recent years, the extensive deployment of Fiber-to-the-
Home (FTTH) has enabled gigabit and even multi-gigabit 
bandwidth capabilities for household access networks[1].  
However, the in-home wireless segment, constrained by 

issues such as uncontrolled medium competition over the air 
interface, has increasingly become a performance bottleneck 
affecting user experience.  It often fails to deliver the high-
speed, low-latency, and reliable connectivity promised by 
FTTH, thereby limiting the end-to-end network performance 
perceived by users[2].  To fundamentally address the wireless 
coverage and capacity challenges in this last segment of the in-
home network, Fiber-to-the-Room (FTTR) technology has 
emerged and is being widely deployed.  This trend marks a 
new era of high-density, multi-access point (AP) coordinated 
deployment for home Wi-Fi systems[3].

In a typical FTTR system, a Main FTTR Unit (MFU) is con‐
nected via fiber or hybrid fiber to Subordinate FTTR Units 
(SFUs) deployed in individual rooms, forming a star topology. 
This architecture, by independently deploying SFUs in each 
room, significantly mitigates signal attenuation caused by ob‐
stacles like walls, achieves seamless high-speed coverage 

throughout the entire household, and greatly enhances net‐
work coverage capability and achievable data rates. However, 
the deployment of high-density APs also introduces a series of 
new challenges, the most critical being how to effectively 
achieve coordination among multiple SFUs to avoid co-
channel interference and exploit potential cooperative gain.

Multi-AP coordinated transmission, particularly Joint 
Transmission (JT) technology, is regarded as the key to un‐
locking the performance potential of FTTR networks. JT al‐
lows multiple SFUs to cooperatively serve the same Station
(STA) on the same time-frequency resources[4]. Through co‐
herent superposition of signals over the air, the Signal-to-
Noise Ratio (SNR) at the receiver is significantly improved, 
thereby enhancing throughput and spectral efficiency[5]. How‐
ever, the practical deployment of JT technology faces two core 
challenges[6]. First is the PHY layer synchronization chal‐
lenge. JT requires the participating transmitters to maintain 
high consistency in frequency, time and phase. Any Carrier 
Frequency Offset (CFO) or transmission timing deviation can 
disrupt the coherence of the signals, leading to a loss of com‐
bining gain, or even triggering a negative cooperation effect, 
resulting in performance degradation[7]. Second is the Chan‐
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nel State Information (CSI) acquisition overhead challenge. 
The performance of JT highly depends on accurate and timely 
downlink CSI. Traditional methods require frequent over-the-
air sounding to acquire CSI, which consumes substantial wire‐
less resources and generates significant signaling overhead in 
high-density AP scenarios, consequently reducing the effec‐
tive throughput of the system.

For the first challenge, when multiple Analog-to-Digital 
Converters (ADCs) on a single AP use the same source clock 
and are managed uniformly by a local processor, there is no 
time-frequency synchronization problem among the antennas. 
However, when extended to multiple APs, each AP employs 
an independent local oscillator, introducing CFOs between 
antennas of different APs, which severely affects JT perfor‐
mance. To address the synchronization problem in distributed 
multi-AP systems, Ref. [8] proposed that subordinate APs 
could perform frequency calibration and time synchronization 
based on the Null Data Packet Announcement (NDPA) frame 
sent by the master AP. However, this imposes high computa‐
tional requirements on the subordinate APs, and non-ideal 
factors over the air make it difficult to guarantee the calibra‐
tion effectiveness. Ref. [9] proposed that subordinate APs 
calibrate their local oscillators by snooping the directional 
synchronization signals sent by the master AP to achieve 
time-frequency synchronization. However, this method intro‐
duces additional delay and over-the-air overhead. Meanwhile, 
Ref. [10] proposed a pre-calibration matrix to compensate for 
random phase offsets among distributed arrays, yet this solu‐
tion requires manual calibration efforts. Although Ref. [11] in‐
troduced a master controller (MC)-based architecture that im‐
proves AP scheduling for JT, it fails to address the fundamen‐
tal synchronization requirement for simultaneous multi-AP 
transmissions, consequently forcing sequential channel 
sounding across APs and resulting in even greater over-the-
air overhead. These synchronization approaches share a com‐
mon limitation: their reliance solely on over-the-air signaling 
mechanisms without leveraging the underlying FTTR infra‐
structure inevitably leads to substantial overhead. This funda‐
mental constraint underscores the necessity of an 
architecture-level solution.

For the second challenge, as noted by Ref. [12], the inher‐
ent correlations of wireless channels across spatial, fre‐
quency, and temporal domains allow CNN-based techniques 
(originally successful in high-resolution image inpainting) to 
be adapted for pilot reduction and CSI interpolation. Simi‐
larly, DL-based schemes have been proven effective in com‐
pressing CSI feedback payload by exploiting these physical 
correlations[13]. For instance, Ref. [14] introduced a one-sided 
deep learning framework that leverages plug-and-play priors 
to recover CSI from linear projections, effectively capturing 
spatial and frequency-domain characteristics without requir‐
ing joint encoder-decoder training. Meanwhile, in high-
mobility scenarios, the method proposed in Ref. [15] esti‐

mates full downlink CSI from partial uplink measurements by 
exploiting both spatial correlation and temporal dependency, 
demonstrating strong performance even with incomplete CSI. 
While these data-driven approaches have shown promise, 
they are predominantly designed and evaluated within the 
context of independent APs. A critical limitation of such 
frameworks is their inherent lack of architectural support for 
system-wide time-frequency synchronization and unified trig‐
gering. Consequently, they fail to coherently align and exploit 
the rich spatial correlation across multiple, distributed APs, 
which is precisely the key to unlocking the full performance 
potential of coordinated systems like JT[4]. This architectural 
gap underscores the necessity of a deeply integrated solution 
that co-designs the network architecture and the learning al‐
gorithm, which is the core contribution of our proposed C-
WAN framework.

This paper aims to address the aforementioned challenges 
by proposing a low-overhead JT solution coupled with the C-
WAN architecture of FTTR. The C-WAN architecture uses 
the MFU as the centralized control center[16], enabling high-
precision clock distribution and joint triggering to each SFU 
through the fiber fronthaul network. This solves the multi-
node synchronization problem at the physical layer, laying a 
solid foundation for the application of JT technology. Further‐
more, this paper focuses on overcoming the CSI acquisition 
overhead challenge under the C-WAN architecture. We fully 
utilize the characteristic of centralized computing power at the 
MFU and the inherent spatiotemporal correlation of indoor 
channels to propose a DL-based CSI acquisition framework. 
The core of this framework is a hybrid deep learning model. It 
employs a temporal prediction branch and a spatial recon‐
struction branch to leverage historical CSI sequences for pre‐
dicting future channel states and utilize observations from a 
subset of antennas to reconstruct full-dimensional CSI, respec‐
tively. The temporal prediction branch serves as the core com‐
ponent that delivers accurate estimates of future channel 
states, while the spatial reconstruction branch plays a comple‐
mentary yet crucial role in both accelerating loss function con‐
vergence and providing performance improvements. This ap‐
proach can substantially reduce the frequency of sounding 
and the number of antennas required per sounding instance, 
thereby significantly lowering over-the-air resource overhead 
while guaranteeing JT performance.

The remainder of this paper is organized as follows. Section 
2 introduces the system model and formally defines the key 
challenges in JT implementation. Section 3 presents the C-
WAN architecture and elaborates on its inherent advantages 
for overcoming synchronization limitations. Section 4 details 
the proposed deep learning-based CSI acquisition framework, 
including the hybrid model design and specialized loss func‐
tion. Section 5 provides comprehensive experimental results 
and performance analysis. Finally, Section 6 concludes the pa‐
per with summary remarks and future research directions.

66



ZTE COMMUNICATIONS
December 2025 Vol. 23 No. 4

ZHANG Yang, CEN Zihan, ZHAN Wen, CHEN Xiang 

C-WAN for FTTR: Enabling Low-Overhead Joint Transmission with Deep Learning   Special Topic

2 System Model and Challenges in JT Imple⁃
mentation

2.1 FTTR System Architecture and JT Transmission 
Model

A typical FTTR system, as shown in Fig. 1, consists of one 
MFU and K SFUs distributed in different rooms, connected 
via a fiber network in a star topology. The MFU acts as the 
control center of the system, responsible for network manage‐
ment, resource scheduling, and data exchange; while the SFUs 
serve as distributed wireless access points, responsible for sig‐
nal transmission and reception.

Within this architecture, JT is employed as a key technique 
to enhance the quality of service for STAs. Its core idea is that 
multiple SFUs cooperatively transmit the same data stream to 
the STA on the same time-frequency resource block. Under 
ideal conditions, these signals combine coherently at the STA􀆳s 
receiver, significantly enhancing the SNR.

For quantitative analysis, we establish the following JT sys‐
tem model for the general case. Consider K SFUs participating 
in JT transmission to a single STA. The received signal at the 
STA can be expressed as:

y = ∑
k = 1

K

Pk  hk ejθk sk + n (1),

where Pk, hk, and θk represent the transmit power, complex 
channel gain, and phase offset (relative to a common refer‐
ence) of the k-th SFU, respectively. Here, sk denotes the trans‐
mitted symbol of k-th SFU satisfying E[ ]|| s 2 = 1, and n is the 
additive white Gaussian noise (AWGN) with power σ2

n. Under 
ideal synchronization conditions (i.e., perfect frequency, time, 
and phase alignment among all SFUs [17–18]) and narrowband 
channel assumptions neglecting Inter-Symbol Interference 
(ISI), the expression simplifies as the phase terms become co‐
herent. In this case, the power of the useful signal component 
is given by:

P rx = |

|

|
||
||

|

|
||
|∑

k = 1

K

Pk  hk

2
(2).

For comparison, in non-cooperative transmission (where 
each SFU independently transmits non-coherent signals to the 
STA), the received signal is given by ynon - coop =
∑
k = 1

K

Pk hk sk + n, and the total received power is simply the 
sum of the individual received power from each independent 
link: P rx, non - coop = ∑k = 1

K Pk| hk |
2 . In contrast, JT achieves ad‐

ditional coherent combining gain, expressed as P rx /P rx, non - coop, which is typically greater than 1. This gain significantly en‐
hances both spectral efficiency and transmission reliability 
compared to non-cooperative transmission.

2.2 Key Challenges in JT Implementation
Although JT offers significant theoretical gains, its imple‐

mentation in traditional distributed FTTR architectures (Fig. 
2a), where SFUs operate independently, faces two major chal‐
lenges: the PHY layer synchronization challenge and the CSI 
acquisition overhead challenge.
2.2.1 PHY Layer Synchronization Challenge

Each SFU uses an independent local oscillator, whose in‐
herent crystal oscillator drift introduces CFOs (Δfk). Simulta‐
neously, the lack of a unified transmission trigger mechanism 
among distributed nodes introduces random transmission de‐
lay deviations (Δτk), which subsequently translate into phase 
offsets (Δϕk = 2πfc Δτk). In this case, the received signal be‐
comes time-varying:

y ( t) = ∑
k = 1

K

Pk  hk s ( t - τk ) ej ( )2π fc t + ϕk (3),

where s ( t) is the transmitted symbol waveform, τk is the propa‐
gation delay, fc is the carrier frequency, and ϕk is the initial 
phase. Considering the two-SFU (K = 2) scenario, the re‐
ceived power can be expanded as:

P rx( t) = P1| h1 |
2 + P2| h2 |

2 +
2 P1 P2 | h1 h2 |cos (2πΔf ⋅ t + Δϕ) (4),

where Δf = Δf2 - Δf1 and Δϕ = Δϕ2 - Δϕ1. The cosine time-
varying term in this expression indicates that the received 
power fluctuates periodically at the difference frequency Δf, 
causing unstable SNR and increased Bit Error Rate (BER), 

MFU: Main FTTR Unit
OLT: Optical Line Terminal

PON: Passive Optical Network
SFU: Subordinate FTTR Unit

Figure 1. Typical Fiber-to-the-Room (FTTR) system

SFU SFU
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SFU

MFU
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which severely disrupts the coherent combining effect of JT.
2.2.2 CSI Acquisition Overhead Challenge

The performance of JT also highly depends on accurate and 
timely downlink CSI. Each SFU needs to perform precoding 
based on CSI to adjust its beam direction precisely towards 
the target STA[19]. However, acquiring the joint CSI for mul‐
tiple APs requires frequent over-the-air sounding procedures.

In the traditional distributed architecture, to perform multi-
AP channel sounding, a leading AP is needed to coordinate 
other APs to send Null Data Packet (NDP) frames in a roughly 
synchronized manner to the STA. The STA then needs to feed 
back the measured CSI. This process introduces substantial 
over-the-air signaling overhead and feedback delay, consum‐
ing significant air interface resources and severely constrain‐
ing the system’s effective throughput. Furthermore, it is diffi‐
cult to guarantee the simultaneity of CSI measurements across 
distributed nodes, and CSI aging occurs during backhaul and 
processing, leading to precoding distortion that also signifi‐
cantly reduces JT gain.
3 C-WAN Architecture and its Enabling 

Role for JT
The aforementioned limitations indicate that addressing the 

implementation challenges of JT necessitates innovation at the 
network architecture level. A novel C-WAN architecture pres‐
ents a viable solution to these challenges[20].
3.1 C-WAN Architecture Overview

The innovation of C-WAN over the traditional FTTR archi‐
tecture lies in its master-slave control and functional recon‐
figuration. As shown in Fig. 2b, this architecture comprises 
two core functional layers. The first is MFU (the central pro‐
cessing unit), which acts as the role of the traditional home 
gateway while also integrating baseband processing capabili‐

ties and a centralized controller. All core signal processing 
(e.g., channel coding, precoding, scheduling) and coordination 
algorithms are completed within the MFU. The second layer is 
formed by SFUs (distributed radio units): The functionality of 
the SFUs deployed in various rooms is simplified, primarily 
handling radio frequency transmission and reception and 
simple PHY layer functions. They are connected to the MFU 
via a fiber fronthaul network.

This architecture transforms the traditional problem of dis‐
tributed AP coordination into a centralized computing prob‐
lem within a single central processing unit, thereby making 
high-precision JT feasible at the system level.
3.2 Solution of C-WAN to JT Synchronization Challenge

The C-WAN architecture addresses the issues of CFO and 
transmission timing synchronization at their root through the 
following mechanisms.
3.2.1 High-Precision Clock Distribution and Frequency Offset 

Elimination
C-WAN leverages the low-loss, high-stability physical char‐

acteristics of fiber links to distribute a unified reference clock 
from the MFU to all SFUs. Protocols like White Rabbit, which 
utilize precise hardware timestamps and delay compensation 
algorithms, can be employed to achieve sub-nanosecond clock 
synchronization accuracy[21]. Measurements indicate that this 
scheme can achieve clock synchronization with a standard de‐
viation below 100 ps in FTTR scenarios[22].

Taking the 160 MHz channel bandwidth in the IEEE 
802.11ax standard as an example, its sampling period is 6.25 ns. 
The synchronization error of C-WAN (100 ps) constitutes only 
about 1.6% of the sampling period, far below the typical sym‐
bol synchronization tolerance required for JT (usually <10%). 
This means the local oscillators of all SFUs can be effectively 
locked to the same frequency reference, eliminating CFO and 
laying a solid foundation for phase coherence[23].

Figure 2. (a) Traditional distributed Fiber-to-the-Room (FTTR) architecture; (b) FTTR/centralized wireless access network (C-WAN) architecture
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MFU: Main FTTR Unit

OLT: Optical Line Terminal
PON: Passive Optical Network
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3.2.2 Centralized Scheduling and Joint Triggering
In the C-WAN architecture, the MFU acts as the sole sched‐

uling center, possessing the capability to accurately measure 
and compensate for the fiber transmission delay of signals to 
each SFU. When JT transmission is required, the MFU issues 
joint trigger commands containing precise transmission time‐
stamps to each SFU. Each SFU adjusts its transmission timing 
according to these instructions, thereby achieving symbol-
level transmission synchronization and eliminating the phase 
deviation (Δϕ) caused by trigger randomness[23].
3.3 C-WAN Support for Data and Computing Centralization

The value of C-WAN extends beyond solving the synchroni‐
zation problem; it creates uniquely favorable conditions for de‐
ploying advanced algorithms such as deep learning to over‐
come the CSI overhead challenge. This advantage stems from 
three facets of centralization: 1) Data centralization: The MFU 
centralizes the raw In-Phase/Quadrature (IQ) or CSI data from 
all SFUs, naturally forming a global, consistent joint channel 
dataset. This provides the essential and unique data founda‐
tion for training deep learning models that require multi-AP 
data as input, which is difficult to obtain in a distributed archi‐
tecture. 2) Computing power centralization: The MFU can inte‐
grate substantial computational resources, which are neces‐
sary for handling the computational load for deep learning 
model training and inference. 3) Control centralization: The 
centralized scheduler in the MFU may directly and rapidly is‐
sue unified precoding matrices and transmission instructions 
to all SFUs based on the prediction results of the deep learn‐
ing model. This avoids the delays and inconsistencies associ‐
ated with distributed decision-making, ensuring that the pre‐
dicted CSI is applied timely and accurately.

On this basis, the next section will elaborate in detail on 
how deep learning can be leveraged within the C-WAN archi‐
tecture to significantly reduce CSI acquisition overhead.
4 Deep Learning-Based Low-Overhead CSI 

Acquisition Method
Although the C-WAN architecture solves the JT synchroni‐

zation challenge and aggregates computing and data resources 
at the MFU, adopting the traditional full-dimensional, periodic 
channel sounding method would still impose immense over-
the-air overhead, severely constraining the effective through‐
put of the FTTR system.

Fortunately, the indoor FTTR C-WAN scenario provides 
three advantageous conditions for optimizing CSI acquisi‐
tion. First, temporal correlation arises from the low mobility 
of STAs, leading to slow channel variation and small Dop‐
pler shifts. Historical CSI sequences contain the potential 
for predicting future CSI[24]. Second, spatial correlation is 
inherent because the positions of SFUs are fixed after de‐
ployment, and the channel responses between their antenna 
arrays exhibit structural properties in the spatial domain. 

This structure exists not only within individual SFUs but 
also between different SFUs. Therefore, the MFU may infer 
the channel state of all antennas using observations from a 
subset of antennas per SFU. Third, protocol adaptability al‐
lows the MFU to select clusters of antennas that contribute 
more significantly to channel reconstruction to participate 
in the sounding process, based on learned iterative weights. 
Since the C-WAN architecture virtualizes all SFUs as one 
large AP, this adjustment is transparent to the STA side, re‐
quires no additional signaling overhead, and offers excel‐
lent compatibility.

Leveraging the above advantages, this section proposes a 
deep learning-based low-overhead CSI acquisition framework 
that fully integrates with the FTTR C-WAN architecture[25]. 
Its goal is to significantly extend the sounding period by uti‐
lizing historical CSI to predict future CSI, while maintaining 
JT performance. Furthermore, during sounding, it uses obser‐
vations from a small number of antennas to reconstruct the 
CSI for all antennas, reducing the resource occupation per 
sounding instance.
4.1 Problem Definition

The traditional scheme requires full-dimensional sounding 
every T frame, meaning all antennas across all SFUs participate 
in probing. Its overhead is:

OHfull ∝ Nt × K × LLTF
T frame

(5),

where Nt denotes the number of sounding antennas per SFU, 
K is the total number of SFUs, and LLTF represents the number 
of Long Training Field (LTF) symbols required per antenna. 
The objective of this paper is to reduce the overhead to:

OHproposed = 1
T × 1

R × OHfull (6),

where T >  1 is the sounding period extension factor, and R =
Nt /Ns > 1 is the antenna compression ratio (Ns is the number 
of antennas actually participating in sounding), corresponding 
to the proportion of required HE-LTF symbols[26]. Specifically, 
this paper addresses the following problem: Given the histori‐
cal L frame CSI sequence of all antennas Ĥ ( t - L + 1) ,…, Ĥ ( t) 
and the partial antenna observations HNs

( t + 1) at time instant 
t + 1, the objective is to learn a mapping function f ( ⋅ ; Θ) 
that accurately estimates the full-dimensional CSI at 
time t + 1:

Ĥ ( t + 1) = f ({Ĥ ( t - L + 1) ,…,Ĥ ( t)},
HN s( t + 1) ; Θ) (7).
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4.2 Hybrid Deep Learning Model Design
To fully exploit the advantage of the C-WAN architecture in 

acquiring global CSI, this paper proposes a dual-branch hy‐
brid deep learning model. It achieves high-precision estima‐
tion and reconstruction of full-dimensional CSI by synergisti‐
cally utilizing the temporal and spatial correlation of the chan‐
nel. This model enables accurate CSI estimation with reduced 
sounding overhead, thereby improving the overall throughput 
of JT transmission.

The structure of this hybrid model is shown in Fig. 3. It 
adopts a dual-branch parallel processing architecture, com‐
prising three core components: a spatial reconstruction 
branch, a temporal prediction branch, and an adaptive fusion 
module. The outputs of the spatial reconstruction branch and 
the temporal prediction branch are fused using adaptive 
weighting, collaboratively leveraging the temporal and spatial 
correlations of the channel. Finally, the complete CSI matrix 
is output through convolutional layers, dimension reshaping, 
and complex number reconstruction, achieving high-precision 

estimation of the full-dimensional CSI.
1) Spatial Reconstruction Branch: The purpose of this branch 

is to recover missing spatial information from the partial an‐
tenna observations. Leveraging the global channel information 
characteristic provided by the C-WAN architecture, the model 
selects the half of the antennas per SFU that contribute most to 
the reconstruction (based on the loss function) for sounding. 
This effectively reduces the dimensionality of the original CSI 
matrix. The original matrix, which encompasses all antennas, 
has dimensions [ ]N, ANTx, ANTy, NUMtx, fsubcarrier . After reduc‐
tion, the matrix contains only partial antenna observations, with 
dimensions [ ]N, ANTx /2, ANTy, NUMtx, fsubcarrier . This reduc‐
tion lowers the overhead of the sounding process. Here, N de‐
notes the batch size; ANTx and ANTy are the number of anten‐
nas in the x- and y-directions of the array, respectively; NUMtx is the number of transmitters, and fsubcarrier is the number of 
OFDM subcarriers. After preprocessing steps such as com‐
plex number separation and spatial dimension flattening, the 

Figure 3. Hybrid model architecture that fuses CNN and ResNet
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core of the perception branch lies in multi-level feature learn‐
ing. The model employs a combination of deconvolutional lay‐
ers, convolutional layers, and residual blocks for feature ex‐
traction, ultimately generating the Spatial Feature Map.

2) Temporal Prediction Branch: Targeting the characteristics 
of indoor FTTR scenarios where STA movement is slow, chan‐
nel variation is continuous, and Doppler shift is low, this branch 
aims to predict the channel state by leveraging the temporal cor‐
relation of historical CSI sequences[27]. The input to this branch 
is the historical complete CSI matrix spanning Tp time steps, 
with dimensions [ N ⋅ Tp, ANTx, ANTy, NUMtx, fsubcarrier ]. After 
data preprocessing including complex number separation and 
spatial dimension flattening, a feature representation is ob‐
tained. The core of the temporal prediction branch lies in 
multi-scale temporal modeling. The model employs two suc‐
cessive dilated residual blocks and a 1×1 convolutional block. 
This design allows the model to expand its temporal receptive 
field, enabling it to capture time dependencies at various 
scales. The output dimension of each dilated residual block re‐
mains consistent, ensuring uniformity in feature dimensions 
and ultimately generating the Temporal Feature Map. The in‐
troduction of dilated convolutions allows the model to gain 
richer temporal context information without a significant in‐
crease in the number of parameters, thus improving the accu‐
racy of temporal prediction[28].

3) Adaptive Fusion Module: To exploit the complementarity 
of spatial and temporal information, the model integrates an 
adaptive weighted fusion module. This module combines the 
outputs of the spatial reconstruction branch and the temporal 
prediction branch for more precise CSI estimation. The fusion 
formula is as follows:

F reconstructed = α ⋅ Fspatial + (1 - α) ⋅ F temporal (8),
where Fspatial represents the output features of the spatial re‐
construction branch, F temporal represents the output features of 
the temporal prediction branch, and α is a trainable weight pa‐
rameter initialized to 0.5. Through the end-to-end training pro‐
cess, the model can adaptively learn the optimal weight ratio 
between spatial and temporal information. The fused features 
undergo further deep feature optimization through two addi‐
tional residual blocks. Finally, the complete CSI matrix with 
dimensions [ N, ANTx, ANTy, NUMtx, f ] is output via 1×1 con‐
volutional layers, dimension reshaping, and complex number 
reconstruction.
4.3 Loss Function Design

The optimization objective of this paper is to maximize the 
JT transmission performance, rather than directly minimize 
the Mean Squared Error (MSE) between the predicted CSI Ĥ 
and the true CSI H. Therefore, we design a Signal-to-
Interference-plus-Noise Ratio (SINR) -oriented loss function 
based on the precoding matrix, constructed as follows.

Our design employs Zero-Forcing (ZF) precoding, a choice 
motivated by the generally high-SNR conditions inherent in 
FTTR deployments due to dense AP placement and short 
transmission distances. Under such propagation environ‐
ments, ZF not only achieves near-optimal performance but 
also benefits model training through its sensitivity to channel 
inaccuracies.

The loss function construction proceeds as follows. First, 
based on the true CSI matrix H and the predicted CSI matrix 
Ĥ, the precoding matrices are calculated using ZF precoding:

W = H H(HH H )-1 (9),

Ŵ = Ĥ H( ĤĤ H )-1 (10).
Subsequently, the predicted precoding matrix Ŵ is used for 

signal transmission, and the received signal power and inter‐
ference components are calculated. The useful received signal 
power is:

Psig =  || | HŴ | ||
2
F

(11).

Due to the mismatch between the precoding matrix and the 
true channel, additional interference is introduced. The 
equivalent noise power Pnoise includes the thermal noise power 
Pn (which can be estimated via Received Signal Strength Indi‐
cator (RSSI)) and the aforementioned interference power.

Finally, the loss function is defined as the negative value of 
the sum of achievable spectral efficiency across all subcarri‐
ers, aiming to optimize the overall throughput of the JT trans‐
mission. The SINR on the i-th subcarrier is:

SINR i = Psig, i
Pnoise, i

=  
 |

|
||||

|
|
|||| || HŴ

i, j

2

∑j ≠ i

|
|
||||

|
|
|||| || HŴ

i, j 

2
+ σ2

n

(12),

where σ2
n represents the thermal noise power, obtainable by 

measuring background noise power during packet intervals. 
The overall loss function is:
L =  - 1

Nsc ∑i = 1

Nsc log2 ( )1 + SINR i (13).

This loss function directly penalizes the SINR degradation 
caused by precoding mismatch due to CSI prediction errors, 
reflecting the fundamental requirements of the communication 
system for high throughput and reliable transmission.
4.4 Synergistic Integration of Hybrid Model Within 

FTTR C-WAN Architecture
As illustrated in Fig. 3, the proposed low-overhead sound‐
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ing process operates as follows: leveraging the C-WAN’s 
logical abstraction of all SFUs as a single virtual AP, the 
MFU initiates a coordinated sounding process. It transmits 
an NDPA frame declaring a reduced number of antennas (a 
subset determined by the model’s spatial reconstruction ca‐
pability). Subsequently, the MFU uses its synchronized trig‐
gering mechanism to instruct the selected antennas across 
different SFUs to transmit NDP frames simultaneously. From 
the perspective of the STA, this process is indistinguishable 
from a standard sounding procedure; it responds with a Com‐
pressed Beamforming (CBF) report based on the declared an‐
tenna count, remaining unaware of the underlying antenna se‐
lection strategy.

Upon receiving the STA’s feedback, the MFU, housing the 
centralized computational resources, executes the hybrid 
model. The model fuses the limited real-time observations 
from the partial antenna sounding with the rich historical 
channel information available in the centralized dataset. 
Through its temporal prediction and spatial reconstruction 
branches, it reconstructs the full-dimensional CSI for all an‐
tennas involved in the JT transmission. This end-to-end pro‐
cess, from coordinated partial sounding to centralized CSI re‐
construction, achieves a significant reduction in over-the-air 
overhead while maintaining full backward compatibility with 
existing standards, as no changes are required at the STA side.
5 Experimental Results and Analysis

This section presents a comprehensive evaluation of the 
proposed C-WAN architecture and hybrid deep learning 
model for low-overhead JT in FTTR networks. The experi‐
ments are designed to validate the effectiveness of our solu‐
tion in addressing both synchronization challenges and CSI 
acquisition overhead. Through systematic testing on a real-
world synchronized channel dataset, we demonstrate the per‐
formance of our approach in terms of CSI estimation accu‐
racy, spectral efficiency, and overall system throughput com‐
pared to baseline methods.
5.1 Channel Model and Dataset

In our experimental setup, which is based on the C-WAN 
architecture where the MFU acts as the central controller for 
acquiring downlink JT precoding CSI, we leverage the channel 
reciprocity of TDD systems[16]. Since direct downlink CSI ac‐
quisition through STA feedback is complex and introduces sig‐
nificant overhead, we use uplink channel sounding measure‐
ments as a practical substitute to generate the training data for 
the proposed model.

This study utilizes a real-world channel dataset (espargos-
0005[5, 28]) for model development and validation. This dataset 
was collected using 4 distributed ESPARGOS antenna arrays 
(each with 8 antennas) deployed around the perimeter of a 
room, acting as receivers (simulating 4 SFUs). A moving trans‐
mit antenna (simulating a STA) transmitted Wi-Fi signals 

within a 7×7×3 meter laboratory. Using a common external 
clock and synchronous triggering mechanism, all arrays syn‐
chronously collected CSI at a sampling rate of 100 Hz, simu‐
lating the synchronous multi-AP channel measurement envi‐
ronment of the C-WAN architecture. Thus, the channel of the 
k-th SFU at time t can be represented as a matrix M ∈ CNt × Nsc, 
where the number of antennas per SFU Nt =  8 and the number 
of subcarriers Nsc =  117. The dataset contains CSI samples for 
186 879 time instances. To strictly simulate the actual online 
prediction scenario, the data is split chronologically into a 
training set (70%), a validation set (15%), and a test set (15%).

Model performance is evaluated using two key metrics: the 
Normalized Mean Squared Error (NMSE) for assessing CSI es‐
timation accuracy, and the spectral efficiency loss function 
(defined in Section 4) for quantifying the impact of predicted 
CSI on JT transmission performance. The NMSE is calculated 
between the predicted channel matrix Ĥ and the true channel 
matrix H, serving as a key metric to quantify the accuracy of 
our CSI estimation, with the expression NMSE = || Ĥ - H

2
F

|| H 2
F

.
In simulations, we select the following three baseline meth‐

ods for comparison: 1) the Full Sounding (Oracle) Method, 
which assumes perfect and real-time full-dimensional CSI is 
available and thus represents the theoretical upper bound of 
JT transmission performance, used to measure the gap be‐
tween the proposed method and optimal performance; 2) the 
Temporal Prediction Method, an ablated version of the fusion 
model that disables the spatial reconstruction branch (i.e., the 
HNs

( t + 1) input), and can only rely on historical information 
up to time t - 1 to predict the channel at time t; 3) the Spatial 
Reconstruction Branch, a counterpart ablation that retains 
only the spatial reconstruction branch while disabling the 
temporal prediction component, thereby estimating the full 
CSI solely from the partial antenna observations HNs

( t + 1) at 
the current time instant without leveraging any historical 
channel information.
5.2 Model Training Results Analysis

To validate the effectiveness of the proposed hybrid deep 
learning model, we trained the model using the Adam opti‐
mizer with a batch size of 64. Fig. 4a shows the change in 
NMSE on the training and test sets versus training iterations, 
while Fig. 4b shows the convergence curve of the spectral effi‐
ciency loss function L. It can be observed that both loss func‐
tions decrease steadily with iterations, and the validation loss 
does not show a significant increase, indicating good general‐
ization capability of the model. The spectral efficiency loss on 
the training and test sets eventually converges to similar val‐
ues, further proving the strong adaptability and stability of 
the model.

As shown in Fig. 5a, we conducted experiments with vary‐
ing numbers of sounding antennas (Nₛ = 1, 2, 4, 6) to evaluate 
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their impact on CSI reconstruction performance. The results 
demonstrate that under the C-WAN architecture, the channel 
CSI exhibits significant spatial correlation, with larger Nₛ val‐
ues yielding better prediction accuracy. In Fig. 5b, we further 
compare two antenna selection strategies: random selection 
and structured selection. Due to the close proximity of an‐
tenna arrays in the dataset, the difference in loss function con‐
vergence between these strategies was minimal. Considering 
the FTTR deployment scenario where APs are distributed 
across different rooms and antennas within the same AP pos‐
sess stronger spatial correlation, we adopted N ₛ = 4 with a 
structured selection approach, which used one antenna from 

each of the two antenna arrays per AP, for subsequent experi‐
ments. This configuration maintains a balance between recon‐
struction accuracy and practical deployment constraints.

Fig. 6a illustrates the evolution of trainable weights in the 
model’s adaptive fusion module across training iterations, 
where the temporal prediction branch ultimately achieves an 
average weight of 0.98 after multiple iterations. This result in‐
dicates that in indoor low-mobility scenarios, channel varia‐
tions exhibit strong temporal correlation. Relying solely on the 
historical CSI sequence is sufficient to make highly accurate 
estimates of the future channel state, while the corrective ef‐
fect of the observations from the partial antennas at the cur‐

Figure 4. Loss convergence curves: (a) NMSE; (b) the spectral efficiency loss function L

NMSE: Normalized Mean Squared Error
(a) (b)

Figure 5. (a) Effect of Nₛ on the loss function; (b) Effect of Nₛ selection strategy on the loss function
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rent moment is relatively limited. This finding empirically sup‐
ports a new paradigm for channel acquisition dominated by 
prediction and assisted by sounding, suggesting that the 
sounding period can be significantly extended, thereby offer‐
ing the potential for substantially reducing system overhead.

Although the temporal prediction branch dominates the 
model, the spatial reconstruction branch still provides indis‐
pensable value. To quantitatively evaluate its contribution, we 
conduct an ablation study comparing three model variants: the 
temporal-prediction-only model, the spatial-reconstruction-
only model, and the full hybrid model with adaptive α. As il‐
lustrated in Fig. 6b, the inclusion of the spatial branch accel‐
erates the convergence of the loss function and yields measur‐
able performance gains. These results confirm the unique role 
of the spatial reconstruction branch in feature enhancement 
and training stabilization.
5.3 System Performance Evaluation

To further evaluate the practical effectiveness of the pro‐
posed method in the JT transmission scenario, we compared 
the Spectral Efficiency (SE) achievable by the system after 
employing the predicted CSI for precoding. Fig. 7 shows the 
Cumulative Distribution Function (CDF) curves of the SE on 
the test set for the proposed hybrid model and the two base‐
line methods.

The results show that the Oracle scheme with complete real-
time CSI achieves the optimal spectral efficiency, represent‐
ing the theoretical upper bound for JT transmission perfor‐
mance. The SE curve of the proposed hybrid model is the clos‐
est to the Oracle performance among all practical (non-oracle) 
methods, with a median SE gap of less than 5%, indicating 
that the hybrid model can effectively maintain JT gain even 
with low sounding overhead.

Notably, the simplified model with only the temporal predic‐
tion branch (i. e., ablated spatial reconstruction branch) per‐
forms the worst. This further confirms the important role of the 
spatial reconstruction branch in compensating for instanta‐
neous channel information and improving the completeness of 
CSI estimation.
6 Conclusions

This paper addresses the critical challenges associated with 
implementing efficient JT in FTTR networks. To overcome 
physical layer synchronization issues, the proposed C-WAN 
architecture leverages a fiber fronthaul network to provide 

Figure 6. (a) Adaptive fusion weight α for the temporal branch and (b) performance comparison of model variants
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high-precision clock distribution and coordinated transmis‐
sion triggering. This approach effectively eliminates carrier 
frequency offsets and timing deviations, establishing a robust 
PHY-layer foundation for JT. To mitigate the overhead of CSI 
acquisition, we develop a hybrid deep learning model that uti‐
lizes the centralized data, computation, and control capabili‐
ties of the C-WAN architecture, along with inherent spatiotem‐
poral correlations in indoor channels. By integrating temporal 
prediction and spatial reconstruction branches, the model 
achieves highly accurate CSI estimates while drastically re‐
ducing the need for frequent sounding. Experimental results 
based on a real-world synchronized channel dataset demon‐
strate that the proposed solution significantly reduces over-
the-air resource consumption while maintaining JT perfor‐
mance close to that achieved with ideal CSI. This work offers 
a practical and efficient framework for high-performance coor‐
dinated transmission in next-generation FTTR systems. Future 
work will explore transfer learning and domain adaptation 
techniques to fine-tune or train the model on test sets of vary‐
ing scenario scales, thereby enhancing its generalization capa‐
bility across diverse deployment environments. Additionally, 
assessing the feasibility and effectiveness of deploying our al‐
gorithm on hardware platforms will also be considered as part 
of future work.

References
[1] ZHANG D Z, ZENG T, YANG Z Y, et al. FTTR-B technology exploration 

and practice [C]//Proc. IEEE International Conference on Communications 
Workshops (ICC Workshops). IEEE, 2024: 37 – 41. DOI: 10.1109/ICC‐
Workshops59551.2024.10615937

[2] NUNEZ D, SMITH M, BELLALTA B. Multi-AP coordinated spatial reuse 
for Wi-Fi 8: group creation and scheduling [C]//Proc. 21st Mediterranean 
Communication and Computer Networking Conference (MedComNet). 
IEEE, 2023: 203–208. DOI: 10.1109/MedComNet58619.2023.10168857

[3] SHEN G X, LI J, CAI J H, et al. Enhancing fiber-to-the-room (FTTR) tech‐
nologies: addressing key challenges and solutions (invited tutorial) [C]//
Proc. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). 
IEEE, 2024: 1–2. DOI: 10.1109/CLEO-PR60912.2024.10676562

[4] SUNDARAVARADHAN S P, PORAT R, TOUSSI K N. Increasing spatial 
multiplexing gain in future multi-AP WiFi systems via joint transmission 
[J]. IEEE communications standards magazine, 2022, 6(2): 20–26. DOI: 
10.1109/MCOMSTD.0001.2100085

[5] CHEN B H, JIAO X J, LIU W, et al. An experimental study of Wi-Fi joint 
transmission with multiple openwifi access points [C]//IEEE Wireless Com‐
munications Networking Conference (WCNC). IEEE, 2025: 1– 67. DOI: 
10.1109/WCNC61545.2025.10978612

[6] HAMED E, RAHUL H, ABDELGHANY M A, et al. Real-time distributed 
MIMO systems [C]//Proc. 2016 ACM SIGCOMM Conference (SIGCOMM '
16. Association for Computing Machinery, 2016: 412–425. DOI: 10.1145/
2934872.2934905

[7] TITUS A, BANSAL R, SREEJITH T V, et al. Decision problems for joint 
transmission in multi-AP coordination framework of IEEE 802.11be [C]//
Proc. International Conference on COMmunication Systems & NETworkS 
(COMSNETS). IEEE, 2021: 326 – 333. DOI: 10.1109/
COMSNETS51098.2021.9352818

[8] LEVINBOOK Y, EZRI D, MELZER E. AP cooperation in Wi-Fi: joint 
transmission with a novel precoding scheme, resilient to phase offsets be‐
tween transmitters [J]. Signal processing, 2024, 220: 109432. DOI: 
10.1016/j.sigpro.2024.109432

[9] KUNNATH GANESAN U, SARVENDRANATH R, LARSSON E G. Beam‐
Sync: over-the-air synchronization for distributed massive MIMO systems 
[J]. IEEE transactions on wireless communications, 2024, 23(7): 6824–
6837. DOI: 10.1109/TWC.2023.3335089

[10] HE J L, YAO H, ZHAO D S, et al. Multi-channel phase synchronization 
method for independent asynchronous local oscillators based on pre-
calibration matrix [C]//Proc. IEEE International Symposium on Antennas 
and Propagation and INC/USNC ‐ URSI Radio Science Meeting (AP-S/
INC-USNC-URSI). IEEE, 2024: 449 – 450. DOI: 10.1109/AP-S/INC-
USNC-URSI52054.2024.10687303

[11] VERMA S, RODRIGUES T K, KAWAMOTO Y, et al. A survey on multi-
AP coordination approaches over emerging WLANs: future directions and 
open challenges [J]. IEEE communications surveys & tutorials, 2024, 26
(2): 858–889. DOI: 10.1109/COMST.2023.3344167

[12] LIU Z Y, ZHANG L, DING Z. Overcoming the channel estimation barrier 
in massive MIMO communication via deep learning [J]. IEEE wireless 
communications, 2020, 27(5): 104 – 111. DOI: 10.1109/
MWC.001.1900413

[13] JIANG W, SCHOTTEN H D. Deep learning for fading channel prediction 
[J]. IEEE open journal of the communications society, 2020, 1: 320 –
332. DOI: 10.1109/OJCOMS.2020.2982513

[14] CHEN W, WAN W X, WANG S Y, et al. CSI-PPPNet: a one-sided one-
for-all deep learning framework for massive MIMO CSI feedback [J]. 
IEEE transactions on wireless communications, 2024, 23(7): 7599 –
7611. DOI: 10.1109/TWC.2023.3342735

[15] BANERJEE B, ELLIOTT R C, KRZYMIEŃ W A, et al. Machine learning 
assisted DL CSI estimation for high-mobility multi-antenna users with 
partial UL CSI availability in TDD massive MIMO systems [C]//Proc. 
IEEE Globecom Workshops (GC Wkshps). IEEE, 2022: 1579 – 1585. 
DOI: 10.1109/GCWkshps56602.2022.10008644

[16] WANG J Z, LIU W C, MENG J, et al. Fiber to the radio/C-WAN archi‐
tecture and its performance analysis [C]//Proc. IEEE International Con‐
ference on Communications Workshops (ICC Workshops). IEEE, 2024: 
709–713. DOI: 10.1109/ICCWorkshops59551.2024.10615771

[17] ZHENG J K, ZHANG J Y, BJÖRNSON E, et al. Impact of channel aging 
on cell-free massive MIMO over spatially correlated channels [J]. IEEE 
transactions on wireless communications, 2021, 20(10): 6451 – 6466. 
DOI: 10.1109/TWC.2021.3074421

[18] EUCHNER F, KELLNER D, STEPHAN P, et al. CSI dataset espargos-
0005: four phase- and time-synchronous ESPARGOS antenna arrays in a 
lab room [EB/OL]. [2020-05-01]. https://darus. uni-stuttgart. de/dataset.
xhtml?persistentId=doi:10.18419/DARUS-4754

[19] VIEIRA J, RUSEK F, TUFVESSON F. Reciprocity calibration methods 
for massive MIMO based on antenna coupling [C]//2014 IEEE Global 
Communications Conference. IEEE, 2014: 3708–3712. DOI: 10.1109/
GLOCOM.2014.7037384.

[20] WU X M, ZENG Y, SI X S, et al. Fiber-to-the-room (FTTR): standards 
and deployments [C]//Proc. Optical Fiber Communication Conference 
(OFC) 2023. Optica Publishing Group, 2023: 1 – 3. DOI: 10.1364/
ofc.2023.tu3f.6

[21] JIMÉNEZ LÓPEZ M, GUTIÉRREZ RIVAS J L, DÍAZ ALONSO J. A 
white-rabbit network interface card for synchronized sensor networks [C]//
Proc. SENSORS, 2014 IEEE. IEEE, 2014: 2000–2003. DOI: 10.1109/
ICSENS.2014.6985426

[22] XU Y L, RAJAGOPALA A D, FRUITWALA N, et al. Multi-FPGA syn‐
chronization and data communication for quantum control and measure‐
ment [EB/OL]. [2025-06-11]. https://arxiv.org/abs/2506.09856

[23] BALAN H V, ROGALIN R, MICHALOLIAKOS A, et al. AirSync: en‐
abling distributed multiuser MIMO with full spatial multiplexing [J]. 
IEEE/ACM transactions on networking, 2013, 21(6): 1681–1695. DOI: 

75



ZTE COMMUNICATIONS
December 2025 Vol. 23 No. 4

ZHANG Yang, CEN Zihan, ZHAN Wen, CHEN Xiang 

Special Topic   C-WAN for FTTR: Enabling Low-Overhead Joint Transmission with Deep Learning

10.1109/TNET.2012.2230449
[24] LIU X, LI J W, WU X M, et al. Fiber-to-the-room (FTTR) technologies for 

the 5th generation fixed network (F5G) and beyond [C]//Proc. IEEE Fu‐
ture Networks World Forum (FNWF). IEEE, 2022: 351 – 354. DOI: 
10.1109/FNWF55208.2022.00068

[25] LI J L, ZHANG Q, XIN X J, et al. Deep learning-based massive MIMO 
CSI feedback [C]//18th International Conference on Optical Communica‐
tions and Networks (ICOCN). IEEE, 2019: 1 – 3. DOI: 10.1109/
ICOCN.2019.8934725

[26] NAKAMURA T, BOUAZIZI M, YAMAMOTO K, et al. Wi-Fi-based fall 
detection using spectrogram image of channel state information [J]. IEEE 
Internet of Things journal, 2022, 9(18): 17220– 17234. DOI: 10.1109/
JIOT.2022.3152315

[27] SEGUEL F, SALIHU D, HAEGELE S, et al. Complex-valued deep learn‐
ing for WiFi-based indoor positioning: method and performance [C]//Eu‐
ropean Wireless 2024; 29th European Wireless Conference. VDE, 2024: 
59–65

[28] BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic 
convolutional and recurrent networks for sequence modeling [EB/OL]. 
[2018-04-19]. https://arxiv.org/abs/1803.01271

Biographies
ZHANG Yang received his BE degree in communication engineering from 
Sun Yat-sen University, China in 2023. He is currently pursuing the MS degree 
in integrated circuit engineering at Sun Yat-sen University. His research inter‐

ests include multi-AP coordination and distributed MIMO technologies.

CEN Zihan received his BE degree in electronic information engineering from 
Central South University, China in 2024. He is currently pursuing the MS de‐
gree in communication engineering at Sun Yat-sen University. His research in‐
terests include artificial intelligence and AI-RAN.

ZHAN Wen (zhanw6@mail.sysu.edu.cn) received his BS and MS degrees from 
the University of Electronic Science and Technology of China in 2012 and 
2015, respectively. He obtained his PhD from the City University of Hong 
Kong, China in 2019, where he later worked as a research assistant and a post‐
doctoral fellow. Since 2020, he has been with the School of Electronics and 
Communication Engineering, Sun Yat-sen University, China, where he is cur‐
rently an Associate Professor. His research interests include Internet of Things, 
modeling, and performance optimization of next-generation mobile communica‐
tion systems.

CHEN Xiang received his BE and PhD degrees from the Department of Elec‐
tronic Engineering, Tsinghua University, China in 2002 and 2008, respective‐
ly. From July 2008 to December 2014, he was with the Wireless and Mobile 
Communication Technology Research and Development Center (Wireless Cen‐
ter) and the Aerospace Center, Tsinghua University. In July 2005 and from 
September 2006 to April 2007, he visited NTT DoCoMo Research and Devel‐
opment (YRP), and the Wireless Communications and Signal Processing (WC‐
SP) Laboratory, Taiwan Tsing Hua University, China. Since January 2015, he 
has been with the School of Electronics and Information Technology, Sun Yat-
sen University, where he is currently a Full Professor. His research interests in‐
clude 5G/6G wireless and mobile communication networks and the Internet of 
Things (IoT).

76


