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Abstract: Fiber-to-the-Room (FTTR) has emerged as the core architecture for next-generation home and enterprise networks, offering gigabit-
level bandwidth and seamless wireless coverage. However, the complex multi-device topology of FTTR networks presents significant chal⁃
lenges in identifying sources of network performance degradation and conducting accurate root cause analysis. Conventional approaches often 
fail to deliver efficient and precise operational improvements. To address this issue, this paper proposes a Transformer-based multi-task learn⁃
ing model designed for automated root cause analysis in FTTR environments. The model integrates multidimensional time-series data col⁃
lected from access points (APs), enabling the simultaneous detection of APs experiencing performance degradation and the classification of 
underlying root causes, such as weak signal coverage, network congestion, and signal interference. To facilitate model training and evaluation, 
a multi-label dataset is generated using a discrete-event simulation platform implemented in MATLAB. Experimental results demonstrate that 
the proposed Transformer-based multi-task learning model achieves a root cause classification accuracy of 96.75%, significantly outperform⁃
ing baseline models including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Random Forest, and eXtreme Gradient Boost⁃
ing (XGBoost). This approach enables the rapid identification of performance degradation causes in FTTR networks, offering actionable in⁃
sights for network optimization, reduced operational costs, and enhanced user experience.
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1 Introduction

Fiber-to-the-Room (FTTR)[1] is a key framework for next-
generation home and enterprise networks, with global 
deployment accelerating due to its broad application 
prospects.  Built on an all-optical fiber network archi⁃

tecture, this technology delivers ultra-high bandwidth (ranging 
from 1 Gbit/s to 10 Gbit/s), low latency, high stability, and 
seamless coverage to end users.  It effectively supports band⁃
width- and performance-intensive applications such as 4K/8K 
ultra-high-definition video streaming, cloud gaming, virtual re⁃
ality/augmented reality (VR/AR), smart home systems, and re⁃
mote work and education[2].  As global fixed broadband net⁃
works progress toward gigabit and ten-gigabit capabilities, the 
deployment scale of FTTR continues to expand, accompanied 
by a steady increase in market penetration.  This trend under⁃

scores FTTR as a critical direction in the evolution of next-
generation broadband access technologies.

In December 2020, the European Telecommunications Stan⁃
dards Institute (ETSI) included FTTR in the fifth-generation 
fixed network (F5G) standard system[3], reflecting international 
recognition of its technological innovation and standardization 
progress. Currently, ten-gigabit access solutions that integrate 
50G passive optical networks (PON) and FTTR are progress⁃
ing through pilot testing and commercial deployment stages. 
Many service providers are actively promoting this technology 
as a strategic initiative to enhance user experience, capture 
high-end market segments, and strengthen competitive advan⁃
tage. Furthermore, as end-users increasingly demand high-
quality indoor coverage and stable network performance, 
achieving high reliability, efficient operation and mainte⁃
nance, and consistently superior user experiences in FTTR 
networks has become a central focus for both academic re⁃
search and industrial development.

The rapid expansion of FTTR networks, coupled with their 
highly complex topology, which includes primary gateways, 
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secondary gateways, optical splitters, fiber links, and Wi-Fi 
environments, has introduced new operational challenges. 
First, fault localization is challenging. Issues such as slow net⁃
work speed, connection interruptions, and high latency may 
originate from multiple sources, including abnormal optical 
power, hardware or software failures, configuration errors, Wi-
Fi interference, or user-side problems. Actually, PON-side is⁃
sues do not directly cause Wi-Fi performance degradation but 
rather affect the performance of the entire end-to-end link. For 
instance, optical power attenuation can lead to high bit error 
rates and packet retransmission in the link, while optical line 
terminal (OLT) congestion can result in increased latency and 
packet loss. These issues degrade the Quality of Service (QoS)
for data flows. Since Wi-Fi is the last segment of the network 
connecting to users, problems occurring in intermediate links 
are sometimes erroneously attributed to Wi-Fi performance 
degradation. Moreover, faults often exhibit complex interde⁃
pendencies across multi-level devices, rendering manual in⁃
spection inefficient and error-prone. Second, root cause analy⁃
sis (RCA) is time-intensive. Traditional approaches that rely 
on alarms and expert knowledge struggle to quickly and accu⁃
rately identify the true cause amid vast volumes of multi-
source data, such as performance metrics, alarm records, con⁃
figuration logs, and environmental information. This results in 
prolonged mean time to repair (MTTR), which negatively af⁃
fects user experience and operator profitability. Third, intelli⁃
gent capabilities are limited. Current operational systems lack 
automated and intelligent analysis functions, including root 
cause inference, making them ill-suited for the efficient and 
precise management of large-scale FTTR networks. Therefore, 
establishing an automated operational decision-making cycle 
has become an urgent and critical priority.

The accelerating pace of enterprise digital transformation, 
combined with the deep integration of technologies such as 
cloud computing, big data, and artificial intelligence, has led 
to a significant increase in the complexity of intelligent sys⁃
tems. During daily business operations and the maintenance 
of core systems, organizations may experience system failures 
or performance degradation. To ensure continuous and stable 
system operation, it is essential to accurately identify the root 
cause of issues—not only locating the fault but also under⁃
standing the underlying reasons—to develop effective preven⁃
tive strategies. This process is known as RCA, which focuses 
on employing systematic methodologies to uncover the funda⁃
mental factors behind problems, rather than simply addressing 
surface-level symptoms. Currently, RCA methods can be 
broadly classified into two categories: data-driven and 
causality-driven approaches. Due to the high complexity in⁃
volved in achieving complete causal inference, data-driven 
methods, such as association rule mining, machine learning, 
deep learning, intelligent agents, and knowledge graphs, have 
become the dominant approach in practice.

The data utilized for RCA primarily consists of three types 

of heterogeneous data: 1) Location-time data: This type re⁃
cords the physical or logical location and associated timing of 
fault occurrences, thereby supporting the identification of fail⁃
ure propagation paths. For example, in FTTR networks, this 
includes AP deployment topology, user mobility trajectories, 
and timestamps of roaming events; 2) Physical data: This cat⁃
egory captures the physical state of the system. Wireless met⁃
rics such as the received signal strength indicator (RSSI), the 
signal-to-noise ratio (SNR), and air interface utilization fall 
into this category; 3) Log and behavioral data: This type en⁃
ables in-depth causal inference and includes examples such 
as device kernel logs, 802.11 protocol packet captures, and 
user authentication records. However, the heterogeneity of 
multi-source data and the presence of temporal delays remain 
key challenges. There is an urgent need to achieve efficient 
feature alignment and real-time analytical capabilities.

Among data-driven methods, association rule mining aims 
to identify abnormal combinations of attributes to locate root 
causes. For example, the classification based on associations 
(CBA) algorithm utilizes class association rules (CARs) to 
identify fault causes, demonstrating high accuracy in applica⁃
tions such as fault diagnosis in chiller systems[4]. However, the 
effectiveness of this method heavily depends on the setting of 
thresholds for minimum support and minimum confidence. Its 
performance tends to be unstable across different datasets, 
and it is prone to combinatorial explosion in high-dimensional 
scenarios[5–6].

Machine learning methods are extensively employed in en⁃
vironments with labeled data, where they demonstrate strong 
performance. Neural network classifiers and k-nearest neigh⁃
bors (KNN) algorithms can construct feature vectors from his⁃
torical data to train supervised classification models, enabling 
accurate fault attribution[7]. However, this approach is heavily 
dependent on the availability of large quantities of high-
quality labeled samples. In unsupervised or semi-supervised 
scenarios, the interpretability and performance of these meth⁃
ods are often constrained.

Deep learning methods enable automatic feature extraction 
and pattern recognition from high-dimensional and complex 
data. They demonstrate superior performance in multimodal 
fusion and sequence modeling, allowing the application of hy⁃
brid architectures such as CNN-BiLSTM-Attention for pro⁃
cessing alarm sequences or leveraging Transformer-based 
models to integrate multi-source information for fault diagno⁃
sis[8–10]. While deep learning is highly sensitive to nonlinear 
relationships and latent patterns, its effectiveness in causal in⁃
ference remains dependent on the comprehensiveness of fea⁃
ture extraction and the quality of the input data. Furthermore, 
model training typically demands large volumes of labeled 
data and significant computational resources[11–12].

In recent years, knowledge graphs and intelligent agent 
methods have been gradually applied to RCA. Knowledge 
graphs enable interpretable reasoning through structured 
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causal networks and probabilistic models. Agents built on 
large language models (LLMs), such as ReAct and RCAgent, 
utilize interactive tool calls and dynamic reasoning loops to 
cope with complex and dynamic fault scenarios, significantly 
enhancing system interpretability and real-time responsive⁃
ness[13–14]. These methods exhibit complementary characteris⁃
tics. Association rule mining is suitable for extracting highly 
interpretable rules. Machine learning is effective for well-
labeled classification tasks. Deep learning excels at handling 
high-dimensional and complex patterns. Knowledge graphs 
and agent-based methods enhance causal reasoning and inter⁃
active adaptability, thereby improving the interpretability and 
dynamic performance of RCA.

This paper, based on artificial intelligence methods, ad⁃
dresses the challenge of Wi-Fi quality degradation in FTTR 
networks caused by complex factors. The main contributions 
are as follows:

1) To tackle the difficulty of locating Wi-Fi-side quality 
degradation and performing RCA in FTTR networks, a multi-
task learning model based on Transformer mechanisms is pro⁃
posed, enabling simultaneous AP localization and root cause 
type identification.

2) A discrete-event simulation platform using MATLAB is 
designed and implemented to simulate various network degra⁃
dation scenarios (e.g., weak coverage, congestion, and interfer⁃
ence), generating a multi-label dataset for model training and 
validation.

3) Experimental results show that the proposed Transformer-
based multi-task learning model achieves an accuracy of 

96.75% in root cause classification tasks, significantly outper⁃
forming baseline models such as LSTM, GRU, Random Forest, 
and XGBoost. This demonstrates its superiority in temporal fea⁃
ture extraction and complex pattern recognition, highlighting its 
high practical value.

The rest of this paper is organized as follows. Section 2 in⁃
troduces the system model, including the centralized/cloud 
wireless-optical access network (C-WAN) -based FTTR archi⁃
tecture, the RCA framework for performance degradation, and 
the channel access mechanism. Section 3 elaborates on the 
Transformer-based multi-task RCA algorithm, including prob⁃
lem modeling, model structure, and loss function design. Sec⁃
tion 4 validates the effectiveness of the proposed method 
through simulation experiments, including dataset generation, 
baseline comparisons, and ablation studies. Future research 
directions are outlined in Section 5. Finally, Section 6 con⁃
cludes the paper.
2 System Model

This section introduces the FTTR system model based on 
the C-WAN, including its architecture, the framework for 
RCA of performance degradation, and the channel access 
mechanism.
2.1 FTTR Network Architecture Based on C-WAN

As shown in Fig. 1, the C-WAN system is functionally di⁃
vided into three planes: the management plane, the control 
plane, and the data plane. The management plane is respon⁃
sible for monitoring device status, maintaining topology infor⁃

ETH: Ethernet
FTTR: Fiber-to-the-Room

IFDN: indoor fiber distribution network
ODN: optical distribution network

OLT: optical line terminal
PON: passive optical network

Figure 1. Centralized/cloud wireless-optical access network architecture
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Real-time communication status reporting
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mation, and interfacing with operator platforms to achieve op⁃
erational and maintenance objectives. The control plane pri⁃
marily collects information from both air interfaces and optical 
links, enabling intelligent allocation and decision-making for 
optical-wireless resources through unified scheduling. The 
data plane consists of multiple devices responsible for the ac⁃
tual forwarding of user packets and provides transmission 
channels for operation and control signaling. Within this archi⁃
tecture, the OLT can gather various types of status information 
from all APs and possesses strong computational capabilities. 
This makes it well-suited for centralized analysis of network 
quality degradation causes. Detailed explanations will be pro⁃
vided in subsequent sections.
2.2 Framework for Root Cause Analysis of FTTR Perfor⁃

mance Degradation
In FTTR networks where dense user and AP coexistence is 

common, the causes of performance degradation are complex 
and involve factors such as air interface collisions, channel 
contention, and uneven resource allocation. Therefore, this pa⁃
per establishes an RCA framework for FTTR performance deg⁃
radation based on the C-WAN architecture. This framework le⁃
verages real-time status data collected by the OLT, including 
channel utilization, collision counts, packet error rates, modu⁃
lation and coding scheme (MCS), etc., and the low-latency op⁃
tical fiber links to identify key factors contributing to network 
quality deterioration through feature extraction and correlation 
analysis. The analysis results can be used to guide resource re⁃
configuration and transmission strategy adjustments, thereby 
forming a closed-loop operational mechanism of “detection-
analysis-optimization”. This enhances network reliability and 
service quality.

The system model consists of a centralized OLT connected 
to multiple APs via optical fibers. Each AP, in turn, estab⁃
lishes wireless local area network (WLAN) connections with 
multiple stations (STAs). Leveraging low-latency optical links, 
the centralized OLT can promptly collect and aggregate multi-
source status data generated by all APs and STAs across the 
network. This enables the construction of a multi-dimensional 
performance indicator system spanning the physical layer, 
link layer, and network layer. Furthermore, thanks to the edge 
computing module deployed at the OLT, AI models can be de⁃
ployed to extract and integrate high-dimensional features. 
This capability allows for the identification of potential root 
causes of degradation, such as roaming issues, interference, 
collisions, congestion, and weak coverage. Based on the analy⁃
sis results, optimization strategies can be formulated and deliv⁃
ered to the corresponding APs for execution via the C-WAN 
control mechanism. This architecture fully leverages the cen⁃
tralized advantages of C-WAN, significantly enhancing the 
service assurance capabilities of FTTR networks in high-
density environments.

2.3 FTTR Network Channel Access Mechanism
In FTTR systems, the channel access mechanism comprises 

both PON and Wi-Fi components, aiming to achieve efficient 
and low-collision data transmission.

On the PON side, the data transmission mechanism in⁃
cludes downlink broadcast and uplink time division multiple 
access (TDMA). For downlink transmission, the OLT sends 
data via broadcasting, and each optical network unit (ONU) fil⁃
ters and receives data based on its logical identifier. For up⁃
link transmission, multiple ONUs share the same fiber chan⁃
nel, and the OLT centrally schedules time slot allocations to 
prevent collisions. The OLT uses Gate control frames to assign 
transmission windows to ONUs, which then send data and Re⁃
port frames within designated time slots to report their buffer 
status. The transmission time slots have a minimum granular⁃
ity to ensure sufficient processing time for ONUs. For ex⁃
ample, in EPON, the basic unit is 16 ns, and the minimum al⁃
location unit is 1 024 such basic time slots (i.e., 16.384 μs ). 
Additionally, the system periodically executes discovery and 
registration procedures to maintain the active status of ONUs 
and prevent watchdog timer timeout. Control frames (such as 
Gate and Report) are assigned a higher transmission priority 
than data frames.

In Wi-Fi networks, the enhanced distributed channel ac⁃
cess (EDCA) mechanism is employed to enable service differ⁃
entiation and QoS management. This mechanism defines four 
access categories (ACs): AC_VO, AC_VI, AC_BE, and 
AC_BK. Each AC corresponds to specific contention param⁃
eters, including minimum contention window (CWmin), maxi⁃
mum contention window (CWmax), arbitration inter-frame 
space number (AIFSN), and transmission opportunity limit 
(TXOPLimit). The AIFS duration is calculated as follows:

AIFS[AC] = SIFSTime + AIFSN[AC] × SlotTime (1).
In the EDCA mechanism, SIFSTime and SlotTime are 

physical layer parameters. Each AC independently executes 
a backoff procedure. When the channel remains idle for the 
duration of the AIFS, a random backoff timer is triggered. If 
an internal collision occurs, the higher-priority AC gains 
transmission rights, while the lower-priority AC must double 
its backoff window. Once the transmission is successful, the 
contention window is reset to the CWmin value. If the trans⁃
mission fails, the window continues to double until CWmax 
is reached.
3 Transformer-Based Multi-Task Root 

Cause Analysis Algorithm

3.1 Problem Formulation
The overall network architecture of FTTR comprises two 

major components: the PON and Wi-Fi access. In practical de⁃
ployments, the PON section utilizes optical fiber as the trans⁃
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mission medium, offering high bandwidth, low latency, strong 
anti-interference capabilities, and generally stable operation 
with a low probability of network quality degradation. In con⁃
trast, the Wi-Fi section operates in open wireless frequency 
bands, making it highly susceptible to environmental interfer⁃
ence, diverse terminal behaviors, physical obstructions, and 
other factors. Consequently, Wi-Fi has become the primary 
source of overall network quality degradation. Relevant statis⁃
tics indicate that over 80% of user experience issues originate 
from the Wi-Fi side. Building on this, this paper focuses on 
analyzing and modeling Wi-Fi-related network quality issues 
in FTTR systems.

The analysis of FTTR network quality degradation can be 
formulated as a multi-task time series classification problem. 
Consider a network system comprising n APs. At each time 
step t, the system monitors Nf   feature metrics, forming a fea⁃
ture vector  x t ∈ RNf.

Given an observation time window of length L，the model in⁃
put can be represented as a feature matrix：
X = [ ]x1, x2,…, xL

T ∈ RL × Nf (2),
where each feature vector x t, t∈［1,…,L］, includes three types 
of metrics: 1) AP-specific metrics: ϕ ( j )AP i

, where i ∈ {1,2,…,n } 
denotes the AP index, and j represents the metric type (e. g., 
number of STAs, channel status); 2) AP performance metrics: 
ψ (k )AP i

 ，reflecting the performance of each AP (e.g., throughput, 
interference level); 3) Global network metrics: ω(m ), describing 
the overall network state (e.g., total user count, average chan⁃
nel utilization).

The model outputs two vectors, Root Cause Localization (a 
root cause probability vector YAP ∈  [ 0, 1 ]n indicating the prob⁃
ability that each AP is the root cause AP) and Root Cause 
Type (a root cause type probability distribution YType ∈  [ 0, 1 ]C, 

where C is the number of root cause types). The root cause 
types considered in this paper include Normal, Weak Cover⁃
age, Congestion, Collision, Roaming, and Interference.

The model needs to learn a mapping function F as ex⁃
pressed in Eq. (3):

 F ( )X ;  Θ = [ ]YAP, YType (3),
where Θ represents the parameters of the function, consisting 
of the Transformer-based multi-task learning model and its 
output heads.
3.2 Model Architecture: Transformer-Based Multi-Task 

Learning Model
The core architecture of the model is illustrated in Fig. 2. 

Each feature vector is mapped from dimension Nf to dimen⁃
sion Nd through a fully connected layer. Here, Wp is the 
weight matrix, and bp  is the bias vector.

H͂ ( )0 = X ⋅ Wp + bp (4),

H ( )0 = H͂ ( )0 + P (5).
Since the Transformer mechanism does not employ recur⁃

rent or convolutional structures, it cannot inherently capture 
the sequential relationships among elements in the se⁃
quence. The positional encoding P, a tensor with the same 
shape as H ( )0 , is learned and added to H ( )0  to enable the 
model to utilize the temporal order information of the time 
steps in the sequence.

The Transformer encoder consists of NL   identical layers 
stacked together, each containing a multi-head self-attention 
mechanism and a feed-forward neural network. The multi-
head self-attention mechanism allows any time step in the se⁃
quence to directly attend to all other time steps, effectively 

Figure 2. Multi-task Transformer mechanism

FFN: feed-forward network

Transformer

Residualconnection Residualconnection

Input

Linear Positionalencoding … Classification heads
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capturing long-term dependencies and interactions among fea⁃
tures. This is crucial for analyzing the temporal causal rela⁃
tionships in network state metrics. The feed-forward neural 
network primarily applies non-linear transformations to the 
outputs of the self-attention layer, enhancing the model’s ex⁃
pressive power. Each sub-layer incorporates residual connec⁃
tions and layer normalization, which help mitigate gradient 
vanishing issues in deep networks and accelerate training.

H ( )NL = TransformerEncoder (H ( )0 ) (6).
After processing through NL   layers of the Transformer en⁃

coder, we obtain a sequence H (NL ) rich in contextual informa⁃
tion. The output of the last time step, h final, is used as a com⁃
prehensive representation of the entire input sequence. It is 
fed into two separate classification heads to produce the model 
outputs YAP  and YType .

YAP = softmax (h finalWAP + bAP ) (7),

YType = softmax (h finalWType + bType ) (8).

3.3 Loss Function
The total loss function is defined as the weighted sum of the 

two task-specific losses:
L total = αLAP + βLType (9),

where α and β are the weights for the two tasks. Both losses 
employ the cross-entropy function. The objective of model 
training is to minimize this total loss function.
3.4 Computational Cost Analysis

The computational cost of the model primarily originates 
from the initial projection layer, the Transformer encoder, and 
the output layer. The following analysis is based on computa⁃
tional complexity, where the sequence length is L, the model 
dimension is Nd, the input feature dimension is Nf, and the 
number of Transformer layers is NL .The operation of the initial projection layer involves matrix 
multiplication X ⋅ Wp and bias addition. Its complexity is 
O ( L ⋅ Nf ⋅ Nd ) . Since Nf and Nd are fixed dimensions, the 
complexity is linearly related to the sequence length L.

The complexity of each Transformer encoder layer is deter⁃
mined by the multi-head self-attention and the feedforward 
neural network.

1) Multi-head self-attention: The complexity of computing 
the attention matrix QK T is O ( L2 ⋅ dk ), where dk = Nd /h (with 
h being the number of heads). Since there are h heads, the to⁃
tal complexity is O (h ⋅ L2 ⋅ dk ) = O ( L2 ⋅ Nd ), because dk =
Nd /h .

2) Feedforward neural network: The complexity of the two 

linear transformations is O ( L ⋅ Nd ⋅ dff ). Since dff ∝ Nd  , the 
complexity is O ( L ⋅ Nd

2 ).
Thus, the total complexity of each Transformer layer is 

O ( L2 ⋅ Nd + L ⋅ Nd
2 ). The entire encoder has NL layers, so 

the total complexity is O (NL ⋅ L2 ⋅ Nd + NL ⋅ L ⋅ Nd
2 ).

The operations of the output layer involve matrix multiplica⁃
tion and softmax for two classification heads. The complexity 
is O (CAP ⋅ Nd + CType ⋅ Nd ). Since CAP and CType  are small and 
constant, this part of the complexity is negligible.

In conclusion, the total computational cost is:
O ( L ⋅ Nf ⋅ Nd + NL ⋅ L2 ⋅ Nd + NL ⋅ L ⋅ Nd

2 +
CAP ⋅ Nd + CType ⋅ Nd ) (10).
Based on the above analysis, the total computational cost of 

the model is primarily dominated by the Transformer encoder, 
i. e., O (NL ⋅ L2 ⋅ Nd + NL ⋅ L ⋅ Nd

2 ). The computational cost 
mainly depends on the sequence length L and the model di⁃
mension Nd.
4 Simulation

4.1 Dataset Generation
To train and evaluate an AI model capable of accurately de⁃

termining the root causes of WLAN network issues, we devel⁃
oped a discrete-event simulation platform based on MATLAB. 
This platform simulates key mechanisms of the IEEE 802.11 
protocol’s MAC and physical layers to replicate various net⁃
work quality degradation scenarios. The architecture of the 
simulator and the detailed process for generating a multi-label 
dataset are described below.

Our simulator follows an object-oriented design philosophy, 
with its core classes and interactions illustrated in Fig. 3.

The Simulator module is the core scheduling system of the 
simulation, responsible for maintaining the global clock and a 
list of APs. It advances the simulation by scanning and execut⁃
ing the earliest occurring events. The AP module models the 
behavior of real APs, maintaining a state machine that in⁃
cludes states such as BACK_OFF, HOLD, and SEND. The 
Callback module contains functions scheduled to execute at 
specific future time points, handling events such as the end of 
backoff, the start of frame transmission, and acknowledge 
(ACK) character timeout checks. The Events module records 
the details of each transmission attempt, including start time, 
end time, and status. The Mobile module simulates STA mo⁃
bility and roaming behavior, tracking the positions of STAs 
and APs. It calculates the received signal strength based on 
real-time distance and a path loss model, triggering roaming 
decisions when the signal strength falls below a certain thresh⁃
old. The ChannelQuality module calculates the received sig⁃
nal power, aggregates interference from co-channel APs and 
external sources, and computes the signal-to-interference-
plus-noise ratio (SINR). It also determines the packet error 
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rate (PER) using a PER-SINR mapping model, taking into ac⁃
count different modulation and coding scheme (MCS) levels. 
The LoadMonitor module monitors network load conditions, 
collecting statistics such as channel utilization, queue length, 
and collision count for each AP, and subsequently calculates 
the collision rate.

Data generation is achieved through multiple simulation 
runs, each configured with specific parameters to simulate par⁃
ticular problem scenarios. Roaming issues are simulated using 
STA mobility models, where STAs continuously move between 
two APs; Coverage deficiencies are simulated by setting low 
AP transmission power or placing STAs at the edge of cover⁃
age areas; Congestion issues are simulated by increasing the 
number of APs or raising the STA’s transmission rate to el⁃
evate the load; Interference issues are simulated by adjusting 
AP topology to cause mutual interference or by introducing ex⁃
ternal APs outside the FTTR system; Severe collision sce⁃
narios are simulated by configuring small contention windows 
or a large number of STAs.

The dataset generation process integrates the previously 
mentioned modules. The first step is simulation initialization, 
where parameters such as the number of APs, number of 
STAs, physical locations, transmission power, and traffic load 
are configured. All AP, Mobile, ChannelQuality, and Load⁃
Monitor modules are initialized.

During the simulation, the simulator employs an event-
driven time-step advancement mechanism. At each sampling 
interval, it performs unified sampling of all APs to create time⁃
stamped data samples. Each sample includes the following fea⁃
ture sets:

1) Network load features: the total number of STAs, the 
number of STAs currently associated with each AP, and sys⁃
tem load imbalance degree (used to quantify load distribution 
differences among APs);

2) Channel state features: channel number occupied by 
each AP, the number of co-channel interfering APs, SINR for 
each AP, and RSSI for each AP;

3) Performance metrics: total downlink throughput per AP, 
maximum communication delay, frame retransmission rate, 
channel utilization, and the MAC-layer data frame collision rate;

4) Roaming behavior features: the number of roaming event 
triggers and that of failed roaming attempts per AP.

Each sample is automatically annotated with two labels. 
The root cause label identifies the primary network problem. 
The categories include roaming issues, coverage deficiency, 
congestion, interference, severe collisions, and normal condi⁃
tions. The labeling logic is determined by the simulation con⁃
figuration. The problem AP label identifies the device ID of 
the AP responsible for the root cause. For coverage deficiency 
and roaming issues, this label is the ID of the currently serv⁃
ing AP; for interference issues, it is the ID of the primary inter⁃
fering AP; for congestion and severe collision scenarios, it is 
the ID of the overloaded AP. Finally, the feature vectors of all 
samples and their corresponding labels are stored in a matrix 
form to create the final dataset for model training.

In the subsequent experiment, using the aforementioned 
method, we conducted simulations for six different scenarios, 
each simulated 300 times with a time-step of 300 s. By chang⁃
ing the random number seeds, a dataset comprising 540 000 
samples with 39 features was constructed. The dataset was 
partitioned into training, validation, and test sets in a 70%, 
15%, and 15% ratio, respectively. Both the root cause label 
and problem AP label exhibit a uniform distribution.
4.2 Baseline Model Performance Comparison

The dataset generated using the aforementioned method 
was used to train the models. As shown in Fig. 4, as the 
number of training iterations increases, the loss gradually 
decreases, and the accuracy gradually improves, eventually 
stabilizing.

To comprehensively evaluate the performance of the pro⁃
posed Transformer-based multi-task learning root cause analy⁃

AP: access point         PER: packet error rate        STA: station
Figure 3. Simulator modules: core classes and interactions
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sis algorithm for FTTR networks, we compared it against sev⁃
eral representative baseline models, including classical se⁃
quence models and traditional machine learning methods. The 
selected baseline models are two sequence models: Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU), and two traditional machine learning models: Random 
Forest and eXtreme Gradient Boosting (XGBoost).

As shown in Fig. 5, the proposed Transformer-based multi-
task learning model achieved the highest accuracy in both AP 
localization and root cause type identification tasks, demon⁃
strating its excellent capability in temporal feature extraction 
and complex pattern discrimination.

•AP localization task: The Transformer-based multi-task 
learning model achieved an accuracy of 80.92%, outperform⁃
ing LSTM (79.54%), GRU (79.02%), Random Forest 
(74.64%), and XGBoost (76.29%). This indicates that the self-
attention mechanism is superior to recurrent structures and 
tree models in capturing global dependencies. However, the 
overall accuracy rates were relatively low, primarily because 

when network quality degrades, non-root-cause APs may ex⁃
hibit similar features. For example, if AP1 is interfered with 
by AP2, AP2 may also experience interference from AP1, re⁃
sulting in highly similar features between the two APs.

•Root cause type classification task: The Transformer-
based multi-task learning model achieved an accuracy of 
96.75%, surpassing all baseline models. Traditional machine 
learning methods performed significantly worse in this task, 
highlighting the advantage of deep sequence models in fine-
grained, multi-category classification scenarios.

In summary, the Transformer-based multi-task learning 
model is well-suited for root cause analysis in FTTR network 
quality degradation scenarios.
4.3 Ablation Study on Transformer Mechanisms

To conduct an in-depth analysis of the contributions of key 
modules in the Transformer-based multi-task learning model, we 
performed an ablation study to systematically evaluate the indi⁃
vidual effects of positional encoding and the multi-head attention 

Figure 4. Baseline model performance comparison: training results
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mechanism. Specifically, we designed two variant models. 
1) Transformer-NoPos: The positional encoding module 
was removed; 2) Transformer-SingleHead: The multi-head 
attention mechanism was replaced with a single-head at⁃
tention mechanism.

Upon removing positional encoding, the AP localization ac⁃
curacy dropped by 1.35%, and the root cause type classifica⁃
tion accuracy decreased by 2.63%. These results indicate that 
encoding sequential information is essential for fault sequence 
interpretation. Without explicit positional cues, the model has 
difficulty distinguishing the temporal order of events. The rela⁃
tively moderate performance degradation is mainly due to the 
use of simulation-generated data, where each scenario is pre⁃
configured with a specific fault type. For instance, in the cov⁃
erage deficiency scenario, the entire simulation consistently 
exhibits coverage-related issues, and the features exhibit mini⁃
mal temporal variation.

Replacing multi-head attention with single-head attention 
led to performance declines in both tasks. The root cause clas⁃
sification accuracy decreased by 2.95%, confirming that the 
multi-head structure enhanced the model’s expressive capac⁃
ity and robustness by integrating diverse features from mul⁃

tiple representation subspaces.
Overall, the ablation study demonstrates that both posi⁃

tional encoding and the multi-head attention mechanism are 
critical components of the Transformer-based multi-task learn⁃
ing model, thus significantly contributing to its accuracy and 
generalization performance in root cause analysis tasks.
5 Future Work and Challenges

The current model faces two major challenges. First, it re⁃
lies on simulated data with inherent limitations, resulting in 
insufficient generalization capability and credibility due to the 
absence of real data; second, it performs poorly in root-cause 
AP localization. Accordingly, we will address these two as⁃
pects separately by elaborating on the current issues and pro⁃
posing future improvement plans.

Currently, our experiments rely on simulated data. There 
are significant differences between real data and simulated 
data, among which we consider the following to be particularly 
important: 1) The simulated data does not emulate real 
queues, thus lacking scenarios of overflow-induced packet 
loss, and the measured latency data does not include waiting 
delays in queues; 2) The simulation of actual service flows is 

AP: access point      GRU: Gated Recurrent Unit      LSTM: Long Short-Term Memory          XGBoost: eXtreme Gradient Boosting 
Figure 5. Accuracy comparison of AP localization and root cause type identification
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inadequate, as our packet transmission process is relatively 
stable and lacks simulation of burst traffic; 3) Transmission 
control protocol (TCP) mechanisms (such as sliding windows, 
congestion control) are difficult to simulate. Therefore, we 
plan to use real data in the future to enhance the credibility of 
our model.

Through collaboration with the industry, we have currently 
set up an FTTR test environment. In the future, we will first in⁃
tegrate a timer within the AP to periodically measure the pa⁃
rameters and metrics we need, and transmit the data to a PC 
via Ethernet (without interfering with Wi-Fi data transmis⁃
sion). Subsequently, we will attempt to label the data based on 
real environmental data, which will be a challenging yet criti⁃
cal task. We cannot simply label data based on specific met⁃
rics (for example, marking it as a “coverage issue” when the 
RSSI falls below a certain threshold), as this would cause the 
model to learn our labeling methodology, which is not the de⁃
sired outcome. Therefore, the rationality of the labeling ap⁃
proach will directly impact the final accuracy and generaliza⁃
tion performance of our model. Finally, we will retrain and 
fine-tune our model using real environmental data to enhance 
its practical utility.

Regarding root-cause AP localization, our analysis reveals 
that localization performance is the poorest in congestion sce⁃
narios. Further data investigation indicates that this is due to 
limitations inherent in the simulated data itself. Specifically, 
the simulation fails to accurately model TCP-related mecha⁃
nisms and does not account for queuing delays caused by Wi-
Fi queues. As a result, the round trip time (RTT), which 
should ideally reflect feature differences between root-cause 
and non-root-cause APs in congestion scenarios, fails to ex⁃
hibit discriminative characteristics. In addition to utilizing 
real-world data, we will explore the following approaches in fu⁃
ture work to further enhance model performance in root-cause 
AP localization tasks: 1) incorporating device-specific atten⁃
tion mechanisms, 2) introducing additional highly discrimina⁃
tive features, and 3) experimenting with models trained on 
single-AP data.
6 Conclusions

This paper addresses the challenges of identifying the 
source of quality degradation and analyzing the complex root 
causes in FTTR networks by proposing a multi-task root cause 
analysis model based on the Transformer mechanisms. The 
model is capable of simultaneously detecting faulty APs and 
determining the types of root causes. Experimental results 
show that the model achieves strong performance on a simu⁃
lated dataset, with a root cause classification accuracy of 
96.75%, surpassing several traditional machine learning and 
deep learning baselines. Ablation studies further confirm the 
critical role of positional encoding and the multi-head atten⁃
tion mechanism in enhancing model performance. However, 
during network quality degradation, non-root-cause APs may 

display similar symptoms, leading to relatively lower accuracy 
in fault localization. Additionally, the current study is based 
on simulated data, where temporal feature variations may not 
fully capture real-world dynamics. Future work will focus on 
validating the model’s generalization using real-world net⁃
work data, exploring online learning mechanisms, improving 
interpretability, and integrating technologies such as knowl⁃
edge graphs to enhance the transparency and reliability of the 
reasoning process. This study offers an effective technical so⁃
lution for intelligent operation and maintenance in FTTR net⁃
works, contributing to improved network reliability and user 
satisfaction.
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