Root Cause Analysis of Poor FTTR Quality Based on Transformer Mechanisms

Special Topic

YU Weichao, LIU Yang, ZHANG Junxiong, YE Junliang, GE Xiaohu

Root Cause Analysis of Poor FTTR Quality
Based on Transformer Mechanisms

YU Weichao, LIU Yang, ZHANG Junxiong,
YE Junliang, GE Xiaohu

DOI: 10.12142/ZTECOM.202504006

https://kns.cnki.net/kcms/detail/34.1294.TN.20251209.1014.002.html,

(School of Electronic Information and Communication, Huazhong Uni- published online December 09, 2025

versity of Science and Technology, Wuhan 430074, China) Manuscript received: 2025-11-11

Abstract: Fiber-to-the-Room (FTTR) has emerged as the core architecture for next-generation home and enterprise networks, offering gigabit-
level bandwidth and seamless wireless coverage. However, the complex multi-device topology of FTTR networks presents significant chal-
lenges in identifying sources of network performance degradation and conducting accurate root cause analysis. Conventional approaches often
fail to deliver efficient and precise operational improvements. To address this issue, this paper proposes a Transformer-based multi-task learn-
ing model designed for automated root cause analysis in FTTR environments. The model integrates multidimensional time-series data col-
lected from access points (APs), enabling the simultaneous detection of APs experiencing performance degradation and the classification of
underlying root causes, such as weak signal coverage, network congestion, and signal interference. To facilitate model training and evaluation,
a multi-label dataset is generated using a discrete-event simulation platform implemented in MATLAB. Experimental results demonstrate that
the proposed Transformer-based multi-task learning model achieves a root cause classification accuracy of 96.75%, significantly outperform-
ing baseline models including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Random Forest, and eXtreme Gradient Boost-
ing (XGBoost). This approach enables the rapid identification of performance degradation causes in FTTR networks, offering actionable in-

sights for network optimization, reduced operational costs, and enhanced user experience.
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1 Introduction
iber-to-the-Room (FTTR)" is a key framework for next-
generation home and enterprise networks, with global
deployment accelerating due to its broad application
prospects. Built on an all-optical fiber network archi-
tecture, this technology delivers ultra-high bandwidth (ranging
from 1 Gbit/s to 10 Gbit/s), low latency, high stability, and
seamless coverage to end users. It effectively supports band-
width- and performance-intensive applications such as 4K/8K
ultra-high-definition video streaming, cloud gaming, virtual re-
ality/augmented reality (VR/AR), smart home systems, and re-
mote work and education”. As global fixed broadband net-
works progress toward gigabit and ten-gigabit capabilities, the
deployment scale of FTTR continues to expand, accompanied
by a steady increase in market penetration. This trend under-

This work is supported in part by the National Key R&D Program of China
under Grant No. 2024YFE0200504, NSFC key international joint project
under Grant No. 62120106007, and Interdisciplinary Research Program of
HUST under Grant No. 2024JCYJ022.

scores FTTR as a critical direction in the evolution of next-
generation broadband access technologies.

In December 2020, the European Telecommunications Stan-
dards Institute (ETSI) included FTTR in the fifth-generation
fixed network (F5G) standard system', reflecting international
recognition of its technological innovation and standardization
progress. Currently, ten-gigabit access solutions that integrate
50G passive optical networks (PON) and FTTR are progress-
ing through pilot testing and commercial deployment stages.
Many service providers are actively promoting this technology
as a strategic initiative to enhance user experience, capture
high-end market segments, and strengthen competitive advan-
tage. Furthermore, as end-users increasingly demand high-
quality indoor coverage and stable network performance,
achieving high reliability, efficient operation and mainte-
nance, and consistently superior user experiences in FTTR
networks has become a central focus for both academic re-
search and industrial development.

The rapid expansion of FTTR networks, coupled with their
highly complex topology, which includes primary gateways,
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secondary gateways, optical splitters, fiber links, and Wi-Fi
environments, has introduced new operational challenges.
First, fault localization is challenging. Issues such as slow net-
work speed, connection interruptions, and high latency may
originate from multiple sources, including abnormal optical
power, hardware or software failures, configuration errors, Wi-
Fi interference, or user-side problems. Actually, PON-side is-
sues do not directly cause Wi-Fi performance degradation but
rather affect the performance of the entire end-to-end link. For
instance, optical power attenuation can lead to high bit error
rates and packet retransmission in the link, while optical line
terminal (OLT) congestion can result in increased latency and
packet loss. These issues degrade the Quality of Service (QoS)
for data flows. Since Wi-Fi is the last segment of the network
connecting to users, problems occurring in intermediate links
are sometimes erroneously attributed to Wi-Fi performance
degradation. Moreover, faults often exhibit complex interde-
pendencies across multi-level devices, rendering manual in-
spection inefficient and error-prone. Second, root cause analy-
sis (RCA) is time-intensive. Traditional approaches that rely
on alarms and expert knowledge struggle to quickly and accu-
rately identify the true cause amid vast volumes of multi-
source data, such as performance metrics, alarm records, con-
figuration logs, and environmental information. This results in
prolonged mean time to repair (MTTR), which negatively af-
fects user experience and operator profitability. Third, intelli-
gent capabilities are limited. Current operational systems lack
automated and intelligent analysis functions, including root
cause inference, making them ill-suited for the efficient and
precise management of large-scale FTTR networks. Therefore,
establishing an automated operational decision-making cycle
has become an urgent and critical priority.

The accelerating pace of enterprise digital transformation,
combined with the deep integration of technologies such as
cloud computing, big data, and artificial intelligence, has led
to a significant increase in the complexity of intelligent sys-
tems. During daily business operations and the maintenance
of core systems, organizations may experience system failures
or performance degradation. To ensure continuous and stable
system operation, it is essential to accurately identify the root
cause of issues—not only locating the fault but also under-
standing the underlying reasons—to develop effective preven-
tive strategies. This process is known as RCA, which focuses
on employing systematic methodologies to uncover the funda-
mental factors behind problems, rather than simply addressing
surface-level symptoms. Currently, RCA methods can be
broadly classified into two categories: data-driven and
causality-driven approaches. Due to the high complexity in-
volved in achieving complete causal inference, data-driven
methods, such as association rule mining, machine learning,
deep learning, intelligent agents, and knowledge graphs, have
become the dominant approach in practice.

The data utilized for RCA primarily consists of three types
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of heterogeneous data: 1) Location-time data: This type re-
cords the physical or logical location and associated timing of
fault occurrences, thereby supporting the identification of fail-
ure propagation paths. For example, in FTTR networks, this
includes AP deployment topology, user mobility trajectories,
and timestamps of roaming events; 2) Physical data: This cat-
egory captures the physical state of the system. Wireless met-
rics such as the received signal strength indicator (RSSI), the
signal-to-noise ratio (SNR), and air interface utilization fall
into this category; 3) Log and behavioral data: This type en-
ables in-depth causal inference and includes examples such
as device kernel logs, 802.11 protocol packet captures, and
user authentication records. However, the heterogeneity of
multi-source data and the presence of temporal delays remain
key challenges. There is an urgent need to achieve efficient
feature alignment and real-time analytical capabilities.

Among data-driven methods, association rule mining aims
to identify abnormal combinations of attributes to locate root
causes. For example, the classification based on associations
(CBA) algorithm utilizes class association rules (CARs) to
identify fault causes, demonstrating high accuracy in applica-
tions such as fault diagnosis in chiller systems'*. However, the
effectiveness of this method heavily depends on the setting of
thresholds for minimum support and minimum confidence. Its
performance tends to be unstable across different datasets,
and it is prone to combinatorial explosion in high-dimensional
scenarios” .

Machine learning methods are extensively employed in en-
vironments with labeled data, where they demonstrate strong
performance. Neural network classifiers and k-nearest neigh-
bors (KNN) algorithms can construct feature vectors from his-
torical data to train supervised classification models, enabling
accurate fault attribution”. However, this approach is heavily
dependent on the availability of large quantities of high-
quality labeled samples. In unsupervised or semi-supervised
scenarios, the interpretability and performance of these meth-
ods are often constrained.

Deep learning methods enable automatic feature extraction
and pattern recognition from high-dimensional and complex
data. They demonstrate superior performance in multimodal
fusion and sequence modeling, allowing the application of hy-
brid architectures such as CNN-BiLSTM-Attention for pro-
cessing alarm sequences or leveraging Transformer-based
models to integrate multi-source information for fault diagno-
sis®® 1% While deep learning is highly sensitive to nonlinear
relationships and latent patterns, its effectiveness in causal in-
ference remains dependent on the comprehensiveness of fea-
ture extraction and the quality of the input data. Furthermore,
model training typically demands large volumes of labeled
data and significant computational resources'"' '\

In recent years, knowledge graphs and intelligent agent
methods have been gradually applied to RCA. Knowledge
graphs enable interpretable reasoning through structured
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causal networks and probabilistic models. Agents built on
large language models (LLMs), such as ReAct and RCAgent,
utilize interactive tool calls and dynamic reasoning loops to
cope with complex and dynamic fault scenarios, significantly
enhancing system interpretability and real-time responsive-
ness'”® 'L These methods exhibit complementary characteris-
tics. Association rule mining is suitable for extracting highly
interpretable rules. Machine learning is effective for well-
labeled classification tasks. Deep learning excels at handling
high-dimensional and complex patterns. Knowledge graphs
and agent-based methods enhance causal reasoning and inter-
active adaptability, thereby improving the interpretability and
dynamic performance of RCA.

This paper, based on artificial intelligence methods, ad-
dresses the challenge of Wi-Fi quality degradation in FTTR
networks caused by complex factors. The main contributions
are as follows:

1) To tackle the difficulty of locating Wi-Fi-side quality
degradation and performing RCA in FTTR networks, a multi-
task learning model based on Transformer mechanisms is pro-
posed, enabling simultaneous AP localization and root cause
type identification.

2) A discrete-event simulation platform using MATLAB is
designed and implemented to simulate various network degra-
dation scenarios (e.g., weak coverage, congestion, and interfer-
ence), generating a multi-label dataset for model training and
validation.

3) Experimental results show that the proposed Transformer-
based multi-task learning model achieves an accuracy of

96.75% in root cause classification tasks, significantly outper-
forming baseline models such as LSTM, GRU, Random Forest,
and XGBoost. This demonstrates its superiority in temporal fea-
ture extraction and complex pattern recognition, highlighting its
high practical value.

The rest of this paper is organized as follows. Section 2 in-
troduces the system model, including the centralized/cloud
wireless-optical access network (C-WAN)-based FTTR archi-
tecture, the RCA framework for performance degradation, and
the channel access mechanism. Section 3 elaborates on the
Transformer-based multi-task RCA algorithm, including prob-
lem modeling, model structure, and loss function design. Sec-
tion 4 validates the effectiveness of the proposed method
through simulation experiments, including dataset generation,
baseline comparisons, and ablation studies. Future research
directions are outlined in Section 5. Finally, Section 6 con-
cludes the paper.

2 System Model

This section introduces the FTTR system model based on
the C-WAN, including its architecture, the framework for
RCA of performance degradation, and the channel access

mechanism.

2.1 FTTR Network Architecture Based on C-WAN

As shown in Fig. 1, the C-WAN system is functionally di-
vided into three planes: the management plane, the control
plane, and the data plane. The management plane is respon-
sible for monitoring device status, maintaining topology infor-

Management plane

FTTR remote
management platform

Master device
management entity

Slave device
management module

Control plane

Real-time
communication

status reporting .
Controller Control entity
Command
dispatching
OLT ODN PON — L2+ — TRx IFDN TRx L2+

——

——

| Wi-Fi |

| ETH | | Wi-Fi |

Data plane ‘ ’ ETH ‘

ETH: Ethernet
FTTR: Fiber-to-the-Room

IFDN: indoor fiber distribution network
ODN: optical distribution network

OLT: optical line terminal
PON: passive optical network

Figure 1. Centralized/cloud wireless-optical access network architecture
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mation, and interfacing with operator platforms to achieve op-
erational and maintenance objectives. The control plane pri-
marily collects information from both air interfaces and optical
links, enabling intelligent allocation and decision-making for
optical-wireless resources through unified scheduling. The
data plane consists of multiple devices responsible for the ac-
tual forwarding of user packets and provides transmission
channels for operation and control signaling. Within this archi-
tecture, the OLT can gather various types of status information
from all APs and possesses strong computational capabilities.
This makes it well-suited for centralized analysis of network
quality degradation causes. Detailed explanations will be pro-
vided in subsequent sections.

2.2 Framework for Root Cause Analysis of FTTR Perfor-
mance Degradation

In FTTR networks where dense user and AP coexistence is
common, the causes of performance degradation are complex
and involve factors such as air interface collisions, channel
contention, and uneven resource allocation. Therefore, this pa-
per establishes an RCA framework for FTTR performance deg-
radation based on the C-WAN architecture. This framework le-
verages real-time status data collected by the OLT, including
channel utilization, collision counts, packet error rates, modu-
lation and coding scheme (MCS), etc., and the low-latency op-
tical fiber links to identify key factors contributing to network
quality deterioration through feature extraction and correlation
analysis. The analysis results can be used to guide resource re-
configuration and transmission strategy adjustments, thereby
forming a closed-loop operational mechanism of “detection-
analysis-optimization”. This enhances network reliability and
service quality.

The system model consists of a centralized OLT connected
to multiple APs via optical fibers. Each AP, in turn, estab-
lishes wireless local area network (WLAN) connections with
multiple stations (STAs). Leveraging low-latency optical links,
the centralized OLT can promptly collect and aggregate multi-
source status data generated by all APs and STAs across the
network. This enables the construction of a multi-dimensional
performance indicator system spanning the physical layer,
link layer, and network layer. Furthermore, thanks to the edge
computing module deployed at the OLT, AI models can be de-
ployed to extract and integrate high-dimensional features.
This capability allows for the identification of potential root
causes of degradation, such as roaming issues, interference,
collisions, congestion, and weak coverage. Based on the analy-
sis results, optimization strategies can be formulated and deliv-
ered to the corresponding APs for execution via the C-WAN
control mechanism. This architecture fully leverages the cen-
tralized advantages of C-WAN, significantly enhancing the
service assurance capabilities of FTTR networks in high-
density environments.
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2.3 FTTR Network Channel Access Mechanism

In FTTR systems, the channel access mechanism comprises
both PON and Wi-Fi components, aiming to achieve efficient
and low-collision data transmission.

On the PON side, the data transmission mechanism in-
cludes downlink broadcast and uplink time division multiple
access (TDMA). For downlink transmission, the OLT sends
data via broadcasting, and each optical network unit (ONU) fil-
ters and receives data based on its logical identifier. For up-
link transmission, multiple ONUs share the same fiber chan-
nel, and the OLT centrally schedules time slot allocations to
prevent collisions. The OLT uses Gate control frames to assign
transmission windows to ONUs, which then send data and Re-
port frames within designated time slots to report their buffer
status. The transmission time slots have a minimum granular-
ity to ensure sufficient processing time for ONUs. For ex-
ample, in EPON, the basic unit is 16 ns, and the minimum al-
location unit is 1 024 such basic time slots (i.e., 16.384 s ).
Additionally, the system periodically executes discovery and
registration procedures to maintain the active status of ONUs
and prevent watchdog timer timeout. Control frames (such as
Gate and Report) are assigned a higher transmission priority
than data frames.

In Wi-Fi networks, the enhanced distributed channel ac-
cess (EDCA) mechanism is employed to enable service differ-
entiation and QoS management. This mechanism defines four
access categories (ACs): AC_VO, AC_VI, AC_BE, and
AC_BK. Each AC corresponds to specific contention param-
eters, including minimum contention window (CWmin), maxi-
mum contention window (CWmax), arbitration inter-frame
space number (AIFSN), and transmission opportunity limit
(TXOPLimit). The AIFS duration is calculated as follows:

AIFS[AC] = SIFSTime + AIFSN[AC] X SlotTime  (1).

In the EDCA mechanism, SIFSTime and SlotTime are
physical layer parameters. Each AC independently executes
a backoff procedure. When the channel remains idle for the
duration of the AIFS, a random backoff timer is triggered. If
an internal collision occurs, the higher-priority AC gains
transmission rights, while the lower-priority AC must double
its backoff window. Once the transmission is successful, the
contention window is reset to the CWmin value. If the trans-
mission fails, the window continues to double until CWmax
is reached.

3 Transformer-Based Multi-Task Root

Cause Analysis Algorithm

3.1 Problem Formulation

The overall network architecture of FTTR comprises two
major components: the PON and Wi-Fi access. In practical de-
ployments, the PON section utilizes optical fiber as the trans-
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mission medium, offering high bandwidth, low latency, strong
anti-interference capabilities, and generally stable operation
with a low probability of network quality degradation. In con-
trast, the Wi-Fi section operates in open wireless frequency
bands, making it highly susceptible to environmental interfer-
ence, diverse terminal behaviors, physical obstructions, and
other factors. Consequently, Wi-Fi has become the primary
source of overall network quality degradation. Relevant statis-
tics indicate that over 80% of user experience issues originate
from the Wi-Fi side. Building on this, this paper focuses on
analyzing and modeling Wi-Fi-related network quality issues
in FTTR systems.

The analysis of FTTR network quality degradation can be
formulated as a multi-task time series classification problem.
Consider a network system comprising n APs. At each time
step £, the system monitors N, feature metrics, forming a fea-
ture vector x, € RY.

Given an observation time window of length L, the model in-
put can be represented as a feature matrix :

X=|:xl,x2,-~-,x,l:|vrERLXN’ (2),

where each feature vector x, te[ 1,-+,L], includes three types
of metrics: 1) AP-specific metrics: d)(AjI), where i € {1,2,---,n}
denotes the AP index, and jrepresents the metric type (e.g.,
number of STAs, channel status); 2) AP performance metrics:

l//(f]l, , reflecting the performance of each AP (e.g., throughput,

interference level); 3) Global network metrics: @™, describing
the overall network state (e.g., total user count, average chan-
nel utilization).

The model outputs two vectors, Root Cause Localization (a
root cause probability vector Y,, € [0, 11" indicating the prob-
ability that each AP is the root cause AP) and Root Cause

where C is the number of root cause types). The root cause
types considered in this paper include Normal, Weak Cover-
age, Congestion, Collision, Roaming, and Interference.

The model needs to learn a mapping function F as ex-
pressed in Eq. (3):

F(X; @) = [YAPv YType] (3),

where O represents the parameters of the function, consisting
of the Transformer-based multi-task learning model and its
output heads.

3.2 Model Architecture: Transformer-Based Multi-Task
Learning Model
The core architecture of the model is illustrated in Fig. 2.
Each feature vector is mapped from dimension N, to dimen-
sion N, through a fully connected layer. Here, W, is the
weight matrix, and b, is the bias vector.

HY=X-W, +b, (4),

HY =09 +p (5).

Since the Transformer mechanism does not employ recur-
rent or convolutional structures, it cannot inherently capture
the sequential relationships among elements in the se-
quence. The positional encoding P, a tensor with the same
shape as H", is learned and added to H'® to enable the
model to utilize the temporal order information of the time
steps in the sequence.

The Transformer encoder consists of N, identical layers
stacked together, each containing a multi-head self-attention
mechanism and a feed-forward neural network. The multi-
head self-attention mechanism allows any time step in the se-

Type (a root cause type probability distribution ¥, € [0, 11, quence to directly attend to all other time steps, effectively
Residual Residual
connection connection
Input [:> [:> :> > [ > > Output
Linear Positional Self— FFN Classification
encoding liferniion heads
Transformer

FFN: feed-forward network

Figure 2. Multi-task Transformer mechanism
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capturing long-term dependencies and interactions among fea-
tures. This is crucial for analyzing the temporal causal rela-
tionships in network state metrics. The feed-forward neural
network primarily applies non-linear transformations to the
outputs of the self-attention layer, enhancing the model’ s ex-
pressive power. Each sub-layer incorporates residual connec-
tions and layer normalization, which help mitigate gradient
vanishing issues in deep networks and accelerate training.

H( M) = TransformerEncoder(H(o)) (6).

After processing through N, layers of the Transformer en-
coder, we obtain a sequence H** rich in contextual informa-
tion. The output of the last time step, hy, . is used as a com-
prehensive representation of the entire input sequence. It is
fed into two separate classification heads to produce the model

outputs ¥, and Yy, .

Y= softmax(h W+ bAP) (7),

final

Y.

Type

= softmax(h Wine + b'rype) (8).

final " Type

3.3 Loss Function
The total loss function is defined as the weighted sum of the
two task-specific losses:

Lyga = oLy + BLyy,. 9),
where a and B are the weights for the two tasks. Both losses
employ the cross-entropy function. The objective of model
training is to minimize this total loss function.

3.4 Computational Cost Analysis

The computational cost of the model primarily originates
from the initial projection layer, the Transformer encoder, and
the output layer. The following analysis is based on computa-
tional complexity, where the sequence length is L, the model
dimension is N, the input feature dimension is N, and the
number of Transformer layers is N,.

The operation of the initial projection layer involves matrix
multiplication X - W, and bias addition. Its complexity is
O(L - N, - N,). Since N; and N, are fixed dimensions, the
complexity is linearly related to the sequence length L.

The complexity of each Transformer encoder layer is deter-
mined by the multi-head self-attention and the feedforward
neural network.

1) Multi-head self-attention: The complexity of computing
the attention matrix QK" is O(L? - d, ), where d, = N ,/h (with
h being the number of heads). Since there are h heads, the to-
tal complexity is O(h - L* - d,)= O(L* - N,), because d, =
N,/h.

2) Feedforward neural network: The complexity of the two
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linear transformations is O(L - N, - dff). Since dj, o< N, , the
complexity is O(L - Nd2 ).

Thus, the total complexity of each Transformer layer is
O(L*- N, + L - N,?). The entire encoder has N, layers, so
the total complexity is O(N, - L* - N, + N, - L - N,*).

The operations of the output layer involve matrix multiplica-
tion and softmax for two classification heads. The complexity
isO(C,p - N, + Cy,. - N,). Since C,;, and C
constant, this part of the complexity is negligible.

are small and

Type Type

In conclusion, the total computational cost is:

O(L-N;+N,+N, -L*-N,+N, -L-N>+
Cipp* Nyt Cpyp - N,) (10).

Based on the above analysis, the total computational cost of
the model is primarily dominated by the Transformer encoder,
i.e., O(N,-L*-N,+N,-L-N,”). The computational cost
mainly depends on the sequence length L and the model di-

mension V.

4 Simulation

4.1 Dataset Generation

To train and evaluate an Al model capable of accurately de-
termining the root causes of WLAN network issues, we devel-
oped a discrete-event simulation platform based on MATLAB.
This platform simulates key mechanisms of the IEEE 802.11
protocol’ s MAC and physical layers to replicate various net-
work quality degradation scenarios. The architecture of the
simulator and the detailed process for generating a multi-label
dataset are described below.

Our simulator follows an object-oriented design philosophy,
with its core classes and interactions illustrated in Fig. 3.

The Simulator module is the core scheduling system of the
simulation, responsible for maintaining the global clock and a
list of APs. It advances the simulation by scanning and execut-
ing the earliest occurring events. The AP module models the
behavior of real APs, maintaining a state machine that in-
cludes states such as BACK_OFF, HOLD, and SEND. The
Callback module contains functions scheduled to execute at
specific future time points, handling events such as the end of
backoff, the start of frame transmission, and acknowledge
(ACK) character timeout checks. The Events module records
the details of each transmission attempt, including start time,
end time, and status. The Mobile module simulates STA mo-
bility and roaming behavior, tracking the positions of STAs
and APs. It calculates the received signal strength based on
real-time distance and a path loss model, triggering roaming
decisions when the signal strength falls below a certain thresh-
old. The ChannelQuality module calculates the received sig-
nal power, aggregates interference from co-channel APs and
external sources, and computes the signal-to-interference-
plus-noise ratio (SINR). It also determines the packet error
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Figure 3. Simulator modules: core classes and interactions

rate (PER) using a PER-SINR mapping model, taking into ac-
count different modulation and coding scheme (MCS) levels.
The LoadMonitor module monitors network load conditions,
collecting statistics such as channel utilization, queue length,
and collision count for each AP, and subsequently calculates
the collision rate.

Data generation is achieved through multiple simulation
runs, each configured with specific parameters to simulate par-
ticular problem scenarios. Roaming issues are simulated using
STA mobility models, where STAs continuously move between
two APs; Coverage deficiencies are simulated by setting low
AP transmission power or placing STAs at the edge of cover-
age areas; Congestion issues are simulated by increasing the
number of APs or raising the STA’ s transmission rate to el-
evate the load; Interference issues are simulated by adjusting
AP topology to cause mutual interference or by introducing ex-
ternal APs outside the FTTR system; Severe collision sce-
narios are simulated by configuring small contention windows
or a large number of STAs.

The dataset generation process integrates the previously
mentioned modules. The first step is simulation initialization,
where parameters such as the number of APs, number of
STAs, physical locations, transmission power, and traffic load
are configured. All AP, Mobile, ChannelQuality, and Load-
Monitor modules are initialized.

During the simulation, the simulator employs an event-
driven time-step advancement mechanism. At each sampling
interval, it performs unified sampling of all APs to create time-
stamped data samples. Each sample includes the following fea-
ture sets:

1) Network load features: the total number of STAs, the
number of STAs currently associated with each AP, and sys-
tem load imbalance degree (used to quantify load distribution
differences among APs);

2) Channel state features: channel number occupied by
each AP, the number of co-channel interfering APs, SINR for
each AP, and RSSI for each AP;

3) Performance metrics: total downlink throughput per AP,
maximum communication delay, frame retransmission rate,
channel utilization, and the MAC-layer data frame collision rate;

4) Roaming behavior features: the number of roaming event
triggers and that of failed roaming attempts per AP.

Each sample is automatically annotated with two labels.
The root cause label identifies the primary network problem.
The categories include roaming issues, coverage deficiency,
congestion, interference, severe collisions, and normal condi-
tions. The labeling logic is determined by the simulation con-
figuration. The problem AP label identifies the device 1D of
the AP responsible for the root cause. For coverage deficiency
and roaming issues, this label is the ID of the currently serv-
ing AP; for interference issues, it is the ID of the primary inter-
fering AP; for congestion and severe collision scenarios, it is
the ID of the overloaded AP. Finally, the feature vectors of all
samples and their corresponding labels are stored in a matrix
form to create the final dataset for model training.

In the subsequent experiment, using the aforementioned
method, we conducted simulations for six different scenarios,
each simulated 300 times with a time-step of 300 s. By chang-
ing the random number seeds, a dataset comprising 540 000
samples with 39 features was constructed. The dataset was
partitioned into training, validation, and test sets in a 70%,
15%, and 15% ratio, respectively. Both the root cause label
and problem AP label exhibit a uniform distribution.

4.2 Baseline Model Performance Comparison

The dataset generated using the aforementioned method
was used to train the models. As shown in Fig. 4, as the
number of training iterations increases, the loss gradually
decreases, and the accuracy gradually improves, eventually
stabilizing.

To comprehensively evaluate the performance of the pro-
posed Transformer-based multi-task learning root cause analy-
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Figure 4. Baseline model performance comparison: training results

sis algorithm for FTTR networks, we compared it against sev-
eral representative baseline models, including classical se-
quence models and traditional machine learning methods. The
selected baseline models are two sequence models: Long
Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), and two traditional machine learning models: Random
Forest and eXtreme Gradient Boosting (XGBoost).

As shown in Fig. 5, the proposed Transformer-based multi-
task learning model achieved the highest accuracy in both AP
localization and root cause type identification tasks, demon-
strating its excellent capability in temporal feature extraction
and complex pattern discrimination.

*AP localization task: The Transformer-based multi-task
learning model achieved an accuracy of 80.92%, outperform-
ing LSTM (79.54%), GRU (79.02%), Random Forest
(74.64%), and XGBoost (76.29%). This indicates that the self-
attention mechanism is superior to recurrent structures and
tree models in capturing global dependencies. However, the
overall accuracy rates were relatively low, primarily because
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when network quality degrades, non-root-cause APs may ex-
hibit similar features. For example, if AP1 is interfered with
by AP2, AP2 may also experience interference from AP1, re-
sulting in highly similar features between the two APs.

*Root cause type classification task: The Transformer-
based multi-task learning model achieved an accuracy of
96.75%, surpassing all baseline models. Traditional machine
learning methods performed significantly worse in this task,
highlighting the advantage of deep sequence models in fine-
grained, multi-category classification scenarios.

In summary, the Transformer-based multi-task learning
model is well-suited for root cause analysis in FTTR network
quality degradation scenarios.

4.3 Ablation Study on Transformer Mechanisms

To conduct an in-depth analysis of the contributions of key
modules in the Transformer-based multi-task learning model, we
performed an ablation study to systematically evaluate the indi-
vidual effects of positional encoding and the multi-head attention
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Figure 5. Accuracy comparison of AP localization and root cause type identification

mechanism. Specifically, we designed two variant models.
1) Transformer-NoPos: The positional encoding module
was removed; 2) Transformer-SingleHead: The multi-head
attention mechanism was replaced with a single-head at-
tention mechanism.

Upon removing positional encoding, the AP localization ac-
curacy dropped by 1.35%, and the root cause type classifica-
tion accuracy decreased by 2.63%. These results indicate that
encoding sequential information is essential for fault sequence
interpretation. Without explicit positional cues, the model has
difficulty distinguishing the temporal order of events. The rela-
tively moderate performance degradation is mainly due to the
use of simulation-generated data, where each scenario is pre-
configured with a specific fault type. For instance, in the cov-
erage deficiency scenario, the entire simulation consistently
exhibits coverage-related issues, and the features exhibit mini-
mal temporal variation.

Replacing multi-head attention with single-head attention
led to performance declines in both tasks. The root cause clas-
sification accuracy decreased by 2.95%, confirming that the
multi-head structure enhanced the model’ s expressive capac-
ity and robustness by integrating diverse features from mul-

tiple representation subspaces.

Overall, the ablation study demonstrates that both posi-
tional encoding and the multi-head attention mechanism are
critical components of the Transformer-based multi-task learn-
ing model, thus significantly contributing to its accuracy and
generalization performance in root cause analysis tasks.

5 Future Work and Challenges

The current model faces two major challenges. First, it re-
lies on simulated data with inherent limitations, resulting in
insufficient generalization capability and credibility due to the
absence of real data; second, it performs poorly in root-cause
AP localization. Accordingly, we will address these two as-
pects separately by elaborating on the current issues and pro-
posing future improvement plans.

Currently, our experiments rely on simulated data. There
are significant differences between real data and simulated
data, among which we consider the following to be particularly
important: 1) The simulated data does not emulate real
queues, thus lacking scenarios of overflow-induced packet
loss, and the measured latency data does not include waiting
delays in queues; 2) The simulation of actual service flows is
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inadequate, as our packet transmission process is relatively
stable and lacks simulation of burst traffic; 3) Transmission
control protocol (TCP) mechanisms (such as sliding windows,
congestion control) are difficult to simulate. Therefore, we
plan to use real data in the future to enhance the credibility of
our model.

Through collaboration with the industry, we have currently
set up an FTTR test environment. In the future, we will first in-
tegrate a timer within the AP to periodically measure the pa-
rameters and metrics we need, and transmit the data to a PC
via Ethernet (without interfering with Wi-Fi data transmis-
sion). Subsequently, we will attempt to label the data based on
real environmental data, which will be a challenging yet criti-
cal task. We cannot simply label data based on specific met-
rics (for example, marking it as a “coverage issue” when the
RSSI falls below a certain threshold), as this would cause the
model to learn our labeling methodology, which is not the de-
sired outcome. Therefore, the rationality of the labeling ap-
proach will directly impact the final accuracy and generaliza-
tion performance of our model. Finally, we will retrain and
fine-tune our model using real environmental data to enhance
its practical utility.

Regarding root-cause AP localization, our analysis reveals
that localization performance is the poorest in congestion sce-
narios. Further data investigation indicates that this is due to
limitations inherent in the simulated data itself. Specifically,
the simulation fails to accurately model TCP-related mecha-
nisms and does not account for queuing delays caused by Wi-
Fi queues. As a result, the round trip time (RTT), which
should ideally reflect feature differences between root-cause
and non-root-cause APs in congestion scenarios, fails to ex-
hibit discriminative characteristics. In addition to utilizing
real-world data, we will explore the following approaches in fu-
ture work to further enhance model performance in root-cause
AP localization tasks: 1) incorporating device-specific atten-
tion mechanisms, 2) introducing additional highly discrimina-
tive features, and 3) experimenting with models trained on
single-AP data.

6 Conclusions

This paper addresses the challenges of identifying the
source of quality degradation and analyzing the complex root
causes in FTTR networks by proposing a multi-task root cause
analysis model based on the Transformer mechanisms. The
model is capable of simultaneously detecting faulty APs and
determining the types of root causes. Experimental results
show that the model achieves strong performance on a simu-
lated dataset, with a root cause classification accuracy of
96.75%, surpassing several traditional machine learning and
deep learning baselines. Ablation studies further confirm the
critical role of positional encoding and the multi-head atten-
tion mechanism in enhancing model performance. However,
during network quality degradation, non-root-cause APs may
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display similar symptoms, leading to relatively lower accuracy
in fault localization. Additionally, the current study is based
on simulated data, where temporal feature variations may not
fully capture real-world dynamics. Future work will focus on
validating the model’ s generalization using real-world net-
work data, exploring online learning mechanisms, improving
interpretability, and integrating technologies such as knowl-
edge graphs to enhance the transparency and reliability of the
reasoning process. This study offers an effective technical so-
lution for intelligent operation and maintenance in FTTR net-
works, contributing to improved network reliability and user
satisfaction.
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