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Abstract: The increasing demand for high throughput and low latency in Wi-Fi 7 necessitates a robust receiver design. Traditional receiver 
architectures, which rely on a cascade of complex, independent signal processing modules, often face performance bottlenecks. Rather than 
focusing on semantic-level tasks or simplified Additive White Gaussian Noise (AWGN) channels, this paper investigates a bit-level end-to-
end receiver for a practical Wi-Fi 7 Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) physical 
layer. A lightweight Transformer-based encoder-only architecture is proposed to directly map synchronized OFDM signals to decoded bit⁃
streams, replacing the conventional channel estimation, equalization, and data detection. By leveraging the multi-head self-attention mecha⁃
nism of the Transformer encoder, our model effectively captures long-range spatial–temporal dependencies across antennas and subcarriers, 
thus learning to compensate for channel distortions without explicit channel state information. This mechanism eliminates the need for ex⁃
plicit channel estimation, enabling the direct extraction of crucial channel and signal features. Experimental results validate the efficacy of 
the proposed design, demonstrating the significant potential of deep learning for future wireless receiver architectures.
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1 Introduction

The proliferation of data-intensive applications, ranging 
from immersive virtual reality and high-definition 
streaming to industrial automation and the Internet of 
Things (IoT), has continuously driven the evolution of 

wireless communication standards.  As the next generation of 
Wi-Fi technology, the IEEE 802. 11be standard, commer⁃
cially known as Wi-Fi 7[1–2], is poised to meet these demands 
by delivering higher throughput, lower latency, and enhanced 
reliability.  Key technological advancements such as 320 MHz 
channel bandwidth, Multi-Link Operation (MLO) [3], and 
higher-order 4 096-Quadrature Amplitude Modulation (QAM) 
are at the core of Wi-Fi 7’s performance gains.  While these 
innovations push the theoretical limits of data transmission, 
they simultaneously introduce significant complexity to the 
physical layer (PHY) receiver design.

The traditional Wi-Fi PHY receiver architecture operates 

as a cascaded chain of independent signal processing blocks, 
including time-frequency synchronization, channel estimation, 
equalization, and decoding. Each module is meticulously de⁃
signed and optimized based on expert knowledge and math⁃
ematical models of the communication channel. However, this 
modular, block-by-block approach suffers from two fundamen⁃
tal limitations. First, the performance of each module is highly 
sensitive to the imperfections of its preceding stages, leading 
to a “domino effect” where errors propagate and accumulate. 
Second, the explicit channel estimation module, while crucial, 
can be computationally intensive and may not always accu⁃
rately capture the complex, time-varying nature of wireless 
channels, especially in multi-path and multi-antenna environ⁃
ments. As Wi-Fi 7 leverages multi-antenna technologies, the 
intricate spatial and temporal correlations across the received 
signals present a formidable challenge that conventional meth⁃
ods struggle to address holistically.

In recent years, the paradigm of applying artificial intelli⁃
gence (AI)/deep learning (DL) to wireless communication sys⁃
tems has attracted significant attention as a promising alterna⁃
tive to traditional model-based designs. Early works have dem⁃This work was supported by the Huawei Technologies Co., Ltd. under 
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onstrated the potential of convolutional neural networks 
(CNNs) [4], deep neural networks (DNNs) and recurrent neural 
networks (RNNs) [5–7] for signal processing blocks such as 
channel modeling[8], coding/decoding[9], channel estima⁃
tion[10] and equalization[11]. DONG et al. applied CNNs to 
millimeter-wave large-scale multiple-input multiple-output 
(MIMO) channel estimation[4], effectively utilizing the local 
correlations of the channel in the space-frequency-time do⁃
main. However, CNNs rely on stacked convolution layers to 
perceive global information, and this inherent local process⁃
ing mechanism makes it insufficient when directly modeling 
long-distance, non-local dependencies within the channel 
matrix. Ref. [5] used RNNs with bidirectional Long Short-
Term Memory (LSTM) to recover data directly from the re⁃
ceived signal, effectively simplifying the receiver design. 
However, the model’s understanding of the entire Orthogo⁃
nal Frequency Division Multiplexing (OFDM) symbol is 
based on sequential information propagation rather than a 
one-time global perception. Ref. [6] used RNNs to predict 
MIMO channels and performed offline training using com⁃
plex hybrid evolutionary algorithms. However, the inherent 
sequential processing paradigm of RNNs limits their ability 
to capture long-range correlations in channel time series ef⁃
fectively, and their performance is heavily dependent on spe⁃
cific offline training processes, making it difficult to adapt to 
dynamic changes in the channel environment. Ref. [7] pro⁃
posed a receiver framework based on DNNs that predicts fu⁃
ture channel coefficients by learning the time-domain corre⁃
lation of the channel, thereby effectively reducing pilot over⁃
head. However, this method relies on a recurrent structure 
for sequence prediction, which makes it difficult for the 
model to capture long-term dependencies in channel 
changes; as a result, prediction errors accumulate over time.

As mentioned above, the cascaded architecture suffers from 
the performance limitations, and emphasis has shifted to the DL-
based end-to-end (E2E) PHY design by interpreting a communi⁃
cation system as an autoencoder that jointly optimizes the trans⁃
mitter and receiver over simplified channels[12–14]. Ref. [12] pro⁃
vides the theoretical justification for introducing DL to PHY 
and incorporates Radio Transformer Networks to embed physi⁃
cal priors, thereby enhancing the model’s interpretability and 
generalization ability. AIT AOUDIA and HOYDIS[13] systemati⁃
cally evaluated E2E learning for OFDM systems under time-
frequency selective fading and channel aging scenarios, and 
demonstrated that learning only the receiver can maintain bit 
error rate (BER) performance with sparse pilot tones. SONG et 
al.[14] conducted a systematic benchmark evaluation of E2E au⁃
toencoders, re-evaluating the actual gains of autoencoders un⁃
der more standardized training assumptions and improved 
baselines. However, they lacked a systematic assessment of 
complexity, scalability, and training costs. Moreover, these 
studies mainly consider single-antenna or small-scale systems 
with Additive White Gaussian Noise (AWGN) or simple fading 

channels and predominantly rely on fully connected networks 
or CNNs rather than Transformer architectures.

The Transformer, originally a cornerstone of natural lan⁃
guage processing, excels at processing sequential data by em⁃
ploying a multi-head self-attention mechanism[15]. More re⁃
cently, Transformer architectures have been extensively ex⁃
plored in the context of semantic communications and joint 
source-channel coding (JSCC). HUANG et al. proposed a 
JSCC framework for semantic communications of images[16], 
which combines deep source coding with a hyper-prior model 
and conventional digital channel block coding, and derived a 
two-step rate control algorithm that adapts the source-channel 
rate split to the channel signal-to-noise ratio (SNR). For image 
transmission, BOURTSOULATZE et al. introduced a deep 
JSCC scheme[9] that directly maps image pixels to complex 
channel symbols using a convolutional autoencoder, with the 
noisy channel implemented as a non-trainable layer in the net⁃
work. In parallel, Transformer-based decoders have been pro⁃
posed for algebraic block codes and Low-Density Parity-
Check (LDPC) codes[17], showing that self-attention can effec⁃
tively capture the code structure and improve soft-decoding 
performance.

In contrast to the above studies, this paper targets the bit-
level demodulation in a practical Wi-Fi MIMO-OFDM system 
and proposes a novel DL-based E2E receiver for the Wi-Fi 7 
PHY layer, leveraging the power of the Transformer architec⁃
ture, which can inherently capture long-range spatial and tem⁃
poral dependencies across subcarriers and antennas of the 
synchronized OFDM symbols. By learning these intricate rela⁃
tionships, our proposed E2E model completely bypasses the 
need for an explicit channel estimation block, directly extract⁃
ing crucial channel and signal features from the input data. 
This unified approach not only simplifies the receiver architec⁃
ture but also offers a more robust and adaptive solution to the 
complexities of Wi-Fi 7 channels. Our experimental results 
validate the efficacy of this design. The key contributions of 
this work are summarized as follows:

1) We propose a receiver-only, encoder-only Transformer 
architecture for the Wi-Fi 7 MIMO-OFDM system, which oper⁃
ates directly on the synchronized multi-antenna OFDM fre⁃
quency grid and outputs the coded bitstream, thereby replac⁃
ing conventional channel estimation and equalization, and bit-
detection chain while keeping a standard Wi-Fi 7 transmitter.

2) We design a complexity-aware lightweight head, consist⁃
ing of a Convolutional Feature Enhancement Module (CFEM) 
and a compact bitstream recovery layer, which jointly exploit 
global (Transformer) and local (1D-CNN) features, making the 
model suitable for resource-constrained receivers.

3) We present a comprehensive experimental validation 
showcasing the superior performance of the proposed design 
in terms of BER compared to conventional methods.

The rest of this paper is organized as follows. Section 2 de⁃
scribes the system model and architecture. Section 3 presents 
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the proposed DL-based E2E receiver design. Following that, 
the algorithm verification and application experiment are de⁃
scribed in Section 4. Finally, Section 5 concludes the paper.
2 System Model

We consider a single-user MIMO OFDM communication sys⁃
tem, which serves as the equivalent model for our Wi-Fi 7 physi⁃
cal layer simulation. The number of transmit and receive anten⁃
nas is configured with Nt=4, Nr=4. The traditional modular de⁃
sign of PHY transmission, from the transmitter to the receiver, is 
depicted in Fig. 1. The following subsections provide detailed 
descriptions of the key settings for the transmitter, the TGax 
Non-Line-of-Sight (NLOS) office channel model, and receiver.
2.1 Transmitter Design

At the transmitter, a PHY Service Data Unit (PSDU) stream 
is generated as the source message, followed by forward error 
correction coding (FEC), QAM, OFDM waveform generation, 
and other processes to generate the waveform to be transmitted. 
Specifically, the original data length of the PSDU is 2 792 bit. 
A 16 bit service field is then added to the data header, and af⁃
ter concatenation, a 2 808 bit payload is formed, which serves 
as the basic data unit for PHY transmission. Following this, 
the data is scrambled using a bitwise Exclusive OR operation 
with a pseudo-random sequence, and then forward error cor⁃
rection coding is applied using a low-density parity-check 
code, expanding the original data block into a 3 744 bit code⁃
word. Finally, the data stream is modulated into data symbols 
using 16-QAM modulation, and OFDM symbol generation is 
completed through operations such as spatial stream partition⁃
ing and subcarrier mapping.
2.2 Channel Model

To simulate complex indoor environments and effectively 
characterize multipath effects and time-varying fading charac⁃
teristics, we adopt the TGax NLOS office channel model 
(Model-D), as defined in the IEEE 802.11ax standard. Based on 
the Model-D channel, a large-scale shadow fading model char⁃
acterized by a log-normal distribution is superimposed to simu⁃
late the path loss and occlusion attenuation of signals during 
long-distance transmission. This combined channel model con⁃

forms to the signal attenuation characteristics of typical office 
environments. In addition, to simulate a real noisy environment, 
AWGN is added to the channel output, and the SNR parameter 
is adjusted to achieve noise intensity control within the dy⁃
namic range of 0–34 dB, reproducing the signal transmission 
characteristics in complex wireless communication scenarios.

For each OFDM subcarrier, the baseband input-output rela⁃
tion can be written as
yk = Hkxk + nk (1),

where xk ∈ CNs × 1 is the collection of the Ns spatial data 
streams (1 ≤ Ns ≤ 4), yk ∈ CNr × 1 is the received signal vector, 
Ηk ∈ CNr × Ns is the effective MIMO channel matrix on subcar⁃
rier k, and nk ∼ CN (0,σ2

n I ) denotes AWGN. In our main 
simulations, we set Nt = Nr = Ns = 4, so that four spatial 
streams are transmitted simultaneously.

The MIMO channel Hk is estimated in the traditional base⁃
line receiver using the Wi-Fi 7 preamble structure. Specifi⁃
cally, least-squares (LS) channel estimation is performed based 
on the orthogonal pilot symbols transmitted in the Extremely 
High Throughput Long Training Field (EHT-LTF) fields, which 
enables recovery of the full 4 × 4 MIMO channel matrix across 
all subcarriers. The estimated channels are then used to con⁃
struct a singular value decomposition (SVD) -based minimum 
mean square error (MMSE) equalizer, as detailed in Section 
2.3. The spatial multiplexing characteristics of this multi-
stream channel lead to a linear superposition of multipath com⁃
ponents at the receiver, resulting in spatial correlation that 
must be handled by the equalizer or, in our proposed approach, 
by the Transformer-based neural receiver.
2.3 Traditional Receiver Design

The details of the traditional receiver scheme are described 
in this subsection. The receiver employs a multi-stage signal 
processing framework that incorporates time-frequency syn⁃
chronization, channel estimation, and equalization to achieve 
precise signal recovery. The detailed flowchart of the receiver 
is shown in Fig. 2.

The initial synchronization phase aims to correct time and 
frequency deviations. By leveraging the periodic characteris⁃
tics embedded in the pilot symbols, the system deploys an 
autocorrelation-based detection mechanism to precisely lo⁃
cate the starting boundary of the OFDM signal, thereby en⁃
abling packet detection and coarse timing. Subsequently, the 
carrier frequency offset (CFO) foffset is precisely estimated by 
analyzing the phase difference between known periodic struc⁃
tures as follows:

Δϕ = φ
2π

foffset = Δϕ
fs

Ts

(2),
Figure 1. A traditional modular design of PHY transmission

Traditional multi-module framework
NLOS office scenario channel model & AWGN

Traditional multi-module framework
PSDU

Transmitter Channel Receiver
AWGN: Additive White Gaussian NoiseNLOS: Non-Line-of-SightPSDU: PHY Service Data Unit
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where φ, Δϕ, fs, and Ts are the phase angle, normalized phase 
difference, sampling rate, and symbol period, respectively. In 
the next stage, the channel frequency response (CFR) is esti⁃
mated based on the Least Squares (LS) algorithm as follows:
Y = HX + N

Ĥ = (XHX )-1XHY
(3),

where X, H and N are the original transmitted signal, CFR, 
and AWGN, respectively. The average channel response -H 
is obtained by performing a time-domain average of the pilot 
estimate values. Finally, the noise variance σ2

n is calculated 
as follows:

μ = Ĥ - -H

σ2
n = I ⋅ E é

ë| μ |2ùû
(4),

where I is the identity matrix. Using this estimate as a basis, 
SVD is first used to decompose -H into independent parallel 
subchannels, with each subchannel i corresponding to a singu⁃
lar value Si:
-H = USVH (5),

where the columns of U span the received signal space, S =
diag (S1,…, SP ) contains the singular values corresponding to 
the P spatial subchannels, and VH is the orthogonal basis of 

the transmitted signal space, mapping the equalized signal 
back to the transmitted signal space. We seek a linear equal⁃
izer W such that x̂ = Wy minimizes the mean square error 
E{ } x - Wy

2 . Under the standard assumption E{xxH} = I 
and E{nnH} = σ2

n I, the MMSE solution is
WMMSE = V (SHS + σ2

n I )-1SHUH (6),
which assigns different weights to each singular mode accord⁃
ing to its channel gain and the noise variance. Finally, the 
equalization matrix is applied to the received signal to obtain
x̂ = WMMSEy = ∑

i = 1

P Si

S2
i + σ2

n

 vi( )uH
i y (7),

where Si is the i-th singular value, and ui and vi are the i-th 
columns of U and V, respectively. This expression shows that 
the MIMO channel is decomposed into P parallel subchan⁃
nels, each employing an MMSE scalar coefficient for equaliza⁃
tion. In the traditional baseline, the subsequent step is to de⁃
modulate and decode x̂ to reconstruct the original transmitted 
bitstream. In contrast, our DL receiver replaces this entire LS+
MMSE equalization and bit-detection chain with the proposed 
neural network.
3 Transformer-Based End-to-End Receiver 

Design
In a single-user 4×4 MIMO baseband transmission sce⁃

nario, the spatial multiplexing characteristics of the channel 
cause the received signals to exhibit linear superposition of 
multipath propagation signals, resulting in spatial correlation. 
Traditional receiver architectures, such as those based on 
MMSE or zero-forcing equalizers, rely on the accuracy of chan⁃
nel state information (CSI) obtained through pilots, which in⁃
troduces unavoidable pilot overhead; on the other hand, in 
typical Wi-Fi indoor environments, characterized by multipath 
fading, dynamic interference, shadow effects, and high-
intensity noise, accurate CSI estimation is highly challenging, 
leading to a significant degradation in the performance of lin⁃
ear equalizers. Additionally, the complex scrambling and 
channel coding modules on the transmitter side, while enhanc⁃
ing link reliability, significantly increase the system’s compu⁃
tational complexity and processing latency.

To address the limitations of traditional approaches, we ex⁃
plore the feasibility of modeling physical layer signal process⁃
ing as an E2E-DL network. Specifically, given the Trans⁃
former model’s strong global feature extraction capabilities in 
sequence data modeling, we propose a lightweight receiver 
based on a Transformer encoder, as shown in Fig. 3. At the 
transmitter (TX), a random TX PSDU bitstream is processed 
by a Wi-Fi 7 (IEEE 802.11be EHT) baseband chain and trans⁃
mitted over a TGax NLOS MIMO-OFDM channel. At the re⁃

Figure 2. Operation flowchart of the receiver
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Clocksynchronization

Fine frequency offset estimation and correction
Demodulation

Data equalization
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ceiver side, the conventional front-end performs packet detec⁃
tion, time-frequency synchronization, Fast Fourier Transform 
(FFT), data demodulation, and phase tracking/correction. The 
resulting multi-antenna frequency-domain data symbols, after 
the above pre-processing stage, are used as the input to the 
proposed neural receiver, while the corresponding TX PSDU 
serves as the label. Thus, the network is trained to recover the 
original bitstream directly from the demodulated MIMO-
OFDM data, effectively replacing the traditional chain of noise 
variance estimation, channel estimation and equalization, and 
bit-level detection.

The proposed neural receiver comprises three main compo⁃
nents: an encoder-only Transformer, a CFEM, and a bitstream 
recovery layer. The Transformer encoder provides a robust rep⁃
resentation of the MIMO-OFDM signal by exploiting multi-
head self-attention over antenna and time/frequency dimen⁃
sions. The CFEM further refines these features and reduces 
the effective sequence length. The final multi-layer perceptron 
(MLP) -based bitstream recovery layer maps the hierarchical 
features to bit-wise logits, which are trained with a binary 
cross-entropy with logits (BCE-with-Logits) loss and converted 
into hard decisions during evaluation. The following subsec⁃
tions will provide a detailed explanation of the model’s net⁃

work structure and operational principles.
3.1 Lightweight Encoder Framework

The encoder consists of six layers of identical structures 
stacked together, with each layer containing four self-attention 
heads, residual connections, layer normalization, and a feed⁃
forward network (FFN). This design focuses on modeling the 
spatial correlation of signals across antennas, processes 
MIMO-OFDM signals through multi-layer feature extraction 
and nonlinear transformations, and provides a highly robust 
feature representation for subsequent signal detection and de⁃
modulation.
3.1.1 Tokenization

The number of data subcarriers in the OFDM system is set 
to Ns = 234. Each antenna on each subcarrier carries one in⁃
formation symbol (Ni = 1). After synchronization and OFDM 
demodulation, the received signal yields a complex signal ma⁃
trix Sc ∈ RNs × Nr. Since the model supports processing real-
valued data, the complex numbers are decomposed into two in⁃
dependent dimensions based on their real and imaginary 
parts, resulting in the signal tensor Sr ∈ RNs × Nr × 2. The signal 
received by each antenna can be regarded as a “token” for the 

Figure 3. Lightweight encoder framework of the proposed Transformer-based receiver
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model input. By calculating the correlation weights between 
different antennas via self-attention, the model can dynami⁃
cally learn which antenna signals are more important for re⁃
storing specific transmitted data.

The corresponding original randomly generated data bit⁃
streams are directly used as supervision labels to construct the 

“signal feature-original bit” mapping pairs required for E2E 
training. The number of bits is Nb = Ns × Ni × Nt = 936. The 
data in the dataset is input into the model after being re⁃
shaped, with a signal dimension of inputs I ∈ RNd × Nb × 512, 
where Nd is the number of signals while also adapting to the 
original Transformer encoder input dimension 
[batchsize, sequencelenth, dmodel ]. The supervised label dimen⁃
sion is L ∈ RNd × Nb.
3.1.2 Input Embedding and Positional Encoding

In the embedding module, the encoder employs a linear pro⁃
jection layer to expand the input to 512 dimensions. This en⁃
hancement improves the model’s ability to represent features, 
allowing it to learn more complex representations. Based on 
empirical findings, the value of dmodel is 512, demonstrating its 
feasibility and effectiveness in NLP and sequence modeling 
tasks. Following this, layer normalization is applied to each 
sample to stabilize the training process and help the model 
converge more effectively.

Finally, the Leaky Rectified Linear Unit (LeakyReLU) is 
used as the nonlinear activation function. Unlike the standard 
ReLU function that has a zero gradient in the negative value 
region, LeakyReLU maintains a slight positive slope in this in⁃
terval[18]. This design avoids the “dying ReLU” problem, 
where neurons fail to update their weights due to continuously 
outputting negative values and thus lead to permanent failure 
during training. The concrete formula is as follows:

Xembedding = LeakyReLU (LayNorm (We ⋅ X token + be ) ) (8).
In the position encoding module, a cosine-based position 

encoding function is used to compensate for the Transformer􀆳s 
lack of sensitivity to sequence order. This function generates 
position vectors corresponding to the antenna index to distin⁃
guish the spatial characteristics of different receiving anten⁃
nas. The position vector, whose dimension is consistent with 
the embedding dimension, is added element-wise to the sig⁃
nal features. This explicitly embeds the position information 
into the model so that the model can better understand the 
spatial characteristics between antennas. The concrete for⁃
mula is as follows:

PE(pos , 2i ) = sin (pos /100002i/dmodel )
PE(pos , 2i + 1) = cos (pos /100002i/dmodel ) (9),

where i ∈ [0, (dmodel - 1) /2] represents the n-th element of the 
position vector.

3.1.3 Multi-Head Attention Mechanism
The multi-head attention mechanism can focus on feature 

correlations from different angles in the received signal, im⁃
proving the model􀆳s accuracy and robustness. This model uses 
a 4-head self-attention mechanism to process different feature 
subspaces in parallel and independently, which helps improve 
overall computational efficiency. Simultaneously, the model 
analyzes the input sequence from multiple perspectives to in⁃
tegrate a more comprehensive set of features. Finally, the out⁃
puts from each head are concatenated and subjected to linear 
projection as follows:

head i = Attention (QW Q
i , KW K

i , VW V
i )

MultiHead (Q, K, V ) = Concat (head1,..., head4 )W O (10).

3.2 Convolutional Feature Enhancement Module
After the Transformer encoder completes the sequence mod⁃

eling of the received signal, we design a CFEM further to ex⁃
tract the local spatio-temporal features of the signal. This hier⁃
archical feature extraction strategy, which combines global 
and local information, significantly improves the accuracy of 
signal recovery.

The architecture of this module is as follows: first, a one-
dimensional CNN (1D-CNN) processes the output features of 
the Transformer. The convolutional kernels in this layer map 
the input channel count from 4 to 16, with a stride of 4, 
thereby compressing the sequence length from 512 to 128. 
This operation not only expands the feature dimension but also 
serves as an effective downsampling mechanism to reduce 
computational complexity. Following the convolutional layer 
are two components: a BatchNorm layer to accelerate conver⁃
gence and prevent overfitting, and a LeakyReLU activation 
function to introduce nonlinearity. Additionally, to ensure the 
integrity of the information flow and optimize the training pro⁃
cess, we introduce a skip connection that adds the module􀆳s in⁃
put to the output after convolution, normalization, and activa⁃
tion on an element-wise basis. This residual structure pre⁃
serves the original global features and provides a shortcut for 
gradient flow during backpropagation, thereby enhancing the 
network’s trainability.
3.3 Bitstream Recovery Layer

The bitstream prediction head serves as the terminal of the 
network, with its core task being to decode from hierarchical 
feature representations into the final bitstream. This module is 
implemented as a MLP, with the specific process as follows:

1) Feature integration and transformation
First, the feature tensor (16×128) output by the upstream 

convolutional module is flattened into a single 2 048-dimen⁃
sional vector, effectively integrating all the high-level features 
extracted by the network across antennas and time-frequency 
domains. Next, the first fully-connected layer (FC, also known 
as the feature transformation layer) linearly maps this vector to 
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3 744 dimensions, aligning its dimension with the number of 
bits (Nb) in a single prediction.

2) Normalization and nonlinear activation
Before the nonlinear transformation, layer normalization is 

applied to normalize the distribution of activations, thereby ac⁃
celerating convergence and improving training stability. We 
then use the LeakyReLU activation function. This choice is 
consistent with the selection for input embedding: LeakyReLU 
preserves a small gradient for negative inputs, enabling better 
handling and propagation of negative feature components re⁃
lated to signal phase. For phase-sensitive modulation schemes 
like 16-QAM, this property helps minimize information loss.

3) Regularization and output projection
The activated features pass through a Dropout layer with a 

dropout probability of 0.4, reducing the risk of overfitting in 
the FC layer. The second FC layer (output projection layer) 
then performs a final linear transformation of these features to 
refine the prediction results.

During the training phase, LogitsLoss is used to directly op⁃
timize the log odds output, avoiding the Sigmoid saturation 
problem. The loss expression is as follows:

L = 1
N [ ]-bi log σ ( b̂i ) - (1 - bi ) log (1 - σ ( b̂i ) ) (11).

During the testing phase, bitstreams b̂ ∈ {0, 1}3744 are gener⁃
ated through hard decisions with a threshold of 0.5 to generate 
the final bits as follows:

b̂ = {1
0

, f fc ( x ) i ≥ 0.5
, otherwise (12),

where f fc ( x ) i is the FC layer function. Finally, the output re⁃
sults are compared with the label data bit by bit to count the 
number of errors, and the bit accuracy is calculated based on 
the total number of error bits as:

BitAc = 1 - ∑N test
i = 1 || b̂i - bi

Nb × N test
(13).

3.4 Complexity Analysis
The per-layer computational complexity of a standard multi-

head self-attention block with sequence length Lseq, model di⁃
mension dmodel, and H heads (each of size dhead = dmodel /H) 
scales approximately as:
O (L2seqdmodel) + O (Lseqd2model ) (14),

where the first term corresponds to attention score computa⁃
tion (QK T and softmax-weighted V), and the second term corre⁃
sponds to the FFN. In our receiver, the effective sequence 
length is Lseq = Nr × Nsc, e. g., four receive antennas and 234 

active subcarriers give Lseq = 936. We note that the bit-length 
Nbits = 3 744 is the output dimensionality of the final fully-
connected head and does not directly enter the attention com⁃
plexity. Moreover, to further reduce inference latency and 
memory footprint, we append CFEM that downsamples the se⁃
quence dimension by a stride s, and projects dmodel → dred. We 
choose dred ∈ é

ë
êêêê1

8 dmodel, 1
2 dmodel

ù
û
úúúú   and set dred = 128 by default 

(dmodel = 512), which is approximately one head width when 
H = 4 (dhead = 128). This choice preserves the information ag⁃
gregated by the encoder and makes the final dense bit head 
operate on a compressed representation, rather than on the 
full Lseq × dmodel tensor. In practice, this reduces the size of the 
final linear layer and lowers on-chip activation bandwidth.
4 Experiment

This section evaluates the performance of the proposed DL 
Transformer receiver against a traditional physical layer base⁃
line via numerical simulation.
4.1 Experiment Settings

4.1.1 Baseline Scheme
The baseline was evaluated using the Monte Carlo method. 

We measured its BER performance over an SNR range of 0 to 
34 dB, in 2 dB increments. To ensure statistical validity, each 
SNR point was assessed by transmitting a sufficient number of 
packets over independently realized random channels. In 
cases of packet detection failure, all bits within the packet 
were considered erroneous.
4.1.2 DL Transformer Receiver

1) Dataset generation: The proposed receiver was trained 
and evaluated on a large-scale simulated dataset. The data 
were generated using the same transmission link as the base⁃
line, but with the transmitter􀆳s scrambling and channel coding 
modules disabled. To promote model generalization, each data 
sample corresponds to an independent channel realization. 
Both large-scale fading and small-scale fading were fully ran⁃
domized to cover typical NLOS conditions.

2) Dataset configuration and preprocessing: The training 
and validation sets were generated at a fixed SNR of 30 dB, 
whereas dedicated test sets were generated for each evaluated 
SNR point (0–34 dB). Concretely, the training set consists of 
1 200 mini-batches with 64 samples in each mini-batch, re⁃
sulting in 76 800 training samples in total. The validation and 
test sets each contain 120 mini-batches with 64 samples per 
mini-batch, i.e., 7 680 samples per set, which corresponds to 
an approximate 10: 1: 1 ratio for training, validation, and test 
data. For each sample, we first generate a fresh random bit⁃
stream and then reset the channel model with new random 
seeds and parameters, such that the transmitter-receiver dis⁃
tance, path loss, shadowing, multipath delays, and fading co⁃
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efficients (both large-scale and small-scale) are indepen⁃
dently randomized. As a result, every sample is associated 
with an independent channel realization, covering a represen⁃
tative dynamic range of NLOS channel conditions and produc⁃
ing diverse fading characteristics, path loss levels, and noise 
realizations. For preprocessing, complex-valued signals were 
decomposed into their real and imaginary components. Fur⁃
thermore, we applied data augmentation to the training set by 
adding zero-mean Gaussian noise (σ = 0.05) to enhance 
model robustness.
4.2 Training Strategy and Stabilization Techniques

To ensure stable and efficient training of the proposed neu⁃
ral receiver and to mitigate both underfitting and overfitting, 
we adopt the following training strategy.

1) Initialization and normalization
Network parameters are initialized according to the type of 

layer and activation. Layers with Gaussian Error Linear Unit 
(GELU) activations (e. g., in the Transformer encoder) use 
Xavier initialization, which balances the variance of forward 
and backward signals. Layers with LeakyReLU activations (e.g., 
in the CFEM) use Kaiming initialization, which is tailored to 
ReLU-type nonlinearities. For LayerNorm and BatchNorm, 
the scale parameters are initialized to 1 and the biases to 0 so 
that normalization does not distort the feature distribution at 
the beginning of training. The self-attention projection matri⁃
ces in the Transformer are also initialized with Xavier to keep 
the variance of dot-product attention stable.

2) Optimizer and learning-rate scheduling
We use the AdamW optimizer to decouple weight decay 

from the gradient update, which provides more controlled regu⁃
larization than classical Adam. Unless otherwise stated, the 
hyperparameters are set to weight decay 10-4, β1 = 0.9, β2 =
0.999, and ϵ = 10-8. A ReduceLROnPlateau scheduler moni⁃
tors the validation loss and reduces the learning rate by a fac⁃
tor of 0.8 if no improvement is observed for five consecutive 
epochs. This strategy accelerates convergence in the early 
stage while allowing finer adjustments near convergence.

3) Gradient clipping
To avoid gradient explosion and overly large parameter up⁃

dates, we apply gradient-norm clipping with a maximum l2 norm of 2. This improves the stability of training, especially 
given the long input sequences and the depth of the encoder.

4) Regularization and stabilization
To enhance robustness and prevent overfitting, we combine 

several standard regularization techniques. L2 weight decay is 
applied through AdamW; Dropout and LayerNorm are used 
within the Transformer encoder and the fully connected lay⁃
ers; and BatchNorm is applied after convolutional layers in 
the CFEM to stabilize feature statistics across mini-batches.

With this training setup, the network learns to map the de⁃
modulated MIMO-OFDM symbols directly to the transmitted 
bitstream in an end-to-end fashion, enabling joint optimization 

of signal detection and recovery under realistic Wi-Fi 7 chan⁃
nel conditions.
4.3 Experiment Results

The experiment used BER as the core evaluation indicator, 
defined as

BER = Berror
B total

(15).

Fig. 4 shows the performance curve of the BER of the tradi⁃
tional scheme as a function of SNR. This curve exhibits three 
distinct regions. In the low SNR region (SNR < 10 dB), system 
performance is primarily constrained by intense channel 
noise, resulting in a sharp decline in BER from a high error 
level. Some errors originate from frequent packet detection 
failures during this phase. As the SNR enters the medium 
SNR range (10 dB to 26 dB), the slope of the BER curve slows 
significantly, indicating that system performance improve⁃
ments are beginning to be constrained by non-noise factors. In 
the high SNR region (SNR > 26 dB), the BER decreases rap⁃
idly again, and when the SNR reaches 32 dB, the system ap⁃
proaches error-free transmission, achieving highly reliable 
communication.

Figs. 5a and 5b illustrate the learning dynamics of the pro⁃
posed model over 1 300 epochs. The model exhibits a conver⁃
gence pattern. In the initial training phase (approximately the 
first 200 epochs), the training and validation losses decrease 
sharply. Correspondingly, accuracy rises rapidly from the ran⁃
dom guess baseline of 0.5, indicating that the model is effec⁃
tively capturing the underlying data features. Following this 
initial phase, the learning process enters a stable convergence 
regime. A consistent generalization gap emerges between the 
training and validation curves, stabilizing in later epochs at 
approximately 0.05 for the loss and 0.045 for the accuracy. 
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Figure 4. BER performance of the traditional scheme

BER: bit error rate                           SNR: signal-to-noise ratio
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Crucially, the validation loss plateaus without a significant up⁃
ward trend, which suggests that while minor overfitting is pres⁃
ent, the model􀆳s generalization ability remains well-controlled. 
The minor fluctuations observed across the curves are attribut⁃
able to the stochastic nature of minibatch gradient descent 
when applied to a complex and diverse dataset.

In summary, the leveling off of the validation metrics indi⁃
cates that the model 􀆳 s performance has likely saturated, 
given its capacity and the complexity of the dataset. While 
this confirms the effectiveness of the proposed architecture, 
it also suggests that its performance ceiling is constrained by 
either its representational power or the intrinsic noise within 
the data.

Fig. 6 shows the BER performance of the proposed deep 
learning receiver, demonstrating that the model achieves ex⁃
cellent signal recovery capability. As shown in the figure, the 
BER begins to decline when the SNR reaches approximately 
10 dB, demonstrating that the model has successfully learned 
effective features capable of robustly countering channel noise 
and fading. When the SNR exceeds 23 dB, the decline rate of 
the BER curve significantly slows down, exhibiting a conver⁃

gent trend, indicating that the model has reached its perfor⁃
mance limit. Overall, these results demonstrate that the pro⁃
posed deep learning model can successfully learn the E2E sig⁃
nal recovery task without explicit channel estimation and 
equalization modules. The model exhibits strong robustness 
across the entire evaluated SNR range, with its achieved low 
BER meeting the performance standards for high-reliability 
communication.
5 Conclusions

This paper proposes and validates a novel DL-E2E receiver 
based on the Transformer architecture, designed to overcome 
the limitations of traditional multi-module designs in Wi-Fi 7 
environments. Our work demonstrates that the model’s multi-
head self-attention mechanism is effective at implicitly learn⁃
ing and jointly performing noise estimation, channel estima⁃
tion, and equalization, thus bypassing the need for the explicit 
modular design. The experimental results underscore the supe⁃
riority of this data-driven paradigm: The proposed receiver 
achieves an excellent BER performance across a wide range of 
SNRs, meeting the requirements for high-reliability communi⁃
cation and serving as a compelling proof-of-concept for AI-
native wireless systems.

Building on these promising results, future efforts will be di⁃
rected toward two critical areas. First, we will investigate the 
practical implementation and deployment of this architecture, 
focusing on complexity reduction and optimization for real-
time processing on hardware platforms. Second, we will pursue 
research into the theoretical interpretability of the network 􀆳 s 
learned features, aiming to move beyond a “black-box” under⁃
standing and gain deeper insights into how the model makes 
its decoding decisions.

Figure 5. Training and validation curves: (a) loss versus epochs; 
(b) accuracy versus epochs

Figure 6. BER performance of the proposed scheme
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