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Abstract: Millimeter-wave (mmWave) technology has been extensively studied for indoor short-range communications. In such fixed net-
work applications, the emerging FTTR architecture allows mmWave technology to be well cascaded with in-room optical network terminals,
supporting high-speed communication at rates over tens of Ghit/s. In this Fiber-to-the-Room (FTTR)-mmWave system, the severe signal at-
tenuation over distance and high penetration loss through room walls are no longer bottlenecks for practical mmWave deployment. Instead,
these properties create high spatial isolation, which prevents mutual interference between data streams and ensures information security.
This paper surveys the promising integration of FTTR and mmWave access for next-generation indoor high-speed communications, with a
particular focus on the Ultra-Converged Access Network (U-CAN) architecture. It is structured in two main parts: it first traces this new
FTTR-mmWave architecture from the perspective of Wi-Fi and mmWave communication evolution, and then focuses specifically on the de-
velopment of key mmWave chipsets for FTTR-mmWave Wi-Fi applications. This work aims to provide a comprehensive reference for re-

searchers working toward immersive, untethered indoor wireless experiences for users.
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1 Introduction
ver the past two decades, fixed broadband access
technologies have continuously evolved to provide
high-speed internet connectivity to end-users
worldwide. The rise of new audio-visual media ser-
vices such as augmented reality (AR), virtual reality (VR),
8K high-definition video, and cloud gaming has created
higher demands for network throughput, coverage, and la-
tency from content producers to end-users. The quality of
fixed wireless broadband access significantly impacts the
end-user experience, affecting factors like maximum service
throughput, network stability, ease of installation, and easy
management capabilities!" 7.
Currently, mainstream commercial wireless local area
networks (WLANs) and cellular networks primarily operate
in the sub-6 GHz frequency band, which has limited data

transmission bandwidth and struggles to meet the demands
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of these new services. For example, for highly interactive,
extreme cloud VR video transmission, a home network must
guarantee a stable rate of at least 4.4 Gbit/s, with round-trip
latency and jitter not exceeding 10 ms. High-quality VR
headsets are typically connected via High-Definition Multi-
media Interface (HDMI) cables, which can transmit up to
40 Gbit/s and require next-generation wireless ultra-high-
speed interconnection technologies to provide users with an

1 The millimeter-wave

immersive, untethered experience
(mmWave) band offers vast, continuous spectrum, which
can provide greater transmission bandwidth. Furthermore,
due to the short wavelength of mmWave, the transmitting
antennas can be very small, which is conducive to making
devices lightweight. To achieve higher wireless communica-
tion speeds, researchers across academia and industry have
conducted extensive research on mmWave channel charac-
terization, system architectures, software algorithms, hard-
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decades. Based on home network scenarios and use cases,
the challenges of 60 GHz mmWave transmission have been
investigated"”. Efforts have also been dedicated to channel
measurements and modeling at 45 GHz and 60 GHz""?' "2,
Similarly, the use of beamforming in short-range communica-
tion has been widely studied!* 'S

The emergence of Fifth-Generation Fixed Networks (F5G)
has seen the proposal of Fiber-to-the-Room (FTTR) technol-
ogy. FTTR extends fiber optic cables to each room, providing
gigabit broadband coverage for entire indoor spaces™ *!. By
leveraging the fiber infrastructure laid into each room, FTTR
creates a large-bandwidth connection channel for high-speed
mmWave communications, enabling efficient mmWave cover-
age in every room. At the same time, the high wall-
penetration loss of the mmWave band creates a favorable con-
dition for eliminating interference between wireless commu-
nication systems in different rooms. This allows FTTR to
achieve same-frequency networking and ensure information
security. To address the demands of new scenarios and ser-
vices, China Unicom’s Ultra-Converged Access Network (U-
CAN) hyper-converged access network architecture inte-
grates advanced technologies like 50 Gigabit-capable Pas-
sive Optical Network (50G-PON), FTTR, and next-generation
Wi-Fi 8 to support the continuous development of indoor
tens-gigabit services”®. New services, such as video produc-
tion, cloud PCs, and XR computing buses, have stringent re-
quirements including deterministic latency, mobile roaming,
and multi-domain networking. Consequently, the architecture
proposes a new frequency division duplex access protocol for
the next-generation Wi-Fi 8 mmWave air interface, efficient
beam management and scanning mechanisms, and a high-
low-frequency collaboration mechanism to address mmWave
obstruction issues.

Furthermore, a multi-band hybrid networking solution is
used to solve challenges like continuous indoor mmWave
coverage. The Centralized/Cloud Wireless-Optical Access
Network (C-WAN) is a centralized Wi-Fi architecture. It
aims to provide full-house network coverage and efficient re-
source management through the synergy of optical networks
and Wi-Fi. Its core features include 1) centralized control, in
which a master device collects information and makes deci-
sions, enabling unified and coordinated configuration of opti-
cal links and air interface links; 2) seamless roaming, which
ensures fast handover of terminals between different access
points, thereby enhancing the user experience; 3) interfer-
ence optimization through Wi-Fi power balancing and inter-
ference mitigation. By innovating both the FTTR C-WAN ar-
chitecture and air interface technology, the system effec-
tively addresses issues of lagging and roaming in home and
enterprise Wi-Fi applications, further improving the experi-
ence of short-range indoor wireless networks and enhancing
efficiency™ %,

This paper reviews the U-CAN architecture enabled by

FTTR-mmWave Wi-Fi technology, with a primary focus on
recent advances in Chinese mmWave chips and modules for
next-generation FTTR-mmWave Wi-Fi applications. It is or-
ganized as follows. Section 2 briefly reviews the evolution of
Wi-Fi and mmWave standards and the FTTR-mmWave sys-
tem architecture. Section 3 focuses on the design of typical
millimeter-wave chips, as well as recent Chinese commercial
mmWave chip and module developments. Finally, Section 4
concludes the paper.

2 Wi-Fi and MmWave Standard Evolution
and FTTR-MmWave Solution

2.1 Wi-Fi and MmWave Standard Evolution

In 1990, the IEEE 802.11 committee was established to
promote research and development of standards for WLANs.
In 1997, the first version, 802.11-1997, was officially re-
leased™. The Wi-Fi Alliance was founded in 1999 to apply
the 802.11 standard to the industry and facilitate compatibil-
ity among different manufacturers. With the growth of WLAN
technology and the proliferation of mobile wireless devices, it
has become a crucial technology for household network cover-
age. The release of the 802.11n protocol in 2009 was a major
milestone, significantly increasing Wi-Fi network speeds
with features like multiple antennas and beamforming that
are still used today. Currently, 802.11ax technologies and
network devices are widely used, and Wi-Fi 7 (802.11be) is
poised to offer a better wireless network experience.

Millimeter-wave refers to electromagnetic waves with a
wavelength between 1 mm and 10 mm, corresponding to a
frequency range of 30 GHz to 300 GHz. The mmWave band
offers vast spectrum resources. According to Shannon’s theo-
rem, the communication capacity of the system is propor-
tional to the channel bandwidth, giving mmWave systems a
natural advantage in channel capacity. By 2018, several
mmWave-related standards had been introduced globally.
The ECMA-387 standard primarily defines the characteris-
tics of the physical layer (PHY), protocol adapter layer (PAL)
for HD media interfaces, and media access control (MAC)
layer in the 60 GHz band, mainly providing high-speed au-
dio and HD video transmission. The IEEE 802.15.3¢ stan-
dard, operating in the 57 - 66 GHz band, primarily specifies
the PHY and MAC layers for Wireless Personal Area Net-
works (WPANs). WPANs have an effective transmission dis-
tance of 10 m and are mainly used for high-speed network
downloading. The 802.11ad physical layer supports various
modes, including Single Carrier (SC) and Orthogonal Fre-
quency Division Multiplexing (OFDM). As an evolution of
802.11ad, IEEE 802.11ay enhances theoretical speeds (theo-
retically up to 20 Gbit/s) and expands application scenarios.
The IEEE 802.114aj standard is intended for indoor wireless
communications, with frequency ranges of 42.3 - 48.4 GHz

and 59 - 64 GHz. The MAC layer is designed similarly to
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other TEEE 802.11 protocol standards, while the physical
layer introduces analog beamforming and antenna array tech-
nologies to improve mmWave coverage. The next-generation
Wi-Fi 8 (802.11bq) standard working group has included
both the low microwave band (sub-7.25 GHz) and the
mmWave Q/V bands (42 - 71 GHz) as candidate working fre-

quency bands.

2.2 FTTR-MmWave System Architecture

The combination of FTTR and mmWave WLAN technol-
ogy is a recent research topic that is expected to become an
optimal solution for service and data transmission in F5G.
One such architecture is the U-CAN, which defines a unified
access architecture from the cloud to the terminal side and
flexibly supports the allocation of transmission resources for
industry applications. The U-CAN integrates 50G-PON,
FTTR, C-WAN, Wi-Fi 8 (mmWave band), and other tech-
nologies to achieve a comprehensive upgrade of the next-
generation hyper-converged access network. In this new ar-
chitecture, fiber optic cables are laid into each room to pro-
vide a high-capacity mmWave backhaul channel. With fiber
penetrating into each room, using mmWave has two distinct
advantages: extremely high speed enabled by more available
spectrum and less interference between adjacent networks
due to high wall-penetration loss. In this setup, each FTTR
terminal can be cascaded with an mmWave access point
(AP) on the downlink while connecting to the same Optical
Network Terminal (ONT) on the uplink, as shown in Fig. 1.

M

ntelligent networking
and automatic slicing

Compared to traditional Wi-Fi, the FTTR-mmWave system
can eliminate interference and conflicts between different
rooms, effectively improving data rates and transmission reli-
ability while reducing latency. This performance is superior
to that of traditional Wi-Fi Mesh network architectures. Cur-
rently, a Chinese company has designed an FTTR mmWave
prototype using 4X4 multi-input multi-output (MIMO), which
has achieved communication rates higher than 10 Gbit/s,
validating the performance of the FTTR mmWave system for
indoor communications.

3 MmWave Chips for FTTR-MmWave Wi-
Fi Applications

FTTR technology is now in large-scale commercial use to
address the high-rate transmission requirements of enter-
prises and homes. However, the bottleneck for even higher
transmission rates lies in the fiber-to-wireless transition link.
Given its high bandwidth and low latency, the mmWave band
is an excellent solution to high-speed wireless transmission.
This section focuses on the development of mmWave chips
operating in 26 GHz, 40 GHz, and 45 GHz for next-
generation indoor high-speed communication applications.
While ensuring low cost and high integration, these chips
are designed to optimize key metrics such as system band-
width, power, noise, and linearity to meet the requirements
of 16-QAM to 64-QAM modulation schemes to achieve

higher transmission rates.
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(a)
AP: access point
C-WAN: Centralized/Cloud Wireless-
Optical Access Network

FTTR: Fiber-to-the-Room
mmWave: millimeter wave
ONT: Optical Network Terminal

P2MP: Point-to-Multipoint
PON: Passive Optical Network
U-CAN: Ultra-Converged Access Network

Figure 1. Schematic diagram of FTTR-mmWave cascading in the U-CAN architecture: (a) overall U-CAN architecture and (b) FTTR-mmWave system
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results are presented in Fig. 3d. OTA
measurement at 25 GHz with 16-QAM
modulation and a distance of 1.1 meters Figure 2. Block diagram of the 24 - 29.5 GHz chipset: (a) Tx chip and (b) Rx chip
achieved a data rate of up to 8 Gbit/s. Un-
der 64-QAM 5G New Radio (NR) modula-

I-Q: In-phase and Quadrature ~ LO: local oscillator SPI: Serial Peripheral Interface

tion with 400 MHz bandwidth at 25 GHz, process, which includes a transmitter chip and a receiver

the measured EVM remains below —33 dB. Across the 24 - chipmj. In the transmitter, the power amplifier output incor-

29.5 GHz band, the EVM level remains below =30 dB. porates a T-shaped second-harmonic termination to improve

its linearity. Additionally, its output stage employs a power

3.2 45 GHz IEEE 802.11aj Transceiver in SiGe Process detector based on a self-mixing method to enable precise im-
The TEEE 802.11aj standard is designed specifically for age signal and local oscillator (LO) leakage calibration.

short-range high-speed wireless personal area networks The OTA measurement setup is shown in Fig. Sc. The

(WPAN). Figs. 4 and 5 show the block diagram and micro- modulated baseband signals were generated by the M8190A
graph of a fully integrated IEEE 802.11aj direct-conversion arbitrary waveform generator with a roll-off factor of 0.25.
transceiver chipset, fabricated using a 130-nm SiGe BiCMOS The Agilent DSO 91304A digital oscilloscope with the Agi-
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Figure 3. Chip micrograms and measurement results: (a) micrograph of the 24 - 29.5 GHz Rx chip; (b) micrograph of the 24 - 29.5 GHz Tx chip;
(c) over-the-air (OTA) measurement setup; (d) measured EVM with single carrier modulation signal
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3.340 GHz Integer-N Phase-Locked
Loop in CMOS Process

B
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This subsection presents a 40 GHz
integer-N phase-locked loop (PLL) featur-
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| —
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| : ing a linearized CMOS LC voltage-

Buffer

controlled oscillator (VCO), implemented
in a standard 90-nm CMOS process. Its
u ! block diagram and micrograph are shown

in Figs. 6 and 7, respectively™. The VCO
uses a tri-coupled inductor to couple the

Buffer

varactor diode pairs, achieving gain linear-

0:

90° [+0O !

0: T .

LO ization through mutual compensation. The

tri-coupled inductor eliminates the need

for a tuning voltage offset circuit or DC-

blocking capacitors, making it suitable for
high-performance mmWave design.

Measurement results show the linear

VCO has a tuning bandwidth of 15.8% and

a phase noise of —100.7 dBc/Hz at 1 MHz

offset, yielding a figure of merit (FOMT) of
- 181.8 dBc¢/Hz. The designed PLL, using

DAC: Digital-to-Analog Converter
DC: direct current

LNA: Low-Noise Amplifier
LO: local oscillator

PA: Power Amplifier

PD: Photodiode

I: In-phase
IF: intermediate frequency

Figure 4. Block diagram of the 45-GHz direct-conversion chipset: (a) Tx chip and (b) Rx chip

lent 89600 vector signal analyzer was used to evaluate con-
stellation and EVM performance. During the wireless data
transmission measurement, the distance between the trans-
mitter and the receiver was fixed at 1 m. At 42 GHz, 45 GHz,
and 48.5 GHz, the measured EVMs of the SC 64-QAM signal
(with a baud rate of 100 Mbit/s) were —29.11 dB, —29.44 dB,
and —28.56 dB, respectively. As demonstrated in Fig. 5d, the
measured 64-QAM constellations over the IEEE 802.11aj fre-
quency band show high quality. Within the IEEE 802.11aj
working band of 42.3 - 48.4 GHz, the transmitter achieved an
output 1 dB compression point (OP1 dB) of 14.6 - 16.4 dBm,
with a conversion gain (CG) exceeding 24 dB. Within the
IEEE 802.11aj band, the receiver exhibited a noise figure of
3.8 - 4.1 dB, an input 1 dB compression point ranging from
—-22 dBm to —18.7 dBm, and a conversion gain greater than
43.8 dB. Overall, the measured transceiver fully meets the
IEEE 802.11aj EVM requirements for 64-QAM modulation.
In the OTA measurement with a T/R distance of 1 meter, the
measured EVM from the transmitter to the receiver is better

than —28.5 dB.

PS: Phase Shifter

Q: Quadrature

RF: radio frequency

VGA: Variable Gain Amplifier

this linear VCO, can lock stably from
38.61 GHz to 44.55 GHz. At 40 GHz, it ex-
hibits an in-band phase noise of =81 dBc/Hz
at 100 kHz offset and an out-of-band
phase noise of —114.5 dBc¢/Hz at 10 MHz
offset, with a total power consumption of
76 mW. Compared with other reported re-
search, the proposed linearization method
results in very small variations in VCO
gain. The developed PLL demonstrates
good stability and minimal loop bandwidth
variation across its entire operating fre-
quency range, suitable for wideband mmWave low phase noise
LO signal generation.

3.4 Recent Advances in Chinese Commercial Millimeter-
Wave Chipsets and Modules

After years of research and development, Chinese RF chip
design companies have developed competitive silicon-based
millimeter-wave multi-channel beamforming chips and up/down
conversion chipsets. For instance, the MSTR111 and MSTR205
chips from MiSic Microelectronics Co., Ltd. integrate eight RF
transceiver channels in a single chip at 26/28 GHz (Fig. 8). The
P1dB transmit power of a single channel reaches 20.5 dBm.
Meanwhile, in Q-band (45 GHz), the MSTR201 (Fig. 9) sup-
ports the IEEE 802.11aj (45 GHz) standard. It integrates dual-
channel transceivers, frequency conversion units, and a low-
phase-noise PLL, with the P1dB of the transmit channel reach-
ing 18 dBm and the noise figure (NF) of the receive channel
below 6 dB, making it suitable for high-speed indoor
millimeter-wave Wi-Fi application scenarios™. The mmWave
AP and terminal prototype have also been developed based
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Figure 5. Chip micrographs and measurement results for the 45 GHz transceiver: (a) Tx chip;

PA: Power Amplifier

PD: Photodiode
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QAM: Quadrature Amplitude
Modulation

Q: Quadrature
RF: radio frequency
VGA: Variable Gain Amplifier

(b) Rx chip; (¢) OTA measurement setup; (d) measured 64-QAM constellation
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on the millimeter-wave Wi-Fi architecture
by Nanjing Ziwei Technology Co., Ltd., as
shown in Fig. 10. The system operates in
the 24 - 26 GHz frequency band, adopt-
ing the millimeter-wave module and the
commercial 802.11ax baseband. The sys-
tem uses active phased array antennas,
each containing 2X2 antenna units, which
can cover a distance of over 100 meters,
with a maximum data rate of 1.6 Gbit/s.

3.5 Challenges in Future MmW-Wi-Fi
Applications

Compared to classical sub-6GHz Wi-Fi
technology, mmWave Wi-Fi presents dis-
tinct challenges that require further re-
search. Beamforming (BF) technologies im-
prove mmWave communication capability
by focusing the transmitted signal towards
the receiver to provide additional link
gain. To enhance coverage in the Q/V-
band, the conventional approach is to use
a phased array front-end with a moderate
16-element array size, which is a good bal-
ance between complexity and perfor-
mance. In some application cases, the ter-
minals rarely move after deployment,
where the real-time BF can be omitted. In
other cases, it needs multiple beam cover-
age for multiple high-throughput terminal
users. The analog BF needs multiple sub-
arrays for each beam. However, consider-
ing the cost and extra power consumption
for multi-beam tracking, it is also a good
choice to use several well-planned wider
beams from the AP side to the mobile ter-
minals coverage with MIMO techniques.
Meanwhile, efficiently coordinating
mmWave Wi-Fi with the classical Wi-Fi
remains a significant challenge. This re-
quires an advanced digital baseband chip-
set with integrated analog-to-digital and
digital-to-analog converters (ADCs/DACs).

4 Conclusions

The integration of FTTR and mmWave
technologies is a crucial means to achieve
highly stable connections and low-latency
transmission. The study of mmWave chip
technology and system applications under
the new FTTR architecture will be a sig-
nificant research topic for the develop-
ment of next-generation high-speed wire-
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less access technologies in fixed access scenarios. Based on

the advantages of the FTTR-mmWave architecture, it is of

great research significance to design mmWave chips and sys-

tems with high transmission rates, low latency, high reliabil-
ity, and low cost, while fully utilizing both sub-7.25 GHz and
mmWave Wi-Fi frequency resources to achieve multi-band
collaborative transmission. This work briefly reviews the U-
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CAN architecture with FTTR-mmWave Wi-Fi
technology, as well as the recent Chinese
mmWave chipset and RF module develop-
ments. The combination of fiber optics and
mmWave will effectively solve problems re-
lated to indoor mmWave signal coverage, high-
throughput traffic, and interference between
wireless access points. As the key element in
this system, the recent mmWave chip and RF
module developments have made rapid prog-
ress, providing key support for indoor 10-giga-
bit and higher-speed traffic and millisecond-

level transmission services.
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