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Abstract: Millimeter-wave (mmWave) technology has been extensively studied for indoor short-range communications. In such fixed net⁃
work applications, the emerging FTTR architecture allows mmWave technology to be well cascaded with in-room optical network terminals, 
supporting high-speed communication at rates over tens of Gbit/s. In this Fiber-to-the-Room (FTTR)-mmWave system, the severe signal at⁃
tenuation over distance and high penetration loss through room walls are no longer bottlenecks for practical mmWave deployment. Instead, 
these properties create high spatial isolation, which prevents mutual interference between data streams and ensures information security. 
This paper surveys the promising integration of FTTR and mmWave access for next-generation indoor high-speed communications, with a 
particular focus on the Ultra-Converged Access Network (U-CAN) architecture. It is structured in two main parts: it first traces this new 
FTTR-mmWave architecture from the perspective of Wi-Fi and mmWave communication evolution, and then focuses specifically on the de⁃
velopment of key mmWave chipsets for FTTR-mmWave Wi-Fi applications. This work aims to provide a comprehensive reference for re⁃
searchers working toward immersive, untethered indoor wireless experiences for users.
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1 Introduction

Over the past two decades, fixed broadband access 
technologies have continuously evolved to provide 
high-speed internet connectivity to end-users 
worldwide.  The rise of new audio-visual media ser⁃

vices such as augmented reality (AR), virtual reality (VR), 
8K high-definition video, and cloud gaming has created 
higher demands for network throughput, coverage, and la⁃
tency from content producers to end-users.  The quality of 
fixed wireless broadband access significantly impacts the 
end-user experience, affecting factors like maximum service 
throughput, network stability, ease of installation, and easy 
management capabilities[1–5].

Currently, mainstream commercial wireless local area 
networks (WLANs) and cellular networks primarily operate 
in the sub-6 GHz frequency band, which has limited data 
transmission bandwidth and struggles to meet the demands 

of these new services. For example, for highly interactive, 
extreme cloud VR video transmission, a home network must 
guarantee a stable rate of at least 4.4 Gbit/s, with round-trip 
latency and jitter not exceeding 10 ms. High-quality VR 
headsets are typically connected via High-Definition Multi⁃
media Interface (HDMI) cables, which can transmit up to 
40 Gbit/s and require next-generation wireless ultra-high-
speed interconnection technologies to provide users with an 
immersive, untethered experience[6]. The millimeter-wave 
(mmWave) band offers vast, continuous spectrum, which 
can provide greater transmission bandwidth. Furthermore, 
due to the short wavelength of mmWave, the transmitting 
antennas can be very small, which is conducive to making 
devices lightweight. To achieve higher wireless communica⁃
tion speeds, researchers across academia and industry have 
conducted extensive research on mmWave channel charac⁃
terization, system architectures, software algorithms, hard⁃
ware circuits, and multiple standards[7–22] over the past two 
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decades. Based on home network scenarios and use cases, 
the challenges of 60 GHz mmWave transmission have been 
investigated[17]. Efforts have also been dedicated to channel 
measurements and modeling at 45 GHz and 60 GHz[19, 21–22]. 
Similarly, the use of beamforming in short-range communica⁃
tion has been widely studied[14, 18, 20].

The emergence of Fifth-Generation Fixed Networks (F5G) 
has seen the proposal of Fiber-to-the-Room (FTTR) technol⁃
ogy. FTTR extends fiber optic cables to each room, providing 
gigabit broadband coverage for entire indoor spaces[23–25]. By 
leveraging the fiber infrastructure laid into each room, FTTR 
creates a large-bandwidth connection channel for high-speed 
mmWave communications, enabling efficient mmWave cover⁃
age in every room. At the same time, the high wall-
penetration loss of the mmWave band creates a favorable con⁃
dition for eliminating interference between wireless commu⁃
nication systems in different rooms. This allows FTTR to 
achieve same-frequency networking and ensure information 
security. To address the demands of new scenarios and ser⁃
vices, China Unicom’s Ultra-Converged Access Network (U-
CAN) hyper-converged access network architecture inte⁃
grates advanced technologies like 50 Gigabit-capable Pas⁃
sive Optical Network (50G-PON), FTTR, and next-generation 
Wi-Fi 8 to support the continuous development of indoor 
tens-gigabit services[26]. New services, such as video produc⁃
tion, cloud PCs, and XR computing buses, have stringent re⁃
quirements including deterministic latency, mobile roaming, 
and multi-domain networking. Consequently, the architecture 
proposes a new frequency division duplex access protocol for 
the next-generation Wi-Fi 8 mmWave air interface, efficient 
beam management and scanning mechanisms, and a high-
low-frequency collaboration mechanism to address mmWave 
obstruction issues.

Furthermore, a multi-band hybrid networking solution is 
used to solve challenges like continuous indoor mmWave 
coverage. The Centralized/Cloud Wireless-Optical Access 
Network (C-WAN) is a centralized Wi-Fi architecture. It 
aims to provide full-house network coverage and efficient re⁃
source management through the synergy of optical networks 
and Wi-Fi. Its core features include 1) centralized control, in 
which a master device collects information and makes deci⁃
sions, enabling unified and coordinated configuration of opti⁃
cal links and air interface links; 2) seamless roaming, which 
ensures fast handover of terminals between different access 
points, thereby enhancing the user experience; 3) interfer⁃
ence optimization through Wi-Fi power balancing and inter⁃
ference mitigation. By innovating both the FTTR C-WAN ar⁃
chitecture and air interface technology, the system effec⁃
tively addresses issues of lagging and roaming in home and 
enterprise Wi-Fi applications, further improving the experi⁃
ence of short-range indoor wireless networks and enhancing 
efficiency[27–29].

This paper reviews the U-CAN architecture enabled by 

FTTR-mmWave Wi-Fi technology, with a primary focus on 
recent advances in Chinese mmWave chips and modules for 
next-generation FTTR-mmWave Wi-Fi applications. It is or⁃
ganized as follows. Section 2 briefly reviews the evolution of 
Wi-Fi and mmWave standards and the FTTR-mmWave sys⁃
tem architecture. Section 3 focuses on the design of typical 
millimeter-wave chips, as well as recent Chinese commercial 
mmWave chip and module developments. Finally, Section 4 
concludes the paper.
2 Wi-Fi and MmWave Standard Evolution 

and FTTR-MmWave Solution

2.1 Wi-Fi and MmWave Standard Evolution
In 1990, the IEEE 802.11 committee was established to 

promote research and development of standards for WLANs. 
In 1997, the first version, 802.11-1997, was officially re⁃
leased[30]. The Wi-Fi Alliance was founded in 1999 to apply 
the 802.11 standard to the industry and facilitate compatibil⁃
ity among different manufacturers. With the growth of WLAN 
technology and the proliferation of mobile wireless devices, it 
has become a crucial technology for household network cover⁃
age. The release of the 802.11n protocol in 2009 was a major 
milestone, significantly increasing Wi-Fi network speeds 
with features like multiple antennas and beamforming that 
are still used today. Currently, 802.11ax technologies and 
network devices are widely used, and Wi-Fi 7 (802.11be) is 
poised to offer a better wireless network experience.

Millimeter-wave refers to electromagnetic waves with a 
wavelength between 1 mm and 10 mm, corresponding to a 
frequency range of 30 GHz to 300 GHz. The mmWave band 
offers vast spectrum resources. According to Shannon’s theo⁃
rem, the communication capacity of the system is propor⁃
tional to the channel bandwidth, giving mmWave systems a 
natural advantage in channel capacity. By 2018, several 
mmWave-related standards had been introduced globally. 
The ECMA-387 standard primarily defines the characteris⁃
tics of the physical layer (PHY), protocol adapter layer (PAL) 
for HD media interfaces, and media access control (MAC) 
layer in the 60 GHz band, mainly providing high-speed au⁃
dio and HD video transmission. The IEEE 802.15.3c stan⁃
dard, operating in the 57–66 GHz band, primarily specifies 
the PHY and MAC layers for Wireless Personal Area Net⁃
works (WPANs). WPANs have an effective transmission dis⁃
tance of 10 m and are mainly used for high-speed network 
downloading. The 802.11ad physical layer supports various 
modes, including Single Carrier (SC) and Orthogonal Fre⁃
quency Division Multiplexing (OFDM). As an evolution of 
802.11ad, IEEE 802.11ay enhances theoretical speeds (theo⁃
retically up to 20 Gbit/s) and expands application scenarios. 
The IEEE 802.11aj standard is intended for indoor wireless 
communications, with frequency ranges of 42.3– 48.4 GHz 
and 59 – 64 GHz. The MAC layer is designed similarly to 
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other IEEE 802.11 protocol standards, while the physical 
layer introduces analog beamforming and antenna array tech⁃
nologies to improve mmWave coverage. The next-generation 
Wi-Fi 8 (802.11bq) standard working group has included 
both the low microwave band (sub-7.25 GHz) and the 
mmWave Q/V bands (42–71 GHz) as candidate working fre⁃
quency bands.
2.2 FTTR-MmWave System Architecture

The combination of FTTR and mmWave WLAN technol⁃
ogy is a recent research topic that is expected to become an 
optimal solution for service and data  transmission in F5G. 
One such architecture is the U-CAN, which defines a unified 
access architecture from the cloud to the terminal side and 
flexibly supports the allocation of transmission resources for 
industry applications. The U-CAN integrates 50G-PON, 
FTTR, C-WAN, Wi-Fi 8 (mmWave band), and other tech⁃
nologies to achieve a comprehensive upgrade of the next-
generation hyper-converged access network. In this new ar⁃
chitecture, fiber optic cables are laid into each room to pro⁃
vide a high-capacity mmWave backhaul channel. With fiber 
penetrating into each room, using mmWave has two distinct 
advantages: extremely high speed enabled by more available 
spectrum and less interference between adjacent networks 
due to high wall-penetration loss. In this setup, each FTTR 
terminal can be cascaded with an mmWave access point 
(AP) on the downlink while connecting to the same Optical 
Network Terminal (ONT) on the uplink, as shown in Fig. 1. 

Compared to traditional Wi-Fi, the FTTR-mmWave system 
can eliminate interference and conflicts between different 
rooms, effectively improving data rates and transmission reli⁃
ability while reducing latency. This performance is superior 
to that of traditional Wi-Fi Mesh network architectures. Cur⁃
rently, a Chinese company has designed an FTTR mmWave 
prototype using 4×4 multi-input multi-output (MIMO), which 
has achieved communication rates higher than 10 Gbit/s, 
validating the performance of the FTTR mmWave system for 
indoor communications.
3 MmWave Chips for FTTR-MmWave Wi-

Fi Applications
FTTR technology is now in large-scale commercial use to 

address the high-rate transmission requirements of enter⁃
prises and homes. However, the bottleneck for even higher 
transmission rates lies in the fiber-to-wireless transition link. 
Given its high bandwidth and low latency, the mmWave band 
is an excellent solution to high-speed wireless transmission. 
This section focuses on the development of mmWave chips 
operating in 26 GHz, 40 GHz, and 45 GHz for next-
generation indoor high-speed communication applications. 
While ensuring low cost and high integration, these chips 
are designed to optimize key metrics such as system band⁃
width, power, noise, and linearity to meet the requirements 
of 16-QAM to 64-QAM modulation schemes to achieve 
higher transmission rates.

Figure 1. Schematic diagram of FTTR-mmWave cascading in the U-CAN architecture: (a) overall U-CAN architecture and (b) FTTR-mmWave system
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3.1 24–29.5 GHz 2×2 Transceiver Chip⁃
set in Silicon-Germanium Process

Figs. 2 and 3 show the block diagram 
and micrograph of the implemented 24–
29.5 GHz 2×2 transceiver chipset in a 
130 nm silicon-germanium (SiGe) bipo⁃
lar complementary metal-oxide-
semiconductor (BiCMOS) process[31]. 
Each channel contains a quadrature up/
down-conversion mixer, a 5-bit variable 
attenuator, a band-pass filter, an RF 
driver, a power amplifier (for the trans⁃
mitter) and a low-noise amplifier (for the 
receiver). To achieve a low error vector 
magnitude (EVM), the chipset uses a 
joint-package design to optimize power 
and noise performance. It utilizes an im⁃
age rejection mixer to suppress receiver 
noise and a direct current (DC) offset 
calibration circuit in the up-converter for 
local oscillator (LO) signal leakage cali⁃
bration. A frequency multiplier chain is 
also integrated to reduce the require⁃
ments on the LO frequency.

The chipset is packaged using a wafer-
level chip-scale package (WLCSP) process. 
The average 1 dB compression point output 
power for each transmitter channel reaches 
20 dBm. The minimum noise figure for the 
receiver chip is 3.4 dB. The over-the-air 
(OTA) measurement setup is shown in Fig. 
3c. The E8267D signal sources provide the 
LO signals to the RX and TX chips. For 
the single-carrier modulation measure⁃
ment, the TX baseband signal was pro⁃
vided by the Keysight M8190A, and the re⁃
ceived IF signal was demodulated using 
the Agilent DSO91304A. The measured 
results are presented in Fig. 3d. OTA 
measurement at 25 GHz with 16-QAM 
modulation and a distance of 1.1 meters 
achieved a data rate of up to 8 Gbit/s. Un⁃
der 64-QAM 5G New Radio (NR) modula⁃
tion with 400 MHz bandwidth at 25 GHz, 
the measured EVM remains below −33 dB. Across the 24–
29.5 GHz band, the EVM level remains below −30 dB.
3.2 45 GHz IEEE 802.11aj Transceiver in SiGe Process

The IEEE 802.11aj standard is designed specifically for 
short-range high-speed wireless personal area networks 
(WPAN). Figs. 4 and 5 show the block diagram and micro⁃
graph of a fully integrated IEEE 802.11aj direct-conversion 
transceiver chipset, fabricated using a 130-nm SiGe BiCMOS 

process, which includes a transmitter chip and a receiver 
chip[32]. In the transmitter, the power amplifier output incor⁃
porates a T-shaped second-harmonic termination to improve 
its linearity. Additionally, its output stage employs a power 
detector based on a self-mixing method to enable precise im⁃
age signal and local oscillator (LO) leakage calibration.

The OTA measurement setup is shown in Fig. 5c. The 
modulated baseband signals were generated by the M8190A 
arbitrary waveform generator with a roll-off factor of 0.25. 
The Agilent DSO 91304A digital oscilloscope with the Agi⁃

Figure 2. Block diagram of the 24–29.5 GHz chipset: (a) Tx chip and (b) Rx chip
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(c) over-the-air (OTA) measurement setup; (d) measured EVM with single carrier modulation signal
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lent 89600 vector signal analyzer was used to evaluate con⁃
stellation and EVM performance. During the wireless data 
transmission measurement, the distance between the trans⁃
mitter and the receiver was fixed at 1 m. At 42 GHz, 45 GHz, 
and 48.5 GHz, the measured EVMs of the SC 64-QAM signal 
(with a baud rate of 100 Mbit/s) were −29.11 dB, −29.44 dB, 
and −28.56 dB, respectively. As demonstrated in Fig. 5d, the 
measured 64-QAM constellations over the IEEE 802.11aj fre⁃
quency band show high quality. Within the IEEE 802.11aj 
working band of 42.3–48.4 GHz, the transmitter achieved an 
output 1 dB compression point (OP1 dB) of 14.6–16.4 dBm, 
with a conversion gain (CG) exceeding 24 dB. Within the 
IEEE 802.11aj band, the receiver exhibited a noise figure of 
3.8–4.1 dB, an input 1 dB compression point ranging from 
−22 dBm to −18.7 dBm, and a conversion gain greater than 
43.8 dB. Overall, the measured transceiver fully meets the 
IEEE 802.11aj EVM requirements for 64-QAM modulation. 
In the OTA measurement with a T/R distance of 1 meter, the 
measured EVM from the transmitter to the receiver is better 
than −28.5 dB.

3.3 40 GHz Integer-N Phase-Locked 
Loop in CMOS Process

This subsection presents a 40 GHz 
integer-N phase-locked loop (PLL) featur⁃
ing a linearized CMOS LC voltage-
controlled oscillator (VCO), implemented 
in a standard 90-nm CMOS process. Its 
block diagram and micrograph are shown 
in Figs. 6 and 7, respectively[33]. The VCO 
uses a tri-coupled inductor to couple the 
varactor diode pairs, achieving gain linear⁃
ization through mutual compensation. The 
tri-coupled inductor eliminates the need 
for a tuning voltage offset circuit or DC-
blocking capacitors, making it suitable for 
high-performance mmWave design.

Measurement results show the linear 
VCO has a tuning bandwidth of 15.8% and 
a phase noise of −100.7 dBc/Hz at 1 MHz 
offset, yielding a figure of merit (FOMT) of 
− 181.8 dBc/Hz. The designed PLL, using 
this linear VCO, can lock stably from 
38.61 GHz to 44.55 GHz. At 40 GHz, it ex⁃
hibits an in-band phase noise of −81 dBc/Hz 
at 100 kHz offset and an out-of-band 
phase noise of − 114.5 dBc/Hz at 10 MHz 
offset, with a total power consumption of 
76 mW. Compared with other reported re⁃
search, the proposed linearization method 
results in very small variations in VCO 
gain. The developed PLL demonstrates 
good stability and minimal loop bandwidth 
variation across its entire operating fre⁃

quency range, suitable for wideband mmWave low phase noise 
LO signal generation.
3.4 Recent Advances in Chinese Commercial Millimeter-

Wave Chipsets and Modules
After years of research and development, Chinese RF chip 

design companies have developed competitive silicon-based 
millimeter-wave multi-channel beamforming chips and up/down 
conversion chipsets. For instance, the MSTR111 and MSTR205 
chips from MiSic Microelectronics Co., Ltd. integrate eight RF 
transceiver channels in a single chip at 26/28 GHz (Fig. 8). The 
P1dB transmit power of a single channel reaches 20.5 dBm. 
Meanwhile, in Q-band (45 GHz), the MSTR201 (Fig. 9) sup⁃
ports the IEEE 802.11aj (45 GHz) standard. It integrates dual-
channel transceivers, frequency conversion units, and a low-
phase-noise PLL, with the P1dB of the transmit channel reach⁃
ing 18 dBm and the noise figure (NF) of the receive channel 
below 6 dB, making it suitable for high-speed indoor 
millimeter-wave Wi-Fi application scenarios[34]. The mmWave 
AP and terminal prototype have also been developed based 

Figure 4. Block diagram of the 45-GHz direct-conversion chipset: (a) Tx chip and (b) Rx chip
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on the millimeter-wave Wi-Fi architecture 
by Nanjing Ziwei Technology Co., Ltd., as 
shown in Fig. 10. The system operates in 
the 24– 26 GHz frequency band, adopt⁃
ing the millimeter-wave module and the 
commercial 802.11ax baseband. The sys⁃
tem uses active phased array antennas, 
each containing 2×2 antenna units, which 
can cover a distance of over 100 meters, 
with a maximum data rate of 1.6 Gbit/s.
3.5 Challenges in Future MmW-Wi-Fi 

Applications
Compared to classical sub-6GHz Wi-Fi 

technology, mmWave Wi-Fi presents dis⁃
tinct challenges that require further re⁃
search. Beamforming (BF) technologies im⁃
prove mmWave communication capability 
by focusing the transmitted signal towards 
the receiver to provide additional link 
gain. To enhance coverage in the Q/V-
band, the conventional approach is to use 
a phased array front-end with a moderate 
16-element array size, which is a good bal⁃
ance between complexity and perfor⁃
mance. In some application cases, the ter⁃
minals rarely move after deployment, 
where the real-time BF can be omitted. In 
other cases, it needs multiple beam cover⁃
age for multiple high-throughput terminal 
users. The analog BF needs multiple sub-
arrays for each beam. However, consider⁃
ing the cost and extra power consumption 
for multi-beam tracking, it is also a good 
choice to use several well-planned wider 
beams from the AP side to the mobile ter⁃
minals coverage with MIMO techniques. 
Meanwhile, efficiently coordinating 
mmWave Wi-Fi with the classical Wi-Fi 
remains a significant challenge. This re⁃
quires an advanced digital baseband chip⁃
set with integrated analog-to-digital and 
digital-to-analog converters (ADCs/DACs).
4 Conclusions

The integration of FTTR and mmWave 
technologies is a crucial means to achieve 
highly stable connections and low-latency 
transmission. The study of mmWave chip 
technology and system applications under 
the new FTTR architecture will be a sig⁃
nificant research topic for the develop⁃
ment of next-generation high-speed wire⁃
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less access technologies in fixed access scenarios. Based on 
the advantages of the FTTR-mmWave architecture, it is of 
great research significance to design mmWave chips and sys⁃
tems with high transmission rates, low latency, high reliabil⁃
ity, and low cost, while fully utilizing both sub-7.25 GHz and 
mmWave Wi-Fi frequency resources to achieve multi-band 
collaborative transmission. This work briefly reviews the U-
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CAN architecture with FTTR-mmWave Wi-Fi 
technology, as well as the recent Chinese 
mmWave chipset and RF module develop⁃
ments. The combination of fiber optics and 
mmWave will effectively solve problems re⁃
lated to indoor mmWave signal coverage, high-
throughput traffic, and interference between 
wireless access points. As the key element in 
this system, the recent mmWave chip and RF 
module developments have made rapid prog⁃
ress, providing key support for indoor 10-giga⁃
bit and higher-speed traffic and millisecond-
level transmission services.
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