
ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

HE Shuai, LIU Limin, WANG Zhanli, LI Jinliang, MAO Xiaojun, MING Anlong 

Research Papers   M+MNet: A Mixed-Precision Multibranch Network for Image Aesthetics Assessment

M+MNetM+MNet:: A Mixed A Mixed--Precision Multibranch Precision Multibranch 
Network for Image Aesthetics AssessmentNetwork for Image Aesthetics Assessment

HE Shuai1, LIU Limin1, WANG Zhanli2, LI Jinliang2, 

MAO Xiaojun2, MING Anlong1

(1. Beijing University of Posts and Telecommunications, Beijing 100876, 
China；
 2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202503011

https://kns.cnki.net/kcms/detail/34.1294.TN.20250905.1148.002.html, 
published online September 5, 2025

Manuscript received: 2024-11-13

Abstract: We propose Mixed-Precision Multibranch Network (M+MNet) to compensate for the neglect of background information in image 
aesthetics assessment (IAA) while providing strategies for overcoming the dilemma between training costs and performance. First, two expo⁃
nentially weighted pooling methods are used to selectively boost the extraction of background and salient information during downsampling. 
Second, we propose Corner Grid, an unsupervised data augmentation method that leverages the diffusive characteristics of convolution to 
force the network to seek more relevant background information. Third, we perform mixed-precision training by switching the precision for⁃
mat, thus significantly reducing the time and memory consumption of data representation and transmission. Most of our methods specifically 
designed for IAA tasks have demonstrated generalizability to other IAA works. For performance verification, we develop a large-scale bench⁃
mark (the most comprehensive thus far) by comparing 17 methods with M+MNet on two representative datasets: the Aesthetic Visual Analysis 
(AVA) dataset and FLICKR-Aesthetic Evaluation Subset (FLICKR-AES). M+MNet achieves state-of-the-art performance on all tasks.
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1 Introduction

Assessing image aesthetics is challenging because it re⁃
quires correctly defining the aesthetic features in an 
image while precisely evaluating the subjective aes⁃
thetics. For example, a classification model can easily 

identify the tree in Fig. 1a, but current 
aesthetic assessment models may have 
difficulty describing why the aesthet⁃
ics of the tree would earn this image 
more than 20 000 views and 1 000 
likes on the photo-sharing website 
Flickr. Researchers[1–4] have demon⁃
strated that the background, composi⁃
tion, and visual weight balance of im⁃
ages are key factors for its beauty. 
Therefore, background information is 
crucial for image aesthetics assess⁃
ment (IAA) tasks and should be con⁃

sidered in related network designs.
However, few existing convolutional neural network (CNN)-

based network designs address this issue. As shown in Fig. 1a, 
current network layers are designed to focus on regions of high 
activations in the feature map, and commonly employ pooling 
methods to discard low activations during downsampling, po⁃

Figure 1. Visualizations of feature map activations generated via Grad-CAM[5]. Our model was 
pretrained on ImageNet[6] to initialize the weights: (a) Background and foreground information in 

the image correspond to low and high activations in the original feature map; (b) by copying a small 
part of the salient region to each of the four corners, the attention area is enlarged; (c) the proposed 

data augmentation method Corner Grid can be used to markedly increase the attention area
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tentially losing important background information. Notably, ex⁃
isting models exhibit large prediction errors for certain im⁃
ages, such as images with small proportions of salient objects 
relative to a large background or images whose aesthetics are 
closely related to their backgrounds, which we call 

“background-sensitive” samples. For example (Fig. 2), in Neu⁃
ral Image Assessment (NIMA)[7] trained on the large-scale Aes⁃
thetic Visual Analysis (AVA) dataset[8], approximately 5.2% of 
the training samples and approximately 15% of the test 
samples are background-sensitive, degrading model perfor⁃
mance.

To solve the above problem, we have made the following ef⁃
forts: 1) We exploit a simple Multibranch Network (MNet) 
with two dedicated pooling methods. These pooling methods 
normalize all feature map activations to obtain two prior 
weights. From a human perspective, such weights tend to fo⁃
cus on background information or foreground information; 
from a model perspective, these weights are used to aggregate 
the low or high activations. Thus, the mechanism of the pro⁃
posed pooling methods conforms to the common sense that the 
background information and foreground information corre⁃
spond to low and high activations in the feature map[9], respec⁃
tively. Specifically, one of the weights that tends to preserve 
low activations is assigned to obtain background information. 
2) We introduce an unsupervised data augmentation method 
named Corner Grid to seek more relevant background informa⁃
tion; the motivation is illustrated in Fig. 1. Previous works in⁃
dicate that in classical computer vision tasks, by changing 
part of the information in an image (Fig. 1b), a CNN can effec⁃
tively learn the information that was originally less sensitive, 
thereby increasing the attention area[10–12]. Through the convo⁃
lution operations of CNN-based methods, the focus can be 
spread from neighboring pixels to cover more areas. Based on 
this characteristic, we propose a data augmentation method 
suitable for IAA tasks, which works by changing the pixel val⁃
ues at the four corners of an image to increase the attention 
area (Fig. 1c). Similar to HE et al. 􀆳 s masked autoencoder 
(MAE)[13], Corner Grid is essentially a mask, and it encourages 
the model to learn useful features from the background and un⁃
derstand beyond image background statistics.

In addition to the limitations of network design, IAA models 
are often compromised by the constraints of the existing train⁃
ing strategies. Most existing IAA models have been pretrained 
on the ImageNet dataset[6] to initialize their weights, meaning 
that the size of the image inputs used for pretraining is 224×
224. To prevent misalignment of the weights transferred to aes⁃
thetic tasks, these methods continue to use this input size by 
default. However, this size is not the optimal size for IAA 
tasks, and its use can lead to incomplete extraction of aes⁃
thetic information and impair the performance of IAA models. 
Although using higher-resolution inputs can preserve more of 
the available aesthetic information, this will lead to high 
memory consumption while limiting the training speed. More⁃

over, because rater subjectivity can generate noise in the 
ground-truth labels of an aesthetic benchmark, solving the 
IAA problem typically requires learning from a noisy raw 
score distribution (Fig. 3); consequently, relatively long train⁃
ing times are already needed to achieve better generalization 
ability. Therefore, most previous works on IAA have faced dif⁃
ficulties in balancing performance and training costs.

High-resolution input can compensate for the aesthetic de⁃
tail lost through the use of low-resolution input[14]. However, 
high-resolution demands increase memory consumption and 
reduce training speed due to data transmission, storage, and 
arithmetic needs[15]. Motivated by these considerations, our 
training strategy uses multiple training stages to achieve a 
transition between low- and high-resolution input and lever⁃
ages a mixed-precision approach to reduce the memory con⁃
sumed for data representation. The training system is designed 
based on this training strategy from the bottom up and thus 
can fundamentally alleviate the abovementioned dilemma. To 
further achieve high performance during training, we adopt 
three techniques to alleviate performance degradation caused 
by the mixed-precision approach and improve the traditional 
Earth mover 􀆳 s distance (EMD) loss by rebalancing the loss 
contributions based on the notion of ground-truth consistency.

The main contributions of this work are as follows:
• To effectively extract aesthetic information from images, 

especially background information, we design a novel multi⁃
branch network equipped with two dedicated pooling methods. 
In addition, an unsupervised data augmentation method is pro⁃
posed to seek more relevant background information.

• To address the dilemma between performance and train⁃
ing costs, an improved mixed-precision training strategy and 
an improved loss function are presented. The proposed 
method is ten times faster than previous methods and reduces 
GPU memory usage by approximately 19.37% while achieving 
state-of-the-art (SOTA) performance.

• To provide a comprehensive evaluation for the commu⁃

Figure 2. Visualization of images in the AVA dataset with a large absolute 
error between the ground truth and the predicted score (absolute error ≥ 1)

Note: The aesthetics of these images are usually closely related to the background.  We call such images “background-sensitive” samples.  
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nity, we compare 17 SOTA baselines on two representative da⁃
tasets, AVA[8] and FLICKR-Aesthetic Evaluation Subset 
(FLICKR-AES) [16], making this work the most complete IAA 
benchmark to date.

• Our proposed techniques, such as the pooling methods, the 
unsupervised data augmentation method, and the training strat⁃
egy, can independently be embedded in existing methods or train⁃
ing processes to solve possible stumbling blocks on IAA tasks.
2 Related Work

2.1 Image Aesthetics Assessment
General IAA involves three tasks: binary classification, aes⁃

thetic score regression, and score distribution prediction. Due 
to the complexity of manual feature extraction and the lack of 
training data, early methods[17–18] treated IAA as a binary clas⁃
sification task (aesthetically positive or negative). Recently, 
CNN methods[7, 19–21] have been proposed for binary aesthetic 
classification. These efforts are based on extracting multi-
level aesthetic features and using the standard cross-entropy 
(CE) loss to train an IAA model. Benefiting from the large-
scale AVA dataset[8], researchers have also been able to obtain 
reasonable performance on the more challenging aesthetic 
score regression task[21–24]. In addition, KONG et al. [24] and 
TALEBI et al.[7] reported their results on AVA in terms of the 
Spearman rank correlation coefficient (SRCC) metric, which is 
a natural way to evaluate the ranking loss.

Although such methods have achieved great success, recent 
evidence reveals that directly predicting aesthetic scores 
(score regression) obscures the diversity of human opin⁃
ions[7, 25]. For example, each image in the AVA dataset[8] was 
rated by an average of 250 raters, but the average aesthetic 
score does not reflect the subjective preference of all indi⁃

vidual raters. Some researchers have noted this limitation and 
proposed using the EMD loss[26–29] for the score distribution 
task, and this approach shows promising performance[7, 29–32]. 
To further model subjective preferences, some works[16, 32–34] 
have proposed a personality-assisted multitask framework for 
personalized aesthetic tasks. However, overemphasizing an in⁃
dividual 􀆳 s subjective preference degrades SRCC performance 
in both general and personalized aesthetic tasks. The main 
reason for this shortcoming is that some raters will give an ap⁃
parently incorrect score that is too high or too low (Fig. 3), and 
it is difficult and time-consuming for IAA models to fit such 
minority (or noisy) opinions.

To alleviate the problem mentioned above, it is preferable 
for IAA models to only focus on majority opinions; thus, we 
present the rebalanced EMD (Re-EMD) loss function to re⁃
weight the loss distribution to help the network focus more on 
majority opinions during training.
2.2 Multibranch Networks

Despite the lack of firm rules governing aesthetic appeal, 
certain aesthetic features are believed by many to be more 
pleasing to humans than certain other features. Multibranch 
networks are popular methods for the extraction of aesthetic 
features at different levels. Both local and global features were 
regarded as crucial aesthetic information in early multibranch-
based methods[19–20]. Similar to these works, MA et al. [21] ad⁃
opted attribute graphs to represent structured groups with lo⁃
cal and global layouts, and ZHANG et al. [35] focused on both 
the global composition and local fine-grained details. In other 
studies[25, 36], researchers have reported that visual and textural 
features are the key features of interest in IAA tasks. Notably, 
the existing multibranch networks can easily focus on salient 
objects or semantically meaningful content but respond only 

Figure 3. Samples selected from the AVA dataset, along with plots of their ground-truth score distributions

Noise
Score

118003. jpg

Score

Nu
mb

er o
f ra

ters

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

70
60
50
40
30
20
10

0

90
80
70
60
50
40
30
20
10

0

Nu
mb

er o
f ra

ters

147553. jpg

Note: Approximately 250 raters rated the aesthetics of each image with rating scores ranging from one to ten (higher values indicate higher aesthetics).  The raters gave some high scores to “118003. jpg” for a pure black image and some low scores to “147553. jpg” for a good one; these apparently incorrect scores are noise.
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slightly to background regions without significant features; 
however, unlike the tasks of image classification and object 
recognition, which often focus on salient objects, IAA is also 
heavily dependent on background information[37–38]. Neverthe⁃
less, as shown in Fig. 4, typical IAA models focus on salient 
objects but disregard the background, which may either en⁃
hance or weaken the aesthetics of the image, thereby limiting 
the performance of these methods on IAA tasks.

To solve the above issue, we design a simple multibranch 
network called MNet, which is equipped with two dedicated 
pooling methods for extracting salient and background infor⁃
mation. Furthermore, we explore an unsupervised data aug⁃
mentation method called Corner Grid to increase the model’s 
attention to background information. Experimental results 
show that the proposed method achieves better performance 
than previous methods.
2.3 Reduced Precision Training

For a given network structure, the total training costs (e.g., 
memory consumption and training time) depend on the input 
resolution, batch size, and precision utilized by the system. Us⁃

ing low-resolution images as the input results in a loss of fine-
grained details, while using a small batch size causes poor 
model generalization. In recent studies, reduced precision rep⁃
resentations have been applied to reduce the training costs.

COURBARIAUX et al. [40] converted the weights to a binary 
format but maintained the gradients and activations as single-
precision values during the training process. HUBARA et al.[41] 
reduced both weights and activations to low-precision values 
(<6 bit) for CNN training. HE et al. [42] applied the same 
method for recurrent neural network training. ZHOU et al. [43] 
further used low-precision representations of the weights, ac⁃
tivities, and gradients. However, all of these approaches lead 
to performance degradation when applied to large models or 
datasets. Since a low-precision format has a narrower dynamic 
range than a high-precision format, a key issue is how to avoid 
representation errors, such as overflow, underflow, and round⁃
ing errors. When a value in the single-precision (FP32) format 
is converted to the half-precision (FP16) format, overflow will 
occur if the number is greater than 65 504, and underflow will 
occur if the number is less than 6×10−8. The FP16 format also 
has a narrower dynamic range than FP32, which may cause 

Figure 4. Activation maps comparing benchmark IAA models (Table 1) and our proposed method through fused 2D feature maps of the last layers of 
these models

AADB: Aesthetics and Attributes DatabaseALamp: Adaptive Layout-Aware Multi-Patch Deep Convolutional Neural NetworkBIAA: Bilevel Gradient Optimization Image Aes⁃thetics Assessment

HGCN: Hierarchical Layout-Aware Graph Con⁃volutional NetworkMLSP: Multi-Level Spatially Pooled FeaturesMNet: multibranch networkMPada: Attention-Based Multi-Patch Aggregation

NIMA: Neural Image AssessmentPAM: Personalized Aesthetics ModelRAPID: Rating Pictorial Aesthetics Using Deep LearningUIAA: Unified Image Aesthetic Assessment
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Note: Our MNet method can effectively improve the attention to background areas related to salient objects, thus yielding results that are more consistent with human perception.
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rounding errors during weight updates. For example, 2−24+2−36
≈2−24, and any value with a magnitude smaller than 2−24 be⁃
comes zero in FP16. To solve these problems, 
MICIKEVICIUS et al.[15] and PURI et al.[39] proposed a mixed-
precision training strategy to quickly train large-scale models. 
The core of the existing methods could be summarized as a 

“skipping” strategy. This kind of strategy attempts to store 
and transport data in the FP16 format, and if overflow or un⁃
derflow occurs on a certain data batch, it will skip (discard) 
the current data batch and attempt to represent the data in the 
next data batch using a higher-precision format.

However, applying a mixed-precision approach to train IAA 
models is especially challenging, because the aesthetic appeal 
of an image is a subjective property while outlier opinions may 
appear and then the quality of the ground truth is conse⁃
quently not high (Fig. 3). This situation causes instability dur⁃
ing initial training, and IAA models usually require a long 
time to reduce the loss to a meaningfully smaller value. There⁃
fore, the gradients often exceed the range that can be repre⁃

sented in the FP16 format, resulting in an excessive number of 
ineffective data batches, as shown in Fig. 5a. To achieve a bal⁃
ance between performance and training speed, we adopt three 
techniques to mitigate the problems caused by mixed-
precision training: gradient monitoring, automatic loss scaling, 
and accumulation in FP32. Gradient monitoring is performed 
as a precaution to enable the network to enter mixed-precision 
training in a more stable state (Fig. 5b), while the other two 
techniques are applied to correct the representation errors that 
arise in mixed-precision training.
3 Methods

3.1 Design of Multibranch Network
Based on the characteristics of IAA tasks, our network ar⁃

chitecture is designed as shown in Fig. 6. We first introduce 
pooling methods for extracting foreground and background in⁃
formation, along with strategies to fix the output size of these 
pooling methods regardless of input size variations. Second, 

Figure 5. Comparison of conventional mixed-precision training[15, 39] and our training method: 
Overflowed batches are skipped until stable gradients trigger phase transition

FP16: half-precision format     FP32: single-precision format

Figure 6. Overall architecture of the proposed MNet
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Note: The salient objects and background information are extracted by ForePool and BackPool in ForeNet and BackNet, respectively.  After flattening, the features are sent to the output head to predict the score distribution.
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we use self-attention mechanisms to enhance the network􀆳s un⁃
derstanding of the relationships among multiple subjects in 
the foreground. Finally, a 1×1  convolution kernel is adopted 
to balance the information output by the multibranch network.
3.1.1 Design of Pooling Methods

We design MNet with two sub-branches, ForeNet and Back⁃
Net, both adopting partial layer structures from Mobile⁃
NetV2[44] for feature extraction. However, neither sub-branch 
contains the original pooling layers, as the original max pool⁃
ing and average pooling layers prove ineffective for preserving 
background information. Accordingly, we develop two dedi⁃
cated pooling methods.

For an input image X, we extract the feature maps before 
any pooling layers. Each value in a feature map represents an 
activation xi, and we assign a weight ti to each activation. 
Then, the extracted feature maps are passed through pooling 
layers, in which the output for each pooling kernel region Ω is 
calculated as ∑i ∈ Ω

 ti·xi. Since salient information usually cor⁃
responds to relatively large activation values in feature maps, 
it can be inferred that background information corresponds to 
relatively small activation values[8]. Thus, for ForePool, the 
output weight of each xi is defined as follows:

ti = e ( )xi∑j ∈ Ω
  e ( )xj

(1),

where the exponential function e( ) is used to enlarge the ac⁃
tivation values to better distinguish background and salient 
information. This pooling method ensures that the higher ac⁃
tivations corresponding to salient objects will play a domi⁃
nant role while still preserving some background informa⁃

tion. In contrast, for BackPool, the output weights are calcu⁃
lated as follows:

ti = 1 - e ( )xi∑j ∈ Ω
  e ( )xj

(2).

In this way, the background information associated with 
lower activations is extracted while still ensuring that some sa⁃
lient information is retained. Compared with classical average 
or max pooling (Fig. 7), our pooling methods are more bal⁃
anced in extracting important information and secondary infor⁃
mation, depending on the tasks of different sub-branches.

To enhance the robustness of our MNet to different input 
sizes, we design ForePool and BackPool to adaptively pool 
the arbitrarily sized input X cin × h in × w in to a desired feature map 
size Dcout × hout × wout, where c in and cout denote the numbers of in⁃
put and output channels, respectively, and h in × w in and 
hout × wout  represent the input and output feature map sizes, 
respectively. Based on the desired feature map size 
Dcout × hout × wout  and the input resolution h in × w in, our pooling 
methods dynamically adjust the strides ( sh, sw ) =

(êëêêêê ú

û
úúúú

h in 
hout 

,  ê
ë
êêêê

ú

û
úúúú

w in 
wout ) and the adaptive kernel dimensions 

(kh, kw ) = ( )( )h in - ( )hout - 1 × sh , ( )w in - ( )wout - 1 × sw . 
This ensures a fixed output size during training, and specifi⁃
cally, the padding size is set to 0.
3.1.2 Understanding Relationships Among Subjects

According to previous works[28], understanding the relation⁃
ships among multiple subjects in an image is important for 
IAA tasks since an appropriate arrangement of visual ele⁃

Figure 7. Different activation maps are obtained when the pooling methods in NIMA are replaced with the proposed BackPool and ForePool methods, 
or with the traditional average and max pooling methods
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ments in an image can benefit visual balance and harmony.
Instead of utilizing the power of complex networks, we add 

a self-attention layer[45] to ForeNet to gain an understanding of 
these relationships. A self-attention mechanism can detect the 
relationships among key foreground regions (each usually con⁃
taining some salient objects or semantically meaningful con⁃
tent) while enabling the model to pay different levels of atten⁃
tion to different objects[45–46]. Through the power of self-
attention, the salient objects extracted by the backbone net⁃
work can be carefully coordinated with fine details in distant 
portions of the image. Considering that the original multiple-
subject relationships of the image may be incomplete after the 
downsampling process, we place the self-attention layer before 
the ForePool layer.
3.1.3 Balancing Extracted Information

Another problem that needs to be solved in our MNet is 
how to aggregate the feature maps extracted in different sub-
branches. In previous works on IAA[14, 23], the feature maps 
with different channels have simply been concatenated. How⁃
ever, the channels with different numbers mean that the in⁃
formation contributed by each sub-branch may not be bal⁃
anced, which may cause the importance of sub-branches with 
rich channels to be over-weighted and complicate the train⁃
ing process[47].

To balance this spatial information, we add a commonly uti⁃
lized 1×1  convolution kernel[48] to MNet. As a cross-channel 
pooling structure, this kernel enables cross-channel spatial in⁃
formation interaction and cascaded cross-channel parametric 
pooling of the features extracted by the two sub-branches in a 
normal convolution layer. Thus, it can be ensured that the aes⁃
thetic information from two sub-branches is aggregated after 
the reduction and equalization of the number of channels.
3.2 Loss Function

Generally, the ground truth in an IAA dataset consists of 
the score distribution (Fig. 3), and our network aims to predict 
this distribution. Since the EMD loss penalizes misclassifica⁃
tions based on class distances, it is well-suited for measuring 
the distances between ground-truth and predicted distribu⁃
tions, as demonstrated in previous works[7]. Given a ground-
truth distribution p = ( p1,⋯, pN ) and a predicted distribution 
p̂ = ( p̂1,⋯, p̂N ), with N ordered classes, the original EMD loss 
can be expressed as follows:

EMD = ( )1
N ∑

k = 1

N   || fp( )k - fp̂( )k
γ

1
γ (3),

where fp(k) is the cumulative distribution function, calculated 
as ∑i = 1

k  pi , and γ is used to penalize the Euclidean distance 
and has usually been set to 1 or 2 in previous works. However, 
due to the strong subjectivity of IAA, there is typically some 

noise in the ground-truth distribution caused by the minority 
opinions of a few raters (Fig. 3), and it is difficult for the 
model to fit these opinions. A key issue is how to weaken the 
contribution of the noise to the loss. To solve this problem, our 
main improvement to the EMD loss is to introduce the notion 
of ground-truth consistency by multiplying by a normalization 
weight related to the ground-truth distribution. Thus, we refer 
to this loss function as the rebalanced EMD (Re-EMD), which 
is formulated as follows:

Re-EMD = ( 1
N ∑

k = 1

N  ||M ( p) ⋅ ( fp(k) - fp̂(k) ) ||γ )
1
γ (4),

where the weight M ( p ) = ( ( )p1,⋯, pN∑j = 1
N   pj

+ β ) ⋅ α, with β being 
a small constant preventing a weight of zero. Because the 
weight after rebalancing ranges between 0 and 1, we amplify it 
by α. The design of our loss function is based on the following 
consideration: in the ground-truth distribution, the more raters 
vote for a certain score, the more likely it is that this score rep⁃
resents the image 􀆳 s true rating. Thus, we make the network 
give priority to the opinion label given by the majority of raters 
and pay less attention to unusual labels, thereby enhancing 
the consistency of the loss contribution of the ground truth.
3.3 Mixed-Precision Training

The gradients during early IAA model training often exceed 
the range that FP16 can represent (Fig. 5b); therefore, it is not 
practical to apply mixed-precision training from the begin⁃
ning. A simple and effective way is to appropriately delay the 
time of entry for mixed-precision training until the gradients 
can be represented in FP16 most of the time. To allow the sys⁃
tem to automatically decide when to enter mixed-precision 
training, we define a threshold value θ:

θ = λ1O2 - λ2 E (5),
where E is the total number of training epochs and O repre⁃
sents the number of epochs among the five most recent epochs 
in which gradient overflow has occurred, which can be auto⁃
matically calculated during training; λ1 and λ2 are predefined 
hyperparameters that control the degree of restriction. We 
monitor the gradients during training. If θ ⩽ 0 is detected, 
meaning that gradient overflow occurs sufficiently infre⁃
quently and the model is considered relatively stable, the sys⁃
tem can switch to the mixed-precision training format in the 
next epoch, as shown in Fig. 5b. Gradient monitoring is per⁃
formed as a precaution to avoid entering the mixed-precision 
training stage when the model is not yet sufficiently stable. As 
the number of training epochs increases, the network will 
eventually enter the mixed-precision training stage despite mi⁃
nor representation errors.
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Two techniques are applied to cor⁃
rect representation errors arising in 
mixed-precision training: automatic 
loss scaling and FP32 accumulation, 
as illustrated in Fig. 8. Before mixed-
precision training, we convert the in⁃
termediate weights to FP16 while 
maintaining an FP32 master copy. The 
FP16 weights are then used through⁃
out the entire forward process, but the 
loss is calculated in FP32. To prevent 
small gradients from vanishing during 
backpropagation, we scale the loss by 
a factor of 2τ (τ ≤ 20), following previ⁃
ous works[15, 39]. By the chain rule of 
backpropagation, the intermediate gra⁃
dients are automatically scaled by 2τ, 
mitigating rounding errors. Before 
backpropagation, we divide the final 
gradients by 2τ and convert them to 
FP16. However, when an overflow occurs, we abandon the cur⁃
rent batch and reduce τ in the next batch; otherwise, back⁃
propagation proceeds normally. To avoid rounding errors dur⁃
ing weight updates, gradients are converted to FP32 and accu⁃
mulated into the FP32 master weights.

In summary, we use the FP16 format to perform most opera⁃
tions in order to reduce memory consumption and boost the 
training speed, then we use FP32 for operations that would 
otherwise cause a decrease in accuracy. Thus, our Mixed-
Precision MNet (M+MNet) can be trained more quickly.
3.4 Corner Grid

CNN-based methods prioritize regions that represent fore⁃
ground information, possess unique features (e. g., lines, 
curves), and contain different pixels[49]. Based on this charac⁃
teristic, we augment background pixels to encourage our model 
to learn useful features from the background. However, one 
prerequisite is that these pixel changes preserve the subject’s 
visual coherence (Fig. 1b). To achieve this goal, we propose 
Corner Grid, an unsupervised data augmentation method that 
extracts the average pixel values in the whole image and then 
overwrites certain grid cells with these pixel values. These av⁃
erage pixels contain salient foreground information, diverting 
the model’s attention to spread toward these grid cells.

We express the size of one grid cell as 
(wg, hg ) = (w inr, h inr ), where w in and h in are the width and 
height of the input, respectively, and r is the scale of the mask 
grid with respect to the input (which is the same in both the 
horizontal and vertical directions). A grid cell can be defined 
using its top-left and bottom-right pixel positions. If the coordi⁃
nates of the top-left corner of the image are (0, 0), the coordi⁃
nate positions of the four grid cells can be given as follows: 

(0, 0, wg, hg ) , (w in - wg, 0, w in, hg ) , (0, h in - hg, wg, h in ) , and 
(w in - wg, h in - hg, w in, h in ).

We use the Gray World (GW)[50] algorithm to compute and 
assign pixel values for these grid cells. The GW algorithm is 
based on the assumption that the color in each sensor channel 
averages out to gray over the entire image. This algorithm can 
adjust the pixel values based on the pixel distribution of the 
whole image. Thereby, the filled pixels will not visually con⁃
flict too much with the color of the main body of the image 
while implicitly preserving foreground information. Let 
Ir ( x, y ), Ig ( x, y ), and Ib ( x, y ) denote the red, green, and blue 
channels, respectively, where x and y denote the pixel posi⁃
tion indices. The average pixel value of the whole image in 
these three channels can be calculated as W =
( )R̄ + Ḡ + B̄ 3, where

( R̄, Ḡ, B̄) = 1
wh ∑

x = 1

w  ∑
y = 1

h  ( Ir( x, y ) , Ig( x, y ) , Ib( x, y ) ) (6).

We then adjust the red, green, and blue channels’ pixel val⁃
ues of each corner grid cell as follows:

Îr( x, y ) = W
R̄

∙Ir( x, y ) (7),

Îg( x, y ) = W
Ḡ

∙Ig( x, y ) (8),

Îb( x, y ) = W
B̄

∙Ib( x, y ) (9).

FP16: half-precision format       FP32: single-precision format
Figure 8. Mixed-precision training process

Forward

32→16 16→32

FP16FP32

Input
Intermediate model

32←16

×2τ

LossWeights

Gradients ÷2τ

BackwardFine-tune Gradients

32 32􀲕16

Note: Weights, activations, and gradients are stored in FP16; data are converted to FP16 during forward and backward passes and for multiplication operations, while FP32 is used to copy master weights for updates and accumulation.
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The proposed Corner Grid method can be easily imple⁃
mented in PyTorch or TensorFlow, and we provide an example 
implementation in our code.
4 Experimental Results

4.1 Settings

4.1.1 Benchmark Datasets
We evaluated models on two representative datasets, AVA[8] 

and FLICKR-AES[16], which are the largest general and per⁃
sonalized aesthetic datasets for IAA tasks, respectively. The 
AVA dataset contains approximately 250 000 images, and 
each image is associated with a distribution of scores in a 
range of 1 – 10 rated by approximately 250 raters. The 
FLICKR-AES dataset consists of 40 000 images whose aes⁃
thetic scores range from 1 to 5 to reflect different levels of im⁃
age aesthetics, and each image was rated by 5 raters. For the 
AVA dataset, we split the images into training (80%) and test 
(20%) datasets, as in previous general IAA 
works[7, 14, 21, 29, 31, 51]. For the FLICKR-AES dataset, we used 
the same training and test datasets used in previous works on 
personalized IAA[16, 32–34].
4.1.2 Benchmark Models

In accordance with two criteria, recency of publication and 
representativeness of the pipeline, we selected 17 SOTA mod⁃
els[7, 14, 16, 19–21, 23–24, 27–29, 32–34, 51–53] for evaluation on the AVA 
dataset. In addition, we selected four specialized de⁃
signs[16, 32, 33–34] oriented toward personalized aesthetics assess⁃
ment for performance evaluation on the FLICKR-AES dataset.
4.1.3 Evaluation Metrics

We adopt three popular evaluation metrics: SRCC[7], Linear 
Correlation Coefficient (LCC)[7], and binary classification accu⁃
racy (Acc). For Acc, images with aver⁃
age scores less than or equal to five 
are deemed aesthetically negative. 
AVA evaluation additionally includes 
EMD loss[7]. Although most previous 
IAA methods trained on the AVA da⁃
taset have shown improvements in bi⁃
nary classification accuracy, there are 
some problems with this metric. In 
particular, disparate predicted scores 
for the same image may all be consid⁃
ered correct predictions; for example, 
a predicted score of either 5.1 or 8.1 
is considered correct for an image 
with a positive aesthetic assessment. 
As HOSU et al. [14] demonstrated, 
higher SRCC/Acc ratios generalize 
better across the entire score range. 
Therefore, the SRCC/accuracy ratio 

was reported on our benchmark. For FLICKR-AES (which pro⁃
vides single scores without label distributions), we replaced 
the Re-EMD loss with the mean squared error (MSE) loss.
4.2 Training Process

Our entire training process is shown in Fig. 9. Before train⁃
ing begins, we initialize the weights of the MobileNetV2 back⁃
bone using ImageNet pretraining as in previous works. The 
training process consists of three stages. In the first stage, fol⁃
lowing common practice[7, 14, 31, 54], original images are resized 
to a fixed resolution of 256×256, randomly cropped to 224×
224, and then subjected to random horizontal flipping for data 
augmentation. This yields an intermediate model. However, 
considering the possible effects of resizing and cropping on 
the original images, the model lacks fine-grained details. To 
address this, we introduce a second stage where we recon⁃
struct the missing information from high-resolution images.

When the training system detects the switching signal in ac⁃
cordance with Eq. (5), the entire training process automatically 
enters the second stage: mixed-precision training with the Cor⁃
ner Grid data augmentation method that continues until train⁃
ing concludes. Ideally, the model could learn more information 
from full-resolution images, but our experiment (Fig. 10) and 
prior work[54] demonstrate that models trained on half-sized in⁃
put achieve better performance in aesthetic tasks than those 
trained at full resolution. The image sizes in the AVA dataset 
vary from 215×160 to 800×800, with an average size of 624×
496. Thus, in the second stage, we use half the average size 
(312×248) as the input size. To maintain the aspect ratio, a 
constant padding strategy is utilized when the shorter side of 
an image is less than 312 or 248 pixels.

Upon completion of all second-stage training epochs, the 
training process advances to the third stage. Considering that 
the padding regions may confuse the network, we reset the in⁃

FP16: half-precision format     FP32: single-precision format
Figure 9. Proposed three-stage training strategy: warm-up (ImageNet→AVA), mixed-precision train⁃

ing (FP32+FP16) with Corner Grid augmentation, and padding refinement
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put size to 224×224 (without cropping or padding) and con⁃
duct rapid mixed-precision retraining for just 10 epochs.

For our Re-EMD loss, we set α =10 and β =0.1, with λ1=1 
and λ2=0.2 in Eq. (5). The Corner Grid method uses the set⁃
ting r = 0.1. We use these fixed parameters to make the train⁃
ing more stable compared to learnable alternatives. Our learn⁃
ing rate is fixed at 1e-5 and the Adam optimizer is used, with⁃
out any decay rate strategy.
4.3 Performance Evaluation

4.3.1 Comparison with SOTA Methods
As seen from Table 1, compared with the 17 SOTA meth⁃

ods on the popular AVA dataset[8], M+MNet achieves the 
best SRCC (0.770), LCC (0.785), EMD (0.040), and SRCC/
Acc ratio (0.934) on AVA with only 4.5 million parameters. 
This higher ratio indicates that M+MNet better generalizes 
to the entire range of scores and strikes a good balance be⁃
tween preserving distribution information and increasing 
discriminability.

We also tested our model on the personalized aesthetic data⁃
set FLICKR-AES. Because our network understands both 
background and foreground information, it can observably im⁃
prove the overall performance for personalized aesthetics as⁃
sessment. As shown in Table 2, our model achieves the best 
SRCC score of 0.701, surpassing the previous best results by 
4.8% SRCC, which means that our model can use a smaller 
amount of data to learn individual preferences more effectively.

To compare training speeds, we analyze the methods with 
reported metrics in Table 3. It can be seen that since M+

MNet benefits from its lightweight 
structure as well as its flexible, multi-
stage, and mixed-precision training 
strategy, it is significantly faster than 
the other comparable methods. This 
raises a critical question: Can M+
MNet enable real-time IAA? Real-
time aesthetic guidance for photogra⁃
phy/videography is a compelling appli⁃
cation. As demonstrated in our re⁃
leased real-time IAA inference video 
(link), M+MNet achieves 55 fps infer⁃
ence with only 899 MB GPU memory. 
To the best of our knowledge, this is 
the first time an IAA model has dem⁃
onstrated real-time prediction capabil⁃
ity, highlighting its potential for mo⁃
bile deployment to provide real-time 
interactive guidance. This video also 
confirms that M+MNet can effectively 
perceive aesthetics related to the back⁃
ground.
4.3.2 Prediction for Images

Some test images are shown in Fig. 11. Aligning with hu⁃
man cognition, our model assigns higher scores to images that 
perform better in terms of important aesthetic attributes, such 
as composition, color, lighting, and depth of field. Because of 
the incompatible color or unnatural boundary between fore⁃
ground and background, the corresponding predicted scores 
are usually lower. Images with low prediction errors (Fig. 11a) 
usually have both high/low photographic quality and high/low 
aesthetic quality. However, we also find that the model does 
not perform well on certain kinds of images (Fig. 11b). These 
images are generally abstract in their aesthetic expression or 
gray/black in color, and these kinds of images also appear in 
fewer numbers in the dataset. In fact, when images do not con⁃
form to normal modes of expression in terms of aesthetics and 
their related attributes, such as color and composition, human 
evaluators also show inconsistent judgments for the aesthetics 
of these images, and this is reflected in the lack of uniformity 
of the opinion labels in the data annotations.
4.4 Ablation Studies

To verify the effectiveness of the various components of the 
proposed method, we conducted three ablation studies.
4.4.1 Pooling Methods

We conducted experiments with BackNet, ForeNet, and M+
MNet using AvgPool, MaxPool, BackPool, and ForePool as the 
pooling methods. From Table 4, we can observe that the pro⁃
posed pooling methods consistently improve all metrics. Nota⁃
bly, when applied to NIMA[7], BackPool and ForePool enhance 
the performance while enabling distinct background/fore⁃

Figure 10. Effects of input size variation (AVA dataset, NIMA model) on accuracy, training speed, 
and memory consumption

Input size
64   96  128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608

Accuracy
Training speed (it/s)
Memory consumption (MB)

32.13

25.38
19.87

14.91
11.85

9.43
7.47 6.03 5.04 4.29 3.63 3.07 2.54 2.01 1.65 1.150.710 1

0.764 1

0.790 1

0.807 0.81
0.810 7

0.815 7
0.816 1

0.817 5
0.817 7

0.818 3
0.818 6

0.817 3
0.817 1

0.816 5
0.813

1 535
1 901 2 419

3 350
4 542

5 445 6 689
8 003

9 461 9 933

10 439 11 010

11 900 12 500
13 124

13 731

Note: Findings suggest suboptimal performance with both conventional (224×224) and excessively 
large input sizes for IAA tasks.
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ground feature extraction (Fig. 7), indicating that our proposed 
methods have better prospects in various IAA models.

4.4.2 Corner Grid
To evaluate the effect of Corner Grid, we selected 

background-sensitive samples from the AVA dataset, corre⁃
sponding to 12 000 training images and 3 000 test images. 
Models lacking robust background perception fail to capture 
composition guidelines for these images, thus impairing their 
performance. From Table 5, we can observe that the use of 
Corner Grid improves the performance (compared with that 
of M+MNet without Corner Grid) to a certain extent on these 
background-sensitive samples. To further verify this, we also 
integrated Corner Grid with NIMA[7], and the results show 
that Corner Grid also improves the performance of this 
model, especially its accuracy. Fig. 12 shows that our Corner 
Grid method can effectively increase the attention area of 
NIMA. It is worth noting that the proposed pooling methods 
also improve the prediction performance for background-

Table 1. Performance comparison of 18 SOTA IAA models on AVA
Metric

Code Available 2014–2022

Code Not Available 2015–2022

Ours

RAPID[20]

AADB[24]

PAM[16]

NIMA[7]

ALamp[21]

MPada
[23]

MLSP[14]

BIAA[34]

UIAA[27]

HGCN[28]

DMA[19]

MNA[51]

CFAN[52]

AFDC[29]

PIAA[32]

UGIAA[33]

MUSIQ[53]

Pub
MM

ECCV
ICCV
TIP

CVPR
MM

CVPR
TCYB

TIP
CVPR
ICCV
CVPR
IJCAI
CVPR

TIP
TMM
ICCV

PR

Code
Lua

Matlab
Caffe
TF

Scipy
TF
TF

Torch
Matlab
Jittor
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Torch

SRCC↑
0.447∗
0.558

0.712∗
0.612

0.666∗
0.727
0.756

0.651∗
0.719
0.665

-

-

-

0.648
0.677
0.692
0.726
0.770

LCC↑
0.453∗
0.580∗
0.715∗
0.636

0.671∗
0.731
0.757

0.668∗
0.720
0.687

-

-

-

0.671
-

-

0.738
0.785

EMD↓
-

-

-

0.050
-

-

-

-

0.065
0.043

-

-

-

0.044
0.047

-

-

0.040

Acc↑
0.712
0.773

0.813∗
0.815
0.825
0.830
0.817

0.763∗
0.808
0.846
0.754
0.774
0.810
0.832
0.837
0.851

-

0.824

Ratio↑
0.628∗
0.722

0.876∗
0.751

0.807∗
0.875
0.925

0.853∗
0.890
0.786

-

-

-

0.779
0.809
0.813

-

0.934

Parameter↓
2M

8M
22M
11M
99M
33M
24M
11M
23M
44M
61M

138M
-

23M
24M

-

-

4.5M
Note: Models marked with “*” were retrained/re-evaluated using official weights or recommended settings; “-” indicates unavailable metrics (no code/EMD incompatibility).
AADB: Aesthetics and Attributes Database
Acc: accuracy
AFDC: Rating Pictorial Aesthetics Using Deep Learning
ALamp: Adaptive Layout-Aware Multi-Patch Deep 
Convolutional Neural Network
AVA: Aesthetic Visual Analysis
BIAA: Bilevel Gradient Optimization Image Aesthet⁃

ics Assessment
CFAN: Cross-domain Feature Aggregation Network
CVPR: Conference on Computer Vision and Pattern 

Recognition
DMA: Deep Multi-Patch Aggregation
ECCV: European Conference on Computer Vision
EMD: Earth mover’s distance

HGCN: Hierarchical Layout-Aware Graph Convo⁃
lutional Network

IAA: image aesthetics assessment
ICCV: International Conference on Computer Vision
IJCAI: International Joint Conference on Artificial 

Intelligence
LCC: linear correlation coefficient
MLSP: Multi-Level Spatially Pooled Features
MM: ACM Multimedia
MNA: Multi-Network Aggregation
MPada: Attention-Based Multi-Patch Aggregation
MUSIQ: Multi-Scale Image Quality Transformer
NIMA: Neural Image Assessment
PAM: Personalized Aesthetics Model

PIAA: Personalized Image Aesthetics
PR: Pattern Recognition
RAPID: Rating Pictorial Aesthetics Using Deep 

Learning
SOTA: state-of-the-art
SRCC: Spearman rank correlation coefficient
TCYB: IEEE Transactions on Cybernetics
TF: TensorFlow
TIP: IEEE Transactions on Image Processing
TMM: IEEE Transactions on Multimedia
UGIAA: Unified Graph-Based Image Aesthetic 

Assessment
UIAA: Unified Image Aesthetic Assessment

Table 2. Performance comparison of SRCC results of the SOTA models 
for personalized aesthetics assessment on the FLICKR-AES dataset

Method
PAM [16]

PIAA[32]

UGIAA[33]

BIAA[34]

M+MNet

10 Images
0.520 ± 0.003
0.543 ± 0.003
0.559 ± 0.002
0.561 ± 0.005
0.585 ± 0.003

100 Images
0.553 ± 0.012
0.639 ± 0.011
0.660 ± 0.013
0.669 ± 0.013
0.701 ± 0.009

BIAA: Bilevel Gradient Optimization Image Aesthetics Assessment
M+MNet: Mixed-Precision Multibranch Network

PAM: Personalized Aesthetics Model
PIAA: Personalized Image Aesthetics

SOTA: state-of-the-art
SRCC: Spearman’s Rank Correlation Coefficient

UGIAA: Unified Graph-Based Image Aesthetic Assessment
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sensitive samples to some extent.
4.4.3 Re-EMD Loss

We used EMD and Re-EMD as the loss functions during 
training. Table 6 shows that Re-EMD outperforms EMD 

Table 3. Comparison of computational costs between M+MNet and reported models (batch size = 16 and input size = 224×224)
Method

NIMA (VGG16)[7]

NIMA (Inception)[7]

ILGNet[22]

NIMA (MobileNet)[7]

AFDC (4 patches)[29]

M+MNet

Training Speed/(it/s)↑
9.17∗

11.30∗
-

15.43∗
2.08
34.66

Test Speed/(it/s) ↑
16.09∗
17.64∗

-

21.26∗
3.12
90.01

GPU Time/ms
85.76
39.11
31.00
20.23

-

13.40

Note: We used the recommended parameter settings to complete the metrics (*) that are missing in the respective papers; "-" indicates that the metric cannot be obtained.
AFDC: Adaptive Feature Domain Convolution
GPU: Graphics Processing Unit

ILGNet: Integrated Local-Global Network
M+MNet: Mixed-Precision Multibranch Network

NIMA: Neural Image Assessment
VGG16: Visual Geometry Group 16-layer

Figure 11. Visualization of images with (a) small and (b) large absolute 
errors between the ground-truth and predicted (in parentheses) scores

Table 4. Comparison of the proposed and existing pooling methods on 
the AVA dataset when used in combination with our models and NIMA

Method
BackNet (AvgPool)
BackNet (MaxPool)
BackNet (BackPool)
ForeNet (AvgPool)
ForeNet (MaxPool)
ForeNet (ForePool)
M+MNet (AvgPool)
M+MNet (MaxPool)
M+MNet (BackPool)
M+MNet (ForePool)

M+MNet (Fore+BackPool)
NIMA (Original)[7]

NIMA (BackPool)[7]

NIMA (ForePool)[7]

SRCC↑
0.671
0.682
0.723
0.675
0.687
0.714
0.716
0.729
0.738
0.741
0.770

0.612
0.631
0.635

LCC↑
0.690
0.693
0.730
0.693
0.699
0.732
0.722
0.735
0.747
0.750
0.785

0.636
0.648
0.657

Acc↑
0.789
0.786
0.795
0.786
0.789
0.790
0.809
0.810
0.813
0.819
0.824

0.815
0.820
0.822

Acc: accuracy
AVA: Aesthetic Visual Analysis
LCC: linear correlation coefficient 
M+MNet: Mixed-Precision Multi⁃

branch Network
NIMA: Neural Image Assessment
SRCC: Spearman rank correlation 
coefficient

Table 5. Performance of different architectures on the background-
sensitive samples in AVA. We tested our model and NIMA 

with various pooling methods and Corner Grid
Method

M+MNet (AvgPool)
M+MNet (MaxPool)
M+MNet (BackPool)
M+MNet (ForePool)

M+MNet (BackPool+ForePool)
M+MNet (BackPool+ForePool+Corner Grid)

NIMA (Original)[7]

NIMA (Corner Grid)[7]

SRCC↑
0.642
0.634
0.670
0.665
0.704
0.739

0.603
0.611

LCC↑
0.649
0.641
0.681
0.669
0.716
0.744

0.620
0.634

Acc↑
0.754
0.735
0.786
0.778
0.808
0.814

0.728
0.810

Acc: accuracy
AVA: Aesthetic Visual Analysis

LCC: linear correlation coefficient 
M+MNet: Mixed-Precision Multibranch Network

NIMA: Neural Image Assessment
SRCC: Spearman rank correlation coefficient

Figure 12. Activation maps obtained when using Corner Grid with NIMA

6.93 (6.93) 6.24 (6.24) 7.09 (6.08) 5.82 (5.79)
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Note: Activation maps show that our data augmentation method also 
increases the attention area of this existing model.
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across all tasks, particularly in ranking metrics (SRCC and 
LCC). Fig. 13 shows that during the training process, Re-EMD 
rebalances loss contributions by suppressing noisy samples, 
enabling the model to focus on more important information. 
Meanwhile, Re-EMD accelerates convergence of the network 
relative to EMD. To achieve the best performance shown in 
Table 6, approximately 200 epochs are needed with the EMD 
loss, while only 110 epochs are needed with the Re-EMD loss. 
Furthermore, to verify its generality for various IAA methods, 
we replaced EMD with Re-EMD in existing works, and the re⁃
sults also show a certain degree of improvement in each met⁃

ric for these methods.
5 Discussion

In the field of IAA, it is common for IAA models to experi⁃
ence reduced accuracy when evaluating dark scenes. This is⁃
sue can be understood and improved from several perspec⁃
tives as follows. 1) lighting conditions and contrast: Dark 
scenes often suffer from insufficient lighting, leading to low 
image contrast and loss of detail. Under low-light conditions, 
the increase in image noise can also impact the accuracy of 
aesthetic assessments. 2) Bias in training dataset: The existing 
IAA datasets used for training have a limited number of dark 
scene samples, limiting the model 􀆳s ability to understand and 
evaluate these types of scenes. The model 􀆳 s performance 
largely depends on the diversity and quality of its training 
data. 3) Feature extraction capability: The details and texture 
features in dark scenes might not be as rich as in brighter 
scenes, making it difficult for the model to extract and utilize 
these features accurately for evaluation.

To improve the model􀆳s evaluation accuracy in dark scenes, 
we consider the following changes in future work:

1) Enhancing the training dataset: We can add more high-
quality dark scene images to the training dataset to improve 
the model􀆳s performance in processing these images.

2) Adopting specialized network architectures: We will de⁃
velop neural network structures optimized for low-light condi⁃
tions, such as convolutional networks with enhanced light per⁃
ception capabilities.

3) Conducting multimodal learning: We will combine other 
information about the image, such as metadata and contex⁃
tual scene information, to assist in the aesthetic assessment 
of dark scenes.

Table 6. Comparison of the performance achieved by retraining all the 
IAA models on AVA using the Re-EMD loss in place of the EMD loss

Method
NIMA (EMD)[7]

NIMA (Re-EMD)[7]

UIAA (EMD)[27]

UIAA (Re-EMD)[27]

HGCN (EMD)[28]

HGCN (Re-EMD)[28]

M+MNet (EMD)
M+MNet (Re-EMD)

SRCC↑
0.612
0.633
0.719
0.723
0.665
0.689
0.762
0.770

LCC↑
0.636
0.641
0.720
0.731
0.687
0.692
0.766
0.785

Acc↑
0.815
0.819
0.808
0.817
0.846

0.838
0.822
0.824

Acc: accuracy
EMD: Earth mover’s distance

HGCN: Hypergraph Convolutional Network
LCC: linear correlation coefficient

M+MNet: Mixed-Precision Multibranch Network
NIMA: Neural Image Assessment

Re-EMD: rebalanced EMD
SRCC: Spearman rank correlation coefficient
UIAA: Unified Image Aesthetic Assessment

Figure 13. Results of normalizing (0–1) distributions of the ground truth and losses contributed by each score 
based on EMD and Re-EMD losses during training
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6 Conclusions and Future Work
In this paper, we show that enhancing the attention to back⁃

ground information in CNN-based models can effectively im⁃
prove performance on IAA tasks. We introduce the M+MNet 
model and use a mixed-precision approach in our multi-stage 
training strategy while proposing a novel Re-EMD loss func⁃
tion to boost performance. The results suggest that our method 
not only achieves SOTA performance on all IAA tasks but also 
enables much faster training with reduced training costs. The 
proposed data augmentation method, Corner Grid, success⁃
fully directs more model attention to background areas, though 
its full performance potential remains to be explored. Our pro⁃
posals can be independently implemented in combination with 
existing methods to overcome the main stumbling blocks for 
IAA tasks. The commercial application of IAA models faces 
several technical challenges, particularly from the perspective 
of their “black box” nature, which refers to the difficulty in 
understanding and interpreting how these models make deci⁃
sions. As part of future work, we will further explore methods 
that can help models understand aesthetics while designing 
explainable IAA models.
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