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Abstract: This paper explores the key techniques and challenges in dynamic scene reconstruction with neural radiance fields (NeRF). As an 
emerging computer vision method, the NeRF has wide application potential, especially in excelling at 3D reconstruction. We first introduce the 
basic principles and working mechanisms of NeRFs, followed by an in-depth discussion of the technical challenges faced by 3D reconstruction 
in dynamic scenes, including problems in perspective and illumination changes of moving objects, recognition and modeling of dynamic objects, 
real-time requirements, data acquisition and calibration, motion estimation, and evaluation mechanisms. We also summarize current state-of-the-
art approaches to address these challenges, as well as future research trends. The goal is to provide researchers with an in-depth understanding of 
the application of NeRFs in dynamic scene reconstruction, as well as insights into the key issues faced and future directions.
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1 Introduction

Dynamic 3D reconstruction is an important research 
topic in the field of computer vision, and its applica⁃
tions cover a wide range of fields, such as virtual real⁃
ity, medical imaging, and industrial automation[1–4]. 

Dynamic scenes typically involve moving objects or environ⁃
ments, and 3D reconstruction algorithms for such scenes pri⁃
marily focus on reconstructing non-rigid objects. This often in⁃
cludes addressing general deformations, joint motions, and the 
capture and reconstruction of human movements. The chal⁃
lenges of dynamic scene 3D reconstruction can be subdivided 
into related subproblems, including motion estimation, feature 
extraction and matching, data alignment and fusion, motion re⁃
moval, and segmentation. These subproblems are intricately 
interconnected. In recent years, as static scene 3D reconstruc⁃
tion algorithms have matured, research on algorithms for re⁃
constructing dynamic scenes has emerged as a prominent and 
challenging research focus. Dynamic 3D reconstruction tech⁃
niques based on the neural radiance field (NeRF) have at⁃

tracted extensive attention[5–9]. As an emerging computer vi⁃
sion method, NeRFs fully demonstrate their powerful potential 
in 3D scene reconstruction[10–14]. The purpose of this paper is 
to deeply explore the key techniques and challenges in 3D re⁃
construction based on NeRFs.

First, we introduce the fundamentals and working mecha⁃
nisms of NeRFs to provide researchers with a foundational un⁃
derstanding. NeRFs draw on the ideas of deep learning and 
neural networks and apply them to 3D reconstruction tasks, 
bringing new possibilities to dynamic 3D reconstruction by 
learning the ability to recover 3D information from multi-view 
images[15–22].

This is followed by an in-depth discussion of the key techni⁃
cal challenges in performing 3D reconstruction in dynamic en⁃
vironments. These challenges include, but are not limited to, 
viewpoint and illumination variations of moving objects, ob⁃
ject identification and modeling, real-time requirements, data 
acquisition and calibration challenges, the complexity of mo⁃
tion estimation, and effective evaluation mechanisms for re⁃
construction results. These issues are the core challenges in 
dynamic 3D reconstruction and require in-depth research and 
innovative solutions.

Finally, we summarize the current state-of-the-art ap⁃
proaches and trends to address these challenges, and look This work was supported by ZTE Industry ⁃University ⁃ Institute Coopera⁃

tion Funds under Grant No. 2023ZTE03-04.
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ahead to future research directions. By exploring these key 
techniques and challenges, this work is expected to promote 
further development in dynamic 3D reconstruction, and pro⁃
vide support and insights for the realization of more accurate, 
efficient, and widely used 3D reconstruction techniques.
2 Scene Reconstruction with NeRFs

2.1 NeRFs
In 3D reconstruction, NeRFs, as an implicit representation 

technique, can depict 3D models through implicit functions 
learned by neural networks. This method has valuable applica⁃
tions in areas like image generation, viewpoint generation, and 
re-illumination. This section begins by reviewing and introduc⁃
ing the methods that utilize neural networks as implicit repre⁃
sentations for scene geometry, before presenting the concept 
of NeRFs. A prevalent technique for employing neural net⁃
works to implicitly represent 3D geometry is the occupancy 
network[23–24]. This approach employs a neural network to pre⁃
dict the binary occupancy of each point in space, essentially 
training a binary classification network for 3D space, as illus⁃
trated in Fig. 1. The key advantage of this method lies in its 
use of continuous functions to describe 3D space. In compari⁃
son to prior approaches such as voxels and meshes, it excels 
in describing complex geometric shapes without necessitating 
additional spatial storage.

Apart from directly classifying space into two categories 
based on model existence, there exists another implicit repre⁃
sentation method that portrays the 3D model through the re⁃
gression of a signed distance function (SDF) [25–26]. This ap⁃
proach allows for the continuous representation of 3D models, 
enabling the modeling of even those with intricate topologies.

Building upon the SDF method, researchers have enhanced 
and applied it to represent models with intricate details. One 
notable example is the Pixel Aligned Implicit Function (PIFu) 
method[26], which captures the details of a 3D model by pro⁃
jecting spatial points onto a pixel-aligned feature space, en⁃

abling high-resolution reconstruction, e.g., of a dressed human 
model. However, these methods often rely on known 3D 
shapes as supervisory information, which is challenging to ob⁃
tain in many applications. Consequently, subsequent research 
has aimed to relax this constraint by directly utilizing images 
as supervision. For example, some studies introduced differen⁃
tiable drawing techniques, incorporating rendering steps into 
neural networks to train the network based on errors in image 
rendering. NIEMEYER et al. [27] employed a placeholder net⁃
work as the representation structure for 3D model geometry, 
determining ray-model surface intersection points using nu⁃
merical methods. Each intersection point served as input for 
the neural network to predict the corresponding color value. 
SITZMANN et al. [28] predicted color and feature vectors for 
each 3D spatial coordinate, proposing a differentiable drawing 
function composed of recurrent neural networks to locate the 
object surface. However, these methods often struggled with 
complex shapes, limited to handling simple structures with 
low geometric complexity, yielding overly smooth drawing re⁃
sults. Against this backdrop, MILDENHALL et al. [29] intro⁃
duced NeRF, a novel representation method that uses only in⁃
put images as supervisory information. NeRF can accurately 
fit implicit functions for high-resolution geometric shapes, 
achieving photo-realistic viewpoint synthesis results for com⁃
plex scenes. The overall process of this algorithm is depicted 
in Fig. 1. NeRF employs a multi-layer perceptron to express a 
5D vector function, describing both geometric and color infor⁃
mation of a 3D model.

NeRF relies solely on input images as supervisory informa⁃
tion. This innovative approach excels at fitting precise implicit 
functions in high-resolution geometric shapes, consequently 
attaining photo-realistic viewpoint synthesis results for com⁃
plex scenes. NeRF represents the 3D scene as a differentiable 
and continuous radiation field Fθ:

Fθ (x,d ) = [ σ,c ] (1),

Figure 1. An overview of neural radiance field scene representation and differentiable rendering procedure
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where x = ( x, y, z) denotes the coordinates of a point in 3D 
space; d = (dx, dy, dz) denotes the normalized viewing direc⁃
tion; θ is the set of variables that parameterize the model. e.g., 
a multilayer perceptron (MLP); σ denotes the density estimate 
at the point x , which is the probability that the ray terminates 
at the point. Assuming that the position of the current camera 
center is o ∈ R3 and connecting any pixel on the image with 
the center, we can get the view direction d ∈ R3 . We param⁃
eterize a ray extending from the camera center o , with the 
view direction d as follows:

l ( t) = o + td, t ∈ ( - ∞,+∞) (2).
According to the formula of the volume rendering, the color 

value of the pixel can be expressed as
C = ∫

tn

tf

T ( t )σ ( l ( t ) )c ( l ( t ),d )dt (3),

where
T ( t ) = exp ( - ∫

tn

t

σ ( l ( s) )ds) (4).

The transmittance, as defined in Eq. (4), quantifies the prob⁃
ability that a ray, traveling between points tn and t, is absorbed, 
scattered, or reflected by objects encountered along its path.

Thanks to the differentiable volume rendering process, this 
technique can be seamlessly integrated into the training of the 
aforementioned neural network. This enables a training pro⁃
cess that relies exclusively on image color values as the super⁃
visory signal. Furthermore, to prevent the loss of high-
frequency information in the synthesized image, NeRF em⁃
ploys positional encoding for input variables[30]. Specifically, 
this encoding process involves mapping the variables to their 
Fourier features. Inspired by positional encoding techniques 
in natural language processing (e.g., those used in Transform⁃
ers), NeRF adopts a similar approach to encode input coordi⁃
nates. This approach employs a set of basis functions, which 
can either be fixed or learned[31]. The spatial embeddings gen⁃
erated by these basis functions simplify the MLP’s task of 
learning the mapping from a location to specific values, as 
they effectively partition the input space. The positional en⁃
coding method used in NeRF is defined as:
x ↦ [ cos (Mx ), sin (Mx ) ] (5).
In Eq. (5),
M = [ I 2I 22 I … 2p - 1 I ]⊤ (6),

where x represents the input coordinate, and p stands for a hy⁃
perparameter that governs the frequencies utilized, with its 
value dependent on the target signal resolution. The “soft” bi⁃

nary encoding of the input coordinates is employed, facilitating 
the network’s access to higher frequencies within the input.
2.2 Dynamic Scene Radiance Field Reconstruction

The initial work on NeRF focused exclusively on static 
scenes. Given that dynamic scenarios are far more prevalent in 
real-world applications, one of the most critical directions in 
NeRF advancements is the modeling of radiation fields for dy⁃
namic scenes, a branch closely aligned with the demand for re⁃
alistic 3D scene representation[29, 32–33]. Dynamic scene NeRFs 
are 3D scene representations learned from a set of posed im⁃
ages. They are formulated to address the challenge of rendering 
photo-realistic images from unseen viewpoints, and adopt im⁃
plicit representation based on coordinates, which then maps 
spatial points to density and color[34–35]. Recent research in this 
field is extensive. Based on the different reconstruction objects, 
we elaborate on them from human-based and scene-based re⁃
construction perspectives, as shown in Table 1.

1) Human-based reconstruction
The dynamic 3D reconstruction of the human body is, to a 

certain extent, associated with the application requirements of 
remote presentation, virtual reality, augmented reality, virtual 

Object

Human-
based

Scene-
based

Method

Neural body[36]

Neural actors[37]

HVTR[38]

NDR[39]

HumanNeRF[40]

GM-NeRF[41]

NeRFlow[45]

NeRFPlayer[46]

Dynamic⁃
NeRF[47]

TiNeuVox[48]

NRNeRF[49]

D-NeRF[50]

NRNeRF[51]

Torf[52]

Neural 3D[53]

DynIBaR[54]

Data 
Attribute

Multi-view
Multi-view
Multi-view
Monocular
Multi-view
Multi-view
Multi-view
Multi-view
Monocular
Multi-view
Monocular
Multi-view
Monocular
Multi-view
Multi-view
Monocular

Required 
Data

I+P1+S
I+P1+S
P1+S
I+P1
I+P1

I+P1+S
I+P1
I+P1

I+P1+M
I+P1
I+P1
I+P1
I+P1
I+P1
I+P1
I+P1

3D Repre⁃
sentation

V
P2+VD

V
P2+VD
P2+VD
P2+VD
P2+VD

V
P2+VD

V
V

P2+VD
V

P2+VD
P2+VD
P2+VD

Year

2021
2021
2022
2022
2022
2023
2021
2023
2021
2022
2022
2021
2022
2022
2022
2023

Table 1. An overview of the human- and scene-based 
reconstruction methods

GM-NeRF: generic model-based neural 
radiance field

HVTR: hybrid volumetric-textural rendering
I: Images
M: object masks
NDR: neural dynamic reconstruction
NRNeRF: non-rigid neural radiance field

P1: camera poses (exact or 
approximate)

P2: 3D position
S: skinned multi-person lin⁃

ear prior model
V: neural volumetric
VD: 2D viewing direction
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fitting, and similar domains. PENG et al. [36] presented a novel 
method, named Neural Body, for dynamic human 3D recon⁃
struction. This approach introduces a neural mixed weight do⁃
main to generate a deformation field, combining the mixed 
weight field with 3D human bones to achieve commendable re⁃
sults in dynamic 3D reconstruction of the human body. How⁃
ever, it should be noted that this method relies on bone-driven 
deformation templates, which exhibit limited universality and 
necessitate considerable time for reconstruction. Particularly, 
in cases involving non-rigid deformations with intricate cloth⁃
ing, the reconstruction effectiveness tends to be suboptimal.

Similar to Neural Body, Neural Actors (NA) [37] and hybrid 
volumetric-textural rendering (HVTR) [38] use the skinned 
multi-person linear (SMPL) model to represent deformation 
states. They utilize proxies to explicitly carve out the surround⁃
ing 3D space into the canonical pose embedded in NeRF. To 
facilitate the recovery of high-fidelity details in both geometry 
and appearance, they employ additional 2D texture maps de⁃
fined on the SMPL surface as additional conditioning for the 
NeRF MLP. CAI et al. [39] introduced a template-free method 
termed neural dynamic reconstruction (NDR), which profi⁃
ciently reconstructs dynamic scenes from monocular videos. 
This method leverages color and depth information to optimize 
surface deformation and employs a neural invertible network 
to ensure cyclic consistency between any two frames. Addi⁃
tionally, topology-aware networks are employed to model topol⁃
ogy variables, effectively addressing challenges related to to⁃
pology changes. Nonetheless, it’s worth noting that the NDR 
method exhibits subpar reconstruction performance for dy⁃
namic scenes with rapid motion and demands a substantial 
number of computing resources. Another method, named Hu⁃
manNeRF[40], demonstrates how to train a NeRF for a specific 
participant based on monocular input data, utilizing a 
skeleton-driven motion field refined by a general non-rigid mo⁃
tion field. CHEN et al.[41] proposed an effective general frame⁃
work called the generic model-based neural radiance field 
(GM-NeRF) for synthesizing free-viewpoint images. Specifi⁃
cally, they first registered the appearance codes of multi-view 
2D images onto a geometric proxy through a geometry-guided 
attention mechanism. This helps mitigate the misalignment be⁃
tween inaccurate geometric priors and the pixel space. Build⁃
ing upon this, they further performed neural rendering and par⁃
tial gradient backpropagation to achieve efficient perceptual su⁃
pervision and enhance the perceptual quality of the synthesis.

While the aforementioned approaches yield promising re⁃
sults in portrait scenarios, their applicability declines when 
dealing with highly non-rigid deformations, particularly for ar⁃
ticulated human motion captured from a single view. To ad⁃
dress this, methods explicitly leverage human skeleton embed⁃
dings. The Neural Articulated Radiance Field (NARF) [42] is 
trained on pose-annotated images. Joint objects are decom⁃
posed into multiple rigid object parts, with their local coordi⁃
nate systems and global shape variations located at the top. A 

converged NARF enables novel view rendering via pose ma⁃
nipulation, depth map estimation, and body part segmentation. 
In contrast, A-NeRF[43] learns actor-specific volumetric neural 
body models in a self-supervised manner from a monocular 
camera. This method combines dynamic NeRF volumes with 
the explicit controllability of articulated human skeletons and 
reconstructs poses and radiance fields through a comprehensive 
analysis approach. Once trained, the radiance field can be used 
for novel view synthesis and motion retargeting. They demon⁃
strate the benefits of using the learned non-surface model, 
which enhances the accuracy of human pose estimation in mon⁃
ocular videos through photometric reconstruction loss. A-NeRF 
is trained on monocular video, while Animatable NeRFs 
(ANRF) [44] is a skeleton-driven approach used for reconstruct⁃
ing human body models from multi-view videos. Its core compo⁃
nent is a novel motion representation called the neural blend 
weight field, which is combined with the 3D human skeleton to 
generate a deformation field. Similar to several general non-
rigid NeRF approaches, ANRF maintains a canonical space 
and estimates bidirectional correspondences between multi-
view inputs and canonical frames. The reconstructed animat⁃
able human body model can be used for free-viewpoint render⁃
ing and re-rendering under new poses. Additionally, human 
meshes can be extracted from ANRF by applying marching 
cubes to the volume density of discretized canonical space 
points. The method achieves high visual accuracy for the 
learned human body model, and the authors suggest addressing 
complex non-rigid deformations on observed surfaces, such as 
those caused by looseness. The authors recommend future work 
to improve the handling of complex non-rigid deformations on 
observed surfaces, such as those caused by loose clothing.

2) Scene-based reconstruction
DU et al.[45] proposed NeRFlow to learn dynamic 4D spatio⁃

temporal scenes. NeRFlow consists of two separate modules: a 
radiation field (top) trained by neural rendering, and a flow 
field (bottom) trained using 3D keypoint correspondence. The 
two fields are then kept consistent, which enables the radia⁃
tion field to acquire prior information from earlier states. 
SONG et al.[46] used a feature flow approach to model dynamic 
radiation scenes. The authors mainly used time-dependent 
sliding windows for points in 4D space to generate flow fea⁃
tures, and then decomposed the dynamic scene into predicted 
static fields, deformation fields, and new scene decomposition 
fields via a point-by-point probabilistic method. Finally, the 
expectation of the decomposition fields was fed into NeRF for 
modeling. However, since local feature channels were used to 
model each frame in the scene, which enables streaming but 
limits the representation of temporally distant repetitive activi⁃
ties, it might be used multiple times to reconstruct the same 
action, resulting in a waste of time. GAO et al.[47] proposed Dy⁃
namicNeRF, an algorithm for generating novel views from any 
viewpoint of a monocular dynamic scene video and any input 
time step. The algorithm takes a monocular video with N 
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frames and a binary mask of the foreground object for each 
frame as input, and models the time-varying structure and the 
appearance of the scene using continuous and differentiable 
functions.

However, some authors believe that the key problem in solv⁃
ing dynamic scene rendering lies in the encoding of temporal 
information. FANG et al.[48] proposed TiNeuVox, which uses a 
combination of optimizable explicit voxel features and tempo⁃
ral information encoding to quickly generate dynamic scenes. 
They first input the point coordinates and temporal coding into 
a deformation network to obtain the offset coordinates, then in⁃
terpolated the voxels according to the offset coordinates to ob⁃
tain the voxel features, and finally connected the original coor⁃
dinates, temporal coding, and voxel features and fed them into 
a NeRF network to obtain the colors and densities. However, 
they did not consider the relationship between neighboring 
frames, so there is a slight problem with the coherence of the 
video. In addition, ABOU-CHAKRA et al.[49] introduced an on⁃
line method for generating dynamic scenes. Inspired by par⁃
ticle dynamics, they proposed a new particle coding that en⁃
ables the intermediate features of NeRF to move in conjunc⁃
tion with the geometry they represent. As a result, the authors 
have achieved automated generation of dynamic scenes by 
back-projecting rendering losses to particle positions and en⁃
coding particle parameters.

Another class of methods introduces additional deformation 
fields to predict the motion of points by mapping their coordi⁃
nates to a normative space where large motion or geometric 
changes can be captured and learned. PUMAROLA et al. [50] 
proposed a method to extend NeRFs to the dynamic domain, 
D-NeRF, which allows a single camera to reconstruct and 
draw a new image as it moves under both rigid and non-rigid 
motion images of the scene. Therefore, it is necessary to in⁃
clude time as an additional input to the system and to divide 
the learning process into two main phases: one phase encodes 
the scene into a canonical space and the other maps this ca⁃
nonical representation to a deformed scene at a specific time.

Other methods improve dynamic neural rendering in vari⁃
ous ways, e. g., distinguishing between foreground and back⁃
ground. TRETSCHK et al. [51] proposed non-rigid NeRF 
(NRNeRF), a reconstruction and new view synthesis method 
for general non-rigid dynamic scenes. The method takes an 
RGB image of a dynamic scene (e.g., from monocular video re⁃
cordings) as input and creates high-quality representations of 
spatio-temporal geometry and appearance. Meanwhile, quality 

enhancement using depth information can improve dynamic 
neural rendering. ATTAL et al. [52] noted that neural networks 
can represent and accurately reconstruct the radiance field of 
a static 3D scene (e. g., NeRF). However, dynamic scene ap⁃
proaches for monocular video capture rely on data-driven pri⁃
ors to reconstruct dynamic content. To address this, the au⁃
thors replaced this a priori information with time-of-flight 
(TOF) camera measurements and introduced a neural repre⁃
sentation based on a continuous-wave TOF camera image for⁃
mation model. Instead of using processed depth maps, the 
method models the raw TOF sensor measurements to improve 
the reconstruction quality and to avoid the problems of low re⁃
flectivity regions, multipath interference, and the limited ex⁃
plicit depth range of the sensor. Additionally, setting key⁃
frames to produce sharper results is another effective ap⁃
proach. LI et al.[53] proposed a new 3D video synthesis method 
that compactly and expressively represents multi-viewpoint 
video recordings of dynamic real scenes, allowing for high-
quality viewpoint synthesis and motion interpolation.

The state-of-the-art method based on temporally varying 
NeRFs, also known as Dynamic NeRFs, has demonstrated im⁃
pressive results in this task. However, for long videos with 
complex object motions and uncontrolled camera trajectories, 
the method may result in blurry or inaccurate renderings. To 
address this issue, LI et al. [54] proposed a novel approach. In⁃
stead of encoding the entire dynamic scene within the weights 
of an MLP, this method employs a volume-image-based ren⁃
dering framework. This framework synthesizes new viewpoints 
by aggregating features from nearby views in a scene-motion-
aware manner, overcoming these limitations. The system re⁃
tains the capability of previous methods to model complex 
scenes and view-dependent effects. Still, it can also synthesize 
realistic new views for long videos with complex dynamic 
scenes and unconstrained camera trajectories.
3 Database and Evaluation

3.1 Common Database
We present the common database in this section in Table 2.
1) DNA-Rendering[55] is a large-scale, high-fidelity reposi⁃

tory for neural actor rendering, represented by neural implicit 
fields of human actors. This dataset contains data from 500 in⁃
dividuals, with 527 distinct sets of clothing, 269 types of daily 
actions, and 153 types of special performances, including rel⁃
evant interactive objects for some actions. Additionally, a pro⁃

Table 2. Information on commonly used datasets for dynamic 3D reconstruction
Name

DNA-Rendering
ZJU_MoCap

ENeRF-Outdorr
NVIDIA

Object
Human-based
Human-based

Scene-based
Scene-based

Cases
439

9
8

12

Cameras
60
23
18

4 scenes with monocular; 8 scenes with 12 cameras

Resolution
4K
1K
4K

960×540

Year
2023
2021
2022
2020
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fessional multi-view system was constructed to capture data, 
which contains 60 synchronous cameras with a max resolution 
of 4 096×3 000 and a frame rate of 15 frames per second.

2) ZJU_MoCap[36]. This dataset captures nine dynamic hu⁃
man videos using a multi-camera system that has 21 synchro⁃
nized cameras. All sequences have a length ranging from 60 to 
300 frames. In these videos, humans perform complex mo⁃
tions, including twirling, Taichi, arm swinging, warmup, 
punching, and kicking.

3) ENeRF-Outdoor[56] is a dynamic dataset of multi-
purpose outdoor scenes, collected by 18 synchronized cam⁃
eras. Each sequence generally has about 1 000 frames and 
complex motions.

4) NVIDIA[57]. This dataset collects dynamic scenes using 
two methods: a) Moving monocular camera: Short-term dy⁃
namic events (about 5 s) are captured by a hand-held monocu⁃
lar camera (Samsung Galaxy Note 10) with a frame rate of 60 
frames per second and a resolution of 1 920×1 080. Se⁃
quences are subsampled if the object motion is not salient, 
and therefore, the degree of the scene motion is significantly 
larger than that of the camera’s ego motion, making quasi-
static dynamic reconstruction inapplicable. Four dynamic 
scenes are captured, including human activity, human-object 
interactions, and animal movements; b) Stationary multi-view 
cameras: Eight scenes are captured by a static camera rig with 
12 cameras (GoPro Black Edition).
3.2 Evaluation Metrics

The synthesis of novel views through NeRF employs visual 
quality assessment metrics as benchmarks. These metrics aim 
to evaluate the quality of individual images with (full-
reference) or without (no-reference) ground truth images. To 
date, peak signal-to-noise ratio (PSNR), structural similarity 
index measure (SSIM)[58], and learned perceptual image patch 
similarity (LPIPS) [59] are the most commonly used metrics in 
NeRF related literature.

1) PSNR is one of the important metrics for measuring im⁃
age quality. The formula for calculating PSNR is as follows:

PSNR = 10 ⋅ log10( MAX2
MSE ) (7),

where MAX is the maximum possible range of pixel values in 
the image (usually 255 for 8-bit images), and MSE is the aver⁃
age of squared differences between corresponding pixels. A 
higher PSNR value indicates better image quality, making it a 
widely used standard for evaluating image reconstruction qual⁃
ity in image processing and compression. It is important to 
note that PSNR may not fully align with human perception of 
image quality. Therefore, in certain applications, other metrics 
such as SSIM or LPIPS are employed to more comprehen⁃
sively assess image quality.

2) SSIM consists of three contrast similarity modules, 

namely: luminance, contrast, and structure. Luminance mod⁃
ules can be written as:

l ( x,y ) = 2μx μy + C1
μ2

x + μ2
y + C1

(8),

where μx and μy are the average gray values of images Ix and 
Iy, respectively; C1 is a constant. Contrast modules can be writ⁃
ten as:

c ( x,y ) = 2σx σy + C2
σ2

x + σ2
y + C2

(9),

where σx and σy are the standard deviations of images Ix and 
Iy, respectively; C2 is a constant. Structure modules can be 
written as:

s ( x,y ) = σxy + C3
σx σy + C3

(10).

Finally, SSIM can be formulated as:

SSIM ( x,y ) = ( )2μx μy + C1 ( )2σxy + C2

( )μ2
x + μ2

y + C1 ( )σ2
x + σ2

y + C2
(11).

3) LPIPS. The LPIPS distance is used to measure the average 
feature distances between two images, which is calculated from 
the weighted pixel-level MSE of the multilayer feature maps.

LPIPS ( x,y ) = ∑
l

L 1
HlWl

∑
h,w

Hl,Wl

 wl⊙( )xl
hw - y l

hw

2
2 (12),

where xl
hw and y l

hw are the features of the reference and evalua⁃
tion images at pixel width w, pixel height h, and layer l. Hl and 
Wl are the height and width of the feature maps of the corre⁃
sponding layers.
4 Challenges

3D reconstruction in dynamic environments involves a se⁃
ries of complex and important technical challenges. One is 
perspective and illumination changes of moving objects. In an 
ever-changing dynamic scene, the positions and orientations 
of objects are constantly changing over time, and thus their ap⁃
pearance and perspective change significantly at different mo⁃
ments. In addition, lighting conditions may vary constantly 
across time and space, further complicating the accurate cap⁃
ture and modeling of moving objects. Object recognition and 
modeling is another challenging area. The need to reliably 
identify and track multiple moving objects in dynamic environ⁃
ments requires highly accurate object recognition and model⁃
ing techniques to efficiently handle complex scenes and en⁃
sure the accuracy and consistency of 3D models.
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Data acquisition can be challenging in dynamic environ⁃
ments where the position and orientation of moving objects 
may change over time. Therefore, it is important to address the 
complexity of data acquisition and ensure the accuracy and 
consistency of the sensors. Another major problem faced in dy⁃
namic 3D reconstruction compared with static 3D reconstruc⁃
tion is the need to accurately estimate camera and object mo⁃
tion. Finally, in order to validate and evaluate the quality of 
3D reconstruction results, it is necessary to develop evaluation 
methods and metrics applicable to dynamic environments, es⁃
pecially for monocular dynamic scene reconstruction. How to 
evaluate the quality of image reconstruction from different 
viewpoints at the same moment is a very urgent problem in en⁃
gineering practice. Comprehensive consideration of these tech⁃
nical challenges and continuous improvement of algorithms 
and methods are the key to realizing high-quality 3D recon⁃
struction in dynamic environments.

Fig. 2 shows a 3D reconstruction process for dynamic and 
static distributed scenes, which is also the basic process used 
in practice. Taking this process as an example, we will specifi⁃
cally introduce the key issues and challenges in dynamic 3D 
reconstruction. When the input is a video stream from a com⁃
mon capture device, extensive preprocessing is required. The 
video stream is first decomposed into video frames, and then 
the existing or improved instance segmentation algorithms are 
applied to the RGB image of these frames to generate static 
and dynamic masks. Due to the input requirements and limita⁃

tions of the existing terminal memory and graphics, we need to 
reasonably select key frames from the full set of video frames, 
including the key information of the dynamic scene, continu⁃
ous changes in motion, significant changes in illumination, ac⁃
curate camera viewpoints, frames with overlapping regions, 
the depth, and optical flow of the correctly calculated. The ef⁃
fective high-precision frame information can maximize the 
quality and accuracy of the 3D reconstruction of the dynamic 
scene and help produce better results.

The obtained information is then fed into the neural net⁃
work for processing. In static NeRF, only the position infor⁃
mation is input to derive static color values and density fea⁃
tures. Since a dynamic scene exhibits two different attri⁃
butes, static and dynamic, at the same sampling point under 
different viewpoints and at different times, the static output 
is used as part of the input to the dynamic neural network. 
This network is trained with the spatiotemporal information, 
thereby constraining the overall convergence. Our research 
team is constantly conducting experiments, and one of the 
key challenges lies in the sparsity of the dynamic data, 
which makes it difficult to achieve high precision results. 
Therefore, there is an urgent need to explore additional con⁃
straints and methods to improve modeling accuracy. These 
constraints can cover a number of aspects, including but not 
limited to depth constraints, temporal continuity, motion 
modeling, optical flow coherence, and multi-sensor fusion. 
By introducing these constraints, we hope to make a bigger 
breakthrough in reconstruction quality, which in turn will en⁃
able more accurate capture and reproduction of complex dy⁃
namic scenes. Finally, voxel rendering is performed on the 
dynamic and static data obtained from training, in order to 
complete the model reconstruction based on NeRF rendering 
and to generate new viewpoints over time.
5 Development Trends

The field of 3D reconstruction with NeRF still faces a se⁃
ries of problems, and the following are what we consider as 
possible future research directions: 1) Developing robust ma⁃
chine learning and deep learning models with generalized 
modeling capabilities for dynamic scenes, including improv⁃
ing model robustness to handle challenges such as noise, oc⁃
clusion, and incomplete data; 2) Exploring more effective 
constraints and implicit modeling in which the physical and 
geometric properties of the scene are better captured; 3) Ad⁃
vancing multimodal fusion, including images, point clouds, 
sound, etc., which helps improve the understanding and mod⁃
eling of dynamic scenes and makes reconstruction results 
more comprehensive and accurate; 4) Promoting self-
supervised learning to reduce the dependence on labeled 
data. Especially in the absence of large-scale labeled data, 
self-supervised learning methods can improve the perfor⁃
mance of dynamic 3D reconstruction; 5) Conducting seman⁃
tic modeling of dynamic scenes.Figure 2. A novel viewpoint synthesis framework based on dynamic and 
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6 Conclusions
In this paper, we delve into the key techniques and chal⁃

lenges of dynamic 3D reconstruction based on NeRFs. Dy⁃
namic 3D reconstruction is an important research direction in 
the field of computer vision with a wide range of applications. 
As an emerging computer vision method, NeRF has a strong 
potential in 3D scene reconstruction.

This paper first introduces the basic principles and work⁃
ing mechanism of NeRF, which provides readers with a foun⁃
dation for understanding this novel approach. NeRF draws 
on deep learning and neural networks and applies them to 
the 3D reconstruction task to learn to recover 3D information 
from multi-view images. It then presents an in-depth discus⁃
sion of the key technical challenges facing 3D reconstruction 
in dynamic environments, including viewpoint and illumina⁃
tion variations of moving objects, object recognition and mod⁃
eling, real-time requirements, data acquisition and calibra⁃
tion challenges, complexity of motion estimation, and effec⁃
tive mechanisms for evaluating reconstruction results. These 
core challenges require in-depth research and innovative so⁃
lutions. In addition, this paper summarizes current technol⁃
ogy trends and approaches to address these challenges and 
outlines future research directions. It emphasizes the impor⁃
tance of directions such as robustness of machine learning 
and deep learning models, more efficient constraints, multi⁃
modal fusion, self-supervised learning, and semantic model⁃
ing of dynamic scenes.

Finally, this paper emphasizes that the field of dynamic 3D 
reconstruction will continue to thrive with the rise of the meta⁃
verse. These research directions will help to continuously im⁃
prove the performance and applicability of dynamic 3D recon⁃
struction, drive innovation and development in this field, and 
create more exciting applications and possibilities. We look 
forward to making more breakthroughs in this challenging and 
opportune field and contributing more support and insight to 
the future of 3D reconstruction technology.
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