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Abstract: Steganography is a technology that discreetly embeds secret information into the redundant space of a carrier, enabling covert com⁃
munication. As generative models continue to advance, steganography has evolved from traditional modification-based methods to generative 
steganography, which includes generative linguistic and image based forms. However, while large model agents are rapidly emerging, no 
method has exploited the stable redundant space in their action processes. Inspired by this insightful observation, we propose a stegano⁃
graphic method leveraging large model agents, employing their actions to conceal secret messages. In this paper, we introduce StegoAgent, a 
generative steganography framework based on graphical user interface (GUI) agents, which effectively demonstrates the remarkable potential 
and effectiveness of large model agent-based steganographic methods.
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1 Introduction

Steganography[1–2] is a covert communication technology 
designed to hide the suspicious act of transmitting ci⁃
phertext over public channels. It leverages the redun⁃
dancy of innocent-looking cover objects, embedding se⁃

cret messages by making plausible modifications. Compared 
with traditional encryption techniques, steganography effec⁃
tively avoids transmitting obvious encrypted data (e. g., ran⁃
dom bit streams) over public channels. As a result, it reduces 
the risk of attracting the attention of adversaries and ensures 
that communication remains secure from interception or tam⁃
pering. Therefore, steganography can play an important role in 
ensuring the secure transmission of confidential information. 
Moreover, it helps mitigate some of the security risks associ⁃
ated with encryption technologies.

Traditional steganography embeds secret messages into cov⁃
ers by modifying their inherent characteristics. This approach 
allows for the efficient embedding of large data volumes while 
maintaining high anti-steganalysis performance. With the ad⁃
vancement of deep learning, deep-learning based steganalysis 
techniques are rapidly developed[3–4], which are capable of ex⁃

tracting steganographic features from stego-covers to detect the 
presence of embedded secret messages. This development sig⁃
nificantly undermines the security of steganographic systems.

To counter steganalysis techniques, traditional steganogra⁃
phy has evolved into generative steganography[5]. Generative 
steganography integrates the embedding process with model 
generation, achieving stronger security. One of the most no⁃
table directions is the combination of generative models and 
provably secure steganography, which has led to the emer⁃
gence of generative provably secure steganography, generative 
provably secure audio steganography, and generative provably 
secure image steganography. These advances have brought 
new breakthroughs to the field of steganography, fully proving 
that steganography is a companion technology.

Over the past two years, the development of large models 
has evolved from understanding content to generating it, and 
has increasingly approached human-like intelligent agent 
technologies—particularly graphical user interface (GUI) 
agents. GUI agents are intelligent agents that operate within 
GUI environments, leveraging large language models (LLMs) 
as their core inference and cognitive engines to generate, plan, 
and execute actions flexibly and adaptively[6]. However, no 
steganographic schemes have yet been designed using large-
model agents. We observe that the actions of large-model 
agents have redundant space. Inspired by this observation, we 
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propose StegoAgent, a steganographic agent based on large 
models, and implement an instance using GUI agents.

The remainder of this paper is organized as follows. Section 
2 reviews fundamental concepts and related work in steganog⁃
raphy and GUI agents. Section 3 details the architecture and 
implementation of our StegoAgent framework. Section 4 evalu⁃
ates the performance of the system through comprehensive ex⁃
periments. Section 5 concludes with key findings and poten⁃
tial extensions.
2 Related work

2.1 Steganography
Steganography conceals secret information within multime⁃

dia covers, such as images[7–9] and videos[10–12]. Traditional 
steganographic methods are predominantly based on the dis⁃
tortion minimization framework[13], which formalizes the steg⁃
anography problem as a source coding problem with fidelity 
constraints. Under the premise of minimizing distortion, steg⁃
anographic messages are embedded using generic stegano⁃
graphic codes, such as Syndrome Trellis Codes (STCs) [13] and 
Steganographic Polar Codes (SPCs) [14]. However, these meth⁃
ods modify the distribution of the cover data, resulting in in⁃
consistencies between the distributions of stego data and 
cover data. This discrepancy makes the steganographic activ⁃
ity susceptible to detection by steganalysis techniques.

With the rapid development of generative models[15–16], an 
increasing amount of generated data has emerged on social 
media platforms, providing a novel data ecosystem for steg⁃
anography. As a result, researchers have shifted their focus to⁃
wards generative steganography[17–22]. Based on whether the 
generative model can provide an explicit probability distribu⁃
tion, generative steganography can be categorized into two 
types. One type[18–19, 22] utilizes the explicit probability distri⁃
bution of the generated data for message embedding. Under 
the constraint of finite entropy, it aims to maximize the en⁃
tropy utilization rate to embed more messages. The other 
type[17, 20–21], although unable to use an explicit data distribu⁃
tion, can couple the secret information with the initial stan⁃
dard Gaussian distribution of the model generation process, 
exploring safer and more robust coupling methods.

Previous generative steganographic methods were limited to 
generating content to convey information. With the rapid de⁃
velopment of large model agents, new tools have been intro⁃
duced to the field of steganography. In this paper, we explore 
a novel approach to steganography by leveraging the action ex⁃
pressions of intelligent agents to convey secret information. 
Specifically, we adaptively embed secret messages into the ac⁃
tion coordinates of the action flow by leveraging normalized 
entropy. The interaction process of the GUI agent is then trans⁃
mitted from the sender to the receiver via screen recording or 
screen-sharing techniques. Upon receiving the recorded inter⁃
action, the receiver reconstructs both the action coordinates 

and the action stream, from which the embedded secret mes⁃
sage is subsequently extracted.
2.2 GUI Agent

GUI automation has a long history and wide application 
in industry, especially in GUI testing[23–24] and robotic pro⁃
cess automation (RPA)[25] for task automation. The rapid de⁃
velopment of LLMs has accelerated advancements in GUI 
automation, enabling more intelligent and efficient interac⁃
tion with GUIs.

Most early GUI agents focused exclusively on web GUI 
scenarios, directly perceiving the environment through Hy⁃
perText Markup Language (HTML) code[26–28]. With the 
emergence of multimodal LLMs (MLLMs), GUI agents have 
started to incorporate multiple modalities for environmental 
perception[29–33], thereby expanding their applicability to 
both mobile GUIs[34–35] and desktop GUIs[36–37]. Further⁃
more, cross-platform GUI agents[38–40] have emerged as 
general-purpose tools capable of interacting with diverse en⁃
vironments, spanning desktop and mobile interfaces to more 
complex software ecosystems. For example, AutoGLM[41] 
bridges the gap between web browsing and Android control 
by integrating large multimodal models for seamless GUI in⁃
teractions across platforms.

From a mathematical perspective, the workflow of a GUI 
agent can be formally modeled as follows. Given a GUI inter⁃
face S (e.g., an online shopping platform) and a user instruc⁃
tion T (e. g., please help me buy a book), the agent computes 
an executable action sequence A = { a1,a2,…,an } and inter⁃
acts with the environment through these actions to fulfill the 
user instruction. At each time step t, the GUI agent perceives 
the current environmental state st from the screenshot, and 
then retrieves the sequence of previously executed actions 
{ a1,a2,…,a t - 1 } as short-term memory to predict the next ac⁃
tion a t.
at = fΘ(T, st, { a1,a2,…,a t - 1 }) (1),

where fΘ is the LLM with parameters Θ. Finally, the GUI 
agent simulates user behavior by executing the generated ac⁃
tion a t through GUI interaction, which leads to the following 
state transition:

St + 1 = S (a t ) (2).
The GUI agent will iteratively repeat the aforementioned 

steps until the user-given task is completed. There are three 
crucial and consecutive processes for GUI agents to fulfill 
user commands[42]:

1) Perception: This requires the GUI agent to maintain pre⁃
cise perceptual awareness of user instructions (T), environ⁃
mental states (st), and the history of executed actions 
( ){ a1,a2,…,a t - 1 } . Accurate state perception enables the GUI 

49



ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang 

Special Topic   StegoAgent: A Generative Steganography Framework Based on GUI Agents

agent to perform efficient action inference.
2) Action reasoning: The GUI agent predicts the appropri⁃

ate next action based on the information perceived in the pre⁃
ceding step. We refer to the textual reasoning outputs of the 
GUI agent as the action flow.

3) Execution: The final step involves executing the gener⁃
ated actions and interacting with the GUI interface. The inter⁃
nal executor of the GUI agent translates the planned action se⁃
quence into executable commands, effectively emulating pat⁃
terns of human-GUI interaction.
3 Methods

As mentioned above, the existing generative steganography 
technology faces high risks of exposure and low quality of stego-
covers due to the direct transmission of generated content.
3.1 Application Scenarios

StegoAgent can be applied in two distinct scenarios: the 
conventional cover transmission scenario and the real-time 
communication scenario.

1) Cover transmission scenario. In Fig. 1a, the scenario in⁃
volves a sender Alice, a receiver Bob, and a supervisor Eve. 
Eve manages a public video platform with user-provided con⁃
tent. Eve conducts pre-publication reviews on all videos. Al⁃
ice and Bob hide among regular users of the platform to ex⁃
change secret messages. Alice acts as a normal video poster, 
while Bob poses as an ordinary viewer. Most of the videos that 
Alice publishes are ordinary screen recordings. However, at 
prearranged times agreed upon with Bob, she posts a video 
containing hidden messages. Bob then downloads the video 
and extracts the secret messages. Upon detecting suspicious 
activity by Alice, Eve will ban her account, thereby disrupting 
the covert communication channel between Alice and Bob.

2) Real-time communication scenario. As shown in Fig. 1b, 
the scenario also involves the sender Alice, the receiver Bob, 
and the supervisor Eve. Eve manages a live-streaming plat⁃
form that allows registered users to initiate their own live-
streaming rooms. Eve periodically inspects the content of live-
streaming rooms by randomly entering channels to monitor for 
suspicious content. Through her authenticated live-streaming 

platform, Alice publicly displays the execution process of the 
GUI agent. Alice and Bob agree on a secret signal to initiate 
secret message transmission. For example, when Alice starts 
interacting with the audience, she replaces the standard GUI 
agent with StegoAgent. When Bob recognizes the secret sig⁃
nal, he begins recording the execution process of StegoAgent 
and decoding the secret message until he receives the stop 
signal. In this scenario, Alice embeds secret messages while 
Bob simultaneously extracts them, enabling real-time covert 
communication.

In both scenarios, the GUI agent model that Alice uses is a 
proprietary, fine-tuned model that is not publicly accessible. 
Consequently, the attacker can only access the video record⁃
ings or live streaming content transmitted over public chan⁃
nels. In the absence of the GUI agent model, the attacker may 
at best reconstruct the cursor coordinates from the video or 
stream, but cannot recover the complete original action flow. 
Furthermore, in autoregressive models, previously generated 
tokens directly influence the distribution of subsequent to⁃
kens. Due to this sequential dependency, the attacker who 
lacks access to the complete action sequence is fundamentally 
unable to extract the embedded secret message.

Coordinate steganography exploits the internal redundancy 
present in GUI element positioning. Consequently, the ob⁃
served coordinates are influenced not only by the spatial lay⁃
out of UI elements but also by the embedding algorithm. The 
subtle statistical deviations introduced by the steganographic 
process are masked by the variations in GUI element position⁃
ing caused by model fine-tuning. As a result, an attacker 
would find it extremely difficult to train a reliable classifier 
based on the reconstructed coordinates for the detection of 
steganographic activities. Under this realistic adversarial sce⁃
nario, the embedding coordinates remain statistically indistin⁃
guishable from normal, benign coordinates.
3.2 StegoAgent Framework

To address the limitations of current generative steganogra⁃
phy, we propose a new framework that utilizes natural covers. 
This framework requires establishing an invertible mapping 
between the generated content and these covers.

Figure 1. Overview of two application scenarios: (a) conventional cover transmission and (b) real-time communication 
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As previously discussed, modifying the action flow of the 
GUI agent can directly alter its execution behavior, thereby es⁃
tablishing a unidirectional mapping from the generated con⁃
tent to natural covers. The action flow of the GUI agent is a for⁃
mal representation of actions, which can be considered equiva⁃
lent to the action vector a t at the corresponding timestep t. 
During embedding, given a secret message m and an embed⁃
ding algorithm ϕ, the action containing the secret message a t' can be expressed as:
a t' = ϕ ( fΘ(T, st, { a1',a2',…,a t - 1' }) , m) (3).
With screen recording or screen sharing technology, each 

executed action can be captured as an action recording pa t'
, 

and all such recordings collectively form the corresponding ac⁃
tion recording set P':
pa t'

= { st, st + 1 } ,
P' = { }pa1', pa2',…, pa t'

= { }s1, s2,…, st, st + 1
(4).

Since screen recording or screen sharing technology can 
only capture on-screen information, the action recording pa t'

 is 
defined as a tuple consisting of the pre-action state st (the 
screen capture before the action) and the post-action state st + 1 (the screen capture after the action). Due to the inherent com⁃
putational latency in both action reasoning and execution, 
there exists a measurable delay around each action. This tem⁃
poral characteristic enables the reliable identification of ac⁃
tion boundaries in video recordings and real-time screen 
streams, thereby allowing for the precise extraction of the cor⁃
responding environmental states st and st + 1 .During extraction, the receiver reconstructs the correspond⁃
ing action sequence A = { a1',a2',…,a t' } from the recorded 
set P' , and then applies the extraction algorithm ψ to recover 
the secret message:

m = ψ ( fΘ(T, st, { a1', a2',…, a t - 1' }) , a t') (5).
How can the corresponding action set be reconstructed from 

P'? We begin by considering the reconstruction of a single-
step action, specifically reconstructing a t' using correspond⁃
ing recording pa t'

. Each action corresponds to a specific appli⁃
cation or system event within theenvironment and can be for⁃
mally represented as a triple:
a t = (η, ω, ν) (6).
In Eq. (6), η represents a target position (e.g., [0.50, 0.20]) 

as a pixel coordinate on the screen, denoting the position 
where “Click”, “Type”, or “Select” operation should be ex⁃
ecuted; ω ∈ O specifies the intended operation type (e. g., 

“Click”); ν provides any additional value required for the ac⁃

tion (e. g., the type content “hello”). The set O encompasses 
all allowable operations within the environment S and is al⁃
ways explicitly defined in the system prompt.

As shown in Eq. 3, a t' is determined by the embedding al⁃
gorithm ϕ which in turn influences the performance of the 
GUI agent. To ensure steganographic security, it is desirable 
for the embedding of secret messages to minimally affect the 
performance of the GUI agent. An intuitive approach is to em⁃
bed the secret message only in those attributes of (η, ω, ν ) 
that have a minimal impact on the performance of the GUI 
agent, specifically those with higher redundancy. ω is defined 
within a finite space and exhibits relatively low redundancy. 
As an auxiliary value, ν exhibits greater redundancy. How⁃
ever, even the most common form of ν (the input content re⁃
quired for “Type” actions) is difficult to reconstruct from a 
screenshot. η contains relatively high redundancy due to the 
inherent redundancy present in GUI interface elements. More⁃
over, it can be bound to cursor actions, allowing its value to be 
indirectly reconstructed through cursor behavior. In this case, 
ω and ν can be directly generated from the environmental in⁃
formation st in the action recording:
a t = fΘ(T, st, { a1',a2',…,a t - 1' }) = (η', ω, ν) ,
η = g ( st + 1 ) (7),

where g is the position predictor used to reconstruct η.
After the receiver obtains the action recording set P' , it is 

straightforward to reconstruct a1' using s1, s2, T, and then re⁃
cover a2' based on a1', s3, etc. However, this approach has a 
critical limitation: if the reconstruction fails at any step, all 
subsequent actions will also fail in reconstruction, resulting in 
a complete failure of the extraction process. Such a conse⁃
quence is unacceptable in practical applications. To address 
this limitation, we observe that certain GUI agents decompose 
action reasoning into two distinct stages. In the first stage, the 
overall task T is decomposed into a subtask Tt; in the second 
stage, the corresponding actions a t are inferred directly from 
each Tt, without relying on context. This approach effectively 
mitigates the aforementioned limitation.

The improved process for embedding secret messages is out⁃
lined as follows:

Tt = fΘ1(T, st, { T1, T2,…, Tt - 1 }) ,
a t' = ϕ ( fΘ2(Tt, st ) , m) ,
pa t' = { st, st + 1 } ,
P' = {pa1', pa2',…, pa t'} = {s1, s2,…, st, st + 1}

(8),

where fΘ1, fΘ2 are the LLMs with parameters Θ1,Θ2. The im⁃
proved procedure for extracting secret messages is outlined as 
follows.
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Tt = fΘ1(T, st, { T1,T2,…,Tt - 1 }) ,
a t = fΘ2(Tt, st ) = (η, ω, ν) ,
η' = g ( st + 1 ) ,
a t' = (η', ω, ν) ,
m = ψ ( fΘ2(Tt, st ) , a t')

(9).

After the receiver obtains the recorded action sequence P' , 
they can use a model with parameters Θ1 to reconstruct the 
subtask Tt at each step t. Based on this formulation, the origi⁃
nal action stream a t can be reconstructed using Tt and st. The 
cursor position η' is predicted via the position predictor, re⁃
sulting in the stego text a t'. Applying steganographic extrac⁃
tion techniques then allows the embedded secret message m to 
be recovered from the stego text a t' .
3.3 StegoAgent Instance

To evaluate the effectiveness of the StegoAgent, we imple⁃
ment the method using Qwen2.5VL-7B (Qwen) [43] and 

ShowUI[40]. The core model of the GUI agent is based on the 
ShowUI framework. Additionally, we employ the deployment 
software of ShowUI, “Computer Use OOTB”, to integrate the 
various modules of the GUI agent. As illustrated in Fig. 2, the 
GUI agent utilizes Qwen as the planning model, responsible 
for decomposing the overall task T into an executable subtask 
Tt. The ShowUI framework functions as the reasoning model, 
directly inferring the corresponding action a t from each sub⁃
task Tt. First, Qwen generates a subtask based on the task his⁃
tory and user instructions. Next, ShowUI infers the correspond⁃
ing action sequence in accordance with the subtask. Finally, 
the executor performs the designated action.

Fig. 3 illustrates the implementation framework of the Stego⁃
Agent. Since the steganography method is a generative steganog⁃
raphy based on predicted probability distributions and allows 
message extraction token by token, we merge the steps of recon⁃
structing a t' and then extracting m in the extraction algorithm:

Tt = fΘ1(T, st, { T1,T2,…,Tt - 1 }) ,
m = ψ ( fΘ2(Tt, st,) , g ( st + 1 ) ) (10).

Figure 2. Graphical user interface agent workflow of StegoAgent

Figure 3. Framework of StegoAgent
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Specifically, during the embedding process, the user in⁃
struction T and the screenshot are fed into ShowUI, which sub⁃
sequently predicts a probability distribution over possible ac⁃
tions. By using the embedding algorithm, the secret message 
is embedded into the segment of the action flow corresponding 
to action positions. The resulting modified action a t' is then 
executed by ShowUI to complete the task. The sender trans⁃
mits the action recordings of StegoAgent P' to the receiver. 
Upon receiving the action recordings, the receiver recon⁃
structs the sequence of screenshots identical to those on the 
sender side. A position predictor is applied to recover the cur⁃
sor coordinates (i. e., the action position), which is subse⁃
quently transformed into a string formatted according to pre⁃
defined specifications, followed by tokenization to extract the 
corresponding tokens. Given a pre-agreed user instruction T, 
Qwen decomposes T into a subtask Tt. Subsequently, ShowUI 
predicts the same probability distribution as that of the 
sender. During the token sampling process, we first determine 
whether the current token corresponds to an action position. If 
not, the token is sampled directly. If it does, a coordinate re⁃
construction token is retrieved, and the extraction function ψ 
is invoked to extract the secret message.
3.4 Embedding and Extraction

To minimize the impact on the performance of the GUI 
agent, we use normalized entropy to adaptively embed secret 
messages. As shown in Algorithm 1, given a sorted token prob⁃
ability sequence probs, along with a base b and a threshold ϵ, 
we first calculate the normalized entropy over the top 2b to⁃
kens. If this entropy value is greater than ϵ, we proceed to em⁃
bed b bits of secret information. Otherwise, the base b is decre⁃
mented, and the normalized entropy is recalculated using the 
updated top b - 1 tokens. This adaptive procedure iterates un⁃
til either a suitable embedding capacity is found or b reaches 
zero, in which case no message is embedded for that token.

Algorithm 1. Adaptive Steganographic Embedding via Nor⁃
malized Entropy

1: procedure: Embed message (probs, b init, ϵ, m)
2:     input: Sorted token sequence probs, initial base b init, threshold ϵ, and secret message m
3:     output: Token with embedded message tm or no em⁃

bedding
4:     b ← b init5:     while b ≥  0 do
6:           Select top 2b tokens from probs
7:           Compute normalized entropy of selected tokens
8:           if entropy >  ϵ then
9:                  mb ← First  b bits of  m
10:                d ← binary_to_decimal (mb )
11:                tm ← probs[d ]
12:               return tm

13:         else
14:               b ←  b - 1
15:          end if
16:      end while
17:      if b <  0 then
18:          return probs [ 0 ]
19:       end if
20: end procedure

In Algorithm 2, during extraction we are given a sorted to⁃
ken sequence probs, a base b, a threshold ϵ, and the stego-
token ts. We first compute the normalized entropy over the top 
2b tokens. If the entropy exceeds the threshold ϵ, we extract 
the index of the stego-token ts within the top 2b tokens and 
convert it into a bitstream, which constitutes the secret mes⁃
sage. If the normalized entropy is below ϵ, we reduce the base 
b and recompute the normalized entropy for comparison. This 
process continues until b reaches zero, at which point we con⁃
clude that the token does not contain any embedded secret 
message. 
3.5 Position Predictor

To reconstruct the cursor’s relative position in the screen⁃
shot, we propose a position predictor. Compared with other ele⁃
ments in the GUI interface, the cursor typically has a consis⁃
tent appearance; for example, the most common standard cur⁃
sor is a white arrow with a black border. Based on this charac⁃
teristic, we design a position estimation approach that utilizes 
both the color and contour information of the cursor. Specifi⁃
cally, the process begins by isolating the regions in the screen⁃
shot that exhibit color similarity to the cursor. The entire 
screenshot is then binarized: pixels with colors close to those 
of the cursor are assigned a white value, while all others are 
assigned a black value. Next, all contours are extracted from 
the binarized screenshot, and the contour that most closely 
matches the cursor’s expected shape is selected as the esti⁃
mated cursor position.

Algorithm 2. Steganographic Message Extraction via Nor⁃
malized Entropy

1: procedure: Extract message (probs, ts, b init, ϵ)
2:    input: Sorted token sequence probs, stego-token ts, ini⁃

tial base b init, threshold ϵ
3:    output: Extracted bitstring m or None if no message is 

embedded
4:    b ← b init5:    while b ≥  0 do
6:          Select top 2b tokens from probs
7:          Compute normalized entropy of selected tokens
8:          if entropy > ϵ then
9:                Find index i of ts within the selected 2b tokens
10:              Convert i to b-bit binary string mb11:              return mb
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12:       else
13:            b ← b - 1
14:       end if
15:    end while
16:    return None (no message embedded)
17: end procedure

Fig. 4 illustrates an example of the position predictor, dem⁃
onstrating its capability to accurately detect the cursor and de⁃
termine its position within the screenshot. It is worth noting 
that this example does not use the most classic cursor. The 
white value of the classic cursor is commonly found through⁃
out various GUI interfaces, making accurate cursor position re⁃
construction particularly challenging. Therefore, a more dis⁃
tinctive cursor is utilized in this case. With the widespread 
adoption of internet technologies, cursor personalization has 
become simple and commonplace. Furthermore, standard cur⁃
sors vary across different operating systems. Consequently, the 
use of a distinctive cursor does not undermine the security.

However, this method has a limitation: when the cursor 
color is similar to the background, it becomes difficult to deter⁃
mine an appropriate color threshold to effectively distinguish 
the cursor from the background. To address this issue, we in⁃
corporate a template matching algorithm to complement the 
position predictor.

Template matching is a classical image-to-image compari⁃
son technique. It works by sliding a template image (i.e., the 
cursor image) across the target image as a moving window, 
and computing the similarity score at each position. The loca⁃
tion with the highest similarity score is considered the best 
match. Experimental results show that although the accuracy 
of template matching is lower than that of the position predic⁃
tor, it still achieves over 90% accuracy. Therefore, we com⁃
bine the two algorithms to further improve the overall predic⁃
tion performance.

Specifically, we set a similarity threshold α. When the simi⁃
larity score of the best matching contour is below α (note that 
a lower score indicates a closer match), we accept that contour 
as the cursor position. If the score is higher than α, we instead 
use the result from the template matching algorithm to deter⁃
mine the cursor location.

4 Experiments
In this section, we conducted experiments to evaluate both 

the steganographic capabilities and the impact of the proposed 
method on the GUI Agent.
4.1 Implementation Details

1) Datasets. The performance of the GUI agent is evalu⁃
ated from two perspectives using the Screenspot[44] and 
Mind2Web[45] datasets. Screenspot is a zero-shot visual 
grounding benchmark that includes data from three distinct 
device types, focusing on the recognition performance of text 
and widgets. Mind2Web is a web-based dataset with an ac⁃
tion space consisting of three distinct actions, designed to as⁃
sess the overall performance of GUI agents. Additionally, the 
steganographic capabilities of the GUI agent are also evalu⁃
ated using these two datasets. Among them, Screenspot in⁃
cludes 1 272 screenshots collected from multiple platforms, 
while the test set of Mind2Web comprises 9 268 action-
context pairs. Since most of the screenshots in both datasets 
have been cropped, the screenshots exhibit varying sizes and 
aspect ratios. To ensure uniformity in processing, for any 
screenshot where the length or width exceeds 2 160 pixels, 
the dimension exceeding this threshold is resized to 2 160 
pixels, maintaining the original aspect ratio. In the extraction 
accuracy test, we randomly sampled one quarter of the 
Mind2Web dataset (approximately 2 000 samples) using a 
random seed of 2 553. Then we discarded samples in which 
no secret message had been embedded, resulting in a final 
test set of 1 267 samples. Note that the original screenshots 
in the datasets do not include a cursor. To test the accuracy 
of the position predictor, we pasted a cursor at the top-left 
corner of the annotated UI element regions in the datasets, 
simulating accurate clicking behavior.

2) Baselines. To evaluate the impact of integrating stegano⁃
graphic algorithms on the performance of the agent model, 
we adopt ShowUI[40] as the baseline for comparison with 
StegoAgent. ShowUI, as the base model, employs greedy de⁃
coding during sampling to prioritize accuracy. For StegoAg⁃
ent, the base b is set to 3, the threshold ϵ to 0.96, and the po⁃
sition predictor’s threshold α to 0.1.

3) Evaluation metrics. We evaluate the steganography per⁃

Figure 4. Instance of position predictor

Original screenshot Binarized screenshot All contours of binarized screenshot Most matches contours position: [0.88, 0.27]
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formance of the GUI agent using two key aspects: GUI agent 
ability evaluation and Steganographic performance evaluation.

GUI agent ability evaluation focuses on assessing the agent’s 
performance in grounding and navigation tasks. Grounding ca⁃
pability refers to the ability to identify and locate UI elements 
in a screenshot, where the agent infers only a coordinate. Navi⁃
gation capability evaluates the agent’s ability to generate a 
complete action flow, simulating real-world scenarios. To mea⁃
sure grounding performance, we use “Accuracy” as the evalua⁃
tion metric on the Screenspot[44] dataset, i. e., the recognition 
rate of texts and widgets. For navigation performance, we use 
three evaluation metrics on Mind2Web[45] dataset: element iden⁃
tification accuracy (Ele.Acc), operation prediction F1 score (Op.
F1), and step success rate (Step.SR). As the focus is on the im⁃
pact of the proposed steganographic method, all evaluations are 
conducted in a zero-shot manner without fine-tuning, leading to 
relatively low accuracy scores.

We evaluate steganographic performance by measuring how 
integrating steganographic algorithms impacts agent perfor⁃
mance. The evaluation considers two aspects: capacity and ex⁃
traction accuracy. Capacity is quantified by the embedding 
rate, defined as the average number of bits embedded per gen⁃
erated token. In practice, the steganographic capacity mea⁃
sured in bits per token has limited reference value. Therefore, 
we measure the capacity in terms of bits per sample. In the 
grounding test, this represents the average number of bits em⁃
bedded per coordinate, while in the navigation test, it reflects 
the average number of bits embedded per action. Extraction 
accuracy evaluates the ability to retrieve embedded informa⁃
tion and includes:

1) Position predictor accuracy. We evaluate position predic⁃
tor accuracy using the metric “Accuracy”, which is defined as:

Accuracy = || { i∣ŷi = yi }
N , i = 1,2,…,n (11),

where yi denotes the true position coordinates, and ŷi denotes 
the predicted position coordinate for the i-th sample.

2) Overall extraction accuracy. Since the Screenspot[44] data⁃
set differs to some extent from real-world scenarios, overall ex⁃
traction accuracy is evaluated only on the Mind2Web[45] data⁃
set. We evaluate extraction accuracy using the metric “Bit Ac⁃
curacy”, which is defined as:

Bit Accuracy = n
N (12),

where n is the number of correctly extracted bits, and N is the 
total number of embedded bits.
4.2 Main Performance and Analysis

1) Steganographic extraction accuracy. As shown in Table 1, 
the prediction accuracy of the position predictor exceeds 
97.6%, while that of template matching is only 91.9%. Our 

proposed prediction method achieves significantly higher ac⁃
curacy than the traditional template matching algorithm. To 
address the limitations of the position predictor, we combine 
the two methods. The combined approach achieves an accu⁃
racy of over 99.5% on both datasets, with almost no predic⁃
tion errors. The StegoAgent achieves a 99.7% secret message 
extraction accuracy, validating its reliability in retrieving em⁃
bedded information.

2) Capacity and entropy utilization. Table 2 summarizes 
the steganographic capacity of StegoAgent. On average, each 
token supports the embedding of 0.12 bits, while each coordi⁃
nate provides a total capacity of approximately 1.5 bits. In 
practical application scenarios, the majority of tokens are not 
action coordinate tokens. As a result, the steganographic ca⁃
pacity measured in bits per token decreases in the 
Mind2Web dataset. However, the actual embedding capacity 
per action remains unchanged. In fact, the effective embed⁃
ding capacity increases in navigation tasks, yielding an aver⁃
age of about 1.7 bits per action. To maintain behavioral con⁃
sistency and imperceptibility, we deliberately prioritize 
stealth over maximizing embedding capacity.

In addition to testing on the dataset, we conducted a small-
scale real-world experiment to evaluate StegoAgents stegano⁃
graphic capacity. We selected four websites from the 
Mind2Web dataset, and for each website, we defined five rep⁃
resentative tasks resulting in a total of 20 tasks. StegoAgent 
was instructed to autonomously control the computer to com⁃
plete each task, and we recorded two-minute videos for each 
session to measure the embedding capacity per minute of 
video. The sample size of the experiment is relatively small, as 
GUI agent-driven computer control is inherently a high-risk 
process that necessitates manual oversight. As such, the re⁃
sults are meant to serve as a preliminary reference for stegano⁃
graphic capacity in realistic application settings, rather than a 
comprehensive evaluation. Across the 20 recorded videos, 
StegoAgent achieved an average steganographic capacity of 
approximately 2.1 bits per minute.

The real-world steganographic capacity of StegoAgent is 

Table 1. Position prediction accuracy

Dataset
Screenspot[44]

Mind2web[45]

TM
0.932
0.919

Pos
0.999
0.976

TM+Pos
1

0.995
TM: template matching
Pos: position predictor

TM+Pos: combined method

Table 2. Results of capacity evaluation

Dataset
Screenspot[44]

Mind2web[45]

Entropy Bit per 
Token
0.383
0.438

Capacity Bit per 
Token
0.122
0.056

Capacity Bit per 
Sample
1.553
1.716
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strongly correlated with the performance of the baseline GUI 
agent model. This is because current GUI agents operate 
through a multi-stage pipeline: first reasoning about the action 
sequence, then parsing the action flow, and finally executing 
the action. Each stage introduces inevitable latency, resulting 
in most of the recorded video time being spent waiting for the 
model to perform reasoning and parse the action sequence. 
Reducing this latency remains a key research challenge in 
GUI agent development. We believe that as related technolo⁃
gies advance and execution delays decrease, the stegano⁃
graphic capacity of StegoAgent in real-world scenarios will 
improve significantly.

3) GUI agent ability evaluation. As shown in Tables 3 and 
4, the grounding performance of ShowUI experiences a slight 
degradation after integrating the steganographic algorithm, 
with an approximate 0.5% decrease in accuracy. Neverthe⁃
less, the overall performance remains reasonably acceptable. 
In the case of grounding tasks, where the model only generates 
the coordinates of the associated UI elements, the stegano⁃
graphic algorithm directly alters these values, leading to a de⁃
crease in accuracy across all element categories. On average, 
StegoAgent performs nearly identically to ShowUI, demonstrat⁃
ing that the steganographic mechanism introduces negligible 
impact. The steganographic algorithm does not alter the in⁃
tended action at each step, resulting in an action F1 score that 
remains comparable to that of ShowUI. Although the steganog⁃

raphy method directly modifies the action coordinates, the ac⁃
curacy of element identification shows no significant degrada⁃
tion and in certain tasks, even slight improvements over 
ShowUI are observed. In terms of per-step success rates, 
StegoAgent exhibits fluctuations around the performance of 
ShowUI, indicating comparable overall effectiveness. These re⁃
sults collectively demonstrate that StegoAgent maintains 
strong behavioral consistency with the baseline model while 
ensuring secure information transmission.

As illustrated in Fig. 5, the coordinate changes before and 
after steganography are minimal, with some remaining entirely 
unchanged. This demonstrates that StegoAgent preserves a 
high degree of behavioral consistency, thereby enhancing its 
resistance to detection by third parties.
5 Conclusions

We innovatively propose a generative steganographic frame⁃
work, StegoAgent, using natural media as covers. The core ad⁃
vantages of the StegoAgent lie in its simplicity and efficiency. 
By requiring only a preshared secret key and a set of instruc⁃
tion prompts, it enables the embedding of secret messages into 
common media such as natural images and videos. StegoAgent 
also extends the application scenarios of steganography, en⁃
abling real-time transmission of secret messages between the 
sender and the receiver.

The extraction and embedding processes of StegoAgent are 
implemented using the lightweight agent model, ShowUI, and 
the generative steganography method, thereby demonstrating 
the feasibility of the proposed approach. Furthermore, experi⁃
ments show that the StegoAgent does not significantly degrade 
model performance, enabling effective secret message trans⁃
mission while maintaining the capabilities of the intelligent 
agent. In addition, we measure the capacity and extraction ac⁃

Table 3. Results of grounding capability evaluation accuracy (%)

Method

ShowUI[40]

StegoAgent

Mobile 
Text

0.791
0.787

Mobile 
Icon

0.672
0.681

Desktop 
Text

0.763
0.758

Desktop 
Icon

0.614
0.600

Web 
Text

0.804
0.804

Web 
Icon

0.592
0.578

Avg.

0.706
0.701

Table 4. Results of navigation capability evaluation accuracy (%)

Method 
ShowUI[40]

StegoAgent

Cross-Task
Ele.Acc
0.214
0.212

Op.F1
0.832
0.832

Step.SR
0.178
0.179

Cross-Domain
Ele.Acc
0.248
0.244

Op.F1
0.802
0.802

Step.SR
0.200
0.196

Cross-Website
Ele.Acc
0.224
0.226

Op.F1
0.799
0.799

Step.SR
0.169
0.170

Figure 5. Visualization of StegoAgent before and after steganography, where blue bounding boxes delineate the regions of UI elements annotated in 
the dataset, blue dots represent the coordinates generated by StegoAgent, and red dots indicate the original coordinates

Prompt: open the gallery Prompt: search for software Prompt: close Prompt: open player settings
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curacy of the StegoAgent and comprehensively evaluate the 
steganographic performance from multiple perspectives.
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