
ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

Special Topic StegoAgent: A Generative Steganography Framework Based on GUI Agents

StegoAgentStegoAgent:: A Generative Steganography A Generative Steganography
Framework Based on GUI AgentsFramework Based on GUI Agents

SHEN Qiuhong, YANG Zijin, JIANG Jun,

ZHANG Weiming, CHEN Kejiang

(University of Science and Technology of China, Hefei 230000, China)

DOI: 10.12142/ZTECOM.202503006

https://kns.cnki.net/kcms/detail/34.1294.TN.20250901.1713.002.html,
published online September 2, 2025

Manuscript received: 2025-06-23

Abstract: Steganography is a technology that discreetly embeds secret information into the redundant space of a carrier, enabling covert com⁃
munication. As generative models continue to advance, steganography has evolved from traditional modification-based methods to generative
steganography, which includes generative linguistic and image based forms. However, while large model agents are rapidly emerging, no
method has exploited the stable redundant space in their action processes. Inspired by this insightful observation, we propose a stegano⁃
graphic method leveraging large model agents, employing their actions to conceal secret messages. In this paper, we introduce StegoAgent, a
generative steganography framework based on graphical user interface (GUI) agents, which effectively demonstrates the remarkable potential
and effectiveness of large model agent-based steganographic methods.
Keywords: generative steganography; GUI agent; action

Citation (Format 1): SHEN Q H, YANG Z J, JIANG J, et al. StegoAgent: a generative steganography framework based on GUI agents [J]. ZTE
Communications, 2025, 23(3): 48–58. DOI: 10.12142/ZTECOM.202503006
Citation (Format 2): Q. H. Shen, Z. J. Yang, J. Jiang, et al., “StegoAgent: a generative steganography framework based on GUI agents,” ZTE
Communications, vol. 23, no. 3, pp. 48–58, Sept. 2025. doi: 10.12142/ZTECOM.202503006.

1 Introduction

Steganography[1–2] is a covert communication technology
designed to hide the suspicious act of transmitting ci⁃
phertext over public channels. It leverages the redun⁃
dancy of innocent-looking cover objects, embedding se⁃

cret messages by making plausible modifications. Compared
with traditional encryption techniques, steganography effec⁃
tively avoids transmitting obvious encrypted data (e. g., ran⁃
dom bit streams) over public channels. As a result, it reduces
the risk of attracting the attention of adversaries and ensures
that communication remains secure from interception or tam⁃
pering. Therefore, steganography can play an important role in
ensuring the secure transmission of confidential information.
Moreover, it helps mitigate some of the security risks associ⁃
ated with encryption technologies.

Traditional steganography embeds secret messages into cov⁃
ers by modifying their inherent characteristics. This approach
allows for the efficient embedding of large data volumes while
maintaining high anti-steganalysis performance. With the ad⁃
vancement of deep learning, deep-learning based steganalysis
techniques are rapidly developed[3–4], which are capable of ex⁃

tracting steganographic features from stego-covers to detect the
presence of embedded secret messages. This development sig⁃
nificantly undermines the security of steganographic systems.

To counter steganalysis techniques, traditional steganogra⁃
phy has evolved into generative steganography[5]. Generative
steganography integrates the embedding process with model
generation, achieving stronger security. One of the most no⁃
table directions is the combination of generative models and
provably secure steganography, which has led to the emer⁃
gence of generative provably secure steganography, generative
provably secure audio steganography, and generative provably
secure image steganography. These advances have brought
new breakthroughs to the field of steganography, fully proving
that steganography is a companion technology.

Over the past two years, the development of large models
has evolved from understanding content to generating it, and
has increasingly approached human-like intelligent agent
technologies—particularly graphical user interface (GUI)
agents. GUI agents are intelligent agents that operate within
GUI environments, leveraging large language models (LLMs)
as their core inference and cognitive engines to generate, plan,
and execute actions flexibly and adaptively[6]. However, no
steganographic schemes have yet been designed using large-
model agents. We observe that the actions of large-model
agents have redundant space. Inspired by this observation, we

This work was supported in part by the National Natural Science Founda⁃
tion of China under Grant Nos. 62472398 and U2336206.
The corresponding author is CHEN Kejiang.

48

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

StegoAgent: A Generative Steganography Framework Based on GUI Agents Special Topic

propose StegoAgent, a steganographic agent based on large
models, and implement an instance using GUI agents.

The remainder of this paper is organized as follows. Section
2 reviews fundamental concepts and related work in steganog⁃
raphy and GUI agents. Section 3 details the architecture and
implementation of our StegoAgent framework. Section 4 evalu⁃
ates the performance of the system through comprehensive ex⁃
periments. Section 5 concludes with key findings and poten⁃
tial extensions.
2 Related work

2.1 Steganography
Steganography conceals secret information within multime⁃

dia covers, such as images[7–9] and videos[10–12]. Traditional
steganographic methods are predominantly based on the dis⁃
tortion minimization framework[13], which formalizes the steg⁃
anography problem as a source coding problem with fidelity
constraints. Under the premise of minimizing distortion, steg⁃
anographic messages are embedded using generic stegano⁃
graphic codes, such as Syndrome Trellis Codes (STCs) [13] and
Steganographic Polar Codes (SPCs) [14]. However, these meth⁃
ods modify the distribution of the cover data, resulting in in⁃
consistencies between the distributions of stego data and
cover data. This discrepancy makes the steganographic activ⁃
ity susceptible to detection by steganalysis techniques.

With the rapid development of generative models[15–16], an
increasing amount of generated data has emerged on social
media platforms, providing a novel data ecosystem for steg⁃
anography. As a result, researchers have shifted their focus to⁃
wards generative steganography[17–22]. Based on whether the
generative model can provide an explicit probability distribu⁃
tion, generative steganography can be categorized into two
types. One type[18–19, 22] utilizes the explicit probability distri⁃
bution of the generated data for message embedding. Under
the constraint of finite entropy, it aims to maximize the en⁃
tropy utilization rate to embed more messages. The other
type[17, 20–21], although unable to use an explicit data distribu⁃
tion, can couple the secret information with the initial stan⁃
dard Gaussian distribution of the model generation process,
exploring safer and more robust coupling methods.

Previous generative steganographic methods were limited to
generating content to convey information. With the rapid de⁃
velopment of large model agents, new tools have been intro⁃
duced to the field of steganography. In this paper, we explore
a novel approach to steganography by leveraging the action ex⁃
pressions of intelligent agents to convey secret information.
Specifically, we adaptively embed secret messages into the ac⁃
tion coordinates of the action flow by leveraging normalized
entropy. The interaction process of the GUI agent is then trans⁃
mitted from the sender to the receiver via screen recording or
screen-sharing techniques. Upon receiving the recorded inter⁃
action, the receiver reconstructs both the action coordinates

and the action stream, from which the embedded secret mes⁃
sage is subsequently extracted.
2.2 GUI Agent

GUI automation has a long history and wide application
in industry, especially in GUI testing[23–24] and robotic pro⁃
cess automation (RPA)[25] for task automation. The rapid de⁃
velopment of LLMs has accelerated advancements in GUI
automation, enabling more intelligent and efficient interac⁃
tion with GUIs.

Most early GUI agents focused exclusively on web GUI
scenarios, directly perceiving the environment through Hy⁃
perText Markup Language (HTML) code[26–28]. With the
emergence of multimodal LLMs (MLLMs), GUI agents have
started to incorporate multiple modalities for environmental
perception[29–33], thereby expanding their applicability to
both mobile GUIs[34–35] and desktop GUIs[36–37]. Further⁃
more, cross-platform GUI agents[38–40] have emerged as
general-purpose tools capable of interacting with diverse en⁃
vironments, spanning desktop and mobile interfaces to more
complex software ecosystems. For example, AutoGLM[41]
bridges the gap between web browsing and Android control
by integrating large multimodal models for seamless GUI in⁃
teractions across platforms.

From a mathematical perspective, the workflow of a GUI
agent can be formally modeled as follows. Given a GUI inter⁃
face S (e.g., an online shopping platform) and a user instruc⁃
tion T (e. g., please help me buy a book), the agent computes
an executable action sequence A = { a1,a2,…,an } and inter⁃
acts with the environment through these actions to fulfill the
user instruction. At each time step t, the GUI agent perceives
the current environmental state st from the screenshot, and
then retrieves the sequence of previously executed actions
{ a1,a2,…,a t - 1 } as short-term memory to predict the next ac⁃
tion a t.
at = fΘ(T, st, { a1,a2,…,a t - 1 }) (1),

where fΘ is the LLM with parameters Θ. Finally, the GUI
agent simulates user behavior by executing the generated ac⁃
tion a t through GUI interaction, which leads to the following
state transition:

St + 1 = S (a t) (2).
The GUI agent will iteratively repeat the aforementioned

steps until the user-given task is completed. There are three
crucial and consecutive processes for GUI agents to fulfill
user commands[42]:

1) Perception: This requires the GUI agent to maintain pre⁃
cise perceptual awareness of user instructions (T), environ⁃
mental states (st), and the history of executed actions
(){ a1,a2,…,a t - 1 } . Accurate state perception enables the GUI

49

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

Special Topic StegoAgent: A Generative Steganography Framework Based on GUI Agents

agent to perform efficient action inference.
2) Action reasoning: The GUI agent predicts the appropri⁃

ate next action based on the information perceived in the pre⁃
ceding step. We refer to the textual reasoning outputs of the
GUI agent as the action flow.

3) Execution: The final step involves executing the gener⁃
ated actions and interacting with the GUI interface. The inter⁃
nal executor of the GUI agent translates the planned action se⁃
quence into executable commands, effectively emulating pat⁃
terns of human-GUI interaction.
3 Methods

As mentioned above, the existing generative steganography
technology faces high risks of exposure and low quality of stego-
covers due to the direct transmission of generated content.
3.1 Application Scenarios

StegoAgent can be applied in two distinct scenarios: the
conventional cover transmission scenario and the real-time
communication scenario.

1) Cover transmission scenario. In Fig. 1a, the scenario in⁃
volves a sender Alice, a receiver Bob, and a supervisor Eve.
Eve manages a public video platform with user-provided con⁃
tent. Eve conducts pre-publication reviews on all videos. Al⁃
ice and Bob hide among regular users of the platform to ex⁃
change secret messages. Alice acts as a normal video poster,
while Bob poses as an ordinary viewer. Most of the videos that
Alice publishes are ordinary screen recordings. However, at
prearranged times agreed upon with Bob, she posts a video
containing hidden messages. Bob then downloads the video
and extracts the secret messages. Upon detecting suspicious
activity by Alice, Eve will ban her account, thereby disrupting
the covert communication channel between Alice and Bob.

2) Real-time communication scenario. As shown in Fig. 1b,
the scenario also involves the sender Alice, the receiver Bob,
and the supervisor Eve. Eve manages a live-streaming plat⁃
form that allows registered users to initiate their own live-
streaming rooms. Eve periodically inspects the content of live-
streaming rooms by randomly entering channels to monitor for
suspicious content. Through her authenticated live-streaming

platform, Alice publicly displays the execution process of the
GUI agent. Alice and Bob agree on a secret signal to initiate
secret message transmission. For example, when Alice starts
interacting with the audience, she replaces the standard GUI
agent with StegoAgent. When Bob recognizes the secret sig⁃
nal, he begins recording the execution process of StegoAgent
and decoding the secret message until he receives the stop
signal. In this scenario, Alice embeds secret messages while
Bob simultaneously extracts them, enabling real-time covert
communication.

In both scenarios, the GUI agent model that Alice uses is a
proprietary, fine-tuned model that is not publicly accessible.
Consequently, the attacker can only access the video record⁃
ings or live streaming content transmitted over public chan⁃
nels. In the absence of the GUI agent model, the attacker may
at best reconstruct the cursor coordinates from the video or
stream, but cannot recover the complete original action flow.
Furthermore, in autoregressive models, previously generated
tokens directly influence the distribution of subsequent to⁃
kens. Due to this sequential dependency, the attacker who
lacks access to the complete action sequence is fundamentally
unable to extract the embedded secret message.

Coordinate steganography exploits the internal redundancy
present in GUI element positioning. Consequently, the ob⁃
served coordinates are influenced not only by the spatial lay⁃
out of UI elements but also by the embedding algorithm. The
subtle statistical deviations introduced by the steganographic
process are masked by the variations in GUI element position⁃
ing caused by model fine-tuning. As a result, an attacker
would find it extremely difficult to train a reliable classifier
based on the reconstructed coordinates for the detection of
steganographic activities. Under this realistic adversarial sce⁃
nario, the embedding coordinates remain statistically indistin⁃
guishable from normal, benign coordinates.
3.2 StegoAgent Framework

To address the limitations of current generative steganogra⁃
phy, we propose a new framework that utilizes natural covers.
This framework requires establishing an invertible mapping
between the generated content and these covers.

Figure 1. Overview of two application scenarios: (a) conventional cover transmission and (b) real-time communication

(a) (b)

Alice

Video publisher Video platform manager Video viewer
Eve: video suspicious?

Video platform

Normal video
Stego video

Normal video

Normal video

Normal video
Stego video

Normal video

Normal video Normal users

Bob
Alice

Secret message：
010011…

Live room of Alice

Let AI control your computer！ Is the live content
suspicious？

Is this really AI-
controlled?

Eve

Normal users
Secret message：

010011…

Bob

…

Is this really AI-controlled？

50

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

StegoAgent: A Generative Steganography Framework Based on GUI Agents Special Topic

As previously discussed, modifying the action flow of the
GUI agent can directly alter its execution behavior, thereby es⁃
tablishing a unidirectional mapping from the generated con⁃
tent to natural covers. The action flow of the GUI agent is a for⁃
mal representation of actions, which can be considered equiva⁃
lent to the action vector a t at the corresponding timestep t.
During embedding, given a secret message m and an embed⁃
ding algorithm ϕ, the action containing the secret message a t' can be expressed as:
a t' = ϕ (fΘ(T, st, { a1',a2',…,a t - 1' }) , m) (3).
With screen recording or screen sharing technology, each

executed action can be captured as an action recording pa t'
,

and all such recordings collectively form the corresponding ac⁃
tion recording set P':
pa t'

= { st, st + 1 } ,
P' = { }pa1', pa2',…, pa t'

= { }s1, s2,…, st, st + 1
(4).

Since screen recording or screen sharing technology can
only capture on-screen information, the action recording pa t'

 is
defined as a tuple consisting of the pre-action state st (the
screen capture before the action) and the post-action state st + 1 (the screen capture after the action). Due to the inherent com⁃
putational latency in both action reasoning and execution,
there exists a measurable delay around each action. This tem⁃
poral characteristic enables the reliable identification of ac⁃
tion boundaries in video recordings and real-time screen
streams, thereby allowing for the precise extraction of the cor⁃
responding environmental states st and st + 1 .During extraction, the receiver reconstructs the correspond⁃
ing action sequence A = { a1',a2',…,a t' } from the recorded
set P' , and then applies the extraction algorithm ψ to recover
the secret message:

m = ψ (fΘ(T, st, { a1', a2',…, a t - 1' }) , a t') (5).
How can the corresponding action set be reconstructed from

P'? We begin by considering the reconstruction of a single-
step action, specifically reconstructing a t' using correspond⁃
ing recording pa t'

. Each action corresponds to a specific appli⁃
cation or system event within theenvironment and can be for⁃
mally represented as a triple:
a t = (η, ω, ν) (6).
In Eq. (6), η represents a target position (e.g., [0.50, 0.20])

as a pixel coordinate on the screen, denoting the position
where “Click”, “Type”, or “Select” operation should be ex⁃
ecuted; ω ∈ O specifies the intended operation type (e. g.,

“Click”); ν provides any additional value required for the ac⁃

tion (e. g., the type content “hello”). The set O encompasses
all allowable operations within the environment S and is al⁃
ways explicitly defined in the system prompt.

As shown in Eq. 3, a t' is determined by the embedding al⁃
gorithm ϕ which in turn influences the performance of the
GUI agent. To ensure steganographic security, it is desirable
for the embedding of secret messages to minimally affect the
performance of the GUI agent. An intuitive approach is to em⁃
bed the secret message only in those attributes of (η, ω, ν)
that have a minimal impact on the performance of the GUI
agent, specifically those with higher redundancy. ω is defined
within a finite space and exhibits relatively low redundancy.
As an auxiliary value, ν exhibits greater redundancy. How⁃
ever, even the most common form of ν (the input content re⁃
quired for “Type” actions) is difficult to reconstruct from a
screenshot. η contains relatively high redundancy due to the
inherent redundancy present in GUI interface elements. More⁃
over, it can be bound to cursor actions, allowing its value to be
indirectly reconstructed through cursor behavior. In this case,
ω and ν can be directly generated from the environmental in⁃
formation st in the action recording:
a t = fΘ(T, st, { a1',a2',…,a t - 1' }) = (η', ω, ν) ,
η = g (st + 1) (7),

where g is the position predictor used to reconstruct η.
After the receiver obtains the action recording set P' , it is

straightforward to reconstruct a1' using s1, s2, T, and then re⁃
cover a2' based on a1', s3, etc. However, this approach has a
critical limitation: if the reconstruction fails at any step, all
subsequent actions will also fail in reconstruction, resulting in
a complete failure of the extraction process. Such a conse⁃
quence is unacceptable in practical applications. To address
this limitation, we observe that certain GUI agents decompose
action reasoning into two distinct stages. In the first stage, the
overall task T is decomposed into a subtask Tt; in the second
stage, the corresponding actions a t are inferred directly from
each Tt, without relying on context. This approach effectively
mitigates the aforementioned limitation.

The improved process for embedding secret messages is out⁃
lined as follows:

Tt = fΘ1(T, st, { T1, T2,…, Tt - 1 }) ,
a t' = ϕ (fΘ2(Tt, st) , m) ,
pa t' = { st, st + 1 } ,
P' = {pa1', pa2',…, pa t'} = {s1, s2,…, st, st + 1}

(8),

where fΘ1, fΘ2 are the LLMs with parameters Θ1,Θ2. The im⁃
proved procedure for extracting secret messages is outlined as
follows.

51

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

Special Topic StegoAgent: A Generative Steganography Framework Based on GUI Agents

Tt = fΘ1(T, st, { T1,T2,…,Tt - 1 }) ,
a t = fΘ2(Tt, st) = (η, ω, ν) ,
η' = g (st + 1) ,
a t' = (η', ω, ν) ,
m = ψ (fΘ2(Tt, st) , a t')

(9).

After the receiver obtains the recorded action sequence P' ,
they can use a model with parameters Θ1 to reconstruct the
subtask Tt at each step t. Based on this formulation, the origi⁃
nal action stream a t can be reconstructed using Tt and st. The
cursor position η' is predicted via the position predictor, re⁃
sulting in the stego text a t'. Applying steganographic extrac⁃
tion techniques then allows the embedded secret message m to
be recovered from the stego text a t' .
3.3 StegoAgent Instance

To evaluate the effectiveness of the StegoAgent, we imple⁃
ment the method using Qwen2.5VL-7B (Qwen) [43] and

ShowUI[40]. The core model of the GUI agent is based on the
ShowUI framework. Additionally, we employ the deployment
software of ShowUI, “Computer Use OOTB”, to integrate the
various modules of the GUI agent. As illustrated in Fig. 2, the
GUI agent utilizes Qwen as the planning model, responsible
for decomposing the overall task T into an executable subtask
Tt. The ShowUI framework functions as the reasoning model,
directly inferring the corresponding action a t from each sub⁃
task Tt. First, Qwen generates a subtask based on the task his⁃
tory and user instructions. Next, ShowUI infers the correspond⁃
ing action sequence in accordance with the subtask. Finally,
the executor performs the designated action.

Fig. 3 illustrates the implementation framework of the Stego⁃
Agent. Since the steganography method is a generative steganog⁃
raphy based on predicted probability distributions and allows
message extraction token by token, we merge the steps of recon⁃
structing a t' and then extracting m in the extraction algorithm:

Tt = fΘ1(T, st, { T1,T2,…,Tt - 1 }) ,
m = ψ (fΘ2(Tt, st,) , g (st + 1)) (10).

Figure 2. Graphical user interface agent workflow of StegoAgent

Figure 3. Framework of StegoAgent

Sampling distribution as same as sender

User instruction
Open “google”

Task history Qwen Click search bar
Subtask

ShowUI
Action flow

Execute actionScreenshot

Open “google”

{'action': 'Click',
'value': None,'position':

[0.49, 0.42]}

User instruction

Screenshot st

Subtask Tt

Secret message m 001110…

{'Action': 'Click', 'value':
None,'position': [0.29, 0.68]}

Stego text

Extracting Position of cursor
Position predictor[0.29, 0.68]

Large model agent Click “7” Receiver

St and Tt

St+1

Public channels

Action recordings

SenderEmbedding001110…
Secret message m

Large model agent
Sampling distribution Action flow contains sectet messages （stego text） Action result St+1

“Action”: 0.95， “1”:0.02, “2”: 0.01, “.”: 0.01
…

“Action”
“1”
“2”
…

： 0.95
： 0.02
： 0.01
： …

{'Action': 'Click', 'value':
None,'position': [0.29, 0.68]}

Click “7”

52

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

StegoAgent: A Generative Steganography Framework Based on GUI Agents Special Topic

Specifically, during the embedding process, the user in⁃
struction T and the screenshot are fed into ShowUI, which sub⁃
sequently predicts a probability distribution over possible ac⁃
tions. By using the embedding algorithm, the secret message
is embedded into the segment of the action flow corresponding
to action positions. The resulting modified action a t' is then
executed by ShowUI to complete the task. The sender trans⁃
mits the action recordings of StegoAgent P' to the receiver.
Upon receiving the action recordings, the receiver recon⁃
structs the sequence of screenshots identical to those on the
sender side. A position predictor is applied to recover the cur⁃
sor coordinates (i. e., the action position), which is subse⁃
quently transformed into a string formatted according to pre⁃
defined specifications, followed by tokenization to extract the
corresponding tokens. Given a pre-agreed user instruction T,
Qwen decomposes T into a subtask Tt. Subsequently, ShowUI
predicts the same probability distribution as that of the
sender. During the token sampling process, we first determine
whether the current token corresponds to an action position. If
not, the token is sampled directly. If it does, a coordinate re⁃
construction token is retrieved, and the extraction function ψ
is invoked to extract the secret message.
3.4 Embedding and Extraction

To minimize the impact on the performance of the GUI
agent, we use normalized entropy to adaptively embed secret
messages. As shown in Algorithm 1, given a sorted token prob⁃
ability sequence probs, along with a base b and a threshold ϵ,
we first calculate the normalized entropy over the top 2b to⁃
kens. If this entropy value is greater than ϵ, we proceed to em⁃
bed b bits of secret information. Otherwise, the base b is decre⁃
mented, and the normalized entropy is recalculated using the
updated top b - 1 tokens. This adaptive procedure iterates un⁃
til either a suitable embedding capacity is found or b reaches
zero, in which case no message is embedded for that token.

Algorithm 1. Adaptive Steganographic Embedding via Nor⁃
malized Entropy

1: procedure: Embed message (probs, b init, ϵ, m)
2: input: Sorted token sequence probs, initial base b init, threshold ϵ, and secret message m
3: output: Token with embedded message tm or no em⁃

bedding
4: b ← b init5: while b ≥ 0 do
6: Select top 2b tokens from probs
7: Compute normalized entropy of selected tokens
8: if entropy > ϵ then
9: mb ← First b bits of m
10: d ← binary_to_decimal (mb)
11: tm ← probs[d]
12: return tm

13: else
14: b ← b - 1
15: end if
16: end while
17: if b < 0 then
18: return probs [0]
19: end if
20: end procedure

In Algorithm 2, during extraction we are given a sorted to⁃
ken sequence probs, a base b, a threshold ϵ, and the stego-
token ts. We first compute the normalized entropy over the top
2b tokens. If the entropy exceeds the threshold ϵ, we extract
the index of the stego-token ts within the top 2b tokens and
convert it into a bitstream, which constitutes the secret mes⁃
sage. If the normalized entropy is below ϵ, we reduce the base
b and recompute the normalized entropy for comparison. This
process continues until b reaches zero, at which point we con⁃
clude that the token does not contain any embedded secret
message.
3.5 Position Predictor

To reconstruct the cursor’s relative position in the screen⁃
shot, we propose a position predictor. Compared with other ele⁃
ments in the GUI interface, the cursor typically has a consis⁃
tent appearance; for example, the most common standard cur⁃
sor is a white arrow with a black border. Based on this charac⁃
teristic, we design a position estimation approach that utilizes
both the color and contour information of the cursor. Specifi⁃
cally, the process begins by isolating the regions in the screen⁃
shot that exhibit color similarity to the cursor. The entire
screenshot is then binarized: pixels with colors close to those
of the cursor are assigned a white value, while all others are
assigned a black value. Next, all contours are extracted from
the binarized screenshot, and the contour that most closely
matches the cursor’s expected shape is selected as the esti⁃
mated cursor position.

Algorithm 2. Steganographic Message Extraction via Nor⁃
malized Entropy

1: procedure: Extract message (probs, ts, b init, ϵ)
2: input: Sorted token sequence probs, stego-token ts, ini⁃

tial base b init, threshold ϵ
3: output: Extracted bitstring m or None if no message is

embedded
4: b ← b init5: while b ≥ 0 do
6: Select top 2b tokens from probs
7: Compute normalized entropy of selected tokens
8: if entropy > ϵ then
9: Find index i of ts within the selected 2b tokens
10: Convert i to b-bit binary string mb11: return mb

53

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

Special Topic StegoAgent: A Generative Steganography Framework Based on GUI Agents

12: else
13: b ← b - 1
14: end if
15: end while
16: return None (no message embedded)
17: end procedure

Fig. 4 illustrates an example of the position predictor, dem⁃
onstrating its capability to accurately detect the cursor and de⁃
termine its position within the screenshot. It is worth noting
that this example does not use the most classic cursor. The
white value of the classic cursor is commonly found through⁃
out various GUI interfaces, making accurate cursor position re⁃
construction particularly challenging. Therefore, a more dis⁃
tinctive cursor is utilized in this case. With the widespread
adoption of internet technologies, cursor personalization has
become simple and commonplace. Furthermore, standard cur⁃
sors vary across different operating systems. Consequently, the
use of a distinctive cursor does not undermine the security.

However, this method has a limitation: when the cursor
color is similar to the background, it becomes difficult to deter⁃
mine an appropriate color threshold to effectively distinguish
the cursor from the background. To address this issue, we in⁃
corporate a template matching algorithm to complement the
position predictor.

Template matching is a classical image-to-image compari⁃
son technique. It works by sliding a template image (i.e., the
cursor image) across the target image as a moving window,
and computing the similarity score at each position. The loca⁃
tion with the highest similarity score is considered the best
match. Experimental results show that although the accuracy
of template matching is lower than that of the position predic⁃
tor, it still achieves over 90% accuracy. Therefore, we com⁃
bine the two algorithms to further improve the overall predic⁃
tion performance.

Specifically, we set a similarity threshold α. When the simi⁃
larity score of the best matching contour is below α (note that
a lower score indicates a closer match), we accept that contour
as the cursor position. If the score is higher than α, we instead
use the result from the template matching algorithm to deter⁃
mine the cursor location.

4 Experiments
In this section, we conducted experiments to evaluate both

the steganographic capabilities and the impact of the proposed
method on the GUI Agent.
4.1 Implementation Details

1) Datasets. The performance of the GUI agent is evalu⁃
ated from two perspectives using the Screenspot[44] and
Mind2Web[45] datasets. Screenspot is a zero-shot visual
grounding benchmark that includes data from three distinct
device types, focusing on the recognition performance of text
and widgets. Mind2Web is a web-based dataset with an ac⁃
tion space consisting of three distinct actions, designed to as⁃
sess the overall performance of GUI agents. Additionally, the
steganographic capabilities of the GUI agent are also evalu⁃
ated using these two datasets. Among them, Screenspot in⁃
cludes 1 272 screenshots collected from multiple platforms,
while the test set of Mind2Web comprises 9 268 action-
context pairs. Since most of the screenshots in both datasets
have been cropped, the screenshots exhibit varying sizes and
aspect ratios. To ensure uniformity in processing, for any
screenshot where the length or width exceeds 2 160 pixels,
the dimension exceeding this threshold is resized to 2 160
pixels, maintaining the original aspect ratio. In the extraction
accuracy test, we randomly sampled one quarter of the
Mind2Web dataset (approximately 2 000 samples) using a
random seed of 2 553. Then we discarded samples in which
no secret message had been embedded, resulting in a final
test set of 1 267 samples. Note that the original screenshots
in the datasets do not include a cursor. To test the accuracy
of the position predictor, we pasted a cursor at the top-left
corner of the annotated UI element regions in the datasets,
simulating accurate clicking behavior.

2) Baselines. To evaluate the impact of integrating stegano⁃
graphic algorithms on the performance of the agent model,
we adopt ShowUI[40] as the baseline for comparison with
StegoAgent. ShowUI, as the base model, employs greedy de⁃
coding during sampling to prioritize accuracy. For StegoAg⁃
ent, the base b is set to 3, the threshold ϵ to 0.96, and the po⁃
sition predictor’s threshold α to 0.1.

3) Evaluation metrics. We evaluate the steganography per⁃

Figure 4. Instance of position predictor

Original screenshot Binarized screenshot All contours of binarized screenshot Most matches contours position: [0.88, 0.27]

54

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

StegoAgent: A Generative Steganography Framework Based on GUI Agents Special Topic

formance of the GUI agent using two key aspects: GUI agent
ability evaluation and Steganographic performance evaluation.

GUI agent ability evaluation focuses on assessing the agent’s
performance in grounding and navigation tasks. Grounding ca⁃
pability refers to the ability to identify and locate UI elements
in a screenshot, where the agent infers only a coordinate. Navi⁃
gation capability evaluates the agent’s ability to generate a
complete action flow, simulating real-world scenarios. To mea⁃
sure grounding performance, we use “Accuracy” as the evalua⁃
tion metric on the Screenspot[44] dataset, i. e., the recognition
rate of texts and widgets. For navigation performance, we use
three evaluation metrics on Mind2Web[45] dataset: element iden⁃
tification accuracy (Ele.Acc), operation prediction F1 score (Op.
F1), and step success rate (Step.SR). As the focus is on the im⁃
pact of the proposed steganographic method, all evaluations are
conducted in a zero-shot manner without fine-tuning, leading to
relatively low accuracy scores.

We evaluate steganographic performance by measuring how
integrating steganographic algorithms impacts agent perfor⁃
mance. The evaluation considers two aspects: capacity and ex⁃
traction accuracy. Capacity is quantified by the embedding
rate, defined as the average number of bits embedded per gen⁃
erated token. In practice, the steganographic capacity mea⁃
sured in bits per token has limited reference value. Therefore,
we measure the capacity in terms of bits per sample. In the
grounding test, this represents the average number of bits em⁃
bedded per coordinate, while in the navigation test, it reflects
the average number of bits embedded per action. Extraction
accuracy evaluates the ability to retrieve embedded informa⁃
tion and includes:

1) Position predictor accuracy. We evaluate position predic⁃
tor accuracy using the metric “Accuracy”, which is defined as:

Accuracy = || { i∣ŷi = yi }
N , i = 1,2,…,n (11),

where yi denotes the true position coordinates, and ŷi denotes
the predicted position coordinate for the i-th sample.

2) Overall extraction accuracy. Since the Screenspot[44] data⁃
set differs to some extent from real-world scenarios, overall ex⁃
traction accuracy is evaluated only on the Mind2Web[45] data⁃
set. We evaluate extraction accuracy using the metric “Bit Ac⁃
curacy”, which is defined as:

Bit Accuracy = n
N (12),

where n is the number of correctly extracted bits, and N is the
total number of embedded bits.
4.2 Main Performance and Analysis

1) Steganographic extraction accuracy. As shown in Table 1,
the prediction accuracy of the position predictor exceeds
97.6%, while that of template matching is only 91.9%. Our

proposed prediction method achieves significantly higher ac⁃
curacy than the traditional template matching algorithm. To
address the limitations of the position predictor, we combine
the two methods. The combined approach achieves an accu⁃
racy of over 99.5% on both datasets, with almost no predic⁃
tion errors. The StegoAgent achieves a 99.7% secret message
extraction accuracy, validating its reliability in retrieving em⁃
bedded information.

2) Capacity and entropy utilization. Table 2 summarizes
the steganographic capacity of StegoAgent. On average, each
token supports the embedding of 0.12 bits, while each coordi⁃
nate provides a total capacity of approximately 1.5 bits. In
practical application scenarios, the majority of tokens are not
action coordinate tokens. As a result, the steganographic ca⁃
pacity measured in bits per token decreases in the
Mind2Web dataset. However, the actual embedding capacity
per action remains unchanged. In fact, the effective embed⁃
ding capacity increases in navigation tasks, yielding an aver⁃
age of about 1.7 bits per action. To maintain behavioral con⁃
sistency and imperceptibility, we deliberately prioritize
stealth over maximizing embedding capacity.

In addition to testing on the dataset, we conducted a small-
scale real-world experiment to evaluate StegoAgents stegano⁃
graphic capacity. We selected four websites from the
Mind2Web dataset, and for each website, we defined five rep⁃
resentative tasks resulting in a total of 20 tasks. StegoAgent
was instructed to autonomously control the computer to com⁃
plete each task, and we recorded two-minute videos for each
session to measure the embedding capacity per minute of
video. The sample size of the experiment is relatively small, as
GUI agent-driven computer control is inherently a high-risk
process that necessitates manual oversight. As such, the re⁃
sults are meant to serve as a preliminary reference for stegano⁃
graphic capacity in realistic application settings, rather than a
comprehensive evaluation. Across the 20 recorded videos,
StegoAgent achieved an average steganographic capacity of
approximately 2.1 bits per minute.

The real-world steganographic capacity of StegoAgent is

Table 1. Position prediction accuracy

Dataset
Screenspot[44]

Mind2web[45]

TM
0.932
0.919

Pos
0.999
0.976

TM+Pos
1

0.995
TM: template matching
Pos: position predictor

TM+Pos: combined method

Table 2. Results of capacity evaluation

Dataset
Screenspot[44]

Mind2web[45]

Entropy Bit per
Token
0.383
0.438

Capacity Bit per
Token
0.122
0.056

Capacity Bit per
Sample
1.553
1.716

55

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

Special Topic StegoAgent: A Generative Steganography Framework Based on GUI Agents

strongly correlated with the performance of the baseline GUI
agent model. This is because current GUI agents operate
through a multi-stage pipeline: first reasoning about the action
sequence, then parsing the action flow, and finally executing
the action. Each stage introduces inevitable latency, resulting
in most of the recorded video time being spent waiting for the
model to perform reasoning and parse the action sequence.
Reducing this latency remains a key research challenge in
GUI agent development. We believe that as related technolo⁃
gies advance and execution delays decrease, the stegano⁃
graphic capacity of StegoAgent in real-world scenarios will
improve significantly.

3) GUI agent ability evaluation. As shown in Tables 3 and
4, the grounding performance of ShowUI experiences a slight
degradation after integrating the steganographic algorithm,
with an approximate 0.5% decrease in accuracy. Neverthe⁃
less, the overall performance remains reasonably acceptable.
In the case of grounding tasks, where the model only generates
the coordinates of the associated UI elements, the stegano⁃
graphic algorithm directly alters these values, leading to a de⁃
crease in accuracy across all element categories. On average,
StegoAgent performs nearly identically to ShowUI, demonstrat⁃
ing that the steganographic mechanism introduces negligible
impact. The steganographic algorithm does not alter the in⁃
tended action at each step, resulting in an action F1 score that
remains comparable to that of ShowUI. Although the steganog⁃

raphy method directly modifies the action coordinates, the ac⁃
curacy of element identification shows no significant degrada⁃
tion and in certain tasks, even slight improvements over
ShowUI are observed. In terms of per-step success rates,
StegoAgent exhibits fluctuations around the performance of
ShowUI, indicating comparable overall effectiveness. These re⁃
sults collectively demonstrate that StegoAgent maintains
strong behavioral consistency with the baseline model while
ensuring secure information transmission.

As illustrated in Fig. 5, the coordinate changes before and
after steganography are minimal, with some remaining entirely
unchanged. This demonstrates that StegoAgent preserves a
high degree of behavioral consistency, thereby enhancing its
resistance to detection by third parties.
5 Conclusions

We innovatively propose a generative steganographic frame⁃
work, StegoAgent, using natural media as covers. The core ad⁃
vantages of the StegoAgent lie in its simplicity and efficiency.
By requiring only a preshared secret key and a set of instruc⁃
tion prompts, it enables the embedding of secret messages into
common media such as natural images and videos. StegoAgent
also extends the application scenarios of steganography, en⁃
abling real-time transmission of secret messages between the
sender and the receiver.

The extraction and embedding processes of StegoAgent are
implemented using the lightweight agent model, ShowUI, and
the generative steganography method, thereby demonstrating
the feasibility of the proposed approach. Furthermore, experi⁃
ments show that the StegoAgent does not significantly degrade
model performance, enabling effective secret message trans⁃
mission while maintaining the capabilities of the intelligent
agent. In addition, we measure the capacity and extraction ac⁃

Table 3. Results of grounding capability evaluation accuracy (%)

Method

ShowUI[40]

StegoAgent

Mobile
Text

0.791
0.787

Mobile
Icon

0.672
0.681

Desktop
Text

0.763
0.758

Desktop
Icon

0.614
0.600

Web
Text

0.804
0.804

Web
Icon

0.592
0.578

Avg.

0.706
0.701

Table 4. Results of navigation capability evaluation accuracy (%)

Method
ShowUI[40]

StegoAgent

Cross-Task
Ele.Acc
0.214
0.212

Op.F1
0.832
0.832

Step.SR
0.178
0.179

Cross-Domain
Ele.Acc
0.248
0.244

Op.F1
0.802
0.802

Step.SR
0.200
0.196

Cross-Website
Ele.Acc
0.224
0.226

Op.F1
0.799
0.799

Step.SR
0.169
0.170

Figure 5. Visualization of StegoAgent before and after steganography, where blue bounding boxes delineate the regions of UI elements annotated in
the dataset, blue dots represent the coordinates generated by StegoAgent, and red dots indicate the original coordinates

Prompt: open the gallery Prompt: search for software Prompt: close Prompt: open player settings

56

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

StegoAgent: A Generative Steganography Framework Based on GUI Agents Special Topic

curacy of the StegoAgent and comprehensively evaluate the
steganographic performance from multiple perspectives.

References
[1] BARNI M. Steganography in digital media: principles, algorithms, and

applications [J]. IEEE signal processing magazine, 2011, 28(5): 142–
144. DOI: 10.1109/MSP.2011.941841

[2] PEVNÝ T, FRIDRICH J. Benchmarking for steganography [C]//Interna⁃
tional Workshop on Information Hiding (10th International Workshop).
ISIH, 2018. DOI: 10.1007/978-3-540-88961-8_18

[3] REINEL T S, RAÚL R P, GUSTAVO I. Deep learning applied to stega⁃
nalysis of digital images: a systematic review [J]. IEEE access, 2019, 7:
68970–68990

[4] KHEDDAR H, HEMIS M, HIMEUR Y, et al. Deep learning for stega⁃
nalysis of diverse data types: a review of methods, taxonomy, chal⁃
lenges and future directions [J]. Neurocomputing, 2024, 581: 127528.
DOI: 10.1016/j.neucom.2024.127528

[5] LIU J, KE Y, ZHANG Z, et al. Recent advances of image steganography
with generative adversarial networks [J]. IEEE access, 2020, 8: 60575 –
60597

[6] ZHANG C Y, HE S L, QIAN J X, et al. Large language model-brained
GUI agents: a survey [EB/OL]. (2024-11-27) [2025-06-01]. https://
arxiv.org/abs/2411.18279

[7] LIU M L, SONG T T, LUO W Q, et al. Adversarial steganography em⁃
bedding via stego generation and selection [J]. IEEE transactions on de⁃
pendable and secure computing, 2023, 20(3): 2375 – 2389. DOI:
10.1109/TDSC.2022.3182041

[8] LI Q, MA B, FU X P, et al. Robust image steganography via color con⁃
version [J]. IEEE transactions on circuits and systems for video technol⁃
ogy, 2025, 35(2): 1399–1408. DOI: 10.1109/TCSVT.2024.3466961

[9] FAN Z X, CHEN K J, ZENG K, et al. Natias: neuron attribution-based
transferable image adversarial steganography [J]. IEEE transactions on
information forensics and security, 2024, 19: 6636 – 6649. DOI:
10.1109/TIFS.2024.3421893

[10] LI Z H, JIANG X H, DONG Y, et al. An anti-steganalysis HEVC video
steganography with high performance based on CNN and PU partition
modes [J]. IEEE transactions on dependable and secure computing,
2023, 20(1): 606–619. DOI: 10.1109/TDSC.2022.3140899

[11] HE S H, XU D W, YANG L, et al. Adaptive HEVC video steganogra⁃
phy with high performance based on attention-net and PU partition
modes [J]. IEEE transactions on multimedia, 2023, 26: 687 – 700.
DOI: 10.1109/TMM.2023.3269663

[12] MAO X Y, HU X X, PENG W L, et al. From covert hiding to visual ed⁃
iting: robust generative video steganography [C]//The 32nd ACM Inter⁃
national Conference on Multimedia. ACM, 2024: 2757– 2765. DOI:
10.1145/3664647.3681149

[13] FILLER T, JUDAS J, FRIDRICH J. Minimizing additive distortion in
steganography using syndrome-trellis codes [J]. IEEE transactions on
information forensics and security, 2011, 6(3): 920 – 935. DOI:
10.1109/TIFS.2011.2134094

[14] LI W X, ZHANG W M, LI L, et al. Designing near-optimal stegano⁃
graphic codes in practice based on polar codes [J]. IEEE transactions
on communications, 2020, 68(7): 3948 – 3962. DOI: 10.1109/
TCOMM.2020.2982624

[15] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Genera⁃
tive adversarial networks [C]//The 28th International Conference on
Neural Information Processing Systems. ACM, 2014

[16] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution
image synthesis with latent diffusion models [C]//Conference on Com⁃
puter Vision and Pattern Recognition (CVPR). IEEE, 2022: 10674–
10685. DOI: 10.1109/CVPR52688.2022.01042

[17] PENG F, CHEN G F, LONG M. A robust coverless steganography
based on generative adversarial networks and gradient descent ap⁃
proximation [J]. IEEE transactions on circuits and systems for video
technology, 2022, 32(9): 5817 – 5829. DOI: 10.1109/
TCSVT.2022.3161419

[18] DING J Y, CHEN K J, WANG Y F, et al. Discop: provably secure steg⁃
anography in practice based on “distribution copies” [C]//IEEE Sym⁃
posium on Security and Privacy (SP). IEEE, 2023: 2238–2255. DOI:
10.1109/SP46215.2023.10179287

[19] WITT D C S, SOKOTA S, KOLTER J Z, et al. Perfectly secure steg⁃
anography using minimum entropy coupling [C]//The Eleventh Interna⁃
tional Conference on Learning Representations. ICLR, 2023:1–14

[20] YANG Z J, CHEN K J, ZENG K, et al. Provably secure robust image
steganography [J]. IEEE transactions on multimedia, 2023, 26: 5040–
5053. DOI: 10.1109/TMM.2023.3330098

[21] HU X X, LI S, YING Q C, et al. Establishing robust generative image
steganography via popular stable diffusion [J]. IEEE transactions on
information forensics and security, 2024, 19: 8094 – 8108. DOI:
10.1109/TIFS.2024.3444311

[22] WANG Y F, PEI G, CHEN K J, et al. Sparsamp: efficient provably se⁃
cure steganography based on sparse sampling [EB/OL]. [2025-06-01].
https://www. usenix. org/system/files/conference/usenixsecurity25/
sec25cycle1-prepub-240-wang-yaofei.pdf

[23] LI K L, WU M Q. Effective GUI testing automation: developing an au⁃
tomated GUI testing tool [M]. Hoboken, USA: John Wiley & Sons,
2006

[24] RODRÍGUEZ-VALDÉS O, EJ VOS T, AHOV P, et al. 30 years of auto⁃
mated GUI testing: a bibliometric analysis [C]//The 14th International
Conference Quality of Information and Communications Technology.
CCIS, 2021: 473–488

[25] IVANČIĆ L, SUŠA VUGEC D, BOSILJ VUKŠIĆ V. Robotic process
automation: systematic literature review [EB/OL]. [2025-06-01]. https:
//link.springer.com/content/pdf/10.1007/978-3-030-30429-4_19.pdf

[26] GUR I, FURUTA H, HUANG A V, et al. A real-world webagent with
planning, long context understanding, and program synthesis [EB/OL].
(2023-07-24) [2025-06-01]. https://arxiv.org/abs/2307.12856

[27] KIM G, BALDI P, MCALEER S. Language models can solve computer
tasks [C]//The 37th International Conference on Neural Information
Processing Systems. NIPS, 2023: 39648–39677

[28] LO R, SRIDHAR A, XU F, et al. Hierarchical prompting assists large
language model on web navigation [C]//Proceedings of Findings of the
Association for Computational Linguistics. EMNLP. Association for
Computational Linguistics, 2023: 10217–10244. DOI: 10.18653/v1/
2023.findings-emnlp.685

[29] LAI H Y, LIU X, IONG I L, et al. AutoWebGLM: a large language model-
based web navigating agent [C]//The 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. ACM, 2024: 5295– 5306. DOI:
10.1145/3637528.3671620

[30] AGASHE S, HAN J Z, GAN S Y, et al. Agent S: an open agentic frame⁃
work that uses computers like a human [C]//The Thirteenth Interna⁃
tional Conference on Learning Representations. ICLR, 2025

[31] NIU R L, LI J D, WANG S Q, et al. ScreenAgent: a vision language
model-driven computer control agent [C]//Proceedings of the Thirty-
Third International Joint Conference on Artificial Intelligence. Inter⁃
national Joint Conferences on Artificial Intelligence Organization,
2024: 6433–6441. DOI: 10.24963/ijcai.2024/711

[32] HE H L, YAO W L, MA K X, et al. WebVoyager: building an end-to-
end web agent with large multimodal models [C]//Proceedings of the
62nd Annual Meeting of the Association for Computational Linguis⁃
tics (Volume 1: Long Papers). ACL, 2024: 6864 – 6890. DOI:
10.18653/v1/2024.acl-long.371

[33] IONG I L, LIU X, CHEN Y X, et al. OpenWebAgent: an open toolkit
to enable web agents on large language models [C]//The 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 3:

57

ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

SHEN Qiuhong, YANG Zijin, JIANG Jun, ZHANG Weiming, CHEN Kejiang

Special Topic StegoAgent: A Generative Steganography Framework Based on GUI Agents

System Demonstrations). ACL, 2024: 72–81. DOI: 10.18653/v1/2024.
acl-demos.8

[34] WANG B, LI G, LI Y. Enabling conversational interaction with mobile
UI using large language models [C]//The 2023 CHI Conference on Hu⁃
man Factors in Computing Systems. ACM, 2023: 1 – 17. DOI:
10.1145/3544548.3580895

[35] ZHANG C, YANG Z, LIU J X, et al. AppAgent: multimodal agents as
smartphone users [C]//Proceedings of the 2025 CHI Conference on Hu⁃
man Factors in Computing Systems. ACM, 2025: 1 – 20. DOI:
10.1145/3706598.3713600

[36] ZHANG C Y, LI L Q, HE S L, et al. UFO: a UI-focused agent for win⁃
dows OS interaction [C]//The 2025 Conference of the Nations of the
Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies. ACL, 2025: 597 – 622. DOI:
10.18653/v1/2025.naacl-long.26

[37] WU Z Y, HAN C C, DING Z C, et al. Os-copilot: towards generalist
computer agents with self-improvement. [EB/OL]. (2024-02-12) [2025-
06-01]. https://arxiv.org/abs/2402.07456

[38] AGASHE S, WONG K, TU V, et al. Agent s2: a compositional
generalist-specialist framework for computer use agents. [EB/OL].
(2025-04-01) [2025-06-01]. https://arxiv.org/abs/2504.00906

[39] WANG Y Q, ZHANG H J, TIAN J Q, et al. Ponder & press: advancing vi⁃
sual GUI agent towards general computer control [C]//Findings of the Asso⁃
ciation for Computational Linguistics. ACL, 2025: 1461–1473

[40] LIN K Q H, LI L J, GAO D F, et al. ShowUI: one vision-language-
action model for GUI visual agent [EB/OL]. (2024-11-26) [2025-06-
01]. https://arxiv.org/abs/2411.17465

[41] LIU X, QIN B, LIANG D Z, et al. Autoglm: autonomous foundation
agents for GUIs [EB/OL]. (2024-10-28) [2025-06-01]. https://arxiv.org/
abs/2411.00820

[42] NING L B, LIANG Z R, JIANG Z H, et al. A survey of webagents: to⁃
wards next-generation AI agents for web automation with large founda⁃
tion models [C]//The 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. ACM, 2025: 6140–6150

[43] BAI S, CHEN K Q, LIU X J, et al. Qwen2.5-VL technical report [EB/
OL]. (2025-02-19) [2025-06-01]. https://arxiv.org/abs/2502.13923

[44] CHENG K Z, SUN Q S, CHU Y G, et al. Seeclick: harnessing GUI
grounding for advanced visual GUI agents [C]//The 62nd Annual
Meeting of the Association for Computational Linguistics. ACL,

2024: 9313–9332. DOI: 10.18653/v1/2024.acl-long.505
[45] DENG X, GU Y, ZHENG B Y, et al. Mind2web: towards a generalist

agent for the web [C]//The 37th International Conference on Neural In⁃
formation Processing Systems. ACM, 2023: 28091–28114

Biographies
SHEN Qiuhong received her BS degree from the University of Science and
Technology of China (USTC) in 2025. She is currently pursuing her MS degree
at USTC. Her research interests include information hiding and multimedia
security.

YANG Zijin received his BS degree from the University of Science and Tech⁃
nology of China (USTC) in 2022. He is currently pursuing a PhD degree in engi⁃
neering at the School of Cyber Science and Technology, USTC. His research in⁃
terests include information hiding and multimedia security.

JIANG Jun received his BS degree from Shanghai University, China in 2024
and is currently pursuing his MS degree at the University of Science and Tech⁃
nology of China. His research interests include information hiding and model
security.

ZHANG Weiming received his MS and PhD degrees from the Zhengzhou In⁃
formation Science and Technology Institute, China in 2002 and 2005, respec⁃
tively. Currently, he is a professor at the School of Information Science and
Technology, University of Science and Technology of China. His research inter⁃
ests include information hiding and multimedia security.

CHEN Kejiang (chenkj@mail.ustc.edu.cn) received his BS degree from Shang⁃
hai University, China and PhD degree from the University of Science and Tech⁃
nology of China (USTC) in 2015 and 2020, respectively. Currently, he is an as⁃
sociate professor at USTC. His research interests include information hiding,
image processing, and deep learning.

58

