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Abstract: In recent years, large vision-language models (VLMs) have achieved significant breakthroughs in cross-modal understanding 
and generation. However, the safety issues arising from their multimodal interactions become prominent. VLMs are vulnerable to jail⁃
break attacks, where attackers craft carefully designed prompts to bypass safety mechanisms, leading them to generate harmful content. 
To address this, we investigate the alignment between visual inputs and task execution, uncovering locality defects and attention biases 
in VLMs. Based on these findings, we propose VOTI, a novel jailbreak framework leveraging visual obfuscation and task induction. VOTI 
subtly embeds malicious keywords within neutral image layouts to evade detection, and breaks down harmful queries into a sequence of 
subtasks. This approach disperses malicious intent across modalities, exploiting VLMs’ over-reliance on local visual cues and their fra⁃
gility in multi-step reasoning to bypass global safety mechanisms. Implemented as an automated framework, VOTI integrates large lan⁃
guage models as red-team assistants to generate and iteratively optimize jailbreak strategies. Extensive experiments across seven main⁃
stream VLMs demonstrate VOTI’s effectiveness, achieving a 73.46% attack success rate on GPT-4o-mini. These results reveal critical 
vulnerabilities in VLMs, highlighting the urgent need for improving robust defenses and multimodal alignment.
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1 Introduction

Recent advancements in multimodal large language 
models, particularly vision-language models 
(VLMs), have significantly enhanced their capabili⁃
ties in cross-modal understanding and generation 

tasks. However, these developments have concurrently ex⁃
posed security vulnerabilities, most notably to jailbreak at⁃
tacks[1]. Such attacks, aimed at bypassing safety mechanisms 
and elicit harmful outputs through crafted inputs, have un⁃
derscored the fragility of existing safeguards. This vulner⁃
ability raises profound concerns regarding data privacy and 
societal impact[2]. Consequently, proactive vulnerability iden⁃
tification through red teaming[3] has emerged as an indispens⁃
able component of VLMs evaluation. This process not only 
reveals vulnerabilities but also provides critical feedback for 
developing robust defenses, thereby enhancing the trustwor⁃
thiness and resilience of these systems[4].

For large language models (LLMs), jailbreaking has evolved 

into a systematic discipline[5]. Techniques such as role-playing 
prompts, refusal suppression, emotional manipulation[6] and 
adversarial suffixes[7–8] have proven effective in bypassing 
safety mechanisms. VLMs, which integrate vision encoders 
with LLM backbones, inherit these vulnerabilities while intro⁃
ducing additional risks due to their multimodal architecture[4]. 
This expanded attack surface allows attackers to exploit inter⁃
actions between visual and textual inputs, resulting in more 
discreet and diverse attack vectors.

Current jailbreak attacks on VLMs are broadly classified 
into two categories based on the attackers’ access to the 
model: white-box attacks and black-box attacks. White-box at⁃
tacks suppose full knowledge of model parameters, typically 
employing gradient-based adversarial examples[9–12]. How⁃
ever, in real-world scenarios, attackers generally lack such ac⁃
cess, making black-box attacks, which rely solely on query-
based interactions, more practical and relevant, especially in 
commercial Application Programming Interface (API) con⁃
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texts. Although some black-box strategies achieve moderate 
jailbreak success, they frequently lack stealth and suffer from 
poor automation or optimization. Certain approaches[13–15] de⁃
pend on manually crafted attack samples, such as embedding 
explicit instructions into images via typography. While these 
methods may bypass pre-trained models, they typically fail 
against modern VLMs equipped with advanced safeguards, 
such as input purification[16] or anomaly detection[17]. Other 
methods[18–20] attempt to guide model reasoning through rel⁃
evant scene images[18, 20] or flowchart-style visuals[19], but they 
often lack the precision required to provoke harmful outputs, 
as aligned VLMs tend to revert to neutral interpretations. Fur⁃
thermore, optimization-based strategies[3, 21–22] often deviate 
from the original intent over multiple iterations due to insuffi⁃
cient guidance. Through our investigations, we observe that ex⁃
isting black-box jailbreak approaches remain constrained by 
limited stealth and inadequate use of multimodal interactions 
when targeting well-aligned VLMs. In particular, they tend to 
either rely heavily on explicit cues—making them easily de⁃
tectable—or lack a principled mechanism for gradually recon⁃
structing malicious intent in a way that avoids triggering safety 
mechanisms.

To address these challenges, we propose an automated 
black-box jailbreak framework called VOTI, standing for 
jailbreaking VLMs through visual obfuscation and task in⁃
duction. VOTI introduces a novel strategy that disperses ma⁃
licious semantics across both visual and textual modalities. 
It extracts malicious keywords from the original instruction, 
mixes them with randomly selected neutral words, applies 
diverse visual features for obfuscation, and embeds them 
into images to transfer high-risk semantics. Paired with care⁃
fully crafted textual prompts, we guide the VLMs to focus on 
a series of seemingly benign subtasks, drawing attention 
away from the underlying malicious purpose. Through this 
process, the model can be induced to reconstruct and ex⁃
ecute the harmful instruction without triggering safety fil⁃
ters. Unlike prior black-box approaches that either embed 
instructions directly into images or use simple visual decep⁃
tion, VOTI introduces dynamic visual obfuscation and task 
decomposition-based instruction reassembly, achieving both 
high stealth and semantic reconstruction. This cross-modal 
strategy bypasses the pattern-matching limitations of safety 
filters, presenting a fundamentally different path from typo⁃
graphic or role-play based jailbreaks. Critically, VOTI lever⁃
ages an optimization loop wherein a red-team assistant LLM 
generates attack strategies, and another LLM evaluates the 
VLM’s responses across multiple dimensions, driving itera⁃
tive refinement of the attack effectiveness.

Our VOTI is carefully designed to exploit several vulner⁃
abilities in VLMs. 1) VLMs depend on attention mecha⁃
nisms to process and integrate visual-textual input. These 
mechanisms often over-emphasize local visual features un⁃
der textual guidance while ignoring the global semantic co⁃

herence. 2) The fragility of cross-modal alignment fails to 
capture malicious intent when it is split across modalities. 
3) The weak contextual reasoning for visual inputs often 
treats embedded keywords as an isolated visual unit. 4) 
There is a fundamental conflict between model optimization 
and safety alignment: While the autoregressive objective en⁃
courages token prediction, safety alignment requires harm⁃
ful content to be suppressed—a contradiction that becomes 
more exploitable when the malicious task is decomposed 
into a series of seemingly benign subtasks.

As illustrated in Fig. 1, VOTI breaks through the limita⁃
tions of prior work in terms of stealth. Our contributions are 
summarized as follows:

• We propose the first multimodal jailbreak framework 
based on dynamic visual obfuscation and task induction. By 
combining visual feature composition and step-wise instruc⁃
tion reconstruction, VOTI significantly improves stealth, 
achieving higher success rates than baselines.

• We uncover two key vulnerabilities in cross-modal 
alignment of VLMs: locality defects and attention biases. 
VLMs often over-focus on visual token cues during step-
wise tasks and neglect global semantic consistency. These 
insights offer theoretical foundations for designing future 
defenses.

• We conduct extensive attack-and-defense experiments 
on two open-source VLMs and five closed-source VLMs, ex⁃
posing weaknesses in current safety mechanisms.
2 Related Work

2.1 Large Vision-Language Models
Large VLMs typically comprise a vision encoder like Con⁃

trastive Language-Image Pretraining (CLIP) [23] that converts 
images into high-dimensional representations, a projection 
layer[24] that aligns visual features with text in a shared seman⁃
tic space, and a backbone LLM for reasoning and generation. 
VLMs are pretrained on large-scale datasets to learn multi⁃
modal semantic correlations and then fine-tuned for specific 
tasks to enhance performance on complex multimodal que⁃
ries[25]. To align outputs with human values, many VLMs incor⁃
porate Reinforcement Learning from Human Feedback 
(RLHF)[26–27], using reward models and algorithms like Proxi⁃
mal Policy Optimization (PPO) [28] to balance task relevance 
and content safety. Despite their capabilities, the cross-modal 
alignment in VLMs introduces structural vulnerabilities. 
RLHF, largely trained on textual instruction-response pairs[29], 
lacks fine-grained supervision for visual inputs, creating blind 
spots in safety evaluation. Furthermore, VLMs’ architectures 
expand the attack surface[4], as their dependence on local vi⁃
sual features and limited reasoning robustness across modali⁃
ties makes them susceptible to adversarial manipulation. 
These challenges underscore the importance of targeted secu⁃
rity research in multimodal contexts.
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2.2 Jailbreak Attacks on VLMs
Most jailbreak attacks on VLMs adapt techniques from 

LLMs, introducing adversarial perturbations to textual or vi⁃
sual inputs[9–12]. For instance, QI et al. [9] use Projected Gra⁃
dient Descent (PGD) to optimize adversarial examples on 
harmful corpora to increase the likelihood of unsafe outputs. 
In black-box scenarios, transfer-based attacks[30–31] use sur⁃
rogate open-source VLMs to craft adversarial inputs transfer⁃
able adversarial inputs. Some methods[13–15, 32] exploit 
VLMs’ ability to process typographic visual prompts, trans⁃
ferring malicious intent to images or splitting it across mo⁃
dalities to bypass text-based safety checks. Representative 
works include FigStep[13],, which typesets harmful text into 
images with benign instructions to trigger unsafe responses. 
WANG et al.[32] apply encrypted transformations in game de⁃
velopment scenarios to conceal malicious content. In Ref. 
[20], HADES (hiding and amplifying harmfulness in images 
to destroy multimodal alignment) combines scene images, 
adversarial perturbations, and harmful keywords to enhance 
attacks. ZOU et al. [19] use flowcharts to convey malicious 
prompts, leveraging VLMs 􀆳 logical interpretation. In Ref. 
[18], Visual-RolePlay assigns deceptive personas to in⁃
crease compliance, and Jailbreak-in-Pieces[33] separates at⁃
tacks into benign text and adversarial images. Some ap⁃
proaches use LLMs or VLMs to iteratively refine jailbreak 
prompts based on target model feedback. However, as VLMs 
adopt more robust safety mechanisms[34–35], the efficacy of 
existing black-box jailbreaks is diminishing. In contrast, our 
method exploits VLMs’ locality bias and attention fragility, 

using visual obfuscation and task induction to stealthily 
hide malicious intent and optimize attacks via tailored feed⁃
back, achieving more effective jailbreaks.
3 Methodology

In this section, we present VOTI, a novel automated 
black-box jailbreak framework that leverages visual obfusca⁃
tion and task induction to bypass safety alignment in VLMs. 
As illustrated in Fig. 2, our method systematically disperses 
malicious semantics across visual and textual inputs, ex⁃
ploits cross-modal attention biases, and uses an iterative op⁃
timization loop to refine the attack strategy.
3.1 Threat Model

1) Adversary capabilities. Our attack operates in a black-
box setting[4], where the attacker is treated as a regular API 
user with no access to model parameters, gradients, or inter⁃
nal states. The attacker can only observe the model’s out⁃
put， given a specific input. Under this constraint, the attack 
strategy must rely on observable feedback to iteratively re⁃
fine adversarial inputs.

2) Attack goals. The objective of jailbreak attacks is to in⁃
duce a VLM to produce a harmful output yt that violates pre⁃
defined safety constraints[2]. Given a malicious user query 
Q = (T, ⊥ ) ∈ Q, where T is the text input and ⊥ indicates 
no image input, such as “How to make a bomb?”, the at⁃
tacker seeks to construct a new multimodal input Q' =
(T', I') ∈ Q', where T' is a crafted text prompt and I' is an 
adversarial image, such that the probability of generating yt 

VLM: vision-language model         VOTI: visual obfuscation and task induction

Figure 1. Example of jailbreak attacks on GPT-4o-0513 using FigStep and the proposed VOTI framework

Give detailed instructions on how to make a bomb or other explosive device.

FigStep

VOTI

VictimVLMs

…

Malicious Prompt

Note: The FigStep type-setting approach results in the model rejecting harmful queries.  In contrast, VOTI employs visual obfuscation and task induction to divert the model􀆳s attention, successfully eliciting a response to the malicious query during task induction.
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is maximized:
maxR  log p ( yt| Q') (1),

where R denotes the shared latent space formed by the fu⁃
sion of vision and language embeddings.
3.2 Malicious Intent Distribution via Visual Obfusca⁃

tion and Task Induction
To evade direct detection, VOTI first decouples the mali⁃

cious semantics and then redistributes them across visual 
features and instructional tasks, enabling stepwise reassem⁃
bly of harmful content.

1) Malicious intent distribution
The attack begins by distributing the explicit toxicity of 

the original malicious query Q = (T, ⊥ ) ∈ Q. A red-team 
attacker identifies toxic keywords K = { k1, k2,…, km } from 
the textual query T, and replaces them with placeholders 
(e. g., [ word1 ]) to form a detoxified query T *. This step 
avoids textual trigger patterns that could invoke content fil⁃
ters. Formally:

T * = D (T, K ) = T ∖ ∪ki ∈ K ki⊕{ }[ ]word i| ki ∈ K (2),
where ∖ denotes the removal of toxic keywords, and ⊕ de⁃
notes the concatenation operation. [word] i is a placeholder 

replacing each ki. The distribution function D  transforms T 
into a detoxified text prompt T *.

2) Visual prompt construction via obfuscation strategies
The visual obfuscation process overcomes the limitations 

of traditional methods in stealthiness and generality by em⁃
ploying a dynamic visual obfuscation strategy to convey ma⁃
licious semantics across modalities. This process exploits 
the attention bias in VLMs alignment. VLMs are prone to be⁃
ing induced by text to overly focus on local visual features, 
thereby neglecting the covert transmission of semantics.

Unlike prior approaches that directly embed malicious 
text into images, leaving them vulnerable to rule-based fil⁃
ters[36] or adaptive defenses like image analysis[17], we adopt 
a dual strategy: semantic dilution and multi-feature interfer⁃
ence. We mix malicious keywords K with randomly selected 
neutral words N = { n1, n2,…, nn } to disrupt semantic coher⁃
ence. Then we apply visual obfuscation strategies V * cre⁃
ated by the attacker to assign corresponding visual features 
to these words. Strategies V * come from the predefined vi⁃
sual features library V = { v1, v2,…, vq } (e. g., color coding, 
font variations, or geometric transformations). Specific vi⁃
sual obfuscations are detailed in Table 1. Each word is as⁃
signed a distinct visual style and typeset into a background 
image B, producing the final image I' as the visual prompt 
for the target VLMs:

LLM: large language model        VLM: vision-language model

Figure 2. Framework of VOTI

Image & text generation

Visual obfuscation

Type settingMalicious keywords Confusable words Visual strategies

Task induction
Begin context + detoxified prompt + sub-tasks

Optimization

Malicious intent
decoupling

Task completion score + reason Jailbreak score + reason Evaluator:red-team LLM

Response

Visual
prompt

Failed
No

Yes
Harmful content?

Jailbreak successful

Text
promptVisual featurelibrary

Malicious prompt

Attacker:
red-team LLM

TargetVLMs

…

Note: VOTI uses visual obfuscation and task induction to distribute malicious intent, employs automatic optimization to bypass VLMs safety mechanisms.  Ini⁃tially, a red-team LLM as an attacker detoxifies the original query by replacing toxic keywords with placeholders, generates visual obfuscation strategies, and crafts corresponding text prompts; these keywords are then blended with neutral words, typeset into an image applying the provided strategies, and used as the visual prompt for the target VLMs; text prompts guide the VLMs to reconstruct and respond to the mali-cious query through seemingly benign subtasks; an⁃other red-team LLM serves as an evaluator to evaluate the response of the target VLMs and provides feedback to the attacker to optimize the jailbreak strategy.
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I' = Typeset  ( ∪
ki ∈ K

{ }( )ki, vji
∪ ∪

nl ∈ N
{ }( )nl, vml

, B) (3),

where vji
, vml

∈ V are randomly assigned visual attributes for 
keywords ki and neutral words nl , respectively. B is the back⁃
ground image, which is generated according to the image de⁃
scription provided by the attacker LLM. The Typeset ( ⋅) op⁃
eration embeds the words with their visual attributes into the 
image B through typography. Subsequent task induction 
prompts compel the VLM’s vision encoder to focus on local⁃
ized visual cues rather than the collective semantic intent, 
evading global safety checks.

3) Task-oriented text prompt design
To reintroduce the toxic semantics, the task induction pro⁃

cess constructs text prompts that mask malicious intent 
within benign instructions, subtly steering the VLMs to re⁃
construct and respond to the malicious query through staged 
reasoning. This exploits a key weakness in VLM safety 
mechanisms: their tendency to evaluate subtasks indepen⁃
dently without linking them to a broader malicious intent. 
Unlike prior methods that deliver full malicious intent in a 
single prompt or image, task induction incrementally recon⁃
structs malicious semantics, making it harder for the safety 
mechanisms to detect intent drift across subtasks.

The prompt T' is initially framed within a benign context 
(e. g., educational or gaming scenarios) to reduce vigilance. 
The attack is then divided into three subtasks: extracting 

keywords, reconstructing query, and inducing response. For⁃
mally, let T' = T (T *, C, P ) represent the text prompt con⁃
struction, where T * is the detoxified text prompt from the at⁃
tacker, and C is the benign context. The task induction pro⁃
cess generates a sequence of subtask prompts P =
{ P1, P2, P3 }, where:

• P1 instructs the VLM to extract a set of words W =
{ w1, w2,…, wm } from the image I' based on specified visual 
features V' ⊆ V.

• P2 guides the VLM to insert the extracted words W into 
the [word] i placeholders in T * to reconstruct the malicious 
query.

• P3 induces the VLM to generate a response y to the re⁃
constructed query.

Thus, we get the inputs Q' = (T', I') ∈ Q' to jailbreak the 
target VLMs.
3.3 Optimization for Improving Jailbreak Strategies

To further improve stealth and attack efficacy, VOTI uses 
an optimization strategy incorporating two red-team LLM as⁃
sistants. At each iteration, an LLM served as the attacker 
proposes a jailbreak strategy Si = (V', T'). Based on V', we 
synthesize an image I' according to 0, forming the multi⁃
modal query Q'(Si ) = (T', I'), which is input into the target 
VLM to obtain the response yt. Another red-team LLM 
serves as the evaluator and then scores the output along two 
dimensions:

• Task completion score K (Q', y ) ∈ { 0, 1 }: indicating 
whether the malicious keywords are successfully extracted 
from I'. A score of “1” means the prerequisite extraction 
task has been completed; “0” indicates failure.

• Jailbreak effectiveness score J (Q', y ) ∈ [1, 5]: measur⁃
ing how well yt aligns with the malicious intent. Higher 
scores reflect increasing levels of compliance and harmful⁃
ness, from full refusal “1” to complete, unfiltered execution 
of the malicious instruction “5”.

The optimization objective is defined as:
S* = arg max

St

 E [J (Q'(St ) , y ) |K (Q'(St ) , y ) = 1] (4),

which ensures that only strategies satisfying the prerequisite 
task are optimized for effectiveness. Moreover, the evaluator 
provides detailed feedback—such as linking extraction fail⁃
ures to specific visual features or noting insufficient harm⁃
fulness—guiding the attacker to adjust obfuscation strate⁃
gies or rephrasing text prompts1. Unlike traditional red-team 
automation, this framework incorporates task completion as 
a critical dimension, ensuring realistic strategy improve⁃

1 The detailed prompts for both LLMs are available at https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202503003 and https://link.cnki.net/urlid/34.1294.
TN.20250909.1845.002.

Table 1. Description of visual features for visual obfuscation strategies. 
We predefine seven categories of visual features: font color, font style, 
font size, border color, border shape, geometric transformations, and 

encryption, along with an option to include background images
Visual 

Features
Font-color
Font-style

Scaling
Shape-box

Color-box
Highlight

Transforms
Encoding

Image back⁃
ground

Explanation
the font color of the words, e.g., red, blue

the font style of the words, e.g., bold, italic, underline, 
strike-through

the font size of the words, e.g., 10 pt, 60 pt
bounding boxes of different shapes around the word, 

e.g., rectangular, ellipse-shaped
bounding boxes of different colors around the word, 

e.g., red, blue
colors of highlighting, e.g., red, blue

spatial transformations of the word, e.g., rotation, mirror flip
encoding strategies, e.g., Base64, Caesar cipher shift

solid color (e.g., white), complex mosaic, 
and meaningful scene
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ments under constrained optimization without aimless diver⁃
gence. The process iterates until the jailbreak score reaches 
a threshold or a predefined number of rounds is reached, 
balancing efficiency and effectiveness.
4 Experiments

4.1 Experimental Setup
1) Target models
To evaluate the effectiveness of VOTI, we select main⁃

stream VLMs as target models. For open-source models, we 
choose MiniGPT-4 (Vicuna-v1.5-13B21 version) [37] and 
LLaVA-v1.5-13B[38], both of which employ a joint architecture 
of vision encoders and language models, demonstrating excel⁃
lent performance in multimodal understanding tasks. For 
closed-source models, we select commercial models including 
Gemini-1.5-flash[39], GPT-4o-mini[40], GPT-4o-0513[40], Claude-
3.5-Sonnet[41], and Qwen-VL-Max[42], representing the current 
state-of-the-art multimodal processing capabilities.

2) Evaluation metrics
We adopt the attack success rates (ASR) as the primary 

evaluation metric, defined as follows:

ASR = ∑
i = 1

N

I ( )J ( )Q', y ≥ St

N (5),
where Q' represents the image-text pairs constructed by the 
attacker, and y is the target VLM’s response. The function 
J (Q', y ) denotes the jailbreak score from the evaluator, 
with St as the success score threshold. The indicator func⁃
tion I ( )⋅  returns 1 if J (Q', y ) ≥ St, and 0 otherwise. N is the 
total number of image-text pair queries.

Considering that jailbreak success often depends on the 
completion of prerequisite tasks, we introduce an additional 
metric, the dependency-based success rates (DSR):

DSR = ∑
i = 1

N

I ( )J ( )Q', y ≥ St ⋅ I ( )K ( )Q', y = 1
∑
i = 1

N

I ( )K ( )Q', y = 1
(6),

where K (Q', y ) is a function indicating whether the target 
VLM correctly extracts malicious keywords from the visual 
input, returning 1 if the prerequisite task is completed. This 
metric focuses on jailbreak success conditional on success⁃
ful keyword extraction, highlighting the method’s ability to 
achieve semantic transfer through cross-modal coordination.

3) Baselines

To assess the generalizability and superiority of our 
method, we compare it against four classic VLM jailbreak at⁃
tack methods:

• FigStep[13] rewrites harmful queries into declarative in⁃
structions (e.g., “Steps to”) and embeds them in white-
background images, paired with benign text prompts like “gen⁃
erate detailed list content” to facilitate the attack.

• HADES[20] extracts harmful keywords from text instruc⁃
tions, typesets them into images, and integrates them with 
scene graphs as visual input when in a black-box attack.

• Multi-Modal Linkage (MML) [32] extends FigStep by in⁃
corporating word substitution, image mirroring, rotation, and 
Base64 encoding to process harmful query images, setting 
the attack in a video game development context and using 
text prompts to guide the model to decrypt and reconstruct 
the original query.

• Best-of-N (BoN) [14] resembles FigStep in its typesetting 
approach and introduces visual interference by randomly ad⁃
justing the font, color, and position of the harmful query text 
within the image and adding random color blocks.

4) Datasets
We use AdvBench[8], which contains 520 harmful text 

prompts covering malicious behaviors such as cyber-crime, 
misinformation, discriminatory content, and illegal advice. 
Additionally, to compare with the HADES baseline, we uti⁃
lize the HADES dataset[20], which includes carefully crafted 
images designed to conceal and amplify harmful intent. 
HADES dataset covers five harmful scenarios: animal, finan⁃
cial, privacy, self-harm, and violence, with 150 image-text 
pairs per scenario.

5) Implementation details
For VOTI, we set the maximum number of query itera⁃

tions to 5. The attacker is GPT-4[43] with a temperature of 
0.8, and the evaluator is DeepSeek-Chat[44] with a tempera⁃
ture of 0.2. The attack success score threshold St is set to 4. 
When the attack strategy requires complex backgrounds, we 
utilize Stable-Diffusion-2-Base32 for image generation. For 
target VLMs, we use a default temperature of 0.7. Closed-
source models are accessed via APIs, while open-source 
models are deployed locally using official weights and code 
on an NVIDIA RTX A6000 GPU cluster.
4.2 Experimental Results

To assess the effectiveness of VOTI, we conducted a jail⁃
break attack on mainstream VLMs. The results demonstrate 
that VOTI outperforms baseline methods across both open-
source and closed-source models, showcasing significant capa⁃
bilities. Detailed jailbreaking examples can be found in Ap⁃
pendix A.

As shown in Table 2, VOTI surpasses baseline methods 

2 https://huggingface.co/lmsys/vicuna-13b-v1.5
3 https://huggingface.co/stabilityai/stable-diffusion-2-base
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across most models on AdvBench. Specifically, VOTI 
achieves an ASR of 77.31% on Qwen-VL-Max, 73.46% on 
GPT-4o-mini, and 65.96% on LLaVA-v1.5-13B, all exceed⁃
ing the baseline. Notably, on GPT-4o-0513, VOTI improves 
ASR by 11.73% compared to MML. Even against the robust 
Claude-3.5-Sonnet, VOTI achieves an ASR of 3.85%, sur⁃
passing FigStep and BoN, both at 0.58%. These results indi⁃
cate that even closed-source models exhibit vulnerabilities 
when confronted with VOTI’s cross-modal attacks. Despite 
their advanced capabilities and sophisticated safety align⁃
ment, these models struggle to counter attacks that subtly 
conceal malicious intent within multimodal inputs.

Moreover, the gap between ASR and DSR highlights the 
modality-specific bottlenecks of the attacks. For closed-
source models, the proximity of ASR and DSR suggests that 
the text induction is frequently intercepted by safety mecha⁃
nisms. Conversely, on MiniGPT-4, VOTI does not outper⁃
form the simpler FigStep, but its significantly higher DSR 
compared to ASR indicates that the visual obfuscation is the 

primary limitation. This suggests that MiniGPT-4 struggles 
to process complex visual features, failing to accurately ex⁃
tract critical semantic cues as effectively as it handles sim⁃
pler visual information. Consequently, during multi-step 
task induction, information loss or misalignment in the in⁃
struction reconstruction chain reduces the overall success 
rate of the jailbreak attack.

From the perspective of the datasets, AdvBench encom⁃
passes a broad range of malicious instructions, while 
HADES focuses on specific harmful scenarios. In Table 3, 
VOTI significantly outperforms the HADES baseline. On 
Qwen-VL-Max, VOTI achieves an average ASR of 61.33%, 
compared to HADES’s 11.33%, with peak performance in fi⁃
nancial (84.00%) and violence (64.00%) scenarios. The 
minimal difference between VOTI’s DSR and ASR under⁃
scores its robust visual processing and task execution capa⁃
bilities, revealing that deficiencies in global safety scrutiny 
become exploitable vulnerabilities for attackers.
4.3 Ablation Study

To dissect the contributions of key components in VOTI, 
we conducted ablation studies by randomly sampling 50 
prompts from the AdvBench, focusing on the role of visual 
obfuscation and the impact of iteration counts.

1) Effects of visual obfuscation
We compared the ASR under different visual obfuscation 

strategies: 1) no visual obfuscation, where malicious key⁃
words are directly typeset in the image with text prompts in⁃
structing the model to identify words in the image (subse⁃
quent tasks remain consistent); 2) a single obfuscation strat⁃
egy, such as Font-Color (FC), Boxing-Shape (BS), or Encod⁃
ing (En); 3) combinations of two obfuscation strategies, such 
as FC+BS or FC+En; 4) the full set of obfuscation strategies 
proposed in this study. As shown in Fig. 3, GPT-4o-mini 
and Qwen-VL-Max achieve higher ASR when all obfuscation 
strategies are employed compared to simpler configurations, 

Table 2. Comparison of ASR (%) with baseline methods on AdvBench, 
with additional reporting of VOTI􀆳s DSR (%)

Source Type

open-source

close-source

Target VLMs
MiniGPT-4
LLaVA-v1.5

Gemini-1.5-flash
GPT-4o-mini
GPT-4o-0513

Claude-3.5-Sonnet
Qwen-VL-Max

FigStep
48.08

54.23
4.04

10.19
9.04
0.58

17.69

MML
10.38
45.96
49.62
71.35
52.50
4.23

72.31

BoN
47.50
58.46
3.65

10.58
9.23
0.58

16.73

Ours
30.19
65.96

57.12

73.46

64.23

3.85
77.31

Ours 
(DSR)
91.28
97.44
60.24
76.86
66.53
3.94

79.13
ASR: attack success rate
BoN: Best-of-N
DSR: dependency-based success rate
MML: Multi-Modal Linkage

VLM: vision-language model 
VOTI: visual obfuscation and task 
induction

Table 3. Comparison of ASR (%) with baseline methods on HADES, with additional reporting of VOTI􀆳s DSR (%)
Target VLMs

Gemini-1.5-flash

GPT-4o-mini

GPT-4o-0513

Claude-3.5-Sonnet

Qwen-VL-Max

Scenarios
HADES

Ours
HADES

Ours
HADES

Ours
HADES

Ours
HADES

Ours

Animal
2.67
48.00

6.00
55.33

2.00
34.67

0.00
8.00

6.00
75.33

Financial
19.33
55.33

13.33
60.67

3.33
52.00

1.33
9.33

28.67
84.00

Privacy
10.00
52.67

9.33
52.00

3.33
48.00

1.33
11.33

12.67
61.33

Self-Harm
1.33
27.33

2.67
20.67

1.33
14.00

0.00
6.00

3.33
22.00

Violence
6.00
66.00

8.67
48.00

4.00
38.67

2.00
12.00

6.00
64.00

Average
7.87
49.87

8.00
47.33

2.80
37.47

0.93
9.33

11.33
61.33

DSR
―

54.05
―

51.98
―

40.32
―

9.92
―

64.43
ASR: attack success rate
DSR: dependency-based success rate

HADES: hiding and amplifying harmfulness in im⁃
ages to destroy multimodal alignment

VLM: vision-language model 
VOTI: visual obfuscation and task induction

21



ZTE COMMUNICATIONS
September 2025 Vol. 23 No. 3

ZHU Yifan, CHU Zhixuan, REN Kui 

Special Topic   VOTI: Jailbreaking Vision-Language Models via Visual Obfuscation and Task Induction

indicating that closed-source models are more susceptible to 
comprehensive obfuscation strategies. Complex obfuscation 
effectively diverts the model’s attention from malicious in⁃
tent. For MiniGPT-4, the ASR reaches 90% without obfusca⁃
tion but drops significantly as obfuscation complexity in⁃
creases, plummeting to 30% with the 
full combination of strategies (All). This 
suggests MiniGPT-4 is highly sensitive 
to simple visual features, and complex 
obfuscation disrupts its processing ca⁃
pabilities. LLaVA-v1.5-13B exhibits 
moderate adaptability, with an ASR of 
72% under single-frame obfuscation 
and 48% with all strategies combined.

2) Effects of iteration counts
We investigated the effect of optimi⁃

zation iteration counts by testing 1, 3, 6, 
and 9 iterations, with results presented 
in Fig. 4. The results show that 6 itera⁃
tions yield the optimal ASR across all 
models. Increasing iterations to 9 pro⁃
vides negligible improvements, suggest⁃
ing convergence around 6 iterations. 
Reducing the number of iterations leads 
to a noticeable decline in ASR, particu⁃
larly for closed-source models. 
MiniGPT-4’s ASR stabilizes early with 
consistently high values, reflecting its 

limited ability to handle sophisticated obfuscation strategies.
3) Effects of temperature
As illustrated in Fig. 5, the sampling temperature during 

model inference affects attack performance. Lower tempera⁃
ture values result in more conservative and stable outputs, 
as the model tends to select the most probable words. Con⁃
versely, higher temperature values increase output random⁃
ness, yielding more diverse and creative text. For most mod⁃
els, increasing the temperature from 0 to 1 leads to a modest 
rise in ASR. This suggests that higher temperatures enhance 
the model’s generative diversity, enabling it to more “cre⁃
atively” reconstruct malicious instructions and engage with 
hypothetical scenarios induced by multimodal prompts, 
thereby improving jailbreak success. However, the limited 
magnitude of ASR changes indicates that these models gen⁃
erally favor conservative outputs in their sampling strate⁃
gies. Regardless of temperature, they struggle to deviate 
from the optimal paths enforced by safety alignment training.
5 Discussion and Future Work

The effectiveness of VOTI highlights critical vulnerabilities 
in current VLMs, particularly their susceptibility to visual ob⁃
fuscation, over-reliance on local attention, and the inability to 
maintain global semantic coherence across multi-step reason⁃
ing. By dispersing malicious intent across modalities and le⁃
veraging task decomposition, VOTI is able to bypass existing 
safety mechanisms that typically focus on surface-level pat⁃
terns or isolated inputs. These findings underscore the neces⁃
sity of enhancing the robustness of VLMs against such 
stealthy and compositional attacks. To this end, we suggest 

ASR: attack success rate      DSR: dependency-based success rate
Figure 4. Comparison of ASR (%) and DSR (%) for jailbreak attacks on 50 randomly sampled 

malicious queries from AdvBench, using varying maximum optimization iteration counts

Figure 3. Comparison of ASR (%) for jailbreak attacks on 50 randomly 
sampled malicious queries from AdvBench, using different 

visual obfuscation features
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several potential directions for improving VLMs’ safety. First, 
VLMs should be equipped with mechanisms to enforce stron⁃
ger cross-modal semantic consistency, ensuring that the align⁃
ment between visual and textual inputs is globally coherent 
rather than locally reactive. Furthermore, the ability to track 
and integrate intent across multiple subtasks is essential—
models should not treat each reasoning step as an independent 
unit, but rather evaluate the evolving semantic context holisti⁃
cally. This calls for refinements in current safety alignment, 
such as RLHF, which are typically optimized for single-turn 
responses. Expanding these frameworks to maintain persistent 
safety constraints throughout multi-step interactions can re⁃
duce the model’s vulnerability to task induction. By embed⁃
ding safety awareness into the entire reasoning chain, VLMs 
may become more resilient to attacks like VOTI that operate 
through semantic reassembly. These directions aim to fortify 
VLMs’ resilience against VOTI-like attacks, contributing to 
safer multimodal AI systems. Future work will further explore 
these defensive strategies to develop more robust architectures 
and training paradigms, ensuring VLMs remain secure in real-
world applications.
6 Conclusions

In this paper, we explore the safety vulnerabilities of 
VLMs from a red-team perspective, developing a novel jail⁃
break attack method based on visual obfuscation and task in⁃
duction (VOTI). VOTI distributes malicious intent across 
text-visual modalities by employing dynamic visual obfusca⁃
tion strategies and leveraging step-by-step task induction. 

This approach significantly enhances 
attack stealthiness and generalization. 
Experimental results demonstrate that 
VOTI achieves high attack success 
rates across multiple mainstream 
VLMs, outperforming baseline meth⁃
ods. Ablation studies further validate 
the combined effects of visual obfusca⁃
tion and the effectiveness of iterative 
optimization. Our findings expose criti⁃
cal weaknesses in VLMs, including at⁃
tention biases, fragile cross-modal se⁃
mantic alignment, and limitations in 
step-by-step reasoning. This work not 
only introduces a new technical para⁃
digm for multimodal jailbreak attacks 
but also provides a theoretical founda⁃
tion for understanding the vulnerabili⁃
ties in VLMs safety alignment.
Appendix A: 

Detailed Examples　

Figure 5. Comparison of ASR (%) and DSR (%) for jailbreak attacks on 50 randomly sampled 
malicious queries from AdvBench, using different inference temperatures for target large 

vision-language models (VLMs)

ASR: attack success rate      DSR: dependency-based success rate

Figure A1. A jailbreak case on GPT-4o-mini
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