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Abstract: Visual object tracking (VOT), aiming to track a target object in a continuous video, is a fundamental and critical task in computer 
vision. However, the reliance on third-party resources (e.g., dataset) for training poses concealed threats to the security of VOT models. In this 
paper, we reveal that VOT models are vulnerable to a poison-only and targeted backdoor attack, where the adversary can achieve arbitrary 
tracking predictions by manipulating only part of the training data. Specifically, we first define and formulate three different variants of the tar⁃
geted attacks: size-manipulation, trajectory-manipulation, and hybrid attacks. To implement these, we introduce Random Video Poisoning 
(RVP), a novel poison-only strategy that exploits temporal correlations within video data by poisoning entire video sequences. Extensive ex⁃
periments demonstrate that RVP effectively injects controllable backdoors, enabling precise manipulation of tracking behavior upon trigger 
activation, while maintaining high performance on benign data, thus ensuring stealth. Our findings not only expose significant vulnerabilities 
but also highlight that the underlying principles could be adapted for beneficial uses, such as dataset watermarking for copyright protection.
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1 Introduction

Visual object tracking (VOT) is a fundamental and clas⁃
sical task in the field of computer vision[1–3]. It has 
played an important role in various mission-critical 
applications, such as autonomous driving and traffic 

control[4–6]. In general, VOT aims to continuously trace a 
given target object and predict its position (i.e., the bounding 
box) in each frame of the video. The bounding box contains 
the location coordinates and the size of the target object. Cur⁃
rently, state-of-the-art VOT methods are predominantly based 
on deep neural networks (DNNs), specifically Siamese net⁃
works[7–8] or Transformers[9–10]. During the training of DNNs, 
model developers commonly rely on third-party resources, 
such as datasets, pre-trained models, or computational re⁃
sources. However, the utilization of these external resources 
may result in a lack of transparency in the training process, 

consequently posing potential security threats, such as back⁃
door attacks[11–12].

Previous studies, as shown in Refs. [13–15], have demon⁃
strated the vulnerability of DNNs against backdoor attacks. 
Backdoor attacks are designed to introduce a concealed behav⁃
ior into a victim model. The backdoored model functions nor⁃
mally when processing benign data. However, the backdoored 
model will produce an intentional misclassification output 
upon receiving a sample containing a specific pattern (re⁃
ferred to as a trigger pattern)[11]. The implications of such back⁃
door attacks on model integrity can be substantial in terms of 
security concerns.

Existing efforts mainly focus on backdooring the models of 
some simple tasks, such as image classification models[16–18] 
or natural language processing models[19–21]. However, very 
few works pay attention to the models of VOT, which is a con⁃
tinual and complex task. LI et al. [22] proposed the first back⁃
door attack against the VOT models, namely Few-Shot Back⁃
door Attacks (FSBA). FSBA is an untargeted attack, and the 
goal of FSBA is to make the prediction bounding box deviate 
from the ground truth when the trigger pattern appears. Follow⁃
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ing FSBA, CHENG et al. [23] designed a targeted backdoor at⁃
tack, called Targeted Backdoor Attacks (TAT) against Visual 
Object Tracking. The targeted attack enables the adversary to 
achieve arbitrary target predictions by manipulating the trig⁃
ger. However, these two approaches necessitate intervention 
in the training process of the VOT models, i. e., they are not 
poison-only. Additionally, TAT only focuses on limited targeted 
behaviors. Recently, HUANG et al. [24] put forth a poison-only 
backdoor attack, BadTrack, that only needs to modify the data. 
But BadTrack is an untargeted attack whose influence is rela⁃
tively limited. How to achieve a poison-only and targeted back⁃
door attack against the VOT models is still an open problem.

In this paper, we initiate the study of the poison-only and 
targeted backdoor attack against the VOT models, i.e., inject⁃
ing the adversary-specified behaviors as backdoors into the 
models by manipulating only (part of) the training data. We de⁃
fine the following three different variants of targeted attacks 
against the VOT models, as depicted in Fig. 1.

• Size-manipulation attack: In the context of a size-manipulation 

attack, the adversary aims to control the size of the predicted 
bounding box, e.g., making the bounding box larger or smaller 
than the ground truth.

• Trajectory-manipulation attack: In the trajectory-manipulation 
attack, the adversary intends to manipulate the predicted move⁃
ment trajectory of the target object, e.g., making the bounding box 
fixed or move along a specific straight line.

• Hybrid attack: In the hybrid attack, the adversary simulta⁃
neously controls the trajectory and size of the target object. 
This implies that the adversary has complete domination over 
the predictions of the VOT models.

To implement the above three different targeted attacks, the 
fundamental insight is to make the model trained on the poi⁃
soned dataset track the trigger pattern instead of the original 
target object. Following such insight and inspired by prior 
works[24], we first propose our basic strategy: Random Frame 
Poisoning Attack (RFP). In RFP, we randomly select a certain 
proportion of frames in the dataset. Subsequently, the trigger 
pattern is inserted into the center of the bounding boxes in the 

Figure 1. Demonstration of different variants of the targeted attacks against VOT models: (a) tracking the object normally without an attack; 
(b) forcing the size of the predicted bounding box to be larger or smaller; (c) manipulating the predicted movement trajectory; 

(d) controlling the size and trajectory simultaneously

(a) No attack

(b) Size-manipulation attack

(c) Trajectory-manipulation attack

(d) Hybrid attack
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selected frames. As a result, the backdoored VOT models will 
learn to track this trigger pattern when it appears.

However, we demonstrate that this basic strategy is not ef⁃
fective in practice (as in Section 4). The ineffectiveness of 
RFP can be attributed to the following two reasons. First, in 
the poison-only attack, the adversary cannot intervene in the 
training process of the models. Some techniques used during 
training, such as frame sampling, can have a negative impact 
on the effectiveness of the RFP. Second, in RFP, the poisoned 
frames are sourced from different videos and lack chronologi⁃
cal relevance. Consequently, the backdoored model can 
hardly learn the temporal correlation between these frames. 
As such, the adversary cannot achieve continuous manipula⁃
tion of the predictions in a whole video.

Based on the above findings, we then propose our improved 
strategy, Random Video Poisoning Attack (RVP), to imple⁃
ment the poison-only and targeted backdoor attack. Instead of 
poisoning scattered frames, RVP proposes to randomly select 
several videos and poison all the frames in those videos while 
maintaining the same poisoning rate (i.e., the proportion of the 
poisoned frames in the dataset is the same). The frames in the 
same video are closely related. Consequently, the model is ca⁃
pable of learning the correlation between the poisoned frames 
and thus enhancing its ability to remember the trigger pattern. 
We respectively design a dirty-label attack and a clean-label 
attack. We modify the labels of the poisoned dataset in the 
dirty-label attack, while those in the clean-label attack remain 
unchanged. Additionally, we propose a simple yet effective de⁃
sign for generating a scalable and imperceptible trigger pat⁃
tern. Specifically, we leverage the sinusoidal signal as the trig⁃
ger pattern. Our proposed trigger patterns can easily be res⁃
caled to different sizes and different intensities to achieve dis⁃
tinct targets.

Our contributions are summarized as follows.
• We raise and formulate the problem of a poison-only and 

targeted backdoor attack in VOT. We define three different 
variants of the targeted attacks, including the size-
manipulation attack, trajectory-manipulation attack, and hy⁃
brid attack.

• We study a basic strategy of RFP and reveal that the inef⁃
fectiveness of RFP stems from the constraint in the poison-
only attack and the neglect of the temporal correlation be⁃
tween frames.

• We propose the improved strategy of RVP. RVP can suc⁃
cessfully inject the backdoor into the VOT models and the ad⁃
versary can achieve any malicious targets by manipulating the 
trigger pattern in the inference stage.

• We conduct comprehensive experiments by applying 
RVP to implement the three attacks. The empirical results 
demonstrate the effectiveness of our proposed attack. The ex⁃
periments in the physical world also highlight the severity of 
our attack.

2 Preliminaries

2.1 Visual Object Tracking
VOT is an important research field in computer vision, fo⁃

cusing on the continuous localization and tracking of a speci⁃
fied target within a video sequence[2]. VOT has made signifi⁃
cant progress and is widely adopted in various application sce⁃
narios, such as video surveillance[25], sports analysis[26], autono⁃
mous driving[27], and robots[28]. These achievements highlight 
the growing importance of VOT.

The primary task of VOT is to track the position of a given 
target in a video sequence. In this paper, we focus on single-
object tracking, which is the most popular task in VOT[29]. Spe⁃
cifically, let V = { I i }n

i = 1 denote a video of n continuous frames 
and B = { b i }ni = 1 denote the set of ground-truth locations (i.e., 
the bounding boxes) of the target object in each frame. Each 
bounding box b i consists of four elements (xi, yi, wi, hi), where 
xi, yi are the coordinates of the center and wi, hi are the width 
and height of the bounding box, respectively. The initial state 
b1 of the target object in the first frame I1 is defined as the 
template. Given the template and a search region, the goal of 
the VOT model is to predict the positions of the target object 
in the subsequent frames, as shown in Eq. (1).
p2,…, pn = f (V, I1, b1 ; Θ) (1),

where f ( ⋅ , ⋅,⋅ ; Θ) is the VOT model with the parameters Θ 
and p2,…, pn are the predicted positions of the target object in 
the remaining frames.

Currently, there are two main types of models to implement 
the VOT model. One is Siamese networks[7–8, 30] and the other 
is Transformers[9–10, 31]. The Siamese network is a two-stream 
two-stage neural network. It first extracts features from the 
template and the search region using a shared backbone. Sub⁃
sequently, a lightweight relation modeling module integrates 
these features and generates predicted positions based on the 
fused features. In contrast, Transformer-based VOT models 
are one-stream and one-stage. Transformers combine feature 
extraction and relation modeling via a unified pipeline, result⁃
ing in high effectiveness and efficiency.
2.2 Backdoor Attack Against VOT

Backdoor attacks[32–34] have become one of the most serious 
threats to DNNs. In backdoor attacks, the adversary may tam⁃
per with the training data or manipulate the training process of 
the model to induce the model to behave in an adversarial 
manner[11]. The backdoored model can still make accurate pre⁃
dictions for benign samples but will misclassify the input 
samples with a specific trigger. These misclassified samples 
are called trigger samples. Over the past few years, backdoor 
attacks have been widely studied in the context of image clas⁃
sification[13, 16], natural language processing[35–36], federated 
learning[37–38], and other deep learning tasks[39–40].
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On the contrary, research on backdoor attacks against VOT 
models remains limited. Current approaches are primarily rep⁃
resented by three methods[22–24]: FSBA, an untargeted attack 
that degrades model performance through a specific feature 
loss; TAT, a targeted attack designed to force the model to 
track the trigger pattern instead of the actual object; and 
BadTrack, a poison-only untargeted approach that operates by 
inserting a visible trigger outside the bounding box to cause 
tracking deviation. A critical limitation of both FSBA and 
TAT is their requirement for intervention during the model 􀆳 s 
training process, while BadTrack remains constrained by its 
untargeted nature. Consequently, the development of a poison-
only targeted backdoor attack for VOT models continues to 
pose an unresolved challenge.
2.3 Threat Model

In this paper, we assume a poison-only scenario where the 
adversary can only modify the VOT dataset instead of the 
training process of the VOT models. This scenario may occur 
when the model trainer procures video-annotated datasets 
from a third-party platform[11]. We assume that the adversary 
has the following capabilities.

• The adversary has access to the training data and can ma⁃
nipulate those data. We consider two different scenarios 
called full delegation and partial delegation[41]. The former 
means that the adversary can modify the full dataset while the 
latter means the adversary can only contaminate a subset of 
the dataset.

• The adversary has no knowledge of the training details, 

such as the architectures of the models and the data augmenta⁃
tion methods used for training. The adversary cannot interfere 
with the training of the VOT models.

• After the model trainer trains and deploys the VOT 
model leveraging the poisoned dataset, the adversary can 
have black-box access to the backdoored model. The adver⁃
sary can query the backdoored model with elaborate trigger 
samples or create realistic scenarios to attack the VOT mod⁃
els in the physical world.
3 Poison-Only and Targeted Backdoor At⁃

tack Against VOT

3.1 Attack Formulation
In this section, we present the formulation of the poison-

only and targeted backdoor attack against VOT models. The 
process of such an attack can be divided into three stages: 
data collection stage, model training stage, and inference 
stage. The illustration of the attack is shown in Fig. 2.

1) Data collection stage: In the data collection stage, the ad⁃
versary utilizes the attack technique to poison the dataset. 
Given a benign training dataset D = { }( )V  1, B1 ,…, ( )V  k, Bk  
with k samples, where (V   j, B  j) denotes a sample with a video 
V   j and the set of the ground-truth bounding boxes B i. Each 
video V  i consists of n frames { I ji }n

i = 1 and each set of the 
bounding boxes also contains n bounding boxes { b j

i }n
i = 1. In a 

poison-only attack, the adversary cannot manipulate the train⁃
ing process of the model. As such, the adversary aims to build 

Figure 2. Pipeline of the poison-only and targeted backdoor attack against VOT models. In the dirty-label setting, the ground-truth label is directly 
shifted to the trigger pattern􀆳s location, explicitly training the model to treat the pattern as the object to track. In contrast, in the clean-label 

setting, the trigger pattern is overlaid on the real target, causing the model to learn the pattern as part of the target􀆳s appearance. 
As a result, during inference, the presence of the pattern alone can activate the backdoor and mislead the tracker

(a) Data collection stage

(1) Dirty label

Benign dataset
(2) Clean label

Benign dataset

(b) Train stage
Poisoned dataset

Trainer

Poisoned model

Poisoned dataset

(c) Inference stage

Template Search region Tracking result

Poisoned model

Poisoned 
template

Poisoned 
search region Tracking resultTracking result

Gt

Mt

Gt

Poisoned dataset
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a poisoning dataset D̂ = { V̂  i, B̂ i }k
i = 1 to poison the model 

trained on D̂ into a poisoned version f ( ⋅ , ⋅,⋅ ; Θ̂). The adver⁃
sary leverages the following two functions to generate the poi⁃
soned dataset:

ì
í
î

ïï

ïïïï

V̂  i = Gt( )V  i, T
B̂ i = Mt( )B i

(2).

In Eq. (2), Gt(V  i, T ) is utilized to add the trigger pattern t 
to the frames of the video V  i, and Mt(B i ) means changing the 
bounding box to a specific target. If Mt (⋅) is the identity func⁃
tion, i. e., B̂ i = Mt(B i ) = B i, it is called a clean-label attack. 
Otherwise, it is a dirty-label attack. The methods and strate⁃
gies to implement Gt (⋅) and Mt (⋅) are described in Sections 
3.2, 3.3, and 3.4.

2) Model training stage: In the model training stage, the vic⁃
tim model trainer leverages the poisoned dataset as (part of) 
the training dataset and develops a VOT model. The trainer 
has the flexibility to adopt any model architecture and training 
technique in order to acquire a high-performance model. Sub⁃
sequently, following the training process, the backdoored 
model may be deployed to the cloud or devices by the trainer.

3) Inference stage: In the inference stage, given a benign 
video V, the adversary utilizes another method Gi (⋅) to gener⁃
ate the trigger video V t , i. e., V t = Gi(V, T ). After the victim 
model trainer deploys the backdoored model, the adversary 
can input the specific trigger sample V t to the backdoored 
model to acquire the target predictions. Assuming that the pre⁃
dicted bounding box in the i-th frame of the video V t is de⁃
noted as pi = ( x͂ i, y͂i, w͂i, h͂i) and the ground-truth bounding box 
is b i = ( xi, yi, wi, hi ), we propose three types of targeted at⁃
tacks for backdooring VOT models, including the size-
manipulation attack, the trajectory-manipulation attack, and 
the hybrid attack as follows.

1) Size-manipulation attack: This attack aims to continu⁃
ously change the size of the predicted bounding box, i. e., 
continuously expand or shrink the width and the height, 
as in Eq. (3).

{w͂i > w͂i - 1
h͂i > h͂i - 1

   or   {w͂i < w͂i - 1
h͂i < h͂i - 1

(3).

2) Trajectory-manipulation attack: This attack aims to ma⁃
nipulate the trajectory of the predicted bounding box, i. e., 
change the central coordinate ~yi. For instance, the adversary 
can make the predicted bounding boxes fixed in the frames af⁃
ter the initial frame, as in Eq. (4).

{x͂i = x1
y͂i = y1

,  i = 1, 2, …, n (4).

Moreover, the adversary may also make the trajectory of the 
predicted bounding box follow a specific direction. For the 
convenience of evaluation, we utilize a line with slope β as the 
target trajectory in this paper:

{ x͂i = xi

y͂i = β ( xi - x1 ) ,   i = 1, 2, …, n (5).

3) Hybrid attack: This attack aims to completely control the 
prediction of the backdoored model and simultaneously ma⁃
nipulate the positions and sizes of the predicted bounding box. 
In the hybrid attack, the adversary may achieve both Eq. (3) 
and one of Eqs. (4) and (5).
3.2 Basic Strategy: Random Frame Poisoning Attack

From the formulation in Section 3.1, the key to the back⁃
door attack in the data collection stage is to design the poison⁃
ing functions Gt (⋅) and Mt (⋅) in Eq. (2). In a poison-only at⁃
tack, the adversary needs to select some samples from the da⁃
taset and then add the trigger pattern to them. For the selec⁃
tion strategy, inspired by prior works[24], we propose our basic 
strategy: RFP.

Given the original dataset D = { (V  1, B1 ) ,…, (V   k, Bk ) }, in 
RFP, we mix and shuffle all the frames in the videos 
{ V  1,…,V   k }. Subsequently, we randomly select a subset of 
these frames and their corresponding bounding boxes (denoted 
as Dp ) to apply the poisoning functions Gt (⋅) and Mt (⋅). The 
implementation of the poisoning functions Gt (⋅) and Mt (⋅) is in⁃
troduced in Section 3.3. The poison rate of the attack is de⁃
fined as γ = |Dp | ∕ |D |.

However, the effectiveness of RFP in attacking VOT models 
is limited in many cases (see Section 4). We argue that the in⁃
effectiveness is largely due to the following two reasons.

First, the utilization of some training techniques by the 
model trainer has the potential to mitigate the impact of back⁃
doors since the adversary cannot manipulate the training pro⁃
cess in a poison-only attack. Specifically, the random sam⁃
pling during training may also have a negative impact on the 
effectiveness of the backdoor attack. For instance, during the 
training phase, the Siamese network randomly selects two 
frames from a single video sequence as inputs to the network. 
Only when the model trainer selects two poisoned frames at 
the same time for training, the backdoor injection can have a 
significant effect. For an original poison rate γ ∈ (0, 1), this 
leads to a reduction in the actual poisoning rate to γ ×  γ, 
which suggests that the RFP makes the impact of the attack 
much less than expected. For a Transformer model, it selects 
multiple frames for training, and the attack effect is even 
much weaker.

Second, the RFP omits the correlation between different 
frames. The RFP strategy poisons random frames from differ⁃
ent videos, which are unrelated to each other. However, in 
VOT, the temporal correlation between frames of the same 
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video is important to the utility of the model. The RFP ignores 
this correlation, resulting in poor attack effectiveness.
3.3 Improved Strategy: Random Video Poisoning Attack

To tackle the above limitations, in this section, we propose 
our improved strategy: RVP. Unlike previous backdoor attacks 
against VOT models, RVP chooses to poison all the frames of 
the selected videos instead of the scattered frames. Poisoning 
a whole video can help the VOT models better capture the 
temporal correlation between frames and remember the in⁃
jected trigger pattern. The comparison of the two strategies, 
RFP and RVP, is shown in Fig. 3.

Given the original dataset D = { (V  1, B1 ) ,…, (V   k, Bk ) }, in 
RVP, we randomly select a subset of videos from D. The sub⁃
set is also denoted as Dp and we keep the poison rate the same 
as the RFP attack. For each frame of each video in Dp, we poi⁃
son the image and the label using the poisoning functions Gt (⋅) 
and Mt (⋅).

1) Design of Gt (⋅): The main insight to poison the frame is 
that the model trained on the poisoned dataset is forced to 
track the trigger pattern instead of the target object. This in⁃
volves injecting the trigger pattern into the area of the bound⁃
ing box. Specifically, given the trigger pattern T, we utilize 

Eq. (6) to inject T to the i-th frame I ji of the j-th video V   j in Dp:
I͂ j

i = min ( I j
i + M⊙T, 255) (6).

In Eq. (6), M represents a mask that is a binary matrix with 
the same size as the frame I ji and the symbol ⊙ denotes the 
element-wise product (also known as the Hadamard product) 
of matrices. Assuming that the poisoned bounding box of I͂ j

i is 
b͂ j

i = ( x͂ j
i, y͂ j

i , w͂ j
i, h͂ j

i ), the element in the x-th row and y-th col⁃
umn of M is defined as follows.

M ( )x, y =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

1,   
x ∈ é

ë
êêêê

ù

û
úúúúx͂ j

i - w͂ j
i2 ,  x͂ j

i + w͂ j
i2

and y ∈ é

ë

ê
êê
ê ù

û

ú
úú
úy͂ j

i - h͂ j
i2 ,   y͂ j

i + h͂ j
i2

0,        otherwise

(7).

The mask M ensures that the trigger pattern is added to the 
area included in the entire poisoned bounding box.

2) Design of Mt (⋅): As defined in Section 3.1, the attacks 
can be categorized into the dirty-label attack and the clean-
label attack depending on whether the labels of the poisoned 

Figure 3. Comparison between the random frame poisoning (RFP) and the random video poisoning (RVP) attacks. RFP selects random frames from 
different videos while RVP selects all the frames from one video

Random frame poison

Select

Independent frames
Poisoned dataset

Poison

Random video poison

Select Poison

Poisoned dataset
Related frames from one video
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frames are changed after the poisoning.
To design a dirty-label attack, we can further introduce a 

random offset Δxj
i, Δy j

i to the position of the bounding box bj
i and resize the bounding box into a square to facilitate the at⁃

tack in the inference stage as:
Mt( xj

i, y j
i , wj

i, hj
i )=( x͂ j

i, y͂ j
i , w͂ j

i, h͂ j
i )=( xj

i +Δxj
i, y j

i +Δy j
i , sj

i, sj
i ) (8),

where sj
i = min (wj

i, hj
i ). Modifying the bounding box􀆳s position 

means it will no longer contain the target object completely, 
making the backdoored model more inclined to track the trig⁃
ger pattern.

In a clean-label attack, we do not modify the ground-truth 
bounding boxes to achieve better stealthiness. Therefore, Mt (⋅) 
in a clean-label attack is as follows.

Mt( xj
i, y j

i , wj
i, hj

i ) = ( x͂ j
i, y͂ j

i , w͂ j
i, h͂ j

i ) = ( xj
i, y j

i , wj
i, hj

i ) (9).

3.4 Trigger Design
In this section, we introduce the design of the trigger pat⁃

tern T used to poison the videos. The goal of designing the trig⁃
ger pattern is two-fold:

1) The trigger pattern needs to be imperceptible to human 
inspection in order to make it difficult for the model trainer to 
detect and eliminate.

2) The trigger pattern needs to be scalable and flexible so 
that it can easily be rescaled to different sizes and different in⁃
tensities to achieve different adversarial targets, such as ex⁃
panding or shrinking the size of the bounding boxes.

Based on the above objectives, we adopt the sinusoidal sig⁃
nal as the trigger pattern T. Assuming that the size of the trig⁃
ger pattern is μ × ν, the element in the x-th row and y-th col⁃
umn is as follows.

T ( x, y ) = δ sin ( 2πyλ
ν ) (10),

where λ is the frequency value, x ∈ [1, μ ], and y ∈ [1, ν ]. Ap⁃
plying the sinusoidal signal as the trigger pattern has three ad⁃
vantages. First, the sinusoidal signal is generally invisible. 
Second, the sinusoidal signal is periodic. As such, it can be 
easily expanded to different sizes. Third, in the inference 
stage, we can enhance the backdoor attack by increasing the 
signal intensity parameter δ.
3.5 Achieving Different Backdoor Targets During Inference

After poisoning the dataset, the adversary can publicly re⁃
lease its dataset or sell it. A victim model trainer may get this 
poisoned dataset and leverage it to train a VOT model. This 
can lead to a backdoored model f ( ⋅ , ⋅, ⋅ ; Θ̂). If the victim 
model trainer deploys the backdoored model, the adversary 
can input the video with the trigger pattern into the model to 

achieve specific targets. First, the adversary needs to poison 
the template in the first frame of the video. Then, the adver⁃
sary can achieve different adversarial targets in the following 
frames by adjusting the size and position of the trigger pattern.

1) Poisoning the template: We first need to add the trigger 
pattern into the template in the first frame. Unlike the previ⁃
ous poisoning of the dataset, in the inference stage, we only 
add the trigger pattern to a part of the template. Let the bound⁃
ing box in the first frame (i. e., the template) be b1 =
( x1, y1, w1, h1 ). We inject the trigger pattern into the area rep⁃
resented by the bounding box:

( )x1, y1, w1∙h1 ,  w1∙h1 , α ≠ 1 (11).
This area is half the length and half the width of the tem⁃

plate. We do not add the trigger pattern to the entire template 
area to facilitate the attack against the following frames.

Let the predicted bounding box in the (i - 1)-th frame be 
b͂ i - 1 = ( x͂ i - 1, y͂i - 1, w͂i - 1, h͂i - 1 ) and the ground-truth bounding 
box in the i-th frame be b i = ( xi, yi, wi, hi ). The adversary then 
needs to carefully set the area of the trigger pattern in the 
frame to achieve different targets.

2) Size-manipulation attack: The goal of the size-
manipulation attack is to make the bounding box continuously 
expand or shrink, but not change the position of the bounding 
box. As such, we inject the trigger pattern into the bounding 
box represented by:

( xi, yi, α w͂i - 1∙h͂i - 1 , α w͂i - 1∙h͂i - 1 , α ≠ 1) (12),

where α is the scaling factor. If α > 1, the predicted bounding 
box will be larger in the following frame. Otherwise, the pre⁃
dicted bounding box will shrink.

3) Trajectory-manipulation attack: The objective of the size-
manipulation attack is to manipulate the trajectory of the pre⁃
dicted bounding box. We consider two different manipulations 
as shown in Eqs. (4) and (5).

To achieve Eq. (4), i.e., make the bounding box fixed, we fix 
the central coordinates of the trigger pattern. Therefore, in the 
i-th frame, we inject the trigger pattern T' into the bounding 
box represented by:

( )x1, y1, wi, hi (13).
To achieve Eq. (5), i.e., make the bounding box move along 

the vertical line, the bounding box of the trigger pattern T' can 
be represented by:

( )xi, β ( xi - x1 ), wi, hi (14).
4) Hybrid attack: The above two attacks respectively control 

the size and the position of the predicted bounding box. The 
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hybrid attack aims to control both simultaneously. As such, in 
the hybrid attack, we can combine the above two attacks. For 
example, to make the position fixed and the size expand con⁃
tinually, we can inject the trigger pattern T' into the area as:

( )x1, y1, αw͂i - 1, αh͂i - 1 (15).
5) Trigger pattern in the inference stage: In the inference 

stage, we also leverage the sinusoidal signal as the trigger pat⁃
tern. However, the trigger pattern in the inference stage does 
not need to be completely invisible. Therefore, we can use 
stronger signals (i.e., increase the intensity parameter δ) to en⁃
hance the attack effect.
4 Evaluation

In this section, we empirically evaluate the effectiveness of 
our proposed poison-only and targeted backdoor attacks 
against VOT models, including RFP and RVP, to implement 
three different targets.
4.1 Experimental Settings

We evaluate our proposed backdoor attacks on two different 
models, SiamFC++[42] and SiamRPN++[8]. We train the models 
on two different datasets, namely OTB100[43] and GOT10K[44]. 
OTB100 is a general tracking dataset containing 100 videos, 
and GOT10K provides 180 sequences for bounding box regres⁃
sion testing. For the attack settings, we set the default poison 
rate to 10% in our experiments.
4.2 Results of Size-Manipulation Attack

To evaluate the effectiveness of the size-manipulation at⁃
tack, we employ the size ratio (SR) metric, which is defined as 
the ratio of the predicted bounding box area at the 10th frame 
to the area of the initial template bounding box. A higher SR 
for expansion attacks (target scaling factor α >  1.0) or a lower 
SR for shrinking attacks (target α <  1.0) indicates a more suc⁃
cessful manipulation of the bounding box size as intended by 
the adversary. An SR close to 1.0 when α is 1.0 would indi⁃
cate minimal size change, similar to benign behavior, though 
the attack still aims to lock onto the trigger.

Table 1 demonstrates the effectiveness of the size-
manipulation attacks. Across both GOT10K and OTB100 data⁃
sets and for SiamFC++ and SiamRPN++ models, our proposed 
RVP strategy consistently outperforms the RFP baseline. RVP 
methods achieve more significant size alterations, evident by 
lower SRs for shrinking targets (α < 1.0) and higher SRs for 
expansion targets (α > 1.0) compared to benign models and 
RFP. Both dirty-label (RVP-D) and clean-label (RVP-C) vari⁃
ants of RVP prove effective, with RVP-D often showing a 
slight edge in expansion and RVP-C being highly competitive, 
especially for shrinking. The degree of size-manipulation gen⁃
erally correlates well with α, highlighting the attack􀆳s control⁃
lability and confirming the vulnerability of VOT models to 

these targeted backdoors.
4.3 Results of Trajectory-Manipulation Attack

To evaluate the success of the trajectory-manipulation at⁃
tack, we measure the slope of the predicted trajectory. This is 
determined by fitting a straight line to the central coordinates 
of the predicted bounding boxes over the first 10 frames of a 
video sequence. For an attack aiming to fix the object 􀆳s posi⁃
tion (denoted as “fix” in Table 2, target slope β = 0), a slope 
close to zero indicates success. For attacks aiming to move the 
object along a line with a specific slope β, the achieved slope 
of the predicted trajectory should approximate this target β.

Table 2 presents the achieved slopes for trajectory-
manipulation attacks under different target β. For fix attacks 
(target β = 0), both RVP and RFP strategies substantially re⁃
duce the trajectory slope compared to the benign model􀆳s natu⁃
ral movement, effectively immobilizing the tracked object. No⁃
tably, RVP methods often yield slopes closer to the ideal zero. 
When a specific non-zero trajectory slope β (ranging from 0.1 
to 0.4) is targeted, RVP again demonstrates superior control. 
The achieved slopes using RVP closely approximate the in⁃
tended β values, indicating a stronger capability in forcing the 
model to follow a predefined path compared to RFP. These 
trends of RVP 􀆳 s enhanced effectiveness hold consistently 
across the SiamFC++ and SiamRPN++ models on both 
GOT10K and OTB100 datasets, underscoring the vulnerabil⁃
ity of VOT models to such controlled trajectory-manipulations.

Table 1. SR results of size-manipulation attacks

Dataset

GOT10K

OTB100

Model

SiamFC++

SiamRPN++

SiamFC++

SiamRPN++

Metric
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C

α

0.90
1.051
0.743
1.002
0.732
0.728
0.979
0.725
0.873
0.734
0.743
1.128
1.736
1.064
0.718
0.726
0.994
0.864
0.949
0.863
0.864

0.95
1.053
0.854
0.999
0.834
0.823
1.001
0.829
0.918
0.839
0.853
1.129
0.848
1.056
0.821
0.814
0.998
0.875
0.948
0.881
0.892

1.00
1.062
1.052
1.072
1.086
1.067
1.054
1.057
1.071
1.056
1.064
1.132
1.086
1.132
1.122
1.094
1.043
1.047
1.067
1.041
1.062

1.05
1.070
1.290
1.214
1.406
1.387
1.114
1.335
1.291
1.318
1.356
1.121
1.396
1.544
1.544
1.501
1.093
1.275
1.253
1.257
1.326

1.10
1.071
1.544
1.351
1.781
1.733
0.120
1.526
1.456
1.479
1.657
1.106
1.734
2.049
2.049
1.957
1.105
1.338
1.322
1.291
1.502

RFP: Random Frame Poisoning Attack
RVP: Random Video Poisoning Attack

SR: size ratio
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4.4 Results of Hybrid Attack
For the hybrid attack, which simultaneously manipulates 

both the size and trajectory of the predicted bounding box, we 
employ three metrics. In addition to the SR and slope, we 

adopt Intersection over Union (IoU) as a comprehensive met⁃
ric, which measures the overlap between the predicted bound⁃
ing box and an adversarially defined target bounding box. This 
target bounding box incorporates both the intended size and 
trajectory manipulation at the 10th frame.

Table 3 presents the performance of hybrid attacks, combin⁃
ing size (shrink/expand) and trajectory (fix/move) manipula⁃
tions. The results clearly demonstrate the potency of these 
combined attacks. Our proposed RVP methods consistently 
outperform RFP across all hybrid attack modes and evaluation 
metrics. RVP achieves SR and slope values closer to the ad⁃
versarial targets while, crucially, yielding significantly higher 
IoU scores. For example, in the “Expand & Move” mode on 
GOT10K with SiamFC++ , RVP-D achieves an IoU of 0.736, 
notably higher than RFP-D 􀆳 s 0.631. This superior IoU for 
RVP indicates its enhanced capability to precisely control 
both the size and the path of the tracked object simultane⁃
ously, reinforcing its effectiveness for complex backdoor injec⁃
tion in VOT models. These trends are consistent across differ⁃
ent models and datasets.
4.5 Evaluation on Function Preservation

In the task of VOT, the goal is to train a tracker to predict 
the position of the bounding box in a sequence of video frames 
as accurately as possible. There are various datasets[43–45], 
each with different testing preferences. According to the re⁃
quirements of benchmarking, we use the following three met⁃
rics to evaluate tracker performance: 1) Precision (Prec), 

Table 2. Slopes of trajectory-manipulation attacks under different β

Dataset

GOT10K

OTB100

Model

SiamFC++

SiamRPN++

SiamFC++

SiamRPN++

Metric
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C

β

fix
0.036
0.004
0.008
0.005
0.004
0.033
0.006
0.006
0.006
0.006
0.029
0.006
0.010
0.006
0.007
0.029
0.009
0.016
0.008
0.011

0.1
0.049
0.097
0.089
0.093
0.095
0.040
0.086
0.077
0.086
0.077
0.035
0.099
0.077
0.091
0.096
0.032
0.077
0.046
0.078
0.070

0.2
0.056
0.166
0.122
0.168
0.167
0.048
0.161
0.150
0.161
0.150
0.033
0.185
0.111
0.181
0.183
0.033
0.161
0.051
0.171
0.145

0.3
0.056
0.213
0.140
0.231
0.232
0.050
0.221
0.207
0.221
0.207
0.032
0.255
0.133
0.257
0.260
0.034
0.217
0.050
0.235
0.187

0.4
0.059
0.276
0.150
0.291
0.291
0.051
0.276
0.253
0.276
0.253
0.032
0.318
0.153
0.324
0.326
0.032
0.260
0.048
0.288
0.216

RFP: Random Frame Poisoning Attack
RVP: Random Video Poisoning Attack

SR: size ratio

Table 3. SRs, slopes, and IoU of hybrid attacks

Dataset 

GOT10K

OTB100

Attack Mode 
Model 

Siam⁃
FC++

Siam⁃
RPN++

Siam⁃
FC++

Siam⁃
RPN++

Metric 
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C
Benign
RFP-D
RFP-C
RVP-D
RVP-C

Shrink (α = 0.9)
Fix

SR
1.040
0.672
0.784
0.671
0.644
0.995
0.710
0.883
0.719
0.747
1.094
0.704
0.832
0.684
0.672
1.014
0.874
0.977
0.874
0.903

Slope
0.039
0.004
0.018
0.006
0.006
0.037
0.011
0.028
0.010
0.012
0.030
0.005
0.017
0.007
0.007
0.030
0.014
0.027
0.013
0.018

IoU
0.294
0.529
0.432
0.535
0.558
0.302
0.489
0.363
0.484
0.472
0.277
0.504
0.412
0.524
0.535
0.283
0.377
0.310
0.379
0.362

Move (β = 0.1)
SR

1.050
0.680
0.840
0.671
0.649
1.015
0.733
0.952
0.743
0.797
1.119
0.706
0.897
0.707
0.694
1.041
0.895
1.023
0.897
0.948

Slope
0.050
0.097
0.069
0.092
0.093
0.040
0.075
0.040
0.076
0.066
0.034
0.098
0.057
0.092
0.095
0.033
0.065
0.033
0.066
0.053

IoU
0.190
0.517
0.313
0.525
0.538
0.182
0.433
0.209
0.430
0.380
0.117
0.494
0.251
0.497
0.501
0.109
0.290
0.118
0.289
0.235

Expand (α = 1.1)
Fix

SR
1.186
1.756
1.766
2.082
2.003
1.116
1.552
1.455
1.511
1.668
1.186
1.867
1.873
2.330
2.204
1.113
1.335
1.311
1.295
1.453

Slope
0.042
0.008
0.013
0.008
0.009
0.040
0.017
0.018
0.017
0.012
0.032
0.007
0.013
0.008
0.010
0.032
0.025
0.028
0.027
0.022

IoU
0.390
0.668
0.664
0.763
0.755
0.373
0.572
0.535
0.559
0.623
0.398
0.712
0.701
0.853
0.824
0.376
0.472
0.468
0.455
0.529

Move (β = 0.1)
SR

1.160
1.723
1.698
2.054
1.977
1.096
1.492
1.370
1.430
1.611
1.164
1.821
1.712
2.286
2.140
1.102
1.266
1.252
1.237
1.370

Slope
0.042
0.088
0.082
0.086
0.087
0.039
0.052
0.038
0.048
0.056
0.032
0.098
0.076
0.090
0.096
0.031
0.042
0.033
0.039
0.043

IoU
0.313
0.631
0.609
0.736
0.718
0.290
0.494
0.420
0.469
0.542
0.324
0.675
0.600
0.803
0.779
0.300
0.393
0.363
0.376
0.430

IoU: Intersection over Union      RFP: Random Frame Poisoning Attack      RVP: Random Video Poisoning Attack     SR: size ratio
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which indicates the positional accuracy, i.e., whether the dis⁃
tance between the predicted bounding box and the true bound⁃
ing box is less than 20 pixels in the image; 2) Area Under the 
Curve (AUC), which represents the area under the success 
rate curve, used to measure the overlap ratio between the pre⁃
dicted box and the true bounding box; 3) Success rate at 50% 
overlap (SR50), which reflects the tracking success rate when 
the overlap exceeds the threshold of 0.5.

The results presented in Table 4 indicate that our RVP-
based backdoor attacks exhibit strong function preservation. 
For both SiamFC++ and SiamRPN++ models on the GOT10K 
and OTB100 datasets, the performance metrics (AUC, SR50, 
and Prec) of the backdoored models (RVP-D and RVP-C) re⁃
main remarkably close to those of the benign models. For in⁃
stance, on GOT10K, the SiamFC++ Benign model achieves an 
AUC of 0.721 7, while RVP-D achieves 0.717 5 and RVP-C 
achieves 0.708 5. Similarly, for SiamRPN++ on OTB100, the 
Benign model􀆳s Precision is 85.65, whereas RVP-D􀆳s is 85.49 
and RVP-C􀆳s is 82.25. The slight degradation observed, par⁃
ticularly with RVP-C, is minimal and generally acceptable, 
considering the effectiveness of the injected backdoor. The 
RVP-D strategy, in particular, demonstrates excellent stealth, 
with performance nearly identical to the benign model in sev⁃
eral cases. This high degree of function preservation suggests 
that the backdoor can be effectively concealed within the VOT 
model without significantly impairing its primary tracking ca⁃
pabilities on normal, benign data, making the attack difficult 
to detect through standard performance evaluations.
5 Conclusions

In this paper, we introduce and thoroughly investigate 
poison-only and targeted backdoor attacks against VOT mod⁃
els. We define three distinct attack variants (size-
manipulation, trajectory-manipulation, and hybrid attacks) 
and propose an effective RVP strategy that significantly out⁃
performs baseline methods by leveraging temporal correla⁃
tions in video data. Our extensive experiments demonstrate 
that RVP can successfully inject controllable backdoors into 
VOT models, achieving high attack success rates while main⁃
taining remarkable function preservation on benign data, thus 
ensuring stealth. Interestingly, while devised for attack analy⁃
sis, the core mechanism of embedding specific, detectable be⁃
haviors into models via data manipulation holds potential for 
positive applications. The imperceptible and robust nature of 
the injected patterns suggests that similar techniques could be 
adapted for dataset or model watermarking[46–49], thereby con⁃
tributing to copyright protection and ownership verification in 
the domain of visual tracking and beyond.

Based on our findings, future research will explore several 
promising directions. First, we will focus on applying the core 
principles of the RVP attack to beneficial areas, for example, 
adapting the technology to create reliable digital watermarks 
to protect the intellectual property of VOT datasets and mod⁃

els. At the same time, a more in-depth investigation into the 
attack 􀆳s hyperparameters is also crucial. This includes a sys⁃
tematic analysis of the poison rate and an exploration of the 
trigger pattern􀆳s own parameters (such as the frequency λ and 
intensity δ of the sinusoidal signal), in order to understand the 
key trade-offs between attack effectiveness and stealthiness. 
Furthermore, the vulnerabilities revealed in this paper also 
compel us to develop corresponding defense mechanisms, es⁃
pecially those capable of detecting and mitigating backdoor at⁃
tacks that leverage the temporal correlations of video data, 
which traditional defense methods might overlook. Finally, we 
plan to expand the scope of our research by extending the at⁃
tack framework to more complex scenarios (such as multi-
object tracking) and evaluating its effectiveness on a broader 
range of advanced tracker architectures, particularly emerging 
Transformer-based models.
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