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channel modeling and algorithm evaluation applications with urgent needs for data.
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1 Introduction

In recent years, the 6G wireless communication technol⁃
ogy has attracted widespread attention, and many insti⁃
tutes have officially started the 6G research[1]. With the 
expansion of 6G to full-scenario, multi-frequency, and 

wide-coverage applications, the demands for 6G mobile com⁃
munications are becoming more diversified and complicated. 
As a signal transmission medium, wireless channels are an in⁃
dispensable part of communication links, and their character⁃
istics determine the upper limit of communication system per⁃
formance. A channel model is a mathematical description of 
the key channel characteristics, so channel modeling is a ba⁃
sis for the design, simulation, and planning of wireless com⁃

munication systems.
The goal of channel research is to provide a model that can 

generate channel parameters according to the input parameter 
set. This model can be a mathematical model based on statisti⁃
cal fitting, such as the common empirical statistical model[2] 
and the geometric stochastic model[3]. For example, Ref. [4] 
conducted statistical modeling of features such as arrival time 
and power of multipath components, ensuring they conform to 
specific distributions. Ref. [5] introduced a geometric 
multiple-input multiple-output (MIMO) channel model for 
millimeter-wave (mmWave) mobile-to-mobile (M2M) applica⁃
tions, using a few clusters placed on two rings centered on the 
transmitter and receiver. In addition, the deterministic model 
based on numerical analysis and simulation is another chan⁃
nel modeling idea[6]. For example, the classic Longly-Rice 
model[7] uses a two-ray interference approach from geometric 
optics to predict radio wave propagation characteristics within 
the line-of-sight region. Ref. [8] investigated the channel char⁃
acteristics of massive MIMO systems in the 26 GHz mmWave 
band for indoor scenarios using ray-tracing (RT). The simula⁃
tion results are consistent with the measured results. With the 
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expansion and application of artificial intelligence (AI) meth⁃
ods such as deep learning, researchers have proposed some 
AI-based channel models that use neural networks instead of 
traditional mathematical formulas and numerical simulations 
to generate channel parameters. Typical examples are found 
in Refs. [9–11]. Specifically, Ref. [9] used the convolutional 
autoencoder to extract 3D-building information to assist path 
loss prediction in street canyon scenarios. Ref. [10] employed 
convolutional neural networks to predict channel path loss us⁃
ing receiver-centric satellite maps as environmental features. 
Ref. [11] used a multilayer perceptron and long short-term 
memory (LSTM) to estimate real-time channel attenuation at 
Q-band. For a further overview of the existing classical model⁃
ing methods, please refer to Refs. [12–14].

No matter what the specific modeling method is, a consen⁃
sus is that the channel model is essentially a mapping relation⁃
ship. Although the model input attributes can be heteroge⁃
neous data such as scene category labels, antenna heights, 
three-dimensional models, and satellite images, the mapping 
relationship is generally between the environment and the cor⁃
responding channel parameters. The question worth consider⁃
ing here is whether these channel models, which we can col⁃
lectively call environment-driven models, are the only solu⁃
tions to channel research, in other words, whether these mod⁃
els can solve all the demands for channel data at present. For 
most application requirements, such as network deployment 
and coverage prediction, it is meaningful to input the neces⁃
sary environmental characteristics to get the channel param⁃
eters of the corresponding input scene. However, it should not 
be forgotten that channel data are not only applied to 
environment-related applications. In other words, the exis⁃
tence of environment input should not be a prerequisite for 
generating channel data. For example, after obtaining some 
measured channel data through expensive and time-
consuming actual measurement, researchers want to get more 
data under the same conditions conveniently. Another similar 
situation is that an algorithm needs to use a lot of real channel 
data to evaluate its performance, but the existing data are in⁃
sufficient. The above two hypothetical situations are real cases 
in research and engineering practice. At the moment, the clas⁃
sic environment-driven model cannot meet all the require⁃
ments. Faced with these situations, researchers may need a so-
called data-driven channel model, which can learn the charac⁃
teristics of a small number of existing data and output a large 
number of similar data. Alternatively, it can be interpreted as 
a digital twin model, which constructs a virtual copy of the 
real physical channel, and this “copy” has the same statistical 
characteristics as the original data. In a word, this data-based 
modeling process, which does not depend on environmental in⁃
put, can be called Channel Data Enhancement. It has signifi⁃
cant practical value in some application scenarios.

At present, there have been several studies on data-driven 
channel models. As the groundbreaking work, Ref. [15] intro⁃

duced the use of generative adversarial networks (GAN) to ad⁃
dress autonomous channel modeling. Building on this, the 
GAN model was utilized to learn the distribution of additive 
white Gaussian noise channels. Ref. [16] developed a link-
level MIMO channel generation method named ChannelGAN 
to support deep learning-based channel state information 
(CSI) feedback research. For different scenarios, Ref. [17] pro⁃
posed a GAN-based channel data augmentation algorithm for 
communication systems in industrial Internet of Things (IIoT) 
scenarios to address the issue of insufficient data. Ref. [18] 
performed the GAN model to generate channel responses to 
address the issue of inadequate channel estimation perfor⁃
mance in high-speed train scenarios. However, despite these 
efforts, some shortcomings still exist. Most studies rely on ide⁃
alized simulated channel data, whereas measured data can 
more accurately capture various interference factors presented 
in real-world environments. Developing channel models based 
on measurement can enhance their credibility. Additionally, 
whether the channel characteristics described by these models 
are consistent with real data has not yet been comprehensively 
validated. Therefore, this paper proposes a channel data en⁃
hancement platform, the core capability of which is to quickly 
generate a large number of simulation data with similar char⁃
acteristics based on a small number of data. Specifically, the 
platform consists of three subsystems: the channel measure⁃
ment subsystem, which is used to collect the measured data 
and construct the basic data set; the data enhancement algo⁃
rithm, which provides a model that can learn the characteris⁃
tics of the data set and output the simulation data; the applica⁃
tion software, which integrates the algorithm and necessary 
control functions to provide a convenient interface for users.

The rest of this paper is organized as follows. Section 2 de⁃
scribes the proposed channel data enhancement platform de⁃
sign and architecture. Section 3 is about the subsystems re⁃
lated to channel measurement and the data set in the platform. 
Following that, we explain the proposed data enhancement al⁃
gorithm in Section 4. The algorithm verification and applica⁃
tion software are described in Section 5. Finally, Section 6 
concludes the paper.
2 Platform Design and Architecture

In this paper, a channel data enhancement platform is 
implemented, which can complete channel measurement in a 
high dynamic scene and then use the proposed algorithm to 
learn and measure channel characteristics, greatly expanding 
the number of channel data. The overall design and architec⁃
ture of the proposed platform are shown in Fig. 1.

The platform is divided into three subsystems:
1) Channel measurement subsystem
Based on the software-defined radio instrument, this subsys⁃

tem realizes broadband channel sounding. The subsystem can 
be applied to dynamic scenarios covering the sub-6 GHz fre⁃
quency band. The measurement subsystem contains a sepa⁃
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rate transmitter and a receiver, which can process and display 
the collected signals in real time. In the dynamic scene, the 
back-to-back calibration can eliminate the influence of system 
response errors of cables and transceivers.

Due to the diversity of measurement scenarios, the core 
functional indicators of the measurement subsystem need to be 
defined by software. This can be scalable enough to meet the 
needs of different measurement environments. Specifically, 
the subsystem transmitter needs to complete baseband signal 
generation, power amplification, signal processing, and visual 
display. The receiver needs to complete signal reception, base⁃
band signal processing, channel coefficient extraction, chan⁃
nel parameter analysis, visual display, and others. The overall 
structural design is complex and needs to be adapted to the co⁃
operation on different hardware devices. Therefore, the soft⁃
ware and hardware design and development of the measure⁃
ment subsystem is one of the main difficulties in the whole 
platform implementation process. The measurement system 
program is flexible and can be migrated to different SDR hard⁃
ware. The hardware configuration can be flexibly combined ac⁃
cording to the requirements of the actual environment.

2) Data enhancement algorithm
The data enhancement algorithm needs to use the measured 

channel impulse response (CIR) obtained by the measurement 
subsystem. Then, the channel simulator based on GAN is 
trained to learn the intrinsic characteristics of measured data. 

The proposed method reduces the complexity of channel simula⁃
tion and can quickly generate channel data by using the trained 
model. In addition, the accuracy of generated channel data is 
verified by channel high-order statistical characteristics, such 
as power delay profile, shadow fading, and delay spread.

The key point of subsystem algorithm design is to learn the 
characteristics of measured data. However, with the increase 
of measurement bandwidth, the time delay resolution of data 
becomes higher. In addition, CIRs are composed of multiple 
ray clusters, which contain a lot of noise signals. Therefore, 
the prime difficulty in data preprocessing is to denoise and re⁃
duce the dimension of the CIR matrix while retaining effective 
information as much as possible. Furthermore, the model net⁃
work structure includes the number and types of networks, the 
logical relationship between networks, and others. These ar⁃
chitectures directly affect the complexity and, more impor⁃
tantly, the accuracy. In addition, the appropriate training algo⁃
rithm should be carefully selected for the specific network 
structure. Architecture and training are the key control factors 
of model performance.

3) Application software
After verifying the channel simulation ability of the model 

through experiments, the focus shifts to building a convenient 
software platform. This paper designs an easy-to-operate simu⁃
lation application program based on MATLAB, which can 
complete the functions of model loading, simulation data gen⁃

Figure 1. Proposed channel data enhancement platform architecture
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eration, real-time verification, display, and data storage. In ad⁃
dition, a visual interface is designed.
3 Channel Measurement and Datasets

The broadband wireless channel measurement subsystem 
includes a separate transmitter and a separate receiver. The 
transmitter consists of a baseband signal source, a local oscil⁃
lator, an up-converter, a power amplifier, a filter, a signal pro⁃
cessing unit, and an antenna. The receiver is composed of a 
baseband signal source, a local oscillator, a down-converter, a 
low noise amplifier, an electronic switch, a data storage unit, 
and an antenna[19]. The transmitter sends a signal at a specific 
carrier frequency to act as a sounding signal, and the receiver 
can identify and detect the signal after channel attenuation 
and distortion.

The channel measurement subsystem uses multi-carrier sig⁃
nals as sounding signals, as shown in Eq. (1).

sk = ∑
i = 0

L - 1
di exp ( )j2iπk

L    (0 ≤ k ≤ L - 1) (1),

where L represents the number of subcarriers and di repre⁃
sents the symbol of each subcarrier. The out-of-band power is 
reduced by rectangular window function filtering. At the re⁃
ceiver, the received signal is shown in Eq. (2).

Y ( f ) = X ( f ) HTX ( f ) H ( f ) HRX ( f ) (2),
where X ( f ) and Y ( f ) represent the transmitted and received 
signals in the frequency domain respectively. H ( f ) represents 
the channel transfer function, and HTX ( f ) and HRX ( f ) are 
the transfer functions of equipment and cables at the transmit⁃
ter and receiver respectively. The transmitter and receiver are 
directly connected by cables for back-to-back calibration, so 
the influence of equipment and cables on the measurement re⁃
sults can be eliminated.

The measurement subsystem takes the signal transceiver 
based on software-defined radio (SDR) as core hardware. The 
transmitter implements the loading and generation of base⁃
band sounding signals and the up-conversion of the baseband 
signals through secondary frequency conversion (baseband to 
intermediate frequency and intermediate frequency to radio 
frequency). The receiver samples and down-converts the sig⁃
nals captured by the antennas to obtain the baseband signals 
and stores them in the local disk. This subsystem realizes 
hardware device driving and signal processing, and finally ob⁃
tains key channel parameters and displays them visually. The 
receiver and transmitter of this subsystem use a rubidium 
atomic clock calibrated by the global navigation satellite sys⁃
tem (GNSS) as the reference clock source to ensure the consis⁃
tency of the 10 MHz reference clock[20]. Main parameters of 
the subsystem are shown in Table 1, and the equipment is 
shown in Fig. 2.

The software of the channel measurement subsystem is de⁃
veloped based on LabVIEW. LabVIEW is a program develop⁃
ment environment developed by National Instruments (NI), 
which is well compatible with SDR-based signal transceivers 
used in subsystems and can also easily establish a visual inter⁃
face. The main purpose of subsystem software is to drive and 
control the hardware. The software design should be able to 
call the hardware equipment, configure the measurement pa⁃
rameters such as frequency, bandwidth, clock, and sampling 
rate of the equipment, and ensure that the received signal data 
can be stored[21].

The subsystem also provides a visual user interface for tes⁃
ters, as shown in Fig. 3. The interface includes the configura⁃
tion of various parameters, system running state detection, 
and error reporting. To observe the channel state in real time 
during the measurement process, the subsystem also pro⁃
cesses some collected data in real time and gets typical chan⁃
nel parameters. In Fig. 3, the receiver interface shows the CIR 
at the current time. Besides CIR, the current time domain 
waveform chart and frequency spectrum chart can be dis⁃
played in real time.

The original response obtained by the subsystem includes 
the channel response, the inherent response of the measure⁃
ment system, and the antenna radiation characteristics. There⁃
fore, system calibration verification is needed to eliminate the 
errors caused by these factors. As shown in Fig. 2, the calibra⁃
tion verification of the subsystem is divided into three parts: 

Table 1. Parameters of measurement subsystem

Parameter
Carrier frequency

Bandwidth
Transmit power

Transmit signal type
Transmit signal samples

Snapshot interval

Value
5.9 GHz

Max to 160 MHz
Max to 55 dBm

Multi-carrier signals
1 024
6.4 μs

Self-calibration

Back-to-back measurement

Figure 2. Vector signal transceiver equipment

Antenna calibration
Antenna radiation pattern difference

Errors of cables,adapters, etc.

Internal inherent error of instru⁃ment
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instrument self-calibration, back-to-back measurement cali⁃
bration, and antenna system calibration.

The purpose of instrument self-calibration is to make the 
performance and output of the instrument conform to the nomi⁃
nal value. The transmitter used in this paper has a self-
calibration function, and subsequent measurements can only 
be started after the self-calibration has passed before each 
measurement. Back-to-back measurement can eliminate the 
errors caused by cables and adapters. The specific method 
can be summarized as follows. The reference measurement is 
conducted when the channel response is known by connecting 
the attenuator directly between the transmitter and the re⁃
ceiver. Thus, the system’s inherent response is obtained. Dur⁃
ing the actual measurement data processing, the collected 
data are processed using these reference measurement results 
to eliminate the inherent response of the system and then get 
the accurate channel response. Antenna calibration refers to 
the measurement of antenna gain in all propagation directions 
in an anechoic chamber, which is an important prerequisite to 
ensure the accuracy of test results. The measurement error 
from antenna radiation can be eliminated when processing the 
received data.

The experimental study on channel measurement in this pa⁃
per was carried out in Beijing, China. During the field mea⁃
surements, the transmitter and receiver vehicles moved in the 
same direction and kept an interval of 20–40 m. During the 
measurement period, the maximum vehicle speed was no 
more than 70 km/h, and the system acquired 16-channel 

snapshots per second. To reduce the influence of random 
backscatters, measurement routes were restricted to empty 
road sections. Both the transmitting and receiving antennas 
were installed on the roof, and the antenna heights were about 
1.8 m. The total number of measured channel snapshots was 
about 7 000 groups.
4 Proposed Data Enhancement Algorithm

4.1 GAN-Based Algorithm
GAN is a kind of deep generation model, which can implic⁃

itly learn the probability distribution of input images to gener⁃
ate identically distributed images. Initially developed for im⁃
age generation, GAN is not a simple method for copying or 
imitating reality, nor does it merely blend or average multiple 
real samples. Instead, it uses two game-theoretic neural net⁃
works, namely the generator (G-network) and the discrimina⁃
tor (D-network), to learn intrinsic statistical patterns of real 
data, without direct objective functions.

G-network is used to learn the distribution of real data to 
generate identically distributed data, and D-network judges 
the probability whether its input data comes from reality or 
generation. Through training, the purpose of the generator is to 
gradually generate realistic data to deceive the discriminator. 
Discriminators want to always be able to distinguish between 
real and generated data. Therefore, the essence of GAN is to 
make the generator learn the approximate value of real data 
distribution through antagonistic learning.

GAN usually has some problems in training, such as mode 
collapse, unstable optimization, gradient disappearance, and 
non-convergence. To avoid the above problems, this paper 
uses Wasserstein GAN with gradient penalty (WGAN-GP) as 
the network framework, which is an improved version of GAN. 
Wasserstein distance, also known as the Earth-Mover (EM) 
distance, is used to evaluate the similarity between two distri⁃
butions, which can provide a relatively stable gradient relative 
to Jensen-Shannon (JS) divergence. GP can avoid the problem 
of gradient disappearance caused by large model weights. 
Therefore, WGAN-GP is more stable and converges faster in 
training and can significantly improve the training speed and 
address the slow convergence issue in original WGAN.
4.2 Algorithm-Based Model Design

4.2.1 Generator Design
Fig. 4 illustrates the network architecture and detailed pa⁃

rameters of the generator in this algorithm. The model takes 
noise vector as input and generates CIR through the generator 
that uses one-dimensional convolution to extract features. The 
convolution layer can create a convolution kernel, and the in⁃
put of this layer is rolled up in a single space (or time) dimen⁃
sion to produce the output. The convolution kernel size in the 
generator is set to 3. Subsequently, the batch normalization 
layer is added behind each convolution layer, which acceler⁃

Figure 3. Visual interface of channel measurement subsystem

RX: receiver     TX: transmitter
RX

TX
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ates the convergence speed of model training. It also makes 
the model training process more stable to avoid gradient explo⁃
sion or gradient disappearance. In addition, this paper 
chooses Leaky Rectified Linear Unit (LeakyReLU) as the acti⁃
vation function to alleviate the problem of gradient disappear⁃
ance. The expression of LeakyReLU is shown in Eq. (3).

LeakyReLU( x ) = ì
í
î

x,  x ≥ 0
α ⋅ x,  otherwise (3),

where x is the input of LeakyReLU. When x < 0, LeakyReLU 
gives x a slope α. Parameter α is an adjustable superparam⁃
eter, and the value set in this paper is 0.2. Because Tanh can 
limit the output to [−1, 1], the generated CIR better matches 
with the real CIR amplitude. Therefore, Tanh is selected as 
the activation function after the last convolution layer, and its 
expression is shown in Eq. (4).

Tanh( x ) = ex - e-x

ex + e-x (4),

where x is the input of Tanh. When the input noise passes 
through six convolution layers, it will pass through the Flatten 
layer, and the result will be mapped into a separable space in 
combination with the fully connected layer. The fully con⁃
nected layer maps the learned features to the sample label 
space. Since the generator finally outputs the CIR, it is neces⁃
sary to reshape the samples passing through the fully con⁃
nected layer.
4.2.2 Discriminator Design

Fig. 5 shows the network architecture and detailed configu⁃
ration of the discriminator. The input of the discriminator is 
the CIR sample generated by the generator or the real CIR 
sample. The input channel samples are first zero-padded to fa⁃
cilitate the subsequent convolution process. Similar to the gen⁃
erator, the discriminator mainly uses one-dimensional convolu⁃
tion and LeakyReLU activation function. The convolution ker⁃
nel size of the one-dimensional convolution is 5. Finally, it is 
output through the Flatten and fully connected layers. The out⁃
put of the discriminator is the probability while the input is a 

Figure 4. Generator network design and detailed parameters

LeakyReLU: Leaky Rectified Linear Unit

Figure 5. Discriminator network design and detailed parameters
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real channel sample or a generated channel sample.
5 Algorithm Verification and Application 

Software

5.1 Algorithm Verification
Algorithm implementation consists of model design, model 

training, and CIR sample generation. The training process fol⁃
lows an alternating scheme, where the discriminator is up⁃
dated multiple times per generator update to ensure stable 
convergence. The Adam optimization algorithm is employed to 
update the parameters of the GAN network with a learning 
rate of 0.000 05. Upon completing 2 500 training epochs, the 
trained model is saved. Then, in the generation process, the 
saved model is used to generate CIR by inputting the desired 
number of CIR samples along with a 128-dimensional random 
noise vector.

In this section, the similarity between the real and gener⁃
ated channels is demonstrated by comparing the distribution 
performance of the power delay profile (PDP), path loss, and 
root mean square (RMS) delay spread between the measure⁃
ment and generated data. To facilitate accurate evaluation 
against real channels, this paper generates channel samples 
equal in number to the real ones.

Figs. 6a and 6b illustrate the channel PDP obtained 
through actual measurements and GAN generation, respec⁃
tively. It can be seen that GAN-generated PDP closely 
matches the measured data in terms of morphology, especially 
aligning with the peak positions in the delay domain observed 
in the measurements. Additionally, the generated channels 
preserve the diversity, randomness, and noise-affected charac⁃
teristics of real channels, demonstrating high fidelity. Fig. 6c 
presents a comparison of the averaged PDP. Specifically, 
when calculating the PDP, the samples are averaged accord⁃
ing to the number of samples, as shown in Eq. (5).

PDP = 1
N∑

N
| h (n, τ ) |2 (5),

where N is the total number of channel samples, h represents 
the measured or generated CIR, n is the sample index corre⁃
sponding to the number of delay points, and τ refers to the 
delay points.

For the real channel, the average PDP is depicted by the 
black curve in Fig. 6c. The average PDP of the channels gen⁃
erated by the AI model after 2 500 training iterations is shown 
by the blue dashed line with square markers. For comparison, 
channels generated by the model after training for 20 epochs 
are included, with PDP illustrated by the purple solid line 

Figure 6. Algorithm verification results: (a) measured PDP; (b) generated PDP; (c) PDP comparison; (d) path loss; 
(e) RMS delay spread; (f) BER performance

BER: bit error rate     PDP: power delay profile     RMS: root mean square     SNR: signal-to-noise ratio
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with diamond markers in Fig. 6c. It can be observed that the 
channel power distribution generated by the model trained for 
20 epochs ranges in [ − 100 dB, − 60 dB], whereas the power 
distribution of both the real channel and the channel gener⁃
ated by the model trained for 2 500 epochs spans from −120 
dB to −60 dB. This discrepancy arises from insufficient train⁃
ing, which prevents the model from fully capturing channel 
characteristics and distribution. As a result, the generated 
channel data lack multipath details and exhibit higher noise 
power. Channels generated by a high-performing GAN model 
closely resemble the real channels, including the transition of 
the PDP from peak values to a gradual stabilization.

Further validating the distribution of channel parameters is 
crucial for evaluating model performance. Path loss is used to 
characterize the power loss that occurs during signal transmis⁃
sion, which is an important parameter for evaluating signal 
coverage area and quality in wireless communication systems. 
It can be calculated using PDP, as shown in Eq. (6).

PL = 1
Nτ ( )∑

Nτ

|| h (n, τ ) 2 (6),

where Nτ denotes the number of delay points, and h represents 
the measured or generated channel. Fig. 6d illustrates the 
path loss distributions for both the measured and generated 
data. It is evident that the generated data (blue histogram) ex⁃
hibits a high degree of overlap with the measurement (red his⁃
togram) in terms of path loss. Meanwhile the mean path loss 
values for the measured and generated channels are 64.80 dB 
and 64.47 dB, further demonstrating the high similarity be⁃
tween the generated and real channels.

RMS delay spread is used to describe the degree of delay 
dispersion in a channel, which reflects the impact of the delay 
distribution of each propagation path on the received signal in 
a multipath propagation environment. RMS delay spread can 

be calculated as follows:

τRMS (n ) =
∑

τN

τ (n ) 2PDP (n, τ )
∑

τN

PDP (n, τ ) - -τ (n ) 2 (7),

where τN represents the delay component of the N-th channel 
sample, -τ (n ) refers to the average delay. -τ (n ) is calculated as:

-τ (n ) =
∑

τN

τ (n )PDP (n, τ )
∑

τN

PDP (n, τ ) (8).

Comparing the histograms displaying the RMS delay spread 
distributions of the measured and GAN-generated channels, 
Fig. 6e shows that both channels exhibit a high degree of con⁃
sistency in their distribution shapes and ranges. Additionally, 
the mean RMS delay spreads for the measured and the gener⁃
ated channels are 30.65 ns and 30.74 ns, further validating 
the similarity between the two channel distributions. This also 
confirms the strong performance of the GAN model in captur⁃
ing the channel delay characteristics.

Furthermore, the generation performance of the standard 
GAN model is further compared and evaluated. Figs. 7a and 
7b present the statistical distributions of path loss and RMS 
delay spread from the generated channel by the GAN model. 
By comparing these results with the WGAN-GP performance 
in Fig. 6, it is evident that WGAN-GP achieves better align⁃
ment between the statistical characteristics of the generated 
channel data and those of the measured channel. Fig. 7c pro⁃
vides a quantitative assessment of the fidelity of the generated 
channel data using the Frechet Inception Distance (FID) met⁃
ric. The results indicate that the WGAN-GP model achieves 
significantly lower FID scores (0.114 3 for path loss and 0.106 
for RMS delay spread) compared to the standard GAN model 

Figure 7. Standard GAN model generation performance: (a) path loss; (b) RMS delay spread; (c) FID comparison

FID: Frechet Inception Distance     GAN: generative adversarial network    RMS: root mean square     WGAN-GP: Wasserstein GAN with gradient penalty
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(7.811 6 and 0.882 9, respectively). This demonstrates that 
WGAN-GP is capable of generating channel data with higher 
fidelity, ensuring a closer match to the statistical characteris⁃
tics of measurements.

To validate the effectiveness of GAN-generated channels, a 
simplified link-level simulation was conducted for evaluation, 
which employed phase shift keying (PSK) modulation with 
100 transmitted bits and a modulation order set to 16. Fig. 6f 
compares the bit error rate (BER) of the real channel with that 
of the GAN-generated channel, where the BER curves of the 
real and GAN-generated channel are highly consistent, exhib⁃
iting similar BER trends under different signal-to-noise ratio 
(SNR) conditions. This high level of similarity indicates that 
the GAN-generated channel can effectively simulate the real 
channel in terms of error performance.
5.2 Application Software

The main function of the application software is to generate 
channels by using the previous algorithm, and the visual inter⁃
face is shown in Fig. 8. The software can be divided into two 

sub-functions: one-time channel generation and uninterrupted 
real-time channel generation. The former can generate a speci⁃
fied number of channel data at one time. In addition, the soft⁃
ware can track the duration record generated by the channel. 
When generating channels in real time, the function of select⁃
ing generation batches is added. If the generation batch is se⁃
lected, the channel can be generated in real time according to 
the batch size, and the dynamic generation process of the 
channel and the dynamic distribution of the channel param⁃
eters can also be seen on the visualization panel. After the dy⁃
namic generation of the channel is completed, the software 
will detect the end of the generation and turn the indicator 
light green as a prompt.

Fig. 9 shows the operation flow of the software. First, the 
path needs to be set, including selecting measurement data 
and generating models. The path to store the generated chan⁃
nel data should also be configured. Next, the options of link 
simulation are configured. The modulation mode can be PSK 
or quadrature amplitude modulation (QAM), and the modula⁃
tion order can be 4 or 16. In link simulation, we can choose 
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whether to perform channel estimation or not. Then, we should 
choose whether to generate channels in real time in the basic 
settings. If not, the software will generate all the channel data 
with the set number of channels at one time. If it is real-time 
generation, we need to further set the generation batch; the 
software will subsequently generate channel data according to 
the set generation batch, and the display window will dynami⁃
cally display the whole channel generation process. Finally, af⁃
ter clicking the Start button, the software will initiate the gen⁃
eration of channel data based on the specified configuration. 
Clicking the Clear button will then clear the contents of the 
display window, allowing the settings to be reset for generating 
channel data under the new configuration.
6 Conclusions

Channel characteristics and models are the basis of commu⁃
nication system design and evaluation. Meanwhile, it has been 
a consensus that channel data is the support of channel re⁃
search and modeling. To address the current issue of challeng⁃
ing channel data acquisition, this paper proposes a channel 
data enhancement platform based on the idea of a digital twin 
channel. The platform includes three key subsystems: channel 
measurement, enhancement algorithm, and application soft⁃
ware. The measurement subsystem is a broadband dynamic 
channel measurement system based on the SDR architecture, 
which can complete channel data acquisition in the sub-6 GHz 
frequency. The channel enhancement algorithm, the core of 
the proposed platform, is a neural network based on the GAN 
architecture. It can learn the intrinsic characteristics of real 
channel data and quickly generate a large number of highly 
similar simulation channels. We verify and evaluate the gener⁃
ated channel under the high-order characteristics of power de⁃

lay profile, path loss, shadow fading, and root mean square de⁃
lay spread. The results show that the generated channel is 
similar to the original channel in statistical characteristics and 
has sufficient randomness. Finally, the platform includes inte⁃
grated software for engineers and researchers, which can call 
the above algorithm and generate channel data in real time. 
The result of this paper is a potential channel modeling and 
simulation methodology.
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