Special Topic | A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels

Al Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge

A Machine Learning-Based Channel
Data Enhancement Platform for

Digital Twin Channels

Al Bo', ZHANG Yuxin', YANG Mi', HE Ruisi’, DOI: 10.12142/ZTECOM.202502004

GUO Rongge®

(1. School of Electronic and Information Engineering, Beijing Jiaotong
University, Beijing 100044, China;

2. School of Traffic and Transportation, Beijing Jiaotong University, Bei-
jing 100044, China)

https://kns.cnki.net/kecms/detail/34.1294.TN.20250523.1012.002.html,
published online May 23, 2025

Manuscript received: 2025-03-17

Abstract: Reliable channel data helps characterize the limitations and performance boundaries of communication technologies accurately.
However, channel measurement is highly costly and time-consuming, and taking actual measurement as the only channel data source may re-
duce efficiency because of the constraints of high testing difficulty and limited data volume. Although existing standard channel models can
generate channel data, their authenticity and diversity cannot be guaranteed. To address this, we use deep learning methods to learn the attri-
butes of limited measured data and propose a generative model based on generative adversarial networks to rapidly synthesize data. A soft-
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channel modeling and algorithm evaluation applications with urgent needs for data.
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1 Introduction
n recent years, the 6G wireless communication technol-
ogy has attracted widespread attention, and many insti-
tutes have officially started the 6G research™. With the
expansion of 6G to full-scenario, multi-frequency, and
wide-coverage applications, the demands for 6G mobile com-
munications are becoming more diversified and complicated.
As a signal transmission medium, wireless channels are an in-
dispensable part of communication links, and their character-
istics determine the upper limit of communication system per-
formance. A channel model is a mathematical description of
the key channel characteristics, so channel modeling is a ba-
sis for the design, simulation, and planning of wireless com-
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munication systems.

The goal of channel research is to provide a model that can
generate channel parameters according to the input parameter
set. This model can be a mathematical model based on statisti-
cal fitting, such as the common empirical statistical model™
and the geometric stochastic model®™. For example, Ref. [4]
conducted statistical modeling of features such as arrival time
and power of multipath components, ensuring they conform to
distributions. Ref. [5]
multiple-input multiple-output (MIMO) channel model for

specific introduced a geometric
millimeter-wave (mmWave) mobile-to-mobile (M2M) applica-
tions, using a few clusters placed on two rings centered on the
transmitter and receiver. In addition, the deterministic model
based on numerical analysis and simulation is another chan-
nel modeling idea'®. For example, the classic Longly-Rice
model” uses a two-ray interference approach from geometric
optics to predict radio wave propagation characteristics within
the line-of-sight region. Ref. [8] investigated the channel char-
acteristics of massive MIMO systems in the 26 GHz mmWave
band for indoor scenarios using ray-tracing (RT). The simula-
tion results are consistent with the measured results. With the
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expansion and application of artificial intelligence (AI) meth-
ods such as deep learning, researchers have proposed some
Al-based channel models that use neural networks instead of
traditional mathematical formulas and numerical simulations
to generate channel parameters. Typical examples are found
in Refs. [9 - 11]. Specifically, Ref. [9] used the convolutional
autoencoder to extract 3D-building information to assist path
loss prediction in street canyon scenarios. Ref. [10] employed
convolutional neural networks to predict channel path loss us-
ing receiver-centric satellite maps as environmental features.
Ref. [11] used a multilayer perceptron and long short-term
memory (LSTM) to estimate real-time channel attenuation at
Q-band. For a further overview of the existing classical model-
ing methods, please refer to Refs. [12 - 14].

No matter what the specific modeling method is, a consen-
sus is that the channel model is essentially a mapping relation-
ship. Although the model input attributes can be heteroge-
neous data such as scene category labels, antenna heights,
three-dimensional models, and satellite images, the mapping
relationship is generally between the environment and the cor-
responding channel parameters. The question worth consider-
ing here is whether these channel models, which we can col-
lectively call environment-driven models, are the only solu-
tions to channel research, in other words, whether these mod-
els can solve all the demands for channel data at present. For
most application requirements, such as network deployment
and coverage prediction, it is meaningful to input the neces-
sary environmental characteristics to get the channel param-
eters of the corresponding input scene. However, it should not
be forgotten that channel data are not only applied to
environment-related applications. In other words, the exis-
tence of environment input should not be a prerequisite for
generating channel data. For example, after obtaining some
measured channel data through expensive and time-
consuming actual measurement, researchers want to get more
data under the same conditions conveniently. Another similar
situation is that an algorithm needs to use a lot of real channel
data to evaluate its performance, but the existing data are in-
sufficient. The above two hypothetical situations are real cases
in research and engineering practice. At the moment, the clas-
sic environment-driven model cannot meet all the require-
ments. Faced with these situations, researchers may need a so-
called data-driven channel model, which can learn the charac-
teristics of a small number of existing data and output a large
number of similar data. Alternatively, it can be interpreted as
a digital twin model, which constructs a virtual copy of the
real physical channel, and this “copy” has the same statistical
characteristics as the original data. In a word, this data-based
modeling process, which does not depend on environmental in-
put, can be called Channel Data Enhancement. It has signifi-
cant practical value in some application scenarios.

At present, there have been several studies on data-driven
channel models. As the groundbreaking work, Ref. [15] intro-

duced the use of generative adversarial networks (GAN) to ad-
dress autonomous channel modeling. Building on this, the
GAN model was utilized to learn the distribution of additive
white Gaussian noise channels. Ref. [16] developed a link-
level MIMO channel generation method named Channel GAN
to support deep learning-based channel state information
(CSI) feedback research. For different scenarios, Ref. [17] pro-
posed a GAN-based channel data augmentation algorithm for
communication systems in industrial Internet of Things (IloT)
scenarios to address the issue of insufficient data. Ref. [18]
performed the GAN model to generate channel responses to
address the issue of inadequate channel estimation perfor-
mance in high-speed train scenarios. However, despite these
efforts, some shortcomings still exist. Most studies rely on ide-
alized simulated channel data, whereas measured data can
more accurately capture various interference factors presented
in real-world environments. Developing channel models based
on measurement can enhance their credibility. Additionally,
whether the channel characteristics described by these models
are consistent with real data has not yet been comprehensively
validated. Therefore, this paper proposes a channel data en-
hancement platform, the core capability of which is to quickly
generate a large number of simulation data with similar char-
acteristics based on a small number of data. Specifically, the
platform consists of three subsystems: the channel measure-
ment subsystem, which is used to collect the measured data
and construct the basic data set; the data enhancement algo-
rithm, which provides a model that can learn the characteris-
tics of the data set and output the simulation data; the applica-
tion software, which integrates the algorithm and necessary
control functions to provide a convenient interface for users.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed channel data enhancement platform de-
sign and architecture. Section 3 is about the subsystems re-
lated to channel measurement and the data set in the platform.
Following that, we explain the proposed data enhancement al-
gorithm in Section 4. The algorithm verification and applica-
tion software are described in Section 5. Finally, Section 6
concludes the paper.

2 Platform Design and Architecture

In this paper, a channel data enhancement platform is
implemented, which can complete channel measurement in a
high dynamic scene and then use the proposed algorithm to
learn and measure channel characteristics, greatly expanding
the number of channel data. The overall design and architec-
ture of the proposed platform are shown in Fig. 1.

The platform is divided into three subsystems:

1) Channel measurement subsystem

Based on the software-defined radio instrument, this subsys-
tem realizes broadband channel sounding. The subsystem can
be applied to dynamic scenarios covering the sub-6 GHz fre-
quency band. The measurement subsystem contains a sepa-
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Figure 1. Proposed channel data enhancement platform architecture

rate transmitter and a receiver, which can process and display
the collected signals in real time. In the dynamic scene, the
back-to-back calibration can eliminate the influence of system
response errors of cables and transceivers.

Due to the diversity of measurement scenarios, the core
functional indicators of the measurement subsystem need to be
defined by software. This can be scalable enough to meet the
needs of different measurement environments. Specifically,
the subsystem transmitter needs to complete baseband signal
generation, power amplification, signal processing, and visual
display. The receiver needs to complete signal reception, base-
band signal processing, channel coefficient extraction, chan-
nel parameter analysis, visual display, and others. The overall
structural design is complex and needs to be adapted to the co-
operation on different hardware devices. Therefore, the soft-
ware and hardware design and development of the measure-
ment subsystem is one of the main difficulties in the whole
platform implementation process. The measurement system
program is flexible and can be migrated to different SDR hard-
ware. The hardware configuration can be flexibly combined ac-
cording to the requirements of the actual environment.

2) Data enhancement algorithm

The data enhancement algorithm needs to use the measured
channel impulse response (CIR) obtained by the measurement
subsystem. Then, the channel simulator based on GAN is
trained to learn the intrinsic characteristics of measured data.
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The proposed method reduces the complexity of channel simula-
tion and can quickly generate channel data by using the trained
model. In addition, the accuracy of generated channel data is
verified by channel high-order statistical characteristics, such
as power delay profile, shadow fading, and delay spread.

The key point of subsystem algorithm design is to learn the
characteristics of measured data. However, with the increase
of measurement bandwidth, the time delay resolution of data
becomes higher. In addition, CIRs are composed of multiple
ray clusters, which contain a lot of noise signals. Therefore,
the prime difficulty in data preprocessing is to denoise and re-
duce the dimension of the CIR matrix while retaining effective
information as much as possible. Furthermore, the model net-
work structure includes the number and types of networks, the
logical relationship between networks, and others. These ar-
chitectures directly affect the complexity and, more impor-
tantly, the accuracy. In addition, the appropriate training algo-
rithm should be carefully selected for the specific network
structure. Architecture and training are the key control factors
of model performance.

3) Application software

After verifying the channel simulation ability of the model
through experiments, the focus shifts to building a convenient
software platform. This paper designs an easy-to-operate simu-
lation application program based on MATLAB, which can
complete the functions of model loading, simulation data gen-
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eration, real-time verification, display, and data storage. In ad-
dition, a visual interface is designed.

3 Channel Measurement and Datasets

The broadband wireless channel measurement subsystem
includes a separate transmitter and a separate receiver. The
transmitter consists of a baseband signal source, a local oscil-
lator, an up-converter, a power amplifier, a filter, a signal pro-
cessing unit, and an antenna. The receiver is composed of a
baseband signal source, a local oscillator, a down-converter, a
low noise amplifier, an electronic switch, a data storage unit,
and an antenna''”. The transmitter sends a signal at a specific
carrier frequency to act as a sounding signal, and the receiver
can identify and detect the signal after channel attenuation
and distortion.

The channel measurement subsystem uses multi-carrier sig-
nals as sounding signals, as shown in Eq. (1).

L1 N
s, = zdiexp(ﬂfk) (0<k<L-1) (1),

i=0

where L represents the number of subcarriers and d; repre-
sents the symbol of each subcarrier. The out-of-band power is
reduced by rectangular window function filtering. At the re-
ceiver, the received signal is shown in Eq. (2).

Y(f) = X(f)HlX(f)H(f)HRX(f) (2)7

where X( ) and Y ( f) represent the transmitted and received
signals in the frequency domain respectively. H( f') represents
the channel transfer function, and Hyy (f) and Hyy(f) are
the transfer functions of equipment and cables at the transmit-
ter and receiver respectively. The transmitter and receiver are
directly connected by cables for back-to-back calibration, so
the influence of equipment and cables on the measurement re-
sults can be eliminated.

The measurement subsystem takes the signal transceiver
based on software-defined radio (SDR) as core hardware. The
transmitter implements the loading and generation of base-
band sounding signals and the up-conversion of the baseband
signals through secondary frequency conversion (baseband to
intermediate frequency and intermediate frequency to radio
frequency). The receiver samples and down-converts the sig-
nals captured by the antennas to obtain the baseband signals
and stores them in the local disk. This subsystem realizes
hardware device driving and signal processing, and finally ob-
tains key channel parameters and displays them visually. The
receiver and transmitter of this subsystem use a rubidium
atomic clock calibrated by the global navigation satellite sys-
tem (GNSS) as the reference clock source to ensure the consis-

tency of the 10 MHz reference clock®

. Main parameters of
the subsystem are shown in Table 1, and the equipment is

shown in Fig. 2.

Table 1. Parameters of measurement subsystem

Parameter Value
Carrier frequency 5.9 GHz
Bandwidth Max to 160 MHz
Transmit power Max to 55 dBm

Transmit signal type Multi-carrier signals
Transmit signal samples 1024

Snapshot interval 6.4 ps
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Figure 2. Vector signal transceiver equipment

The software of the channel measurement subsystem is de-
veloped based on LabVIEW. LabVIEW is a program develop-
ment environment developed by National Instruments (NI),
which is well compatible with SDR-based signal transceivers
used in subsystems and can also easily establish a visual inter-
face. The main purpose of subsystem software is to drive and
control the hardware. The software design should be able to
call the hardware equipment, configure the measurement pa-
rameters such as frequency, bandwidth, clock, and sampling
rate of the equipment, and ensure that the received signal data
can be stored'!

The subsystem also provides a visual user interface for tes-
ters, as shown in Fig. 3. The interface includes the configura-
tion of various parameters, system running state detection,
and error reporting. To observe the channel state in real time
during the measurement process, the subsystem also pro-
cesses some collected data in real time and gets typical chan-
nel parameters. In Fig. 3, the receiver interface shows the CIR
at the current time. Besides CIR, the current time domain
waveform chart and frequency spectrum chart can be dis-
played in real time.

The original response obtained by the subsystem includes
the channel response, the inherent response of the measure-
ment system, and the antenna radiation characteristics. There-
fore, system calibration verification is needed to eliminate the
errors caused by these factors. As shown in Fig. 2, the calibra-
tion verification of the subsystem is divided into three parts:

ZTE COMMUNICATIONS | 23
June 2025 Vol. 23 No. 2



Special Topic | A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels

Al Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge

Settings Real-time Signal Display
Clocking and Synchronization

internal

Device Name
NI2900

Tx Gain Tx IQ Rate
o ™

Amplitude

Tx carrier

froquency (Hz)  Samples

soom o
Tx Active Antenna
i
- 8995€+8 ?.Em’: 900SE+8  901E+8
SETTINGS Real-time Signal Display
e e ok
R Active Antenna o

Rx Gain

| w - |
sl V :Eu AT S5 8505M ESSM 0TS SOM S0025M S00SM S07SM. 0T

RX: receiver  TX: transmitter

Figure 3. Visual interface of channel measurement subsystem

instrument self-calibration, back-to-back measurement cali-
bration, and antenna system calibration.

The purpose of instrument self-calibration is to make the
performance and output of the instrument conform to the nomi-
nal value. The transmitter used in this paper has a self-
calibration function, and subsequent measurements can only
be started after the self-calibration has passed before each
measurement. Back-to-back measurement can eliminate the
errors caused by cables and adapters. The specific method
can be summarized as follows. The reference measurement is
conducted when the channel response is known by connecting
the attenuator directly between the transmitter and the re-
ceiver. Thus, the system’s inherent response is obtained. Dur-
ing the actual measurement data processing, the collected
data are processed using these reference measurement results
to eliminate the inherent response of the system and then get
the accurate channel response. Antenna calibration refers to
the measurement of antenna gain in all propagation directions
in an anechoic chamber, which is an important prerequisite to
ensure the accuracy of test results. The measurement error
from antenna radiation can be eliminated when processing the
received data.

The experimental study on channel measurement in this pa-
per was carried out in Beijing, China. During the field mea-
surements, the transmitter and receiver vehicles moved in the
same direction and kept an interval of 20 = 40 m. During the
measurement period, the maximum vehicle speed was no
more than 70 km/h, and the system acquired 16-channel

24 | ZTE COMMUNICATIONS
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snapshots per second. To reduce the influence of random
backscatters, measurement routes were restricted to empty
road sections. Both the transmitting and receiving antennas
were installed on the roof, and the antenna heights were about
1.8 m. The total number of measured channel snapshots was
about 7 000 groups.

4 Proposed Data Enhancement Algorithm

4.1 GAN-Based Algorithm

GAN is a kind of deep generation model, which can implic-
itly learn the probability distribution of input images to gener-
ate identically distributed images. Initially developed for im-
age generation, GAN is not a simple method for copying or
imitating reality, nor does it merely blend or average multiple
real samples. Instead, it uses two game-theoretic neural net-
works, namely the generator (G-network) and the discrimina-
tor (D-network), to learn intrinsic statistical patterns of real
data, without direct objective functions.

G-network is used to learn the distribution of real data to
generate identically distributed data, and D-network judges
the probability whether its input data comes from reality or
generation. Through training, the purpose of the generator is to
gradually generate realistic data to deceive the discriminator.
Discriminators want to always be able to distinguish between
real and generated data. Therefore, the essence of GAN is to
make the generator learn the approximate value of real data
distribution through antagonistic learning.

GAN usually has some problems in training, such as mode
collapse, unstable optimization, gradient disappearance, and
non-convergence. To avoid the above problems, this paper
uses Wasserstein GAN with gradient penalty (WGAN-GP) as
the network framework, which is an improved version of GAN.
Wasserstein distance, also known as the Earth-Mover (EM)
distance, is used to evaluate the similarity between two distri-
butions, which can provide a relatively stable gradient relative
to Jensen-Shannon (JS) divergence. GP can avoid the problem
of gradient disappearance caused by large model weights.
Therefore, WGAN-GP is more stable and converges faster in
training and can significantly improve the training speed and
address the slow convergence issue in original WGAN.

4.2 Algorithm-Based Model Design

4.2.1 Generator Design

Fig. 4 illustrates the network architecture and detailed pa-
rameters of the generator in this algorithm. The model takes
noise vector as input and generates CIR through the generator
that uses one-dimensional convolution to extract features. The
convolution layer can create a convolution kernel, and the in-
put of this layer is rolled up in a single space (or time) dimen-
sion to produce the output. The convolution kernel size in the
generator is set to 3. Subsequently, the batch normalization
layer is added behind each convolution layer, which acceler-
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Layer Type Output Shape

Input layer (128, 1)

Dense & batche normalization & LeakyReLU (8192, 1)
Reshape (128, 64)
Conv ID & batche normalization & LeakyReLLU (128,512)
Conv ID & batche normalization & LeakyReL.U (128, 256)
Conv ID & batche normalization & LeakyReLLU (128,128)
Conv ID & batche normalization & LeakyReLU (128, 64)
Conv ID & batche normalization & LeakyReLLU (128, 32)
Conv ID & batche normalization & LeakyRel.U (128, 16)
Flatten (2048, 1)

Dense (200, 1)

Reshape (100, 2)

LeakyReLU: Leaky Rectified Linear Unit

Figure 4. Generator network design and detailed parameters

ates the convergence speed of model training. It also makes
the model training process more stable to avoid gradient explo-
sion or gradient disappearance. In addition, this paper
chooses Leaky Rectified Linear Unit (LeakyReLU) as the acti-
vation function to alleviate the problem of gradient disappear-
ance. The expression of LeakyReLU is shown in Eq. (3).

x, x 20

LeakyReLU(x) = .
a - x, otherwise

(3).
where x is the input of LeakyReLLU. When x < 0, LeakyReL.U
gives x a slope a. Parameter « is an adjustable superparam-
eter, and the value set in this paper is 0.2. Because Tanh can
limit the output to [—1, 1], the generated CIR better matches
with the real CIR amplitude. Therefore, Tanh is selected as
the activation function after the last convolution layer, and its
expression is shown in Eq. (4).
e —e"

Tanh(x) = —— (4),

e +e”

where x is the input of Tanh. When the input noise passes
through six convolution layers, it will pass through the Flatten
layer, and the result will be mapped into a separable space in
combination with the fully connected layer. The fully con-
nected layer maps the learned features to the sample label
space. Since the generator finally outputs the CIR, it is neces-
sary to reshape the samples passing through the fully con-
nected layer.

4.2.2 Discriminator Design

Fig. 5 shows the network architecture and detailed configu-
ration of the discriminator. The input of the discriminator is
the CIR sample generated by the generator or the real CIR
sample. The input channel samples are first zero-padded to fa-
cilitate the subsequent convolution process. Similar to the gen-
erator, the discriminator mainly uses one-dimensional convolu-
tion and LeakyReLU activation function. The convolution ker-
nel size of the one-dimensional convolution is 5. Finally, it is
output through the Flatten and fully connected layers. The out-
put of the discriminator is the probability while the input is a

Layer Type Output Shape
Input layer (100, 2)
Zero padding ID (128, 2)
Conv ID & LeakyReLU (128, 32)
Conv ID & LeakyReLLU (128, 64)
Conv ID & LeakyReLU (64,128)
Conv ID & LeakyReLU (32, 256)
Conv ID & LeakyRelLU (16, 512)
Conv ID & LeakyReLU (8,1024)
Flatten 8192
Dense 1

LeakyReLU: Leaky Rectified Linear Unit

Figure 5. Discriminator network design and detailed parameters
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real channel sample or a generated channel sample.

5 Algorithm Verification and Application
Software

5.1 Algorithm Verification

Algorithm implementation consists of model design, model
training, and CIR sample generation. The training process fol-
lows an alternating scheme, where the discriminator is up-
dated multiple times per generator update to ensure stable
convergence. The Adam optimization algorithm is employed to
update the parameters of the GAN network with a learning
rate of 0.000 05. Upon completing 2 500 training epochs, the
trained model is saved. Then, in the generation process, the
saved model is used to generate CIR by inputting the desired
number of CIR samples along with a 128-dimensional random
noise vector.

In this section, the similarity between the real and gener-
ated channels is demonstrated by comparing the distribution
performance of the power delay profile (PDP), path loss, and
root mean square (RMS) delay spread between the measure-
ment and generated data. To facilitate accurate evaluation
against real channels, this paper generates channel samples
equal in number to the real ones.

Figs. 6a and 6b illustrate the channel PDP obtained
through actual measurements and GAN generation, respec-
tively. It can be seen that GAN-generated PDP closely
matches the measured data in terms of morphology, especially
aligning with the peak positions in the delay domain observed
in the measurements. Additionally, the generated channels
preserve the diversity, randomness, and noise-affected charac-
teristics of real channels, demonstrating high fidelity. Fig. 6¢
presents a comparison of the averaged PDP. Specifically,
when calculating the PDP, the samples are averaged accord-
ing to the number of samples, as shown in Eq. (5).

1 2
PDP = N;|h(n,r)| (5),

where N is the total number of channel samples, h represents
the measured or generated CIR, n is the sample index corre-
sponding to the number of delay points, and 7 refers to the
delay points.

For the real channel, the average PDP is depicted by the
black curve in Fig. 6¢. The average PDP of the channels gen-
erated by the Al model after 2 500 training iterations is shown
by the blue dashed line with square markers. For comparison,
channels generated by the model after training for 20 epochs
are included, with PDP illustrated by the purple solid line
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Figure 6. Algorithm verification results: (a) measured PDP; (b) generated PDP; (¢c) PDP comparison; (d) path loss;
(e) RMS delay spread; (f) BER performance
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with diamond markers in Fig. 6¢. It can be observed that the
channel power distribution generated by the model trained for
20 epochs ranges in [-100 dB, —60 dB], whereas the power
distribution of both the real channel and the channel gener-
ated by the model trained for 2 500 epochs spans from —120
dB to =60 dB. This discrepancy arises from insufficient train-
ing, which prevents the model from fully capturing channel
characteristics and distribution. As a result, the generated
channel data lack multipath details and exhibit higher noise
power. Channels generated by a high-performing GAN model
closely resemble the real channels, including the transition of
the PDP from peak values to a gradual stabilization.

Further validating the distribution of channel parameters is
crucial for evaluating model performance. Path loss is used to
characterize the power loss that occurs during signal transmis-
sion, which is an important parameter for evaluating signal
coverage area and quality in wireless communication systems.
It can be calculated using PDP, as shown in Eq. (6).

(6),

1 2
PL = M(/\Z‘h(n,rﬂ

where N_ denotes the number of delay points, and h represents
the measured or generated channel. Fig. 6d illustrates the
path loss distributions for both the measured and generated
data. Tt is evident that the generated data (blue histogram) ex-
hibits a high degree of overlap with the measurement (red his-
togram) in terms of path loss. Meanwhile the mean path loss
values for the measured and generated channels are 64.80 dB
and 64.47 dB, further demonstrating the high similarity be-
tween the generated and real channels.

RMS delay spread is used to describe the degree of delay
dispersion in a channel, which reflects the impact of the delay
distribution of each propagation path on the received signal in
a multipath propagation environment. RMS delay spread can
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7] Measurement
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GAN: generative adversarial network  RMS: root mean square

be calculated as follows:

S e(n)?PDP(n, 7)
\ > PDP(n,7)

-7 (n)? (7).

Tpus () =

where 7, represents the delay component of the N-th channel
sample, 7 (n) refers to the average delay. 7 (n) is calculated as:

> z(n)PDP(n,7)
NEPDP(n,r)

7(n)= (8).

Comparing the histograms displaying the RMS delay spread
distributions of the measured and GAN-generated channels,
Fig. 6e shows that both channels exhibit a high degree of con-
sistency in their distribution shapes and ranges. Additionally,
the mean RMS delay spreads for the measured and the gener-
ated channels are 30.65 ns and 30.74 ns, further validating
the similarity between the two channel distributions. This also
confirms the strong performance of the GAN model in captur-
ing the channel delay characteristics.

Furthermore, the generation performance of the standard
GAN model is further compared and evaluated. Figs. 7a and
7b present the statistical distributions of path loss and RMS
delay spread from the generated channel by the GAN model.
By comparing these results with the WGAN-GP performance
in Fig. 6, it is evident that WGAN-GP achieves better align-
ment between the statistical characteristics of the generated
channel data and those of the measured channel. Fig. 7¢ pro-
vides a quantitative assessment of the fidelity of the generated
channel data using the Frechet Inception Distance (FID) met-
ric. The results indicate that the WGAN-GP model achieves
significantly lower FID scores (0.114 3 for path loss and 0.106
for RMS delay spread) compared to the standard GAN model

FID score/FID value
O = N W kR NN

FID (Path loss)

FID (RMS delay spread)
HWGAN-GP 0.1143 0.106
80 90 HGAN 7.8116 0.882 9

(c)

WGAN-GP: Wasserstein GAN with gradient penalty

Figure 7. Standard GAN model generation performance: (a) path loss; (b) RMS delay spread; (c) FID comparison

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

| 27



Special Topic | A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels

Al Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge

(7.811 6 and 0.882 9, respectively). This demonstrates that
WGAN-GP is capable of generating channel data with higher
fidelity, ensuring a closer match to the statistical characteris-
tics of measurements.

To validate the effectiveness of GAN-generated channels, a
simplified link-level simulation was conducted for evaluation,
which employed phase shift keying (PSK) modulation with
100 transmitted bits and a modulation order set to 16. Fig. 6f
compares the bit error rate (BER) of the real channel with that
of the GAN-generated channel, where the BER curves of the
real and GAN-generated channel are highly consistent, exhib-
iting similar BER trends under different signal-to-noise ratio
(SNR) conditions. This high level of similarity indicates that
the GAN-generated channel can effectively simulate the real
channel in terms of error performance.

5.2 Application Software

The main function of the application software is to generate
channels by using the previous algorithm, and the visual inter-
face is shown in Fig. 8. The software can be divided into two

sub-functions: one-time channel generation and uninterrupted
real-time channel generation. The former can generate a speci-
fied number of channel data at one time. In addition, the soft-
ware can track the duration record generated by the channel.
When generating channels in real time, the function of select-
ing generation batches is added. If the generation batch is se-
lected, the channel can be generated in real time according to
the batch size, and the dynamic generation process of the
channel and the dynamic distribution of the channel param-
eters can also be seen on the visualization panel. After the dy-
namic generation of the channel is completed, the software
will detect the end of the generation and turn the indicator
light green as a prompt.

Fig. 9 shows the operation flow of the software. First, the
path needs to be set, including selecting measurement data
and generating models. The path to store the generated chan-
nel data should also be configured. Next, the options of link
simulation are configured. The modulation mode can be PSK
or quadrature amplitude modulation (QAM), and the modula-
tion order can be 4 or 16. In link simulation, we can choose

Channel Data Enhancement Software
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Figure 8. Channel data enhancement application software interface
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Figure 9. Operation flow chart of channel enhancement software

whether to perform channel estimation or not. Then, we should
choose whether to generate channels in real time in the basic
settings. If not, the software will generate all the channel data
with the set number of channels at one time. If it is real-time
generation, we need to further set the generation batch; the
software will subsequently generate channel data according to
the set generation batch, and the display window will dynami-
cally display the whole channel generation process. Finally, af-
ter clicking the Start button, the software will initiate the gen-
eration of channel data based on the specified configuration.
Clicking the Clear button will then clear the contents of the
display window, allowing the settings to be reset for generating
channel data under the new configuration.

6 Conclusions

Channel characteristics and models are the basis of commu-
nication system design and evaluation. Meanwhile, it has been
a consensus that channel data is the support of channel re-
search and modeling. To address the current issue of challeng-
ing channel data acquisition, this paper proposes a channel
data enhancement platform based on the idea of a digital twin
channel. The platform includes three key subsystems: channel
measurement, enhancement algorithm, and application soft-
ware. The measurement subsystem is a broadband dynamic
channel measurement system based on the SDR architecture,
which can complete channel data acquisition in the sub-6 GHz
frequency. The channel enhancement algorithm, the core of
the proposed platform, is a neural network based on the GAN
architecture. It can learn the intrinsic characteristics of real
channel data and quickly generate a large number of highly
similar simulation channels. We verify and evaluate the gener-
ated channel under the high-order characteristics of power de-

lay profile, path loss, shadow fading, and root mean square de-
lay spread. The results show that the generated channel is
similar to the original channel in statistical characteristics and
has sufficient randomness. Finally, the platform includes inte-
grated software for engineers and researchers, which can call
the above algorithm and generate channel data in real time.
The result of this paper is a potential channel modeling and
simulation methodology.
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