
ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Space Network Emulation System Based on a User-Space Network Stack Special Topic

Space Network Emulation System Space Network Emulation System
Based on a UserBased on a User--Space Network StackSpace Network Stack

LEI Jianzhe1, ZHAO Kanglian1, HOU Dongxu2,

ZHOU Fenlin2

(1. Nanjing University, Nanjing 210023, China；
 2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202502003

https://kns.cnki.net/kcms/detail/34.1294.TN.20250514.1835.002.html,
published online May 15, 2025

Manuscript received: 2025-02-22

Abstract: This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks
unique architecture and routing issues and kernel stacks inefficiency and development complexity. Our low Earth orbit satellite scenario emu⁃
lation verifies the dynamic routing function of the protocol stack. The proposed system uses technologies like Open vSwitch (OVS) and traffic
control (TC) to emulate the space networks highly dynamic topology and time-varying link characteristics. The emulation results demonstrate
the systems high reliability, and the user-space network stack reduces development complexity and debugging difficulty, providing conve⁃
nience for the development of space network protocols and network functions.
Keywords: network emulation; space network; user-space network stack; network function virtualization

Citation (Format 1): LEI J Z, ZHAO K L, HOU D X, et al. Space network emulation system based on a user-space network stack [J]. ZTE Com⁃
munications, 2025, 23(2): 11–19. DOI: 10.12142/ZTECOM.202502003
Citation (Format 2): J. Z. Lei, K. L. Zhao, D. X. Hou, et al., “Space network emulation system based on a user-space network stack,” ZTE Com⁃
munications, vol. 23, no. 2, pp. 11–19, Jun. 2025. doi: 10.12142/ZTECOM.202502003.

1 Introduction

1.1 Development of Space Network and Its Emulation
Methods

In recent years, with the continuous iteration of communi⁃
cation technologies and the growing demands for informa⁃
tion perception, satellite telemetry, and global network in⁃
tegration, the traditional terrestrial Internet based on the

Open Systems Interconnection (OSI) protocol stack can no lon⁃
ger meet the increasingly diverse and expanding network ser⁃
vice needs. As a new network service model, the space Inter⁃
net offers a broader service coverage while ensuring transmis⁃
sion bandwidth. It effectively overcomes challenges such as
user access limitations due to terrestrial factors.

Satellite networks have become indispensable in various
fields, including military security, aerospace, civilian net⁃
works, and remote sensing exploration. However, a series of
emerging and evolving network algorithms, protocol systems,
and network management models have also surfaced alongside
its rapid development. Implementing a new technology, from
theoretical development to practical deployment, requires a se⁃

ries of complex validation processes, such as performance
evaluations and network throughput tests. As a communication
network deployed in unique environments, the satellite net⁃
work particularly requires systematic network emulation meth⁃
ods and verification platforms to support technological valida⁃
tion. Network emulation methods are generally categorized into
four types: network theoretical model construction, physical
platform setup, network simulation, and network emulation[1].

• Network theoretical model construction: This method in⁃
volves network research through modeling, theoretical analy⁃
sis, and algorithm design. It provides a theoretical foundation
for the design and implementation of network technology.

• Physical platform setup: This approach aims to replicate
the network scenario to the greatest extent, offering high au⁃
thenticity. However, it is challenging to deploy, needs more
scalability and reconfigurability, and has high hardware re⁃
quirements for network equipment, limiting its use for large-
scale deployments.

• Network simulation: This software-based method simu⁃
lates existing network scenarios, protocols, and services, offer⁃
ing relatively simple, cost-effective and easily extendable ex⁃
perimental environment. However, it does not support real traf⁃
fic loads transmission, leading to less accurate results.

• Network emulation: Combining the advantages of physical
platforms and network simulation, network emulation supports

This work was supported by the National Natural Science Foundation of
China under Grant No. 62131012 and ZTE Industry-University-Institute
Cooperation Funds under Grant No. IA20230712005.

11

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Special Topic Space Network Emulation System Based on a User-Space Network Stack

real protocols and data flow transmission. It thus offers high fi⁃
delity, flexibility, easy deployability, and scalability.

A network emulation platform is generally constructed
through virtualization technology. Virtualization reallocates
and isolates physical hardware resources on real physical de⁃
vices, abstracting resources from computer hardware to the
network operating system and network applications, to create
an emulation environment. Traditional virtualization technol⁃
ogy builds virtual machine managers on the host system,
where each virtual unit requires its own operating system. In
large-scale satellite network scenarios, where the network ap⁃
plications between nodes are similar, traditional virtualization
solutions result in considerable resource redundancy, leading
to inefficiency. Therefore, container-based network solutions
have been proposed. Based on the host server’s operating sys⁃
tem, containerized networking implements process-level virtu⁃
alization, which minimizes emulation node overhead and maxi⁃
mizes the use of the host server’s physical resources.

Given the unique structure of the space network, it differs
significantly from traditional terrestrial networks in terms of
transmission conditions, node deployment, and information
compatibility. For instance, network signals are significantly
impacted by factors such as cosmic electromagnetic interfer⁃
ence and terrestrial atmospheric activity during transmission.
This results in high bit error rates or temporary link interrup⁃
tions. Additionally, due to the large distances between satel⁃
lite nodes, network signal transmission experiences high la⁃
tency and time jitter. The high-speed movement of satellites
further leads to highly dynamic network topologies, causing
periodic changes in link relationships between nodes[2]. These
factors restrict satellite network service to some extent. When
constructing an emulation system for space network, these
characteristics must be considered and incorporated into the
design to best replicate the space network environment.

Existing studies have led to the design and implementation
of several mature and stable network emulation systems, in⁃
cluding NS3, OMNeT++[3], STK[4], and EmuStack[5]. While
these tools provide valuable insights into space network behav⁃
ior, they have notable limitations:

• Limited real-time protocol testing: Many tools focus on
theoretical simulations, which limits their ability to validate
real-world protocol implementations.

• Inefficiency in handling dynamic topologies: The frequent
changes in space network topologies, such as those seen in
low Earth orbit (LEO), are not well supported by traditional
simulation platforms.

• High computational overhead: Some platforms require sig⁃
nificant computational resources, making them less scalable
for large-scale emulations.

• Dependence on kernel-based network stacks: These sys⁃
tems often rely on kernel-level networking, leading to inefficien⁃
cies due to context-switching and limited real-time performance.

1.2 User-Space Network Stack
The network interface subsystem, as the most complex mod⁃

ule in the Linux operating system kernel, has undergone de⁃
cades of development and evolution, achieving a high level of
reliability and stability. However, while the kernel network
stack is widely used, it has also faced criticism for its high de⁃
bugging and development costs, as well as its relatively low
packet forwarding speeds[6]. To improve the performance and
scalability of the network stack, developers have been looking
for ways to abandon the kernel network stack solution and mi⁃
grate the entire functionality of the network stack to user
space. With the continuous development and iteration of high-
performance network I/O technologies such as Data Plane De⁃
velopment Kit (DPDK) and Netmap, the user-space network
stack can bypass the operating system kernel, thereby directly
delivering the received packets from the network interface
card to the user space. This avoids the significant overhead
caused by frequent context switching, memory copying, and
other factors, thus improving the performance of the network
stack[7]. Moreover, for network development personnel, a net⁃
work stack located in user space is more straightforward to de⁃
bug and maintain, which is beneficial for the development of
space network technologies that require extensive validation
work. Therefore, the kernel network stack is not well-suited
for real-world space network environments.

Building upon existing user-space network stacks (e. g.,
mTCP[8], IX[9], and Arrakis[10]), this paper introduces a non-
open-source, high-performance commercial solution specifi⁃
cally designed for next-generation space network routing tech⁃
nologies. Unlike other user-space network stacks, Nos not
only offers exceptional data processing efficiency but also
demonstrates excellent topological adaptability. Furthermore,
it can be integrated with Docker container technology to oper⁃
ate in lightweight virtual environments. Designing and imple⁃
menting an emulation system based on Nos allows for more ef⁃
fective debugging and development, thereby providing en⁃
hanced space network routing services.

This paper proposes an emulation system based on the user-
space network stack Nos. The system overcomes most of the
limitations by providing high-performance data processing,
better topology adaptability, and scalability in lightweight vir⁃
tual environments. This approach offers a more efficient plat⁃
form for validating space network protocols.
2 Design of Space Network Emulation System

2.1 Design of General Emulation System

2.1.1 Node Emulation Solution
As a virtual system, the space network emulation system is

built on the virtualization and reallocation of emulation server
hardware resources. These resources are then abstracted into
independent emulation units. Among these components, the

12

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Space Network Emulation System Based on a User-Space Network Stack Special Topic

emulation node serves as the core element of the scenario. In
emulation experiments, Docker container technology is com⁃
monly used to abstract hardware resources and manage the
emulation nodes in a unified manner.

Docker is an open-source application container engine that
provides a unified runtime environment for applications. It
packages applications and their runtime environments into
lightweight, portable container images, which can be deployed
on any Linux machine. Meanwhile, Docker containers share
the host system’s operating system and hardware resources,
managed by the Docker engine. This allows for fast startup
and execution speeds, as well as high hardware resource utili⁃
zation, making Docker container technology ideal for the uni⁃
fied orchestration of emulation nodes. It offers potent portabil⁃
ity, quick startup, and high resource utilization[11].

The underlying principle of Docker networking is Linux
“namespaces”, a core mechanism enabling container network⁃

ing. Namespaces can isolate various resources of a container,
such as process IDs (PIDs), filesystem mount points, host⁃
names, and other system resources. The network namespace, in
particular, logically provides independent network functional⁃
ities for different containers, including network devices, routing
tables, Address Resolution Protocol (ARP) tables, iptables, fire⁃
walls, and sockets. Additionally, virtual devices such as veth, a
virtual Ethernet device pair, can be used to interconnect con⁃
tainers. Emulation nodes can support different network proto⁃
cols by deploying and running the corresponding network appli⁃
cations in Docker containers.
2.1.2 Link Emulation Solution

Connection between emulation containers is established
through Linux’s veth and Open vSwitch (OVS). Specifically, a
veth network interface is created between the container and
the OVS bridge, with OVS managing the link connectivity be⁃
tween nodes.

The emulation system provides an interface to control the
link status. Users can upload a configuration file that stores
the link connectivity information, and the main control pro⁃
gram will import the relevant data into the MySQL database.
Once the emulation experiment starts, the main control pro⁃
gram continuously polls the database and, at time points
where link events such as link up or down occur, calls the
OVS processing function. It adds or deletes the corresponding
flow entries in the bridge to represent the occurrence of the
link event.

At the start of the emulation experiment, custom network ap⁃
plications run in the containers, while a set of threads are sub⁃
mitted by the main control service. When link characteristics
such as delay, packet loss rate, and bandwidth change, these
threads read the corresponding link configurations from the da⁃
tabase and forward them to the network application in the con⁃
tainer. The application then configures the appropriate traffic
control (TC) queuing discipline for the container s veth inter⁃

face to represent the occurrence of this particular link event.
Thus, in the emulation experiment, dynamic topology and link
characteristics control are abstracted as adding or deleting spe⁃
cific network flow entries in the OVS bridge and configuring TC
queuing discipline in the container’s virtual network interfaces.

The network applications running in the container can ei⁃
ther be custom network programs that perform specific net⁃
work configuration functions or open-source network pro⁃
grams. For example, after configuring the network topology in
the main control program, a Quagga process can be run in the
container to calculate the routing rules for the emulation sce⁃
nario dynamically.
2.1.3 Emulation Architecture Design

The emulation system architecture, as shown in Fig. 1, is
designed and implemented. The system can be abstracted
from three dimensions: service call, emulation logic, and emu⁃
lation scenarios.

Service call refers to how developers call the functions of
the emulation system. At the engineering implementation
level, the emulation system is built as a Maven project inte⁃
grated with Spring Boot. The frontend page provides a corre⁃
sponding web graphical user interface (GUI), allowing devel⁃
opers to invoke the system’s backend through the relevant in⁃
terfaces. The frontend program is deployed on an Nginx
server, and its GUI provides rich functional interfaces. It also
visually displays the topological relationships of the emulation
scenarios, supporting complex scenarios consisting of ground
stations, LEO satellites, deep space satellites, and lunar explo⁃
ration probes. The backend server (Center Server) of the sys⁃
tem performs operations such as scenario construction, link
configuration, and service processing according to specific
web requests. The data interaction between the frontend and
backend is typically achieved through HTTP requests and re⁃
sponses. The frontend sends requests using JavaScript, and
the backend receives and processes these requests and re⁃
turns JSON data to the frontend. The backend s request pro⁃
cessing often involves significant database access, as the data⁃
base stores all experiment-related information, including ex⁃
periment status, node configurations, and link details. The da⁃
tabase and backend program are deployed on the same server,
enabling local and high-speed database access operations.
The backend main control program uniformly orchestrates the
container nodes and builds a star-shaped topology with an
OVS bridge at the center, as defined in the “Emulation Logic”
module. As a virtual switch supporting the OpenFlow protocol
and flow entry distribution, OVS provides support for dynamic
topology control in the emulation system.

From a general perspective, the service call module serves
as the interface through which the emulation system directly
interacts with the user. User actions are transmitted via fron⁃
tend requests to the backend, where they undergo a series of
processing steps and database interactions. This process ulti⁃

13

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Special Topic Space Network Emulation System Based on a User-Space Network Stack

mately constructs the container network as depicted in the
Emulation Logic module. The elements in this container net⁃
work are directly mapped to the corresponding elements in the
Emulation Scenario. The Emulation Logic and Emulation Sce⁃
nario represent two topological frameworks for the emulation
experiment: the former reflects the actual network configura⁃
tion, while the latter serves as an abstract model of the former.
These three core modules effectively demonstrate the struc⁃
ture of a general emulation system.

In designing the general network emulation system, it is cru⁃
cial to consider the platform that best supports the performance
and scalability requirements of space network emulation. The
system performance is influenced by multiple factors, including
network topology dynamics, packet processing efficiency, re⁃
source allocation, and system scalability. These factors collec⁃
tively determine the overall effectiveness of the emulation.

The system is deployed on a general-purpose x86, 64-bit
server and utilizes a combination of Nos and Docker container⁃
ization to achieve high performance and flexibility. Nos en⁃
ables efficient packet processing and supports dynamic topol⁃
ogy adaptation, while Docker containers provide a lightweight,

scalable environment for running emulation nodes.
The use of Docker as the platform ensures efficient resource

utilization, minimizing computational overhead and allowing for
the emulation of large-scale satellite constellations with high fi⁃
delity. This choice of platform addresses the limitations of tradi⁃
tional kernel-based approaches, such as high computational
costs and reduced scalability, making it an ideal solution to
emulating space networks in a real-time, dynamic environment.
2.2 Integration of Nos

The space network emulation platform described above is
designed to integrate Nos. In this design, two Docker contain⁃
ers run in a single emulation node, as shown in Fig. 2. The net⁃
work control plane functions are consolidated in the routing
processor (RP) container, which is responsible for processing
routing packets and dynamically calculating routing rules
based on the real-time network topology. The network data
plane functions are consolidated in the line processor (LP)
container, which performs high-performance forwarding based
on the routing information table of Nos. The two containers are
connected through a veth pair and communicate with each

Figure 1. Emulation system architecture

OVS: Open vSwitch UI: user interface

Service call

User User call
Web UI

Backend response Frontend response

Database

Database access

Center server

OVS bridge

Emulation node 1

Network application
Control plane container

Veth

Data plane container
Veth

Veth

Emulation node 2

Network application

Data plane container
Veth

Control plane container

Veth
Veth

Emulation logic

Emulation scenario

Lunarexploration

Space network core

Space network access

Terrestrial network core
User signal station

Ground station

Gateway control

Network management User terminal devices

14

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Space Network Emulation System Based on a User-Space Network Stack Special Topic

other directly, collectively forming an emulation node.
Each emulation node s LP container is connected to the

OVS bridge “ovsbr0” via a southbound veth interface, with all
emulation traffic being exchanged through the ovsbr0 bridge.
The RP container of the emulation node is connected to the
OVS bridge “mng” via a northbound veth interface. The mng
bridge, as a management bridge, ensures communication be⁃
tween the main control server and the emulation node. Devel⁃
opers can log into the RP container’s reserved port 22 via this
management bridge and access the user management interface
of the network stack.
2.3 Soft Forwarding Interface Configuration and Link

Mapping
Unlike terrestrial networks, the space network often experi⁃

ences link interruptions and handovers. For example, in a po⁃
lar orbit constellation scenario, when a satellite enters the po⁃
lar region, the link between satellites of adjacent orbits within
the same latitude range will be temporarily interrupted and re⁃
sume once the satellite exits the polar region[12]. Additionally,
the satellite connected to a given ground station will change
over time. In such high dynamic topologies, a unified emula⁃
tion strategy is adopted. That is, all possible link resources are
reserved during the scenario construction. When a link tempo⁃
rarily fails, the corresponding flow entries are added to the
ovsbr0 bridge, matching all packets from the two end nodes of

the link and discarding them, thus emulating link up/down
and handover events.

However, the apparent disadvantage of this emulation strat⁃
egy is that reserving resources for all possible links in ad⁃
vance can result in substantial waste, especially in scenarios
where link handovers occur frequently, as shown in Fig. 3.

A ground station may only be connected to several satellites
at any given time, while the links with all the other potential
satellites are temporarily interrupted. These interrupted links,

Figure 2. Emulation system architecture with integrated Nos

LP: line processor OVS: Open vSwitch RP: routing processor SQL: Structured Query Language

Figure 3. Link handovers occur frequently

Router A

Veth
Control plane RP container

Veth

OVS (mng)Port 0 Port 1
Router B

Container node A
Container node B

Management bridge Nos service login interface: telnet 192.170.60.xx 22
Network managementNetwork configuration

…

MySQL database
exp_node node_link
link_table flow_table

…

Veth
Data plane LP container

Veth

Control plane

Control plane

Veth
Control plane RP container

Veth
Veth

Data plane LP container
Veth

OVS (ovsbr0)
Port 0 Port 1 Forwarding bridge

System server

Request Return

Flow distribution:
Match ip=192.170.10.10, uport=20001, action=drop
Match ip=192.170.10.60, uport=60001, action=drop

…

Forwarding bridge

Link up
Link down

15

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Special Topic Space Network Emulation System Based on a User-Space Network Stack

however, could take significant system resources. In large-
scale constellation scenarios, such scale of resource waste is
unacceptable. Nos uses a virtual network interface called

“fei” for software forwarding. This interface is implemented in
software within the network stack and does not incur addi⁃
tional system resource overhead. All packets forwarded
through the fei interface are first handed to the southbound
veth interface of the LP container and then forwarded by the
ovsbr0 bridge.

The LP container has only one southbound veth interface, and
all emulation nodes are connected to the OVS bridge through a
single veth interface. All traffic from the emulation node is trans⁃
mitted through this interface. As shown in Fig. 4, in any given
emulation node, the fei interface in the forwarding plane LP con⁃
tainer is a virtual interface created in software, existing within
the user-space network stack. An IP address needs to be as⁃
signed to it for end-to-end forwarding in the emulation experi⁃
ment. The IP address configured on the veth interface connect⁃
ing all LP containers to OVS is specified within a particular sub⁃
net (such as the subnet 192.170.10.0/24 in Fig. 4). That is, all
LP container veth interfaces are in the same subnet.

To ensure that all packets passing through the veth inter⁃
face are correctly matched with the software forwarding fei in⁃
terface, a User Datagram Protocol (UDP) port number (uport)
is introduced, and a mapping relationship from “veth IP + up⁃
ort” to “fei IP” is established. Within any given emulation
node, the fei IP address maps to the veth IP + uport of the LP
container. For all neighboring nodes of a particular node, the
link endpoints’ fei IP can be mapped as a four-tuple: “IP lo⁃

cal, uport local， IP remote, uport remote”.
Before the experiment starts, the link mapping relationships

between any node and its neighbors are saved in the network
stack’s startup configuration file “soft_forward. xml”. Upon
starting, the network stack reads this configuration file to es⁃
tablish local link mappings with all neighbors. On the emula⁃
tion layer, any packet is forwarded through the fei interface of
the LP container after the network stack finishes encapsulat⁃
ing it. However, at the implementation level, when the fei in⁃
terface receives a packet, it cannot forward it directly. Instead,
it must first use the local link mapping information and encap⁃
sulate an additional layer, combining the local veth IP address
and local UDP port with the corresponding remote veth IP and
remote UDP port. The packet is then handed to the south⁃
bound veth interface of the LP container and forwarded by the
OVS bridge (Fig. 5). When an emulation node receives a
packet, the same process occurs: the outer IP and UDP port
numbers are decapsulated first, and then the packet is passed
to the fei interface for processing.

In the emulation architecture mentioned above, the emula⁃
tion of link characteristics also requires a corresponding de⁃
sign. First, for the OVS bridge ovsbr0, which is responsible for
forwarding all traffic generated by the emulation nodes, flow
entries can be added in it to match specific packets and take
corresponding actions. For example, when emulating a node
failure, a flow entry can be added to match the source or desti⁃
nation IP address of the node’s southbound veth interface and
drop the packet. This effectively emulates the temporary isola⁃
tion of that node in the emulation scenario. Simply deleting

Figure 4. Virtual fei interface configuration for soft forward and its link-mapping rules

OVS: Open vSwitch SQL: Structured Query Language

OVS (ovsbr0)

Flowcontrol

Soft_forward.xml
…<fei> <id>fei0<id> <emu_ip>10.0.0.1<emu_ip> <uport_num>10001<uport_num> <id>fei1<id> <emu_ip>10.0.1.1<emu_ip> <uport_num>10002<uport_num> <id>fei2<id> …<fei>
…

Veth 0 192.170.10.10 uport 10001 fei 10.0.0.1
uport 10002 fei 10.0.1.1Port 0

Veth 0 192.170.10.20 uport 20001 fei 10.0.1.2
uport 20002 fei 10.0.2.2Port 0

Veth 0 192.170.10.30 uport 30001 fei 10.0.2.3
uport 30002 fei 10.0.3.3Port 0

Veth 0 192.170.10.40 uport 40001 fei 10.0.3.4
uport 40002 fei 10.0.0.4Port 0

MySQL databasenode_link
Interfacemapping

IP_local

192.170.10.10

192.170.10.10

…

Uport_local

10001

10002

…

IP_remote

192.170.10.40

192.170.10.20

…

Uport_remote

40002

20001

…

16

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Space Network Emulation System Based on a User-Space Network Stack Special Topic

the flow entry will suffice to restore the node’s state. Simi⁃
larly, when emulating the failure of a link, a flow entry can be
added to match the source IP + UDP port number or the desti⁃
nation IP + UDP port number, and take the “drop” action.

Secondly, link characteristics such as delay and packet
loss rate can be emulated by constructing a TC queue disci⁃
pline tree (Fig. 6) on the southbound veth
interface of the LP container. This will
enable traffic flowing through the inter⁃
face to be split. Packets enter the filter
from the root queue, and the filter will
match the destination IP address and
UDP port number of the packets, direct⁃
ing them into different leaf classes[13]. By
configuring the appropriate queue set⁃
tings under the leaf classes, these link
characteristics can be emulated.
3 Low Earth Orbit Constella⁃

tion Emulation
A small LEO constellation scenario, as

shown in Fig. 7, is constructed in the emu⁃
lation system. The scenario consists of
two polar satellite orbital planes, each
with four satellites, along with two ground
station terminals. All ten emulation nodes
are created through the frontend GUI in⁃
terface, and all link configurations are im⁃
ported.

The satellite motion model used in this experiment is based
on real-world orbital dynamics, with satellite positions and
movements derived from real-world data exported via Satellite
Toolkit (STK). The orbital parameters, such as satellite speed,
orbital inclination, and orbital altitude, are extracted from
STK’s high-fidelity models, ensuring accurate representation
of the satellite’s behavior in LEO over time. These orbital pa⁃
rameters directly affect link availability and inter-satellite
communication.

The link quality is computed based on various factors, in⁃
cluding propagation delay, signal strength, and bit error rate.
These factors are influenced by the relative distance between
satellites, atmospheric conditions, and the satellite s position.
The link quality model reflects the real-time variations caused

by satellite motion, orbital perturbations,
and environmental factors, ensuring that
the emulation results accurately represent
the dynamic nature of space networks.

After the emulation experiment starts,
the RP container within Nos reads the
routing protocol configuration file and
calculates the routing relationships for
the nodes. After a certain period, the
routing converges, and all nodes obtain
routing entries for all subnets in the emu⁃

lation scenario.
The threads submitted by the emulation system access the

link up/down information in real time and synchronize the con⁃
trol of the emulated links. For example, when a satellite enters
the polar region, communication between adjacent-orbital sat⁃

Figure 5. Additional packet encapsulation

Figure 6. Traffic control (TC) queuing discipline tree

Figure 7. A small low Earth orbit constellation scenario

Header … 10.0.0.1 10.0.3.3 Payload
Src ip Dst ip Layer 4 and layer 5

Layer 3
Layer 1 and layer 2 Additional layer

Ip_local
192.170.10.10

Uport_local
10001

Ip_remote
192.170.10.40

Uport_remote
40002

Veth ip_local192.170.10.10

Filter 1:Match ip dport 40002 0xfff flowid 2:10 Filter 2:Match ip dport 20001 0xfff flowid 2:10

2:1

2:1020 Mbit/s (15 kbit) 2:2020 Mbit/s (15 kbit) 2:10020 Mbit/s (15 kbit)

10: 20:

Delay: 20 msLoss: 0.1% Delay: 15 msLoss: 0.5%

2:

Arctic region

Link up
Link down

17

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Special Topic Space Network Emulation System Based on a User-Space Network Stack

ellites in the same latitude zone will be temporarily inter⁃
rupted until the satellite exits this region. When the control
plane of Nos detects such network topology changes, it recal⁃
culates and updates the routing. The TC thread accesses the
database to obtain real-time inter-satellite distances. Using
these measurements, it calculates the inter-satellite propaga⁃
tion delay for the current time slice with a fixed duration and
subsequently updates the TC queue discipline tree to propa⁃
gate the delay information.

Fig. 8 shows the changes in delay and packet loss rates be⁃
tween two adjacent-orbital satellites in the same latitude zone.
The delay exhibits a certain periodicity over time. When the
two satellites move from high-latitude regions to low-latitude
regions, the inter-satellite delay gradually increases; when
moving from low-latitude regions to high-latitude regions, the
inter-satellite delay gradually decreases. When the satellite’s
latitude becomes too high and it enters the polar region, the
inter-satellite link is disconnected. In this case, communica⁃
tion between the two satellites must rely on inter-satellite
links with satellites in their respective lower-latitude orbits, re⁃
sulting in significantly higher delays.

The delay and packet loss rate variations between the two
ground station terminals are shown in Fig. 9. At the same
time, throughput and bandwidth utilization tests were con⁃
ducted on a ground station terminal, and the results are
shown in Fig. 10. The end-to-end delay remains generally
stable, with minor fluctuations caused by satellite movement.
Due to the impact of bottleneck links in the satellite net⁃
work, the throughput of the ground station ranges approxi⁃
mately from 450 kbit/s to 700 kbit/s, with bandwidth utiliza⁃
tion reaching over 75%. However, when a link is interrupted
or involves a satellite-ground link switch, there is a certain
waiting time for the routing information in Nos to converge
again. During this time, the two terminals are temporarily un⁃
able to communicate.
4 Conclusions

The construction of a space network emulation system is
more complex than that of a ground network. We propose a
space network emulation system based on Nos, a high-
performance user-space network stack, in this paper. This
emulation system facilitates the development and debugging
of protocol systems and network functions. The separation of
control and forwarding in the Nos architecture improves the
overall stability of the emulation system. By constructing an
LEO satellite constellation scenario, the routing and forward⁃
ing functions of Nos are validated, and the dynamic topology
and time-varying link characteristics of the satellite network
are realistically and reliably emulated. Nos has a rich set of
functionalities. Therefore, this emulation system provides a re⁃
liable means for applying many network concepts and tech⁃
nologies to space communication.

There are still some areas in the space network emulation

Figure 8. Delay and packet loss between two adjacent-orbital satellites
in the same latitude region

Figure 9. Delay and packet loss between two ground station terminals

Figure 10. Throughput and bandwidth utilization of one ground station
terminal

Time/s

Del
ay/

ms

0 500 1 000 1 500 2 000

Los
s/%

40

35

30

25

5

4

3

2

1

0

Delay
Loss

Moving from equator to po⁃lar region
Moving in polar region
Moving from polar region to equator

Satellite status

Los
s/%

5

4

3

2

1

0

Del
ay/

ms
60
55
50
45
40
35
30
25

Delay
Loss

Waiting for route convergence

Time/s
0 100 200 300 400 500

Time/s
0 100 200 300 400 500

Thr
oug

hpu
t/(k

bit/
s)

1 000
900
800
700
600
500
400
300
200

Waiting for route convergence

100

80

60

40

20

0

Ban
dwi

dth
 uti

liza
tion

/%

ThroughputBandwidth utilization

18

ZTE COMMUNICATIONS
June 2025 Vol. 23 No. 2

LEI Jianzhe, ZHAO Kanglian, HOU Dongxu, ZHOU Fenlin

Space Network Emulation System Based on a User-Space Network Stack Special Topic

that need to be fully considered. For example, inter-satellite or
satellite-ground link delays are determined not only by dis⁃
tance, but also by many other factors such as atmospheric
cloud cover. Moreover, the protocol model provided by Nos is
primarily designed for the terrestrial network, and when emu⁃
lating deep-space communication scenarios, protocols like
Delay-Tolerant Network (DTN) are not supported. Future itera⁃
tions and optimizations of the emulation platform should focus
on enhancing system realism, stability, and network function⁃
ality completeness.

References
[1] ZHOU L W. Research on simulation and evaluation platform of large-scale

satellite network based on container technology [D]. Xian: Xidian Univer⁃
sity, 2022. DOI: 10.27389/d.cnki.gxadu.2022.000914

[2] LI H W, WU Q, XU K, et al. Progress and tendency of space and earth in⁃
tegrated network [J]. Science & technology review, 2016, 34(14): 95–106.
DOI: 10.3981/j.issn.1000-7857.2016.14.011

[3] VARGA A, HORNIG R. An overview of the OMNeT++ simulation environ⁃
ment [C]//Proc. 1st International Conference on Simulation Tools and Tech⁃
niques for Communications, Networks and Systems & Workshops. ICST,
2008: 1–10

[4] COOK P, SCAVONE G. The synthesis ToolKit (STK) [EB/OL]. [2024-09-
30]. http://hdl.handle.net/2027/spo.bbp2372.1999.366

[5] LI H F, ZHOU H C, ZHANG H K, et al. EmuStack: an openstack-based
DTN network emulation platform [C]//Proc. International Conference on
Networking and Network Applications (NaNA). IEEE, 2016: 387 – 392.
DOI: 10.1109/NaNA.2016.24

[6] MARINOS I, WATSON R N M, HANDLEY M. Network stack specializa⁃
tion for performance [J]. ACM SIGCOMM computer communication re⁃
view, 2015, 44(4): 175–186. DOI: 10.1145/2740070.2626311

[7] RIZZO L. Revisiting network I/O APIs: the netmap framework [J]. Commu⁃
nications of the ACM, 2012, 55(3): 45 – 51. DOI: 10.1145/
2093548.2093565

[8] JEONG E Y, WOO S, JAMSHED M, et al. MTCP: a highly scalable user-
level TCP stack for multicore systems [C]//11th USENIX Symposium on
Networked Systems Design and Implementation. USENIX, 2014: 489–502

[9] BELAY A, PREKAS G, KLIMOVIC A, et al. IX: a protected dataplane op⁃
erating system for high throughput and low latency [C]//11th USENIX Sym⁃
posium on Networked Systems Design and Implementation. USENIX,
2014: 49–65

[10] PETER S, LI J, ZHANG I, et al. Arrakis: the operating system is the con⁃
trol plane [J]. ACM transactions on computer systems (TOCS), 2016, 33
(4): 1–30. DOI: 10.1145/2812806

[11] POTDAR A M, NARAYAN D G, KENGOND S, et al. Performance evalu⁃
ation of docker container and virtual machine [J]. Procedia computer sci⁃
ence, 2020, 171: 1419–1428. DOI: 10.1016/j.procs.2020.04.152

[12] FOSSA C E, RAINES R A, GUNSCH G H, et al. An overview of the
IRIDIUM (R) low Earth orbit (LEO) satellite system [C]//Proc. IEEE 1998
National Aerospace and Electronics Conference. IEEE, 1998: 152–159.
DOI: 10.1109/NAECON.1998.710110

[13] ALMESBERGER W. Linux network traffic control—implementation
overview [EB/OL]. (1999-4-23) [2024-09-30]. https://www. almesberger.
net/cv/papers/tcio8.pdf

Biographies
LEI Jianzhe is a student at the School of Electronic Science and Engineering,
Nanjing University, China. His research focuses on space network emulation
and network forwarding technologies.

ZHAO Kanglian (zhaokanglian@nju. edu. cn) received his PhD degree from
Nanjing University, China. He is currently working at Nanjing University as a
professor and doctoral supervisor. His main research interests include space in⁃
telligent information networks and 6G integrated terrestrial and space networks.

HOU Dongxu received his PhD degree from the School of Electronic Science
and Engineering, Nanjing University, China in 2022. He is working at ZTE Cor⁃
poration. His research interests include satellite network routing technologies
and bearer networks.

ZHOU Fenlin is a Chief Engineer for Future Network Research at ZTE Corpo⁃
ration. His research directions include computing networks, deterministic net⁃
works, intelligent computing networks, non-terrestrial networks, and future net⁃
work architectures.

19

