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Abstract: Accurate channel state information (CSI) is crucial for 6G wireless communication systems to accommodate the growing demands 
of mobile broadband services. In massive multiple-input multiple-output (MIMO) systems, traditional CSI feedback approaches face chal⁃
lenges such as performance degradation due to feedback delay and channel aging caused by user mobility. To address these issues, we pro⁃
pose a novel spatio-temporal predictive network (STPNet) that jointly integrates CSI feedback and prediction modules. STPNet employs 
stacked Inception modules to learn the spatial correlation and temporal evolution of CSI, which captures both the local and the global spatio-
temporal features. In addition, the signal-to-noise ratio (SNR) adaptive module is designed to adapt flexibly to diverse feedback channel condi⁃
tions. Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions.
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1 Introduction

Future 6G communication systems are expected to sup⁃
port significantly higher demands from mobile broad⁃
band services[1]. As a representative 6G scenario, ultra-
massive multiple-input multiple-output (MIMO) sys⁃

tems critically depend on real-time, accurate, and reliable 
channel state information (CSI) [2]. In frequency division du⁃
plex (FDD) systems, user equipment (UE) estimates downlink 
CSI and feeds it back to the base station (BS) via uplink trans⁃
mission. However, the increasing number of antennas has dra⁃
matically expanded the feedback overhead, thereby placing a 
substantial burden on limited bandwidth resources. Recently, 
deep learning (DL) techniques have been introduced to com⁃
press CSI and reduce feedback overhead[3–4]. Specifically, DL-
based CSI feedback utilizes an encoder to compress the CSI 
into codewords at the UE and a decoder at the BS to recon⁃
struct the CSI from these codewords[5]. This approach has been 
demonstrated to outperform traditional codebook-based feed⁃
back methods in terms of effectiveness[6]. In Ref. [7], SwinCF⁃

Net is proposed for a CSI feedback task, which utilizes the 
Swin Transformer to extract long-range dependency informa⁃
tion from CSI.

However, due to changes in the scattering environment and 
user mobility, the channel varies rapidly over time. In mobile 
scenarios, processing delay in the CSI feedback process 
makes the CSI received by the BS outdated, leading to a sig⁃
nificant degradation in system performance. The authors in 
Ref. [8] theoretically analyze the impact of CSI delay on the 
channel. To mitigate the performance degradation caused by 
channel aging, accurate and timely CSI prediction becomes in⁃
creasingly essential, which leverages the temporal correlation 
between historical CSI and future channel states. Besides, in 
recent years, digital twins have emerged as a revolutionary 
technology for visualizing, predicting, and analyzing the inter⁃
actions between digital models and the physical world[9]. The 
design of digital twins relies on the virtual mapping of physi⁃
cal products, using real-time data and information from the 
field. High-precision time series prediction of wireless chan⁃
nel information in physical entities is crucial to building a 
digital twin environment[10].

Traditional methods for CSI prediction, such as the linear 
extrapolation model[11] and the autoregressive (AR) model[12], 
rely on statistical and mathematical formulations that struggle 
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to capture the dynamic complexity of realistic wireless chan⁃
nels. In contrast, DL-based models, with their capacity for cap⁃
turing nonlinear relationships and their flexibility in handling 
large datasets, offer a promising alternative. Inspired by the 
great potential of the recurrent neural networks (RNNs) and 
their variants in time series modeling, an RNN-based predic⁃
tor[13] and a long short-term memory (LSTM)-based predictor[14] 
have been proposed. In Ref. [15], a transformer-based parallel 
channel prediction model is introduced to accurately predict 
time-varying channels, which avoids the error propagation 
problem in classical sequential prediction methods. Addition⁃
ally, the authors in Ref. [16] propose a joint framework for 
channel feedback and prediction, leveraging the convolutional 
LSTM (ConvLSTM) to exploit temporal correlations. However, 
these existing methods primarily focus on the temporal correla⁃
tion, while overlooking the array and frequency correlations 
crucial for further improvement.

In this paper, we propose a novel spatio-temporal predic⁃
tive network (STPNet) for CSI prediction in massive MIMO 
systems. STPNet employs a joint CSI feedback and predic⁃
tion framework, where the feedback network compresses 
and reconstructs CSI while capturing inter-antenna and 
inter-subcarrier correlations. The core prediction network 
consists of several cascaded Inception modules to learn the 
spatio-temporal features from the codewords by group con⁃
volutions. Using joint training, STPNet eliminates the error 
propagation issues found in separate module designs. Fur⁃
thermore, we introduce a signal-to-noise ratio (SNR) adap⁃
tive module to dynamically adjust input tokens according to 
real-time SNR variations, enabling more robust adaptation 
to changing communication conditions. Numerical results 
show that STPNet outperforms other predictive methods 
across diverse channel scenarios.
2 System Model

We consider the downlink of an FDD massive MIMO sys⁃
tem with Nt ≫ 1 transmitting antennas at the BS and a single 
receiving antenna at the UE. The 
number of sub-carriers is Nc. The re⁃
ceived signal at the n-th subcarrier 
can be expressed as:

yn = hH
n vn xn + zn (1),

where hn ∈ CNt, vn ∈ CNt, xn ∈ C, 
and zn ∈ C denote the channel vec⁃
tor, the precoding vector, the trans⁃
mitted data symbol and the additive 
noise at the n-th subcarrier, respec⁃
tively. The downlink CSI can be de⁃
noted by:
H = [ h1,h2,…,hn ]T ∈ Nc × Nt (2).

Since the elements of the channel matrix are complex num⁃
bers, the total number of CSI parameters is 2Nc Nt. However, 
as the number of antennas in future massive MIMO systems 
grows, the size of the CSI matrix might exceed the uplink’s 
feedback capacity.

To tackle the challenge of payload size reduction, we imple⁃
ment a framework that compresses the channel matrix H into a 
low-dimensional codeword s of size M×1 at the UE, which can 
be formulated as:
s = fen (H ; θen ) (3),

where fen (∙) represents the function of the encoder and θen de⁃
notes its parameter. The compression ratio (CR) is defined as 
γ = M

2Nc Nt
. Then, the encoded vector s is transmitted via a 

noisy channel. In our work, we consider the widely used addi⁃
tive white Gaussian noise (AWGN) channel. The channel out⁃
put vector ŝ received by the BS is expressed as:
ŝ = η ( s, σ ) = s + n (4),

where each component of the noise vector n is independently 
sampled from a Gaussian distribution, i.e., n~N (0, σ2 I ), and 
σ2 is the noise power.

The structure of AI-based CSI feedback is illustrated in 
Fig. 1a. However, in high-speed mobile scenarios, the channel 
matrix varies rapidly over time. Due to the feedback delay and 
channel aging problems, directly feeding back the channel at 
the current slot leads to a mismatch between the feedback 
channel and the actual channel. To address this issue, a CSI 
prediction module is introduced at the BS. Our proposed AI-
based joint CSI feedback and prediction framework, shown in 
Fig. 1b, performs prediction at the codeword level. Let ŝ( t ) and 
s̄( t + 1) denote the codeword of the t-th slot and the predicted 
codeword of the (t+1) -th slot, respectively. We adopt the re⁃
ceived historical codewords from the past P slots to simultane⁃

Figure 1. (a) Structure of AI-based CSI feedback; (b) Our proposed AI-based joint CSI feedback and 
prediction framework
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ously predict the future codewords for the next L consecutive 
slots simultaneously, which can be expressed as:

( s̄( t + 1) ,⋯,s̄( t + L ) ) = fpre ( ŝ( t - P + 1) ,⋯,ŝ( t ) ; θpre ) (5),
where fpre (∙) represents the function of the prediction module 
and θpre denotes the corresponding parameter set. Subse⁃
quently, the BS reconstructs the channel matrix from the pre⁃
dicted future codewords as follows.
H̄ = fde ( s̄ ; θde ) (6),

where fde (∙) represents the function of the decoder and θde de⁃
notes the parameter set of the decoder. H̄ is the recovered 
channel matrix.
3 Design of STPNet

3.1 Network Architecture
Compared with simple CSI feedback, joint CSI feedback 

and prediction can more effectively mitigate the distortion 
caused by feedback delays and channel aging. In a separate 
feedback and prediction architecture, each module is opti⁃
mized and designed independently, so the local optimum of 
each component may not yield a globally optimal outcome. In 
contrast, the joint architecture employs end-to-end training to 
reduce error propagation between modules, resulting in more 
accurate predicted CSI.

Building on the advantages of the joint feedback and predic⁃

tion architecture, we present an overview of our STPNet model 
in Fig. 2a. STPNet consists of a CSI encoder, SNR adaptive 
modules, a CSI prediction module and a CSI decoder. The en⁃
coder is used to compress the CSI into codewords and extract 
spatial features of the channel matrix at UE. The CSI predic⁃
tion module, serving as the network’s core, operates at the 
codeword level. The prediction module leverages the spatial 
and temporal correlation of historical channel characteristics 
to forecast future codewords. The SNR adaptive modules, inte⁃
grated into both the encoder and decoder, dynamically modu⁃
late intermediate tokens based on instantaneous channel qual⁃
ity. Finally, the decoder aggregates and processes the pre⁃
dicted codewords to produce the final CSI output at the BS.

We employ the SwinCFNet architecture to implement the 
CSI encoder and decoder within STPNet. Built upon the 
Swin Transformer, SwinCFNet delivers superior performance 
in CSI feedback tasks. First, it effectively reduces feedback 
data while aggregating spatial-frequency domain CSI fea⁃
tures to support the prediction module. Second, this design 
captures long-range dependencies, exploiting both inter-
frequency and inter-antenna correlations within the channel 
matrix, ultimately enhancing the accuracy of the predicted 
output. Ref. [7] presents a detailed description of the 
SwinCFNet architecture.

In the core prediction module, an Inception architecture is 
introduced to learn the temporal evolution by capturing and 
updating spatio-temporal features, as shown in Fig. 2b. Moti⁃
vated by Refs. [17] and [18], cascaded Inception blocks are 

Figure 2. Network architecture of STPNet

BS: base station       CSI: channel state information      STPNet: spatio-temporal predictive network      SNR: signal-to-noise ratio        UE: user equipment
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employed. These blocks primarily consist of convolution lay⁃
ers with 1×1 kernels, followed by parallel GroupConv2D op⁃
erations. The inner structure of Inception is illustrated in Fig. 
2c. Here, the 1×1 Conv2D layer is used to increase the depth 
of the network and enhance representational capacity. To ex⁃
tract diverse local patterns, GroupConv2D layers with kernel 
sizes of 3×3, 5×5, 7×7, and 11×11 split the feature channels 
into multiple groups, each capturing different localized fea⁃
tures. Due to the complexity of channel conditions, predicting 
future channels is challenging because the locations of useful 
features vary significantly over time. By utilizing a multi-
branch Inception architecture, the cascaded modules extract 
both local and global features from the codewords. In the final 
block, outputs from convolution layers with varying kernel 
sizes are fused through addition, integrating multiple spatio-
temporal CSI features at different scales.

Note that the joint CSI feedback and prediction model is 
trained in an end-to-end manner. Its parameters are updated 
using an adaptive moment estimation (ADAM) optimizer. 
The networks are trained to minimize the difference between 
the predicted and the ground truth CSIs. Consequently, the 
training loss function is defined as the mean square error 
(MSE) expressed as follows.

L (θen,θpre,θde ) = 1
T ∑

i = 1

T ∑
j = 1

L

 H ( t + j )
i - H̄ ( t + j )

i

2 (7),

where T is the number of samples in the training set, and 
the subscript of H denotes the i-th sample in the training 
set. H ( t + j )

i  and H̄ ( t + j )
i  denote actual and predicted CSI at the 

(t+j)-th slot, respectively.
3.2 SNR Adaptive Module

In high-speed mobile scenarios, the uplink feedback chan⁃
nel undergoes rapid variations, requiring the end-to-end feed⁃
back system to adapt automatically to changing channel condi⁃
tions. To address this, we introduce an SNR adaptive module 
(SAM), depicted in Fig. 3. The SAM is designed based on the 
mechanism of channel-wise soft attention[19], which identifies 
channel relationships and generates distinct scaling param⁃
eters for different channel states, thereby enhancing or attenu⁃
ating their influence on subsequent layers[20]. By dynamically 
adjusting resource allocation strategies based on these varying 
channel states, the system implicitly modulates the source cod⁃
ing rates in both the encoder and decoder, ultimately achiev⁃
ing higher-quality transmission and CSI reconstruction.

As illustrated in Fig. 3, the SAM consists of three compo⁃
nents: 1) SNR semantic extraction, 2) semantic embedding, 
and 3) feature calibration. The channel feature s is first pro⁃
cessed by the fully connected (FC) layer and then fed into the 
SAM for modulation.

1) SNR semantic extraction. The uplink channel informa⁃
tion SNR is first input into the three FC layers to generate the 

semantic information of the channel state. The first and sec⁃
ond FC layers are followed by the Rectified Linear Unit 
(ReLU) and the last FC layer is followed by a sigmoid to re⁃
strict the output range to the interval (0, 1) [21]. It transforms 
SNR into an M-dimensional vector vSNR.

2) Semantic embedding. The input channel features and the 
extracted SNR semantic information vSNR are fused and embed⁃
ded by the element-wise product. The output will pass through 
the next FC layer and continue to be multiplied by vSNR. Fol⁃
lowing three rounds of semantic embedding, it will be restored 
to the same channel dimension as s via the last FC layer, and 
then pass through a sigmoid function to obtain the modulation 
scale factor.

3) Feature calibration. The resulting modulation scale fac⁃
tor is subsequently multiplied by the original channel charac⁃
teristics to obtain the CSI feature map s'.

The SNR adaptive module integrates the SNR directly into 
the token processing pipeline to compute channel-wise atten⁃
tion, enhancing the adaptability of the network in scenarios 
with varying signal conditions[22]. Algorithm 1 summarizes the 
operation process of the proposed SAM.
Algorithm 1. Operation process of SAM
Input: The channel feature s and the uplink channel SNR
Output: The calibrated channel feature s'
1. Upgrade the channel features to M dimensions and get sM2. Extract the SNR semantic vector: vSNR =Sigmoid (W3ReLU(W2ReLU(W1SNR + b1 ) + b2 ) + b3 )
3. Combine features and the SNR semantic vector: output0 = sM∙ vSNR4. For i = 1∶1∶3 do
5.  Embed SNR semantic information in features: output i = (WMioutput i - 1 + bMi )∙ vSNR6. end for
7. Calculate the modulation scale factor: μ =

Sigmoid (WCoutput3 + bC )

Figure 3. Architecture of SAM
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8. Obtain the calibrated channel feature: s' = s∙μ
9. return s'

4 Experimental Results
In this section, we present the numerical results to investi⁃

gate the performance of the proposed STPNet design for joint 
CSI feedback and prediction.
4.1 Experiment Settings

The simulation results are based on the clustered delay line 
(CDL) -C channel model and the 3GPP urban macro (UMa) 
channel model[23], respectively. The BS employs a uniform 
rectangular panel array of dual-polarized antennas arranged in 
an 8×2 configuration. The user speed is set to 30 km/h. There 
are Nc = 32 subcarriers with 10 MHz bandwidth. The commu⁃
nication frequency f is set as 2 GHz. The lengths of historical 
and predicted CSIs are both set to 5. Table 1 summarizes the 
simulation parameters. The training and testing datasets con⁃
tain 10 000 and 2 000 samples, respectively. To enhance 
model generalization, the prediction model is trained using up⁃
link channels with SNR values ranging from 1 dB to 20 dB. 
We update the parameters with a constant learning rate of 1 ×
10-3. The batch size and the training epoch are set as 16 and 
100, respectively. To evaluate model effectiveness, we quan⁃
tify the accuracy of CSI prediction by using normalized mean 
square error (NMSE) as a quantitative metric. The NMSE is 
defined as:

NMSE = E ( ) H - H̄
2

 H 2 (8),

where H ∈ CL × Nc × Nt denotes the ideal channel for the next L 
slots, and H̄ ∈ CL × Nc × Nt denotes the predicted channel.

Fig. 4a shows a sample from a single BS antenna selected 
for simulation from the CDL-C scenario CSI dataset. The du⁃
ration of this particular sample is 10 ms. The time-varying 
nature of the wireless channel is captured by its autocorrela⁃
tion function (ACF), as illustrated in Fig. 4b. This second-
order statistic is typically influenced by factors such as the 

propagation geometry, the mobile’s velocity, and the charac⁃
teristics of the antennas[24–25]. In this paper, the DL-based 
approach is adopted to learn and capture the spatio-temporal 
correlation of CSI.
4.2 Performance Comparison

We primarily compare our CSI prediction module with 
some existing ones, such as the RNN-based method[13] and the 
LSTM-based method[14]. To ensure a fair comparison, all base⁃
line prediction methods are jointly trained with the CSI feed⁃
back network. The CSI feedback process is implemented us⁃
ing the SwinCFNet architecture with an SNR-adaptive mod⁃
ule. Fig. 5 demonstrates the NMSE performance of the pro⁃
posed and baseline methods at CR=1/4, 1/8 in the CDL-C 
channel model. The test SNR is set to 20 dB. The performance 
of non-prediction schemes represents the gaps between the re⁃
constructed nearest historical CSI and the future CSI, which 
further underscores the importance of channel prediction in 
the feedback process.

Figure 4. A sample from the CDL-C channel model CSI dataset and the 
temporal autocorrelation

(a) A sample of the channels

(b) Temporal autocorrelation
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From both Figs. 5a and 5b, it is seen that the NMSE perfor⁃
mance of all evaluated algorithms decreases over time. As il⁃
lustrated in Fig. 5, the proposed Inception-based STPNet 
achieves the highest performance in the CDL-C channel. For 
example, when CR is equal to 1/4, STPNet attains NMSE 
gains of 6.79 dB and 2.12 dB over the RNN-based and LSTM-
based methods, respectively, when predicting the channel at 
the second future slot. Furthermore, compared with the non-
prediction scenario, STPNet improves the accuracy of the fifth 
time slot by more than 12 dB at CR = 1/8. Under these set⁃
tings, STPNet also achieves an additional 1.43 dB NMSE im⁃
provement over the best results of other competing methods.

The improvements of the proposed channel prediction 
scheme in Fig. 5 come from two aspects. First, the traditional 
RNN-based prediction methods operate recursively, using the 
current time slot as input to predict the next. While effective 
for short-term forecasting, this approach often leads to substan⁃
tial performance degradation when extrapolating over ex⁃
tended future intervals. In contrast, our proposed scheme pre⁃

dicts all future channels simultaneously, thereby breaking the 
recursive loop and preventing error accumulation. Second, 
rather than treating CSI as a time series, our method repre⁃
sents it as a spatial map, capturing the spatio-temporal correla⁃
tions embedded in the data. By leveraging a multi-branch ar⁃
chitecture, the Inception-based CSI prediction module effec⁃
tively extracts both local and global features from stacks of 
temporal dynamics.

In Fig. 6, we compare the NMSE performance of STPNet and 
other prediction networks with CR=1/4 in the UMa channel 
model generated on QuaDRiGa[26]. The test SNR is set to 20 dB. 
Since the 3GPP UMa model randomly samples channel param⁃
eters, the resulting channels exhibit greater randomness and re⁃
duced predictability compared with the CDL-C model. Never⁃
theless, as shown in Fig. 6, STPNet maintains the state-of-the-
art NMSE performance. Notably, for the prediction of the chan⁃
nel at the first future slot, the RNN-based method proves less 
accurate than the non-prediction approach due to the gradient 
vanishing problem. Compared with the non-prediction scheme 
and the LSTM-based method, STPNet achieves improvements 
in NMSE of 80.99% and 32.56%, respectively.

Furthermore, we investigate the performance of joint CSI 
feedback and prediction compared with separate CSI feedback 
and prediction. In the STPNet-separate configuration, CSI feed⁃
back and channel prediction networks are trained indepen⁃
dently and then evaluated in series. As illustrated in Fig. 7a, 
the joint architecture, STPNet-joint, achieves at least a 2 dB im⁃
provement in NMSE over the STPNet-separate configuration, 
demonstrating the effectiveness of joint training. Fig. 7b shows 
the achievable sum-rate performance of different methods. The 
upper bound is attained by the scheme with perfect channel in⁃
formation available. We can also observe that STPNet-joint 
could approximate the near-optimal sum-rate performance at⁃
tained with perfect channel information. For instance, when pre⁃

Figure 5. NMSE performance in the CDL-C channel model with 
CR=1/4 and 1/8

LSTM: long short-term memoryNMSE: normalized mean square error RNN: recurrent neural networkSTPNet: spatio-temporal predictive network

(b) CR=1/8

(a) CR=1/4

LSTM: long short-term memoryNMSE: normalized mean square error RNN: recurrent neural networkSTPNet: spatio-temporal predictive network
Figure 6. NMSE performance in the UMa channel model with CR=1/4
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dicting the channel for the fifth future slot, STPNet-joint 
achieves approximately 96.57% of the sum-rate performance of 
the upper bound. By integrating CSI feedback and prediction, 
the system avoids error propagation between these two cas⁃
caded subsystems, thereby enhancing overall accuracy.
5 Conclusions

This paper presents STPNet, an efficient spatio-temporal 
predictive network based on a joint feedback and prediction 
framework. STPNet is designed to address the challenges of 
excessive feedback overhead and dynamic channel conditions 
in massive MIMO systems. The CSI prediction module is 
stacked with a series of Inception modules used for capturing 
both the local and global spatio-temporal features. By leverag⁃
ing spatio-temporal features and SNR-aware modulation, 
STPNet achieves outstanding performance in CSI prediction 
accuracy and robustness, significantly outperforming tradi⁃

tional methods. Simulation results validate the effectiveness of 
the proposed framework across diverse channel scenarios, 
demonstrating its potential to enhance future wireless commu⁃
nication systems. Future work will explore extending the 
model to more complex and dynamic environments, further im⁃
proving its adaptability and efficiency.
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