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Abstract: Extremely large-scale multiple-input multiple-output (XL-MIMO) and terahertz (THz) communications are pivotal candidate tech⁃
nologies for supporting the development of 6G mobile networks. However, these techniques invalidate the common assumptions of far-field 
plane waves and introduce many new properties. To accurately understand the performance of these new techniques, spherical wave modeling 
of near-field communications needs to be applied for future research. Hence, the investigation of near-field communication holds significant 
importance for the advancement of 6G, which brings many new and open research challenges in contrast to conventional far-field communica⁃
tion. In this paper, we first formulate a general model of the near-field channel and discuss the influence of spatial nonstationary properties on 
the near-field channel modeling. Subsequently, we discuss the challenges encountered in the near field in terms of beam training, localiza⁃
tion, and transmission scheme design, respectively. Finally, we point out some promising research directions for near-field communications.
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1 Introduction

The advent of the 5G wireless network marks the incep⁃
tion of an era characterized by high speed, low la⁃
tency, and robust connectivity[1–4]. Millimeter waves 
(mmWave) and various key technologies like massive 

multiple-input multiple-output (MIMO) have contributed sig⁃
nificantly to the success of 5G, particularly in areas such as 
smart cities and the Internet of Things (IoT)[5–7]. Although 5G 
has achieved remarkable results, it still faces limitations in ad⁃
dressing diverse and complex business scenarios, including 
virtual reality, driverless vehicles and metaverse[8]. These 
emerging scenarios impose greater demands on the network 
capacity, prompting researchers to explore 6G wireless net⁃
works, which will further surpass the limits of the current tech⁃
nologies to meet much more complex communication needs[9].

In contrast to 5G, 6G has the potential to deliver higher 
communication rates, ultra-reliable and low latency communi⁃

cations (URLLC), and ubiquitous coverage[10–11]. In order to 
achieve these goals for 6G, some technologies considered 
promising for 6G have attracted significant attention, such as 
extremely large-scale MIMO (XL-MIMO) and Terahertz (THz) 
communications[12]. Specifically, XL-MIMO can realize ultra-
high network throughput and support a large number of users 
by further increasing the number of antennas on massive 
MIMO. Meanwhile, emerging technologies like reconfigurable 
intelligent surface (RIS) and artificial intelligence (AI) tech⁃
niques empower XL-MIMO to attain increased spectral effi⁃
ciency, enhanced positioning accuracy, and broader network 
coverage across a more diverse frequency range. Also, THz 
communications, with its capacity to exploit richer spectrum 
resources for enhanced data transmission rates, is a key candi⁃
date spectrum technology with significant potential.

However, the new technologies in 6G, e.g., THz communica⁃
tions and XL-MIMO, also lead to operating frequency band es⁃
calation and antenna array aperture expansion. As a result, 
Rayleigh distance, the crucial parameter, that distinguishes 
between the near-field and far-field boundaries of electromag⁃
netic (EM) wave propagation changes significantly[12]. For ex⁃
ample, Ref. [13] gave the Rayleigh distances corresponding to 
different array apertures, where the near-field range corre⁃
sponding to an array of 0.5 m aperture was already as high as 
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47 m for millimeter waves at 28 GHz. As the Rayleigh dis⁃
tance increases, the user will be easily located in the near 
field rather than the far field of the base station (BS), meaning 
that the consideration of the near-field effect is crucial in 6G 
wireless communications. Within the near field, far field mod⁃
els that approximate EM waves as plane waves are no longer 
accurate and the spherical shaping of the wavefront cannot be 
neglected[14]. This new property renders current wireless com⁃
munication models and findings based on far field assump⁃
tions inapplicable in the near-field cases. Therefore, it is nec⁃
essary to re-investigate the challenges, potential benefits, and 
solutions introduced by considering near-field communica⁃
tions to advance 6G communication capabilities.

Nowadays, there are relatively few articles about near-field 
communication in 6G[15–18]. The author of Ref. [15] provided 
an overview of 6G wireless systems including challenges, in⁃
sights, and related opportunities. Although the article elabo⁃
rated on the challenges brought by the near field in future 6G 
wireless communication, there is a lack of explanation of its 
specific issues and opportunities. The authors of Ref. [16] pre⁃
sented an overview of near-field communications, contrasted it 
with far-field communications, and analyzed the key chal⁃
lenges. However, the description of the channel modeling pro⁃
cess is neglected. The authors of Ref. [17] studied the basic 
channel models, antenna structures, and analytical founda⁃
tions. Furthermore, the authors of Ref. [18] studied the new 
opportunities brought by the near-field beam focusing caused 
by the near-field communications, which is different from that 
in the far field. Different from the above articles, we focus on 
more specific research problems in near-field communica⁃
tions, especially the combination of near-field communication 
and new technologies, including the lat⁃
est research results in the fields of deep 
learning and near-field beam training, 
RIS-aided near-field localization, and 
near-field transmission scheme design 
with visibility regions (VRs).

In this paper, we systematically pres⁃
ent the fundamental models, recent ad⁃
vancements, and solutions in 6G near-
field communication. To begin with, we 
introduce the overall spatial channel 
model, where the communication region 
is divided into three parts given different 
characteristics of array propagation sig⁃
nal phases and power. Subsequently, we 
introduce the formulation of the channel 
model encompassing the MIMO systems, 
accounting for both the far field and the 
near field. Then, we present recent ad⁃
vances in near-field communication for 
6G, including near-field beam training, 
near-field localization, and near-field 

transmission scheme design. We elaborate on the challenges 
encountered in near-field communication within these use 
cases and provide corresponding solutions. Finally, we share 
some promising research directions for near-field communica⁃
tion, such as investigating the effectiveness of near-field beam 
training in complex environments, proposing near-field local⁃
ization algorithms with low complexity and overhead, and car⁃
rying out channel measurements to verify and modify the near-
field EM channel model.
2 Fundamentals of Near-Field Communica⁃

tions
In this section, we first introduce the overall space channel 

model. Subsequently, we elaborate on the modeling approach 
to the near-field channel. Additionally, the spatial nonstation⁃
ary property of the channel in the near field is investigated.
2.1 Analysis of the Overall Space Channel Model

As illustrated in Fig. 1, the space from BS to the user can 
be divided into three regions: far field, radiating near field, 
and reactive near field. These regions are divided according to 
the Rayleigh distance and Fresnel distance[19–21], respectively. 
The far field refers to the region where the distance between 
the transmitter and the receiver exceeds the Rayleigh dis⁃
tance, allowing the propagating signal to be safely approxi⁃
mated as the plane wave. In the radiating near field, the dis⁃
tance between the transmitter and the receiver is typically less 
than the Rayleigh distance but greater than the Fresnel dis⁃
tance, where the propagating signal can no longer be modeled 
as the plane wave; instead, the accurate spherical wave model 

NUSW: non-uniform spherical wave
UPW: uniform planar wave

USW: uniform spherical wave

▲Figure 1. Overall channel model
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should be utilized. In the reactive near field where the EM 
fields are reactive, signals are not propagated as EM waves 
but stored or released as energy. Since the distance of the re⁃
active near field is very small, the near field in the following 
discussion mainly refers to the radiating near field.

Additionally, as depicted in Fig. 1, we categorize the far 
and near fields into three models[17]. 1) Uniform planar wave 
(UPW): in the far field, signal propagation typically conforms 
to this model where the phase difference in signal transmis⁃
sion is linear and the transmitted power is uniform for differ⁃
ent antenna elements. 2) Uniform spherical wave (USW): in 
the near field, when the distance between the transmitter and 
receiver is less than the Rayleigh distance but greater than the 
uniform power distance[17, 22], the phase difference between the 
signals propagated by different antennas is nonlinear while 
the transmitted power is uniform. 3) Non-uniform spherical 
wave (NUSW): in the near field, when the distance between 
the transmitter and the receiver is less than the uniform power 
distance, the phase difference between the signals propagated 
by different antennas is nonlinear and the transmitted power is 
not uniform.
2.2 Generic Channel Modeling

In this section, we first derive a general channel model con⁃
sidering MIMO systems. After that, we analyze a simple sce⁃
nario of a multiple-input single-output (MISO) system with a 
uniform linear array (ULA) array at the base station to gain 
more insights.
2.2.1 MIMO Channel Model

As shown in Fig. 2, we first analyze the channel model of the 
MIMO system. Let us consider a MIMO system that includes a 
transmitter with Nt antennas and user equipment (UE) with Nr antennas. We first set the center of the BS antenna as the origin, 

i.e., s0 = [ 0,0,0 ]T. Then, the locations of the m-th element of BS 
and the n-th antenna of UE can be expressed by sm =
[ sm

x , sm
y , sm

z ]T, ∀m = -(Nt - 1) 2 ,⋯, (Nt - 1) 2 and un =
[ un

x , un
y , un

z ]T, ∀n = -(Nr - 1) 2 ,⋯, (Nr - 1) 2 , respectively. 
In addition, the distance between the m-th antenna of UE and 
the n-th element of BS is given by rm,n =  un - sm . Then, the 
line-of-sight (LoS) channel coefficient can be expressed as:

[HLoS ]m,n = αm,n e
- j 2π

λ rm,n, (1)
where αm, n represents the amplitude for the channel link be⁃
tween the m-th antenna of BS and the n-th element of UE.

1) Far-field channel
Firstly, we can define the propagation direction vector from 

the transmitter to UE as follows:
v (θ,ϕ ) = [ cos θ sin ϕ, sin θ sin ϕ, cos ϕ ]T. (2)
Based on the plane-wave assumption[23] for the far-field 

channel, the propagation distance can be approximated by 
rm,n ≈ r0 - vT (θ, ϕ ) sm - vT (θ, ϕ ) (un - u0 ), where r0 =
 u0 - s0  denotes the distance between the central elements 
of the receiving and the transmitting antenna arrays. More⁃
over, we assume αm,n ≈ α, where α denotes the amplitude for 
the channel link between the central antenna elements of the 
transmitter and the UE. Then, the LoS far-field channel coeffi⁃
cient can be rewritten as:

[H farLoS ]m,n = αm,n e
- j 2π

λ rm,n ≈ αe
- j 2π

λ r0 e
j 2π

λ vT (θ,ϕ )sm e
j 2π

λ vT (θ,ϕ ) ( )un - u0 .
(3)

From the channel coefficients in Eq. (3), we can decouple 
the MIMO channel into the product of two array response vec⁃
tors. Therefore, the far-field LoS MIMO channel can be ex⁃
pressed as:
H farLoS = αaUEfar (θ,φ ) (aTRfar (θ,φ ) ) T, (4)

where

aUEfar (θ,φ ) = é

ë
êêêêe

j 2π
λ vT (θ,ϕ ) ( )u-(Nr - 1) 2 - u0 ,⋯,j 2π

λ vT (θ,ϕ ) ( )u(Nr - 1) 2 - u0 ù

û
úúúú

T
, (5)

aTRfar (θ,φ ) = é

ë

ê
êê
êe

j 2π
λ vT (θ,ϕ ) s-(Nt - 1) 2,⋯,ej 2π

λ vT (θ,ϕ ) s (Nt - 1) 2ù

û

ú
úú
ú

T
. (6)

Furthermore, the form of the far-field non-line-of-sight 
(NLoS) channel is similar to the far-field LoS channel. There⁃
fore, the overall far-field MIMO channel model with multi-
path components is given by:▲Figure 2. Near-field channel model
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H far = αaUEfar (θ,φ ) (aTRfar (θ,φ ) ) T +
∑
l = 1

L

βl a
UEfar (θl,φl ) (aTRfar (θl,φl ) ) T. (7)

2) Near-field channel
As shown in Fig. 2, the NLoS channels in the near field ex⁃

ist between the transmitter and the UE due to the presence of 
scatterers. Clearly, the NLoS channel can be divided into the 
combination of two MISO channels, i.e., the channel from the 
UE to the scatterer and the channel from the scatterer to the 
transmitter. Therefore, the NLoS channel can be decoupled as 
the product of two array response vectors:
H nearNLoS = ∑

l = 1

L

βl a
UEnear (r l ) (aTRnear (r l ) ) T, (8)

where βl and r l denote the channel coefficients for the l-th 
NLoS path and the location of the l-th scatterer, respectively. 
And the near-field array response vector aUEnear (r l ) and aTRnear (r l ) can be given by:

aUEnear (r l ) = é

ë
êêêêe

- j 2π
λ



 


u-(Nr - 1) 2 - r l ,⋯,e- j 2π

λ


 


u(Nr - 1) 2 - r l ù

û
úúúú

T
, (9)

aTRnear (r l ) = é

ë
êêêêe

- j 2π
λ



 


s-(Nt - 1) 2 - r l ,⋯,e- j 2π

λ


 


s-(Nt - 1) 2 - r l ù

û
úúúú

T
. (10)

However, the LoS channel in the near field cannot be de⁃
coupled as the product of two array response vectors. Specifi⁃
cally, the LoS channel coefficient can be expressed as:

[H nearLoS ]
m,n = αm,n e

- j 2π
λ rm,n = αm,n e

- j 2π
λ  un - sm . (11)

Therefore, the overall near-field channel with multi-path 
components can be modeled as
H near = H nearLoS + ∑

l = 1

L

βl a
UEnear (r l ) (aTRnear (r l ) ) T. (12)

2.2.2 MISO Channel Model Based on ULA Base Station
To more intuitively understand the properties of the near-

field channel, we next simplify it to the uniform linear array 
(ULA) model.

We assume that the base station is equipped with Nt-ULA 
antennas and the user is equipped with a single antenna. In 
the case of ULA, we can ignore the z-axis and assume the loca⁃
tions of the m-th antenna element of BS and UE as u =
[ r0 cos θ, r0 sin θ ]T and sm = [ md, 0 ]T, ∀m =
-(Nt - 1) 2 ,⋯, (Nt - 1) 2 , respectively, where d denotes 
spacing between two adjacent antenna elements. Therefore, 

the distance between the m-th antenna element of the transmit⁃
ter and UE can be expressed as:

rm =  u - sm = r0 2 - 2r0md cos θ + m2d2

                            ≈(a )
r0 - md cos θ + m2d2 sin2θ

2r0  . (13)
where (a ) denotes the Taylor expansion approximation, which 
is also called the Fresnel approximation[24]. Then, the near-
field array response vector for the ULA channel is given by

anearULA (θ ) = é

ë

ê
êê
ê
ê
ê
e

j 2π
λ ( )-(Nt - 1) /2)d cos θ - (-(Nt - 1) /2)2d2 sin2θ

2r ,⋯,

e
j 2π

λ ((Nt - 1) /2)d cos θ - ((Nt - 1) /2)2d2 sin2θ
2r )ù

û

ú
úú
ú
ú
ú

T

. (14)
For the far-field scenario, the distance rm can be approxi⁃

mated as rm = r0 - md cos θ. Based on this, the far-field array 
response vector for the ULA channel can be expressed by:

a farULA (θ ) = é

ë
êêêêe

- j 2π
λ (-(Nt - 1) /2)d cos θ ) ,⋯, e- j 2π

λ (Nt - 1) /2)d cos θù

û
úúúú

T

. (15)
Clearly, it can be observed from Eq. (14) that the phase of 

the near-field array response vector is not a linear function of 
m. However, for the far-field array response vector in Eq. (15), 
the phase is a linear function of m.

From the above derivation, it is evident that the far-field 
plane wave assumption will result in an obvious error in the 
practical near-field scenario. Moreover, the array response 
vectors in the near-field channel are more complex, posing 
challenges to conventional transmission scheme design and 
channel estimation.
2.3 Near-Field Channel with Spatial Non-Stationarity 

Property
In the near-field scenario, since the size of the transmitter’s 

antenna array is significantly increased, spatial non-stationary 
properties[25–26] start to appear. Consequently, we introduce the 
concept of spatial non-stationarities and VRs based on the mod⁃
eling of the near-field channel.

As illustrated in Fig. 3, spatial non-stationarities mean 
that due to the large array aperture, different parts of the an⁃
tenna array could have different views of the propagation en⁃
vironment. This property restricts the user to receiving only 
a portion of the signal transmitted by the antenna array, 
which is referred to as VR of the user. The VRs are formed 
primarily due to two reasons as follows[12]. 1) Unequal path 
loss: Based on the near-field channel, the increase in an⁃
tenna array size makes it impossible to ignore the difference 
in path loss from different array elements to the user. Some 
of the array elements that are farther away from the user suf⁃
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fer greater path loss. As a result, most of the power of the sig⁃
nal received by the user comes from those array elements 
with lower path loss. This phenomenon leads to the appear⁃
ance of VRs. 2) Blockage: The large antenna size increases 
the possibility of obstacles between the user and some anten⁃
nas. This obstruction prevents the user from receiving sig⁃
nals from some sub-arrays which are blocked by obstacles, 
bringing the emergence of VRs.

Then, we can obtain the near-field channel considering the 
VRs[27–28]:
hnear = αe

- j 2π
λ r
anear (r )⊙f (Φ ) + ∑

l = 1

L

βl a
near (r l )⊙f (Φl ), (16)

where Φ and Φl represent the index of the array that is visible 
to the user and the l-th scatterer, respectively, and f (Φ ) de⁃
notes the vector of VRs, which is given by:

[ f (Φ ) ]n = {1, n ∈ Φ,
0, n ∉ Φ. (17)

Moreover, when the prior information about the actual envi⁃
ronment is unknown, the user’s VR information can be mod⁃
eled as a Markov process or birth and death process[29–30].
3 Challenges and Research Progress in Near-

Field Communications
In this section, we will present some challenging directions 

in near-field communication, including beam training, local⁃
ization and transmission scheme design. For each challenge, 
we then provide a detailed literature review and the latest re⁃
search progress.

3.1 Beam Training for Near-Field Communications

3.1.1 Challenges
Codebook-based beam training intends to identify the opti⁃

mal combination of transmitting and receiving beams for subse⁃
quent data transmission. Most of the existing research on beam 
training has been conducted under the assumption of far 
field[31–34]. However, for next-generation communication sys⁃
tems, the use of XL-MIMO techniques invalidates existing far-
field assumptions, making it inevitable to consider the near-
field model[14]. The change from far-field to near-field presents 
opportunities and challenges to beam training.

In the far-field domain, the codebook design only considers 
the angle domain information as shown in Fig. 4(a), where the 
angles are uniformly sampled. However, the Rayleigh distance 
that distinguishes the near field from the far field expands 
with the growth of the antenna array, necessitating the consid⁃
eration of near-field effects[20]. Unlike the far field, the dis⁃
tance information is added in the near-field domain codebook 
design, making the codebook dimension dramatically 
higher[17]. Therefore, it becomes crucial to investigate 
codebook-based beam training methods under the near-field 
domain to reduce overhead.

▲Figure 3. Illustration of spatial non-stationary property

LoS: line-of-sight     NLoS: non-line-of-sight

▲Figure 4. Codebook for the far field and near field
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3.1.2 Existing Works
Similar to far-field beam training, near-field beam training 

can be accomplished using both traditional and machine 
learning-based methods, with beam sweeping and hierarchical 
beam training[35].

The most straightforward way for codebook-based near-field 
beam training is beam sweeping; however, this approach intro⁃
duces unacceptable pilot overhead due to the expansion of the 
codebook dimension. To tackle this problem, researchers de⁃
signed a hierarchical beam training scheme based on a hierar⁃
chical near-field codebook, which reduces the pilot over⁃
head[36]. Furthermore, the authors of Ref. [24] designed a 
polar-domain near-field codebook in which the angular do⁃
main was uniformly sampled while the distance was sampled 
as inhomogeneous distance rings as shown in Fig. 4(b). By uti⁃
lizing the polar-domain near-field codebook, the authors in 
Ref. [37] proposed a new two-phase beam training method. 
Specifically, beam training is accomplished by angular do⁃
main sweeping based on a far-field codebook and distance 
sweeping based on a polar-domain near-field codebook, re⁃
spectively, which significantly reduces the training overheads. 
Nevertheless, the necessary pilot overhead remains excessive, 
and the impact of noise on the hierarchical beam training 
scheme cannot be neglected. Deep learning constitutes a sub⁃
division of machine learning that relies on artificial neural net⁃
works to emulate and acquire intricate data representations 
and features through multi-layer neural network architectures. 
It gradually abstracts high-level features and representations 
in the input data through multi-layer nonlinear transforma⁃
tions to enable learning and reasoning about complex tasks. 
Recently, deep learning has been widely used in wireless com⁃
munication to reduce the cost of beam training[34, 38–41]. The au⁃
thors of Ref. [34] took the received signals corresponding to a 
few beams as the input for deep neural networks (DNN) to esti⁃
mate the beam that best matches the channel. Ref. [34] intro⁃
duced a DNN-based method with location information to re⁃
duce beam training overhead. Inspired by the above work, the 
authors of Refs. [38–41] have extended 
the deep learning method to near-field 
beam training. The authors of Ref. [38] 
used a part of the near-field beam as the 
input of DNN for prediction. By contrast, 
Ref. [40] utilized the information of far-
field wide beam as the input of the deep 
learning network to predict the optimal 
beam to reduce the overhead. In the fol⁃
lowing part, we present more details of 
the research work in Ref. [40].
3.1.3 Near-Field Beam Training Based 

on Deep Learning
A well-trained deep learning approach 

is used in Ref. [40] to uncover the angle 

and distance information carried by the far-field wide beam to 
find the optimal near-field codeword. Specifically, the authors 
constructed the neural network structure shown in Fig. 5 for 
the angle and distance domains, respectively. The deep 
learning-based near-field beam training problem can be formu⁃
lated as:

n* = f1(yw ) , n* ∈ {1,2,⋯,N } , (18)

s* = f2(yw ) , s* ∈ {1,2,⋯,S } , (19)
where yw is received signals of the far-field wide beams. n*and 
s* denote the optimal angle and ring indices in the polar do⁃
main, respectively.

The input of the neural network is the real and imaginary 
part of yw, which is transformed into a matrix form, respec⁃
tively. Then with carefully designed convolutional and fully 
connected layers, the final output can be written as:
P̂a = [ p̂a1, p̂a2,⋯, p̂a

N ]
T, P̂ r = [ p̂r1, p̂r2,⋯, p̂r

S ]
T, (20)

where p̂a
n and p̂r

s denote the estimated probability of the optimal 
angle and ring indices, respectively. The authors determine 
the index corresponding to the angle and distance under the 
polar-domain codebook by finding the maximum estimated 
probability in P̂a and P̂ r to achieve the optimal beam. In addi⁃
tion, the authors offer an improved scheme, in which it per⁃
forms additional tests by obtaining K maximum possible angle 
indices and L maximum possible distance indices in P̂a and 
P̂ r. It can be formulated as:

{ p̂a
σ1, p̂a

σ2,⋯, p̂a
σN
} = { }p̂a1, p̂a2,⋯, p̂a

N ,{ p̂r
γ1, p̂r

γ2,⋯, p̂T
γS
} =

{ }p̂r1, p̂T2 ,⋯, p̂r
S , (21)

▲Figure 5. Proposed neural network structure for beam training
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La = {σ1,σ2,⋯,σK}, Ld = {γ1,γ2,⋯,γL}, (22)
where .  denotes the order operation. By performing KL addi⁃
tional near-field beam training tests, we can get the optimal 
near-field beam.

Simulation results validate the advantages of original and 
improved schemes compared with the sweep scheme as shown 
in Fig. 6. The improved scheme can achieve over 90% of the 
data rate and reduce overhead by 95% compared with the 
sweep scheme. This stems from the remarkable data process⁃
ing capabilities in neural networks and the full leveraging of 
the output in the improved scheme.
3.2 Localization for Near-Field Communications

3.2.1 Challenges
In THz systems, the performance of positioning can be im⁃

proved since all the geometric information is included in the 
channel state information (CSI) measurements, which can be es⁃
timated more accurately with narrow beams[42]. In addition, RIS 
can provide reliable and high-precision estimation performance 
with low energy consumption, and the large size of the RIS 
panel enables high-accuracy positioning parameter estima⁃
tion[43]. Therefore, research on RIS-aided localization has at⁃
tracted increasing attention, while most of them adopted the pla⁃
nar wavefront based on the far-field channel model[44–52].

However, in some envisioned scenarios with the XL-RIS 
panel, the typical indoor communication distances may not 
guarantee the validity of far-field conditions. In addition, UE 
is usually located in the near-field area of the XL-RIS in the 
THz localization system owing to the short wavelength[53]. 
Therefore, the spherical wavefront of near-field transmission 
should be considered in XL-RIS-based THz localization, 
where the transmitted wavefront will arrive at each element of 

the RIS panel with different Angles of Arrival (AoAs). The as⁃
sumption that all the RIS elements share a common AoA of 
the same path is no longer valid, making the channel estima⁃
tion and localization more challenging.
3.2.2 Existing Works

Although near-field RIS behavior has attracted increasing 
attention recently, the study on RIS-aided near-field localiza⁃
tion is still in its infancy. Most researchers considering the 
spherical wavefront mainly analyzed the Fisher information 
matrix (FIM) and the Cramer-Rao lower bound (CRLB) to il⁃
lustrate the position error bound (PEB) and orientation error 
bound (OEB), which could be derived as performance bench⁃
marks for the practical algorithms[48, 54–55]. In addition, the au⁃
thors of Ref. [56] proposed an algorithm of RIS-aided near-
field joint channel estimation and localization (NF-JCEL) in 
THz systems, which addressed the specific issue of channel 
estimation and UE positioning in the near-field scenario.
3.2.3 RIS-Aided Near-Field Localization Algorithm

The authors of Ref. [56] considered the uplink transmission 
of a THz localization system as shown in Fig. 7, where the di⁃
rect links between the AP and the UE are assumed to be ob⁃
structed. The receiving antenna arrays of the AP and the RIS 
are assumed to be ULA and UPA, respectively.

Assuming that the UE is located at the near field of the RIS 
panel, the authors derived the two-dimensional Fresnel ap⁃
proximation of the distance between the m-th element and UE 
u, and approximated the near-field array response as:
aN,i

R,u(ωu, φu, d0
u )[m ] = exp ( - j 2π

λi
(Jm(ωu, φu ) +

Qm(ωu, φu, d0
u ) ) ) , (23)

▲Figure 6. Normalized SNR for the original and improved schemes

SNR: signal-to-noise ratio
▲Figure 7. System model and communication scenario

AP: access pointLoS: line-of-sight RIS: reconfigurable intelligent surfaceUE: user equipment
Transmit SNR/dB

0.0   2.5   5.0  7.5  10.0 12.5 15.0 17.5 20.0

Nor
ma

lize
d S

NR

Original
Improved (K=5, L=1)
Improved (K=10, L=1)
Improved (K=1, L=2)
Improved (K=5, L=2)
Improved (K=10, L=2)
Sweep scheme

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

UE 1

UE 2x

y

z

AP

RIS

LoS 
path

LoS 
path LoS path

blocked
LoS path
blocked

09



ZTE COMMUNICATIONS
March 2024 Vol. 22 No. 1

LIU Mengyu, ZHANG Yang, JIN Yasheng, ZHI Kangda, PAN Cunhua 

Special Topic   Towards Near-Field Communications for 6G: Challenges and Opportunities

where Jm(ωu, φu ) = mzΔR ωu - myΔR φu, and Qm(ωu, φu, d0
u ) =

((mzΔR ) 2 + (myΔR ) 2 - J 2
m(ωu,φu ) ) /2d0

u.
Then, the authors carried out the NF-JCEL algorithm by es⁃

timating the AoAs ωu = sin ϕu,0, φu = sin θu,0 cos ϕu,0, the dis⁃
tance d0

u, and the cascaded channel attenuation gu,i, and fi⁃
nally obtained the position of UE u by utilizing the geometric 
relationship. Furthermore, because the steering vectors were 
frequency-dependent, the authors processed the channel esti⁃
mation on each sub-band.

1) RIS training phase shifts and pilot design
The authors utilized different RIS phase shift vectors to ob⁃

tain a unique estimation of the channel matrix. The pseudo-
random (PN) sequences were utilized as the transmitting pilot 
at different time slots, which are statistically orthogonal with 
each other, and the RIS phase shift vector changed for S times 
in a pilot data duration. Then the composited signal vector 
which collected the received signals in the S different phase 
shifts could be obtained, and we had a least square (LS) esti⁃
mator of Ax t as - -----Ax t, where A is the channel matrix to be esti⁃
mated, and x t is the pilot sequence in the t-th time slot.

Note that the rank of the cascaded channel moves up by 
employing diverse phase shifts of the RIS to avoid noise am⁃
plification when utilizing the LS estimation. Since the chan⁃
nel coefficients are unknown, the existing RIS phase designs 
such as the random phase shift and the Discrete Fourier 
Transform (DFT) matrix are considered. By collecting the re⁃
ceived signal in the τ pilot durations, the covariance matrix 
of the received signal is estimated as the mean covariance 
matrix of - -----Ax t.2) Estimation of AoAs

The authors provided a novel method to separate the dis⁃
tance and AoAs in the covariance matrix. With complicated 
mathematical manipulations, they constructed a down-
sampled Toeplitz matrix T to decouple the distance and the 
AoAs. Therefore, the far-field angle estimation methods could 
be obtained with the sampled correlation matrix.

Specifically, the authors applied a computationally efficient 
subspace-based method to estimate the angles. By leveraging 
the key idea of the MUSIC algorithm, the AoAs could be esti⁃
mated by minimizing the following cost function:

f (ω, φ) = bH(ω, φ)Πmb (ω, φ) , (24)
where b(ω,φ) = v(ω) ⊗ s(φ) , v(ω)[ ]z

= exp( - j 4π
λ zΔR ω) , s(φ)[ ]y

=
exp ( - j 4π

λ yΔR φ), and Πm is designed by utilizing the property 
of the sampled correlation matrix T.

By applying the Lagrangian multiplier method, the rela⁃
tionship between each optimal ωu and φu is obtained. Then, 
substitute the equation into the objective function and the op⁃

timal value of ω can be reached by solving a one-
dimensional problem. Since ωu = sinϕu, we can search in the 
interval of ωu ∈ [-1,1 ] and obtain the U largest peaks as the 
estimator of ωu. Finally, by utilizing the relationship between 
ωu and φu, we have U vectors ŝ (φu ) corresponding to ω̂u, and 
the estimator of φu is obtained by applying the LS estimation.

3) Estimation of distances, channel gains and locations
Similar to the method of tackling ω and φ, the authors trans⁃

form the estimation of distance into the following problem.
d0

u
∗ = arg mind0

u((diag{pu}qu )H
Πn(diag{pu}qu ) ) , (25)

where pu = é

ë
êêêêexp ( - j 2π

λ J-N0 ) ,⋯, exp ( - j 2π
λ JN0 )ùûúúúú

T
, qu =

é

ë

ê
êê
êexp ( - j

πQ-N0

λd0
u ) ,⋯, exp ( - j

πQN0

λd0
u )ùûúúúú , and Πn is designed 

in the similar way as Πm. By conducting one-dimensional 
search, the U largest peaks of the searching results are ob⁃
tained as the estimated distances.

Finally, the LS method can be applied to estimate the chan⁃
nel gain of sub-band i, and the localization of UE u can be ob⁃
tained according to the geometric relationship with the estima⁃
tion over different frequency bands.

4) Simulation results
Simulation results validate the advantages of the NF-

JCEL algorithm over its far-field counterpart in the near-
field scenario. As shown in Fig. 8(a), the NF-JCEL algo⁃
rithm outperforms the corresponding far-field cases in the 
root mean square error (RMSE) of UE locations. In addition, 
along with the increase of elements, the NF-JCEL algorithm 
obtains better performance while the conventional far-field 
model suffers severe degradation. When it comes to the 
RMSE performance of the estimated channel coefficients, 
similar trends in the sum RMSE can be observed in Figs. 8
(b) and 8(c).

This phenomenon is owing to the fact that more elements 
can provide more angular information, thus leading to higher 
angular resolution when estimating the AoAs. In contrast, the 
conventional far-field model neglects the distinction of AoAs 
at the RIS, so that the approximation error of the planar wave⁃
front becomes more severe though the correlation matrices of 
larger dimensions are exploited.
3.3 Transmission Scheme Design for Near-Field Commu⁃

nications

3.3.1 Challenges
As the antenna array size increases, the Rayleigh distance 

significantly extends from a few meters to tens or hundreds of 
meters[17]. Consequently, the plane wave assumption in the far 
field becomes invalid. Based on the spherical wave character⁃
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istics, distance information needs to be considered in the near-
field channel modeling. Furthermore, with the emergence of 
large-scale antenna arrays, the dimension of the channel be⁃
comes large and the computational complexity for transmis⁃
sion scheme design also greatly increases, which becomes a 
key design challenge in near-field scenarios. Moreover, the 
unique spatial non-stationary characteristics in the near field 
make the performance characteristics and algorithm design 
different from those in the far field with conventional station⁃
ary channels. This necessitates the exploration of more accu⁃
rate near-field channel models and raises a new challenge: 
how to design new transmission schemes based on the charac⁃
teristics of the near-field channel.
3.3.2 Existing Works

The near-field channel introduces several new channel 
characteristics: the spherical wave property of the propagating 
signal and the spatial non-stationary property. Recently, some 
researchers have confirmed the existence of spatial non-
stationary properties in near-field channels[26, 57], i.e., the user’
s transmitted signal may only be received by a small part of 
the array. Based on this characteristic, the authors of Ref. [26] 
proposed a channel model based on VRs. To reduce the com⁃
putational complexity and by exploiting the nature of VRs, the 
authors of Ref. [58] proposed a graph-based linear receiving 
algorithm inspired by random access. Moreover, an antenna 
selection algorithm was proposed in Ref. [59] to improve the 
total energy efficiency of the system. However, the above work 
assumes that the VR information is known and the arrays 
other than the VR receive signal amplitude with values of 
zero, which is impractical. To fill these gaps, the authors of 
Ref. [60] first derived a near-field channel model considering 
antenna polarization based on the EM field theory. Then, a de⁃
tection algorithm for VRs was proposed, which can obtain VR 
information of different users. Finally, the authors proposed a 
linear detection algorithm based on VRs, exploiting VRs infor⁃
mation for different users to reduce the computational com⁃
plexity. In the following part, we present details of the re⁃
search work in Ref. [60].

3.3.3 Transmission Scheme Design for Near-Field with Spatial 
Non-Stationaries

The authors of Ref. [60] considered an uplink transmission 
system with multiple single-antenna users and an XL-MIMO 
base station, as shown in Fig. 9.

The channel between the (mx, my )-th antenna element of 
the base station and user k can be expressed as

hk,mx,my
= ξk,mx,my

e- jχk,mx,my, (26)
where ξk,mx,my

and χk,mx,my
 denote the channel coefficient and 

phase, respectively.
Then, the authors derive a near-field channel model that 

takes polarization mismatch into account by using the inhomo⁃
geneous Helmholtz wave equation and Green’s function. We 
first define the Δx and Δy as the antenna spacing along the x-
axis and y-axis, respectively. After that, by assuming the loca⁃
tion of user k and the (mx,my )-th antenna element as uk =
[ uk,x,uk,y,uk,z ]T and pmx,my

= [ mΔx, mΔy, 0 ]T, respectively, the 
channel coefficient and phase are given by:

▲Figure 8. Element number versus RMSE of estimated parameters

FF: far-field     RIS: reconfigurable intelligent surface     RMSE: root mean square error     UE: user equipment

▲Figure 9. System model in Ref. [60]

XL-MIMO: extremely large-scale multiple-input multiple-output
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ξk,mx,my
≈ A

4π
uk,z( )( )mxΔx - uk,x

2 + u2
k,z

{ }( )mxΔx - uk,x
2 + ( )myΔy - uk,y

2 + u2
k,z

5
2

,
(27)

χk,mx,my
≈ 2π

λ




pmx,my

- uk . (28)
The authors derived an explicit expression for single-user 

SNR based on the maximum ratio combining (MRC) detector. 
As shown in Fig. 10(a), the SNR gradually increases to satura⁃
tion with the increase of antenna numbers. Furthermore, the 
near-field channel model considering polarization mismatch 
satisfies the introduced theoretical upper bound.

Next, based on the proposed near-field channel model, the 
authors proposed a VR-based low-complexity transmission 
scheme by exploiting the spatial non-stationarity of XL-
MIMO. The dimensionality of the channel matrix in the trans⁃
mission design can be greatly reduced by utilizing this 
method, thus reducing the computational complexity accord⁃
ingly. Furthermore, the authors proposed a graph-theory based 
user grouping algorithm to categorize users with high VRs 
overlap ratios into one group. The authors then utilized the 
partial zero-forcing (PZF) detection algorithm to eliminate the 
mutual interference within each user group, which could fur⁃
ther reduce the computational complexity.

As shown in Fig. 10(b), as the number of antenna ele⁃
ments increases, the computational complexity of the whole 
array (WA) -based design rises considerably. For the VR-
based zero-forcing (ZF) algorithm and the graph-theory 
based PZF algorithm, low computational complexity can be 
achieved.
4 Future Directions

In this section, several promising directions of near-field 
communications are discussed according to the contributions 
and deficiencies of the aforementioned appealing works.
4.1 AI-Aided Near-Field Beam Training

The AI-based near-field beam training method proposed in 
Ref. [40] effectively reduces the pilot overhead, revealing the 
nonlinear signal processing capacity of AI. Therefore, the AI-
based method is perceived as a promising solution to the com⁃
plex challenges in near-field communications. Specifically, it 
is reasonable to employ AI to deal with the massive param⁃
eters in near-field problems, such as beamforming and chan⁃
nel estimation.

In addition, most research mainly focuses on reducing the 
pilot overhead in the design of near-field beam training, while 
the effectiveness in complex environments is not fully ex⁃
plored. Hence, it is crucial to study the trade-off between low 
pilot overhead and high accuracy and propose an effective 

near-field beam training method that can be applied in compli⁃
cated propagation environment with multiple mobile users and 
scatters.
4.2 XL-RIS-Aided Near-Field Localization

As derived in Ref. [56], the proposed algorithm with XL-
RIS can achieve higher positioning resolution with proper de⁃
sign to utilize the richer AoA information. It is also possible 
for a single-RIS-aided system to provide a 3D localization 
function by exploiting the near-field channel model. There⁃
fore, near-field XL-RIS-aided localization can be considered 
as a promising innovation, and it is valuable to carry out more 
studies in terms of theoretical error distribution analysis as 
well as practical positioning algorithms.

Although Ref. [56] has achieved great performance in XL-
RIS-aided joint channel estimation and localization in a near-

▲Figure 10. Effects of the number of antennas on system performance 
and computational complexity

PZF: partial zero-forcingSNR: signal-noise ratio VR: visibility regionWA: whole array ZF: zero-forcing
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field scenario, the computational complexity is relatively high 
due to the massive elements. Therefore, it is valuable to de⁃
sign a near-field localization algorithm with low complexity 
and pilot overhead.
4.3 Near-Field Behavior of XL-Array

As one of the main innovations of 6G wireless communica⁃
tions, the successful application of XL-MIMO depends on the 
investigation and understanding of the near-field propagation. 
In addition, it is valuable to study the physically accurate 
near-field propagation model of XL-arrays.

Specifically, the near-field EM channel model proposed in 
Ref. [60] accurately depicts the physical EM wave transmis⁃
sion in the near-field scenario, which can be utilized to ana⁃
lyze the impact of discrete array aperture and polarization 
mismatch. Nevertheless, the physical channel model in Ref. 
[60] is totally based on theoretical analysis with Maxwell’s 
EM field theory, so it is also meaningful to carry out channel 
measurements to verify and modify the near-field EM chan⁃
nel model.

Moreover, the authors in Ref. [58–60] utilized the infor⁃
mation of VRs to remove the elements of the antenna array 
that contributed less to the signal transmission, and con⁃
structed equivalent dimensionality reduction channels to re⁃
duce the computational complexity. However, how to accu⁃
rately measure VR using channel estimation methods is still 
an open question.
5 Conclusions

The far-field assumptions tend to be invalid owing to the 
large array size and short wavelength in 6G wireless commu⁃
nications. Hence, the near-field effect and spherical wave⁃
front are no longer dispensable in some envisioned 6G sce⁃
narios. In this paper, we discussed the challenges and oppor⁃
tunities of near-field communication in terms of the funda⁃
mentals and applications in various schemes. We first intro⁃
duced the three regions of free-space propagation and the 
corresponding wavefronts, with an emphasis on the radiating 
near-field and spherical wavefront. Then, we derived the 
near-field MIMO channel model and discussed the impact of 
spatial non-stationarity property on near-field propagation. 
In addition, we introduced several appealing works with re⁃
spect to beam training and localization in the near-field sce⁃
narios and a recent work exploiting the spatial non-
stationarity in the near field to achieve low-complexity trans⁃
mission design. Finally, some insights into the future im⁃
provements of near-field communication were discussed.
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