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Abstract: This paper proposes a local point cloud map-based Web augmented reality (AR) indoor navigation system solution. By delivering 
the local point cloud map to the web front end for positioning, the real-time positioning can be implemented only with the help of the comput⁃
ing power of the web front end. In addition, with the characteristics of short time consumption and accurate positioning, an optimization solu⁃
tion to the local point cloud map is proposed, which includes specific measures such as descriptor de-duplicating and outlier removal, thus im⁃
proving the quality of the point cloud. In this document, interpolation and smoothing effects are introduced for local map positioning, enhanc⁃
ing the anchoring effect and improving the smoothness and appearance of user experience. In small-scale indoor scenarios, the positioning fre⁃
quency on an iPhone 13 can reach 30 fps, and the positioning precision is within 50 cm. Compared with an existing mainstream visual-based 
positioning manner for AR navigation, this specification does not rely on any additional sensor or cloud computing device, thereby greatly sav⁃
ing computing resources. It takes a very short time to meet the real-time requirements and provide users with a smooth positioning effect.
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1 Introduction

There are three existing positioning manners for aug⁃
mented reality (AR) navigation: visual positioning, GPS 
positioning, and multi-sensor fusion positioning. Spe⁃
cifically, visual positioning is based on a conventional 

simultaneous localization and mapping (SLAM) framework, and 
the main steps include feature extraction, feature matching, 
and position solving. This model has high precision, but re⁃
quires high computing power and cannot run on the Web side.

Outdoor AR navigation can achieve good results by using 
GPS technology. However, in an indoor scenario, the signal 
strength of GPS is greatly affected, and consequently, position⁃
ing precision is obviously reduced. Therefore, the GPS-based 
positioning manner cannot be applied to indoor AR navigation.

A positioning manner of multi-sensor fusion is to obtain the 
position of a camera by fusing data from sensors such as an in⁃
ertial sensor, a laser radar, Bluetooth, and Wi-Fi. In this man⁃
ner, although positioning accuracy is high, the sensor is vulner⁃
able to environments, thereby decreasing positioning perfor⁃
mance. In addition, in this manner, a large number of sensors 

need to be calibrated and fused, and a development cost is high.
Although the foregoing three methods can obtain relatively 

high precision in certain specific scenarios, they cannot be ap⁃
plied to an indoor Web AR navigation scenario. The core rea⁃
son is that the computing power on the Web side is limited 
and cannot meet the intensive requirements of AR computing. 
If a positioning system that meets performance requirements 
can be implemented on the web front end by using limited 
computing power, dependence on an external computing envi⁃
ronment or device will be reduced, development costs can be 
cut, and the application scope and user experience of indoor 
Web AR navigation will be greatly improved.
2 Key Technologies of Visual Perception

2.1 3D Reconstruction Techniques
To implement a visual method of good positioning, preci⁃

sion is indispensable for a robust three-dimensional recon⁃
struction process. An objective of three-dimensional recon⁃
struction is to obtain a geometric structure and a structure of 
an object or a scene from a group of images, which may be 
implemented by using a motion recovery structure (Structure-
from-Motion, SFM). SFM is a method for implementing three-
dimensional reconstruction and mainly used in a phase of con⁃This work is supported in part by ZTE Industry⁃University⁃Institute Coop⁃

eration Funds.
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structing a sparse point cloud image in the three-dimensional 
reconstruction. A complete three-dimensional reconstruction 
process generally uses a Multi-View Stereo (MVS) algorithm 
to implement dense reconstruction. As shown in Fig. 1, SFM 
is mainly used for creating diagrams and restoring the struc⁃
ture of the scenario. According to the difference of image data 
processing flows, SFM can be divided into four types: incre⁃
mental SFM, global SFM, distributed SFM, and hybrid SFM. 
The latter two types are usually used to resolve a very large-
scale data scenario and are based on the former two types. In⁃
cremental SFM can be divided into two steps. The first step is 
to find the initial correspondence to extract robust and well-
distributed features to match the image pairs, and the second 
step is to implement incremental reconstruction to estimate 
image position and 3D structure by image registration, triangu⁃
lation, bundle adjustment (BA), and abnormal value removal. 
The initial corresponding abnormal value needs to be removed 
through geometric verification. Generally, when the number of 
restored image frames accounts for a certain proportion, global 
BA is performed. Because of the incremental processing of 
BAs, the precision of the incremental SFM is usually rela⁃
tively high and the robustness is relatively good. However, 
with the increase of the images, the processing scale of the 
BAs becomes larger and larger. Therefore, there are also dis⁃
advantages such as low efficiency and large memory usage. In 
addition, the incremental SFM also has the problem of accu⁃
mulative drift because of the incremental addition of images. 
Typical SFM frameworks include Bundler and COLMAP.

CAO et al. [1] proposed a fast and robust feature-tracking 
method for 3D reconstruction using SFM. First, to reduce calcu⁃
lation costs, a large number of image sets are clustered into 
some small image sets by using a feature clustering method to 
avoid some incorrect feature matching. Second, a joint search 
set method is used to implement fast feature matching, which 
may further save calculation time of feature tracking. Third, a 
geometric constraint method is proposed to remove an abnormal 
value from a track generated by a feature tracking method. This 
method can deal with the influence of image distortion, scale 

change and illumination change. LINDENBERGER et al. [2] di⁃
rectly align low-level image information from multiple views, 
optimize feature point positions using depth feature metrics af⁃
ter feature matching, and perform BA during incremental recon⁃
struction using similar depth feature metrics. In this process, an 
image-dense feature map is first extracted by using a convolu⁃
tion network, two-dimensional observation of the same three-
dimensional point in different images is obtained using sparse 
feature matching, the location of a corresponding feature point 
in the image is adjusted, SFM reconstruction is performed ac⁃
cording to the adjusted location, and a residual of SFM optimi⁃
zation in the reconstruction process changes from a reprojection 
error to a depth feature measurement error. This improvement 
is robust to large-scale detection of noise and appearance 
changes because it optimizes feature measurement errors for 
dense features based on neural network prediction.

Some accumulated drift problems are solved through global 
SFM. In an image matching process, a basic/essential matrix be⁃
tween images is obtained, and relative rotation and relative 
translation between the images may be obtained by means of de⁃
composition. Global rotation can be restored by using relative 
rotation as a constraint. Global panning can then be restored us⁃
ing the global rotation and relative panning constraints. Be⁃
cause the number of times of building and optimizing global BA 
is small, the efficiency of global SFM is high. However, it is dif⁃
ficult to solve the translation average because the relative trans⁃
lation constraint only constrains the translation direction and 
the scale is unknown. In addition, the translation average solv⁃
ing process is sensitive to external points. Therefore, in actual 
applications, the global SFM is limited.
2.2 Space Visual Matching Technology

How to extract robust, accurate and sufficient image corre⁃
spondence is the key problem of 3D reconstruction. With the 
development of deep learning, the image matching methods 
based on learning achieve excellent performance. A typical 
image matching process is divided into three steps: feature ex⁃
traction, feature description, and feature matching.

Detection methods based on deep convolution networks 
search for points of interest by building response maps, includ⁃
ing the supervisory method[3–4], self-supervised method[5–6], 
and unsupervised method[7–8]. The supervisory approach uses 
an anchor to guide the training process of a model, but the per⁃
formance of the model is likely limited by the anchor construc⁃
tion approach. Self-supervised and unsupervised methods do 
not require manual annotation of data, and they focus on geo⁃
metric constraints between image pairs.

The feature descriptor uses local information around the 
point of interest to establish a correct correspondence between 
image features. Due to the ability of information extraction 
and representation, depth techniques have also performed 
well in the description of features. The feature description 
problem based on deep learning is usually a supervised learn⁃▲Figure 1. Shooting a panoramic video of the scene
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ing problem, that is, learning a representation that makes 
matched features in the measurement space as close as pos⁃
sible and unmatched features as far as possible[9]. Learning-
based descriptors largely avoid the need for human experience 
and prior knowledge. An existing feature description method 
based on learning is classified into two types: measurement 
learning[10–11] and descriptor learning[12–13]. A difference lies 
in the output content of a descriptor.

Metric learning methodology is used for metric discrimina⁃
tion for similarity measurement, while descriptor learning gener⁃
ates descriptor representations from the original image or image 
block. In these methods, SuperGlue[14] is a network that can per⁃
form feature matching and filter out extrinsic points at the same 
time, where feature matching is implemented by solving a differ⁃
ential optimization transfer problem, a loss function is con⁃
structed by using a graph neural network, and a flexible content 
aggregation mechanism is proposed based on an attention 
mechanism. Therefore, SuperGlue can simultaneously sense a 
potential three-dimensional scene and perform feature match⁃
ing. LoFTR[15] uses transformer modules with a self-attentive 
layer and a cross-attentive layer to process dense local features 
extracted from the convolutional network by first extracting 
dense matches at low feature resolution (1/8 of the image dimen⁃
sion) and then selecting the matches with high confidence from 
those matches using a relevant method to refine them to a high-
resolution sub-pixel level. In this way, the large acceptance 
field of the model enables the converted signature to reflect the 
context and location information, and the matching is imple⁃
mented through multiple layers of self-attention and cross-
attention. Many methods integrate feature detection, feature de⁃
scription, and feature matching into the matching pipeline in an 
end-to-end manner, which helps improve matching performance.

Visual orientation is a problem of estimating a 6-DoF camera 
pose from which a given image is taken relative to a reference 
scene representation. The classical approach to visual position⁃
ing is structure-based, meaning that they rely on the 3D recon⁃
struction of the environment (that is, point clouds) and use local 
feature matching to establish a mapping relationship between 
the query image and 3D map. Image retrieval can be used to re⁃
duce the search space by only considering the most similar ref⁃
erence images rather than all possibilities. Another approach is 
to interpolate or estimate the relative posture between the que⁃
ried and retrieved reference images directly from the reference 
images, which is independent of the 3D reconstruction results. 
In the scene point regression method, a correspondence be⁃
tween a two-dimensional pixel position and a three-dimensional 
point may be directly determined by using a deep neural net⁃
work (DNN), and the position of a camera is calculated simi⁃
larly to a structure-based method. Modern scene regression 
benefits from 3D reconstruction during training but does not de⁃
pend on it. Finally, the absolute posture regression method uses 
DNN end-to-end posture estimation. These approaches differ in 
generalization capabilities and location accuracy.

In addition, some methods rely on 3D reconstruction, while 
others only require reference images with position marks. The 
advantage of using a 3D reconstruction is that the position gen⁃
erated is very accurate, and the disadvantage is that these 3D 
reconstructions are sometimes difficult to obtain or even more 
difficult to maintain. For example, if the environment changes, 
the position needs to be updated. For classical structure-based 
work, reference may be made to a general visual positioning 
framework proposed by SARLIN et al. [16] The framework can 
predict both local features and global descriptors by using a 
hierarchical positioning method, so as to implement accurate 
6-DoF positioning. Using a coarse-to-fine localization pattern, 
the method first performs a global search to obtain location as⁃
sumptions and then matches local features in these candidate 
locations. This layered approach saves uptime for real-time op⁃
erations. This method presents a hierarchical feature network 
(HF-Net), which jointly estimates local and global features, 
shares computation to the maximum extent, and uses a multi-
task still compression model.
3 Web AR Navigation System Based on Lo⁃

cal Scenario Perception
This paper presents an indoor Web AR navigation system 

architecture based on the local point cloud map. By delivering 
the space local point cloud map to the web front end for posi⁃
tioning, the real-time positioning can be implemented only by 
using the computing power of the web front end, which has the 
characteristics of short time consumption and accurate posi⁃
tioning. In addition, this paper proposes an optimization solu⁃
tion to the local point cloud map, including specific measures 
such as descriptor deduplication and outlier elimination, 
which improves the quality of the point cloud. Finally, interpo⁃
lation and smoothing effects are introduced to local map local⁃
ization to enhance an anchoring effect and improve smooth⁃
ness and appearance of user experience. In a small-scale in⁃
door scenario, a localization frequency on an iPhone 13 may 
reach 30 fps, and localization precision is within 50 cm. In 
this paper, a function of implementing real-time positioning by 
using only Web front-end computing power is proposed for the 
first time. It outperforms existing mainstream visual-based po⁃
sitioning for AR navigation, GPS-based positioning, and multi-
sensor fusion positioning. The proposed method can signifi⁃
cantly save computing resources without the help of any addi⁃
tional sensors or cloud computing devices. It takes a very 
short time to meet the real-time requirements and provide us⁃
ers with smooth positioning, improving user experience.

Fig. 2 shows the proposed Web AR indoor navigation system 
based on local point cloud map positioning. This system con⁃
sists of three modules: offline map creation, server, and web.

The offline map creation module is mainly responsible for 
the reconstruction of a point cloud map. Three-dimensional re⁃
construction is implemented by photographing an environmen⁃
tal image that needs to be reconstructed and then scale-based 
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restoration is performed, to finally obtain a sparse point cloud 
map and save the sparse point cloud map in the format of a 3D 
point plus a descriptor. Then, the point cloud is visualized and 
divided according to the preset interest point when the user 
wants to perform a model anchoring display. The related geo-
fence information is set, which is mainly used for service expe⁃
rience after entering the local point cloud range. Currently, 
the geo-fence range is mainly 3 m–5 m and established ac⁃
cording to a specific scenario. The sparse point cloud is di⁃
vided into multiple local point cloud maps. Next, the point 
cloud is optimized by using descriptor deduplication and out⁃
lier removal and is stored in the bin format.

The server performs positioning on the captured initial posi⁃
tioning picture to obtain an initial positioning posture of the 
camera, so as to determine a local point cloud closest to an ini⁃
tial positioning point position. The local point cloud communi⁃
cation service is responsible for delivering the specific local 
point cloud to the Web front end in accordance with the re⁃
quest of the Web front end for the local point cloud.

The Web front end sends a request to the server end by us⁃
ing a local point cloud communication service, receives spe⁃
cific local point cloud information, and then captures an image 

of a video frame by using a local point cloud positioning system 
of the Web front end. The Web front end obtains correspond⁃
ing camera position information for positioning and then ren⁃
ders a navigation route and a corresponding material based on 
the camera position information obtained by positioning. Fig. 2 
shows how to implement AR navigation through the local cloud.

The time consumption of each step of the local point cloud 
positioning algorithm is collected and optimized, including im⁃
age data transmission on a Web end, improvement of a feature 
extraction algorithm, feature matching optimization, etc. Table 1 
shows the performance test of cloud positioning of different mod⁃
els at different point sizes. In the point cloud of 0.9 MB, the opti⁃
mized algorithm can reach 91 fps on an iPhone 13.

The redundancy of the point cloud size greatly affects the 
accuracy of the local point cloud positioning algorithm. There⁃
fore, two local point cloud optimization solutions are designed: 
1) Using filter feature descriptors to remove duplicates (Fig. 3);
2) Using test data to filter real and valid point cloud data and 
remove redundancy.

Considering that the positioning algorithm is an optimization 
problem (reducing a reprojection error), it is extremely affected 
by noise, and therefore a final obtained track is not smooth 

▼Table 1. Different mobile phone models in frames per second
Descriptor Size/MB

0.9

Mobile Phone Model
MEIZU 11
OnePlus 6
Xiaomi 11
Iphone 13

Extracting ORB Features
1.052
0.876
0.557
0.098

Feature Matching (KNN)
38
37
19
8

PNP
4
4
2
2

Total Calculated Time/ms
50
46
26
11

Frames per Second/fps
20
21
38
90

KNN: k-Nearest Neighbor        ORB: oriented FAST and rotated BRIEF          PNP: Perspective-n-Points

Obtain the initial position sum by referring to orbslamLast position optimization (using pnp) Considering mismatches may occur each time when positioning data is placed on the web, the previous frame data is introduced and modified for tracing

ICP registration is performed continuously during vehicle navigation, and the problem is solved based on the previous frame.Orbslam tracing obtains the initial posture first and is optimizing the posture
Ground truth

Database.db

Initial positioning
Image

Continuous positioning
Query image

IMU

Web

DownloadBack-endpositioning

Colmap-ORB

Outlier removal

3D point and descriptor

Continuous positioning

Continuous positioning

Point-cloud division(density-based/grid-based)

Point-cloud map storage
Point-cloud pre⁃diction process

Previous frame of image data

Point-cloud compres⁃sion (ceiling floor point removal)

Database

Point-cloud storage architec⁃ture (the number of 3D points and number of descriptors)One to many

Back-endpositioning

Colmap-siftGPU scale recovery

9 10 11
0 1  2  
3 4 5
6 7 8

▲Figure 2. Local scenario perception and the proposed web navigation system architecture
ICP: Iterative Closest Point      IMU: Inertial Measurement Unit      ORB: oriented FAST and rotated BRIEF
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enough. To ensure a stable anchoring effect, a 
filtering manner is used to optimize the position⁃
ing algorithm as follows.

1) A high-pass filter and a low-pass filter are 
used to eliminate incorrect positioning (Fig. 4)；

2) The camera position information of the 
first k frames and the sliding average value are 
used to smooth the track of the current frame.

Because the original environment on the web 
side supports only a single thread and the loca⁃
tion algorithm based on the local point cloud 
cannot meet the real-time requirement (20 fps) 
with limited computing resources on the web 
side, the proposed algorithm is optimized by de⁃
laying video frames (Fig. 5). To ensure the sta⁃
bility of the local point cloud positioning algo⁃
rithm, the optical flow tracking algorithm is in⁃
troduced to improve the number of 2D-3D 
matches by using the previous frame’s prior 
knowledge, as shown in Fig. 6. Figs 7 and 8 
show the experimental results without and with 
the optical flow respectively. The stability of 
model anchoring is improved during the posi⁃
tioning process.
4 Conclusions

This paper proposes a Web AR indoor navi⁃
gation system based on local point cloud map 
positioning, which has beneficial effects on 
technical value compared with the prior art. It 

innovatively proposes the idea of point-cloud distribution, 
that is, to download the map of local point-cloud to the Web 
front end and use the computing power of the Web front end 
for positioning. Compared with an existing mainstream visual-
based positioning manner for AR navigation, GPS-based posi⁃
tioning manner and multi-sensor fusion positioning manner, 
the positioning manner provided in the present invention 
does not depend on any additional sensor or external comput⁃
ing environment, thereby reducing development and deploy⁃
ment costs.

A lightweight web front-end positioning algorithm is pre⁃
sented for indoor Web AR navigation when the computational 
power of the web front-end is limited. A degree of dependence 
on network communication is reduced, the requirement of 
Web AR navigation on a network environment is reduced, and 
environment adaptability is improved. It takes a short time to 
deliver the web front-end positioning system to the point cloud 
for indoor Web AR navigation. In a small-scale indoor scenario, 
the positioning frequency on the iPhone 13 can reach 90 fps, 
which brings users a smooth user experience based on satisfying 
the real-time positioning requirements for Web AR navigation.▲ Figure 4. High-pass filter is 

added for Web AR navigation

Destination 1

vConsole

view reset back mock 1mock 2 outputShow

▲ Figure 3. No filter is added for 
Web AR navigation

Destination 1

view reset back mock 1 mock 2 outputShow

vConsole

▲Figure 5. Delaying two frames without optical flow
ORB: oriented FAST and rotated BRIEF      PDR: pedestrian dead reckoning

Delay 2 frames

Rendering

Interpolation Local positioning PDR
ORB frame without optical flow

i-1 i i+1 i+2 i+3 i+4 i+5 i+6 i+7

i-2 i-1 i-1 i-1 i i+1 i+2 i+3 i+4 i+4 i+5 i+6
Xi-1 Xi Xi+2 Xi+4 Xi+6

Xi Xi+2Xi+1 Xi+3 Xi+5 Xi+5Xi+6Xi+4

Calculate
Frame

▲Figure 6. Experiment of adding interpolation for optical streams

LK: Lucas Kanade      ORB: oriented FAST and rotated BRIEF       PDR: pedestrian dead reckoning

Rendered frame

Calculate
Frame

Xi+8 Xi+10Xi+6Xi+4Xi+2Xi Xi+1 Xi+3 Xi+5 Xi+7 Xi+9

Xi-1 Xi Xi+2 Xi+4 Xi+6 Xi+10

i-2 i-1 i-1 i-1 i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 i+10

i-1 i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 i+10 i+11 i+12

Optical traffic fails, and new 
features are required.

Interpolation LKPDRLocal positioning
Adding ORB interpolation for optical streams

Xi+8
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ORB: oriented FAST and rotated BRIEFPDR: pedestrian dead reckoning
▲Figure 7. The proposed algorithm 
is optimized without optical flow

▲ Figure 8. Experiment diagram of 
Interpolation + Optical Flow
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