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Abstract: Light detection and ranging (LiDAR) sensors play a vital role in acquiring 3D point cloud data and extracting valuable information 
about objects for tasks such as autonomous driving, robotics, and virtual reality (VR). However, the sparse and disordered nature of the 3D 
point cloud poses significant challenges to feature extraction. Overcoming limitations is critical for 3D point cloud processing. 3D point cloud 
object detection is a very challenging and crucial task, in which point cloud processing and feature extraction methods play a crucial role and 
have a significant impact on subsequent object detection performance. In this overview of outstanding work in object detection from the 3D 
point cloud, we specifically focus on summarizing methods employed in 3D point cloud processing. We introduce the way point clouds are pro‐
cessed in classical 3D object detection algorithms, and their improvements to solve the problems existing in point cloud processing. Different 
voxelization methods and point cloud sampling strategies will influence the extracted features, thereby impacting the final detection perfor‐
mance.
Keywords: point cloud processing; 3D object detection; point cloud voxelization; bird􀆳s eye view; deep learning

Citation (Format 1): WANG C C, LI Y, WANG B B, et al. Point cloud processing methods for 3D point cloud detection tasks [J]. ZTE Commu‐
nications, 2023, 21(4): 38–46. DOI: 10.12142/ZTECOM.202304005
Citation (Format 2): C. C. Wang, Y. Li, B. B. Wang, et al., “Point cloud processing methods for 3D point cloud detection tasks,” ZTE Commu⁃
nications, vol. 21, no. 4, pp. 38–46, Dec. 2023. doi: 10.12142/ZTECOM.202304005.

1 Introduction

3D object detection is critical for applications such as au‐
tonomous driving, robotic system navigation, and auto‐
mation systems. The goal of 3D object detection is to lo‐
cate and identify objects in 3D scenes. Specifically, its 

purpose is to estimate oriented 3D bounding boxes and seman‐
tic categories of objects from point cloud data and provide im‐
portant information for subsequent analysis and processing. 
3D point cloud object detection is a challenging task. Here are 
some major difficulties:

1) Occlusion: In complex scenes, target objects may be oc‐
cluded by other objects, which affects the performance of de‐
tection algorithms.

2) Sparsity: Due to the working principle of light detection 
and ranging (LiDAR), point cloud data are usually sparse, 
which means that there are fewer effective points on the target 
object.

3) Point cloud noise: Noise points may be generated during 
the LiDAR scanning process, which will interfere with the per‐
formance of the detection algorithm.

4) Real-time requirements: 3D point cloud object detection 

usually needs to be completed in real time.
The object detection algorithm is a computer vision technol‐

ogy that can identify and locate specific objects in images or 
point clouds and is divided into 2D object detection[1–3] and 
3D object detection[4–8]. These algorithms typically use deep 
learning techniques. Object detection includes tasks such as 
classification, localization, detection, and segmentation. Clas‐
sification refers to obtaining what type of object is included in 
the image or point cloud data. Localization refers to the posi‐
tion of the given object. Detection refers to locating the posi‐
tion of an object and judging the category of the object. Seg‐
mentation refers to determining which object or scene each 
point or each pixel belongs to. Object detection algorithms are 
widely used in many fields, such as face recognition, auto‐
matic driving, and industrial inspection. For example, in face 
recognition, object detection algorithms can be used to auto‐
matically detect and track human faces and recognize the de‐
tected faces. Unmanned driving applications rely on object de‐
tection algorithms to give the poses of other traffic participants 
to deal with complex road conditions.

The point cloud processing method is a primary part of the 
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3D point cloud object detection algorithm. It can be roughly 
divided into the following two categories: the voxel-based 
point cloud processing method and point-based point cloud 
processing method.

The voxel processing method converts point cloud data into 
voxel representations, which are then processed using 3D con‐
volutional neural networks (CNN). The point-based method is 
directly applied to the raw point cloud data, without convert‐
ing it into grids. The point-based method can preserve the 
original characteristics and information of the point cloud and 
have lower computational cost and memory consumption.

However, the point-based method also faces some difficul‐
ties, such as dealing with the irregular structure and varying 
density of the point cloud and designing suitable algorithms or 
models for the points. Two major types of methods exist for 
processing the points: clustering-based methods[9–10] and deep 
learning-based methods[11–12]. Based on the clustering 
method, the appropriate clustering algorithm is selected and 
the clustering parameters are determined by the characteris‐
tics of the data. After denoising and merging adjacent cluster‐
ing operations, the processing results are obtained. The 
method based on deep learning needs to prepare labeled data, 
select and train an appropriate deep learning model, and use 
the trained model to process the point cloud.

Our contribution can be summarized as follows:
1) We summarize voxel-based point cloud processing meth‐

ods and find that the voxel-based methods can improve the 
processing performance of point clouds by optimizing the 
voxel partitioning scheme, improving the network structure 
for voxelized point clouds and the data structure for point 
clouds.

2) We summarize point-based point cloud processing meth‐
ods and find that the point-based methods can improve the 
processing performance of point clouds by improving the sam‐
pling strategy of point clouds, combining the advantages of 
voxel-based methods, and optimizing the representation of 
points.
2 Basic Concepts and Metrics

1) Voxelization
Point cloud voxelization in Fig. 1 refers to the process of 

converting point cloud data into a voxel representation. Voxel‐
ization is to divide the point cloud into a spatially uniform 
voxel grid and generate many-to-one mapping between 3D 
points and their corresponding voxels.

The voxelized point cloud data will be stored in memory in 
an orderly manner, which is beneficial to reduce random 
memory access and increase the efficiency of data calculation. 
Moreover, voxelization enables the ordered storage and down-
sampling of data, which allows such methods to handle much 
larger point cloud data. The voxelized data can also leverage 
spatial convolution effectively, which facilitates the extraction 
of local features at multiple scales and levels.

2) BEV
The bird’s eye view (BEV) based algorithm is an advanced 

computer vision technique used in the field of autonomous 
driving. Using a combination of sensors and cameras, the algo‐
rithm creates a high-resolution overhead view of the vehicle’s 
surroundings. The BEV perspective is shown in Fig. 2.

One of the advantages of BEV is that it provides a compre‐
hensive view of the environment, providing a complete picture 
of the environment, unlike other computer vision techniques 
that only focus on specific objects in the environment. The per‐
spective can provide more information for subsequent plan‐
ning decisions. Another advantage is accuracy. A high-
resolution top view can provide more accurate information. 
One disadvantage of the BEV-based algorithm is that BEV re‐
quires high computing power, which is challenging in real-
time systems.

BEV is currently a very popular point cloud processing per‐
spective. The methods related to BEV are proposed in Refs. 
[13–17]. Ref. [18] demonstrates the robustness capability of 

▲ Figure 1. Schematic representation of point cloud voxelization. Due 
to the sparsity and uneven distribution of point clouds, the number of 
point clouds in each voxel is unevenly distributed. There are even many 
voxels without point clouds. The voxel feature encoding (VFE) layer bal⁃
ances this through sampling

▲Figure 2. Bird’s eye view based representation

39



ZTE COMMUNICATIONS
December 2023 Vol. 21 No. 4

WANG Chongchong, LI Yao, WANG Beibei, CAO Hong, ZHANG Yanyong 

Special Topic   Point Cloud Processing Methods for 3D Point Cloud Detection Tasks

the BEV method.
3) FPS
Farthest point sampling (FPS) is a commonly used sampling 

algorithm, especially suitable for LiDAR 3D point cloud data. 
It can guarantee uniform sampling of samples, so it is widely 
used. For example, in PointNet++[12], a 3D point cloud deep 
learning framework, sample points are sampled by FPS and 
then clustered as the receptive field; in VoteNet[19], the scat‐
tered points obtained by voting are sampled by FPS and then 
clustered; in PVN3D[20], a 6D pose estimation algorithm, it is 
used to select eight feature points of the object to vote and cal‐
culate the pose.

The principle of the FPS algorithm is: Given a point cloud 
with N points, a point P0 is selected from the point cloud as 
the starting point to obtain a sampling point set S = {P0}. Then 
we calculate the distance from all points to P0 to form an N-
dimensional array L, select the point corresponding to the 
maximum value as P1, and update the sampling point set S = 
{P0, P1}. Then we calculate the distance from all points to P1. For each point Pi, if the distance to P1 is less than L[i], L[i] = 
d(Pi, P1) is updated. Therefore, the stored L in the array is al‐
ways the shortest distance from each point to the sampling 
point set S. The point corresponding to the maximum value in 
L is then selected as P2 and the sampling point set S = {P0, P1, 
P2} is updated. The above steps are repeated until N’ target 
sampling points are sampled.

Several evaluation metrics are commonly used to assess the 
performance of an algorithm in 3D object detection. Here are 
some of the most common ones:

• Average precision (AP): This is a widely used metric that 
measures the accuracy of object detection algorithms. It is cal‐
culated by computing the area under the precision-recall 
curve. AP is often used to compare the performance of differ‐
ent algorithms on a given dataset.

• Intersection over union (IoU): This metric measures the 
overlap between the predicted bounding box and the ground 
truth bounding box. It is calculated as the ratio of the intersec‐
tion area to the union area of the two boxes. IoU is often used 
as a threshold to determine whether a detection is true posi‐
tive or false positive.

• Mean average precision (mAP): This metric is similar to 
AP, but it is calculated by taking the average of AP values 
across multiple object categories; mAP is often used to evalu‐
ate the overall performance of an object detection algorithm.

• Precision: This metric measures the proportion of true 
positives among all detections. It is calculated as TP/(TP + 
FP), where TP is the number of true positives and FP is the 
number of false positives.

• Recall: This metric measures the proportion of true posi‐
tives among all ground truth objects. It is calculated as TP/(TP+
FN), where TP is the number of true positives and FN is the 
number of false negatives.

These metrics are important for evaluating 3D object detec‐

tion because they provide a quantitative measure of the object 
performance. By comparing these metrics across different algo‐
rithms, researchers can identify which ones are most effective 
for a given task.
3 Voxel-Based Point Cloud Processing Methods

Voxel-based 3D point cloud object detection methods con‐
vert irregular point clouds into compact-shaped voxelized rep‐
resentations and then efficiently extract point cloud features 
for 3D object detection through 3D convolutional neural net‐
works. During voxelization, the point cloud data are divided 
into a certain number of voxels, and these voxels are grouped 
and down-sampled. Since the point cloud data need to be 
down-sampled during the voxelization process, some detailed 
information will be lost. The degree of information loss is 
closely related to the chosen resolution.

Although the voxelization process causes information loss, 
it has many advantages. First, the voxelized point cloud data 
will be stored in an orderly manner in memory, which will 
help reduce random memory access and increase data comput‐
ing efficiency. Second, thanks to the ordered storage and 
down-sampling of data brought about by voxelization, this type 
of method can handle point cloud data in a large amount. In 
addition, the voxelized data can efficiently be processed by 
spatial convolution, which is beneficial for extracting multi-
scale and multi-level local feature information.

When it comes to voxel-based methods[5, 21–24], VoxelNet[21] 
has to be mentioned, which is a pioneering work. VoxelNet 
proposes a voxel feature encoding (VFE) layer, which groups 
points within a voxel in Fig. 1, and the number of point clouds 
after grouping is not exactly the same. In order to reduce the 
imbalance of the number of point clouds between groups, re‐
duce the sampling deviation, and save computing resources, 
the grouped point clouds are randomly sampled so that the 
number of points in each group does not exceed a fixed value 
T. In each group, they apply PointNet[11] to learn features on 
each point and aggregate point features to obtain voxel-level 
features.

VFE is an important module. The VFE layer in Fig. 3 voxel‐
izes the original 3D point cloud data and learns voxel-level 
features. This method combines the original point cloud repre‐
sentation and 3D voxel representation. After extracting features 
from the point cloud, VoxelNet uses convolutional middle lay‐
ers and region proposal networks (RPNs)[25] to generate the final 
3D detection box.

The key innovation of VoxelNeXt[5] is to omit the steps of an‐
chor, sparse‐to‐dense, RPN, non max suppression (NMS), etc., 
and directly predict objects from sparse voxel features. Based 
on VoxelNet, VoxelNeXt has better accuracy and a speed 
trade-off than other detectors in nuScenes[26]. Compared with 
the CenterPoint[27], fully sparse 3D object detector (FSD) [28] 
and other methods, VoxelNeXt is more friendly to long-
distance object detection in Fig. 4.
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VoxelNeXt shows that fully sparse voxel-based representa‐
tions are very effective for LiDAR 3D detection and tracking. 
VoxelNeXt proposed a fully sparse voxel-based network, 
which uses ordinary sparse convolutional networks for direct 
prediction. It uses only one extra down-sampling layer to opti‐
mize the sparse backbone network, and this simple modifica‐
tion enlarges the receptive field. This simple sparse linkage re‐
quires no additional parameterization layers and has a little 
additional computational cost.

VoxelNeXt places sparse features directly on the BEV 
plane and then combines features at the same location. It 
takes no more than 1 ms, but the effect is better than 3D 
sparse features. VoxelNeXt is entirely voxel-based and con‐
tinuously clips irrelevant voxels along the down-sampling 
layer, which further saves computational resources and does 
not affect detection performance. Using the above-mentioned 

method to process voxels reduces calcula‐
tion consumption without degrading per‐
formance.

The way of voxelization is not set in 
stone. For example, the classic Voxel‐
Net[21] and sparsely embedded convolu‐
tional detection (SECOND) [22] divide the 
point cloud into a voxel to form a regular 
and dense voxel set, while SECOND uses 
sparse embedded convolution to improve 
efficiency.

To make a trade-off between accuracy 
and computation efficiency, PointPillars 
converts point clouds into pillars. Specifi‐
cally, PointPillars divides the x axis and y 
axis of point cloud data into grids, and the 
data in the same grid is considered as a 
pillar (Fig. 5). This voxel division method 
can be considered to divide only one voxel 
on the z axis; P non-empty columns are 
generated after division; each column con‐
tains N point cloud data (more than N 
points are sampled as N points, and less 
than N points are filled with 0), and each 
point extracts D-dimensional features. 
There are nine features in PointPillar, 
which are (x, y, z, r, xc, yc, xp, yp), where x, 
y and z are the 3D coordinates of the 
point, r is the reflection intensity, xc and yc are the distances from the center of the 
point cloud in the pillar, and xp and yp are 
the offset from the geometric center of the 
pillar.

In addition to improving the way of vox‐
elization, the use of special data struc‐
tures can also enhance the detection per‐
formance. The Octree-Based Transformer 

▲Figure 3. Each sampled voxel (the number of point clouds t < T) is transformed into a feature 
space point by point through a fully connected neural network and then the information is aggre⁃
gated from the point features to encode the surface shape contained in the voxel. The aggregated 
features are obtained element by element through max pooling. The point-wise feature and lo⁃
cally aggregated feature connection are then aggregated to get a point-wise concatenated feature

▲Figure 5. Pillar division scheme of PointPillars

(a) Overall latency comparison (b) Head latency comparison
FSD: fully sparse 3D object detector

▲Figure 4. Latency on Argoverse2 and various perception ranges

Point-wise input Point-wise feature

Locally aggregated feature

Ful
ly c

onn
ect

ed 
neu

ral 
net

Ele
me

nt-w
ise 

Ma
xPo

ol

Poi
nt-w

ise 
con

cat
ena

tion

Point-wise concatenatedfeature

Distance/m
50 100 150 200

300
250
200
150
100

50
0

Tim
e/m

s

82
81
61 63

92
113

164

96
65 66

99

246

CenterPoint FSD VoxelNeXt

250
200
150
100

50
0 50 100 150 200

Tim
e/m

s

26
5654 78

27 28
68

128

218

71
28

Distance/m

65

x-axis

y-axis

41



ZTE COMMUNICATIONS
December 2023 Vol. 21 No. 4

WANG Chongchong, LI Yao, WANG Beibei, CAO Hong, ZHANG Yanyong 

Special Topic   Point Cloud Processing Methods for 3D Point Cloud Detection Tasks

(OcTr) [29] algorithm first performs self-attention on the top 
level, constructs a dynamic octree on the hierarchical pyra‐
mid, and recursively propagates to the lower layer constrained 
by octants. This method can not only capture rich features 
from coarse-grained to fine-grained, but also control the com‐
putational complexity. Extensive experiments are conducted 
on Waymo Open Dataset[30] and Karlsruhe Institute of Technol‐
ogy and Toyota Technological Institute (KITTI) Dataset[31], and 
OcTr achieves new state-of-the-art results.

The performance of different detection models in three cat‐
egories (Car, Pedestrian, and Cyclist) on the KITTI dataset[31] 
is listed in Table 1. The voxel-based method can achieve ex‐
cellent performance by improving the processing method after 
extracting voxel features. Compared with VoxelNet, SECOND 
is modified to a sparse embedded convolution method to ob‐
tain a performance improvement. PointPillars proposes a way 
to balance accuracy and computational efficiency. A more ap‐
propriate voxel division method can achieve better results. 
The improvement made by OcTr is to use the transformer and 
the special octree data structure, which achieves better re‐
sults. VoxelNeXt directly predicts objects based on sparse 
voxel features, without the need for sparse-to-dense conver‐
sion operations. In summary, voxelization is a method that can 
process large-scale point cloud data quickly and efficiently. 
The idea of voxelization is to process the unstructured point 
cloud into structured data and use the characteristics of CNN 
to process structured data to extract features from the point 
cloud. But nothing is perfect. Detailed information may be lost 
during the voxelization process, and voxelization is a computa‐
tionally expensive step.
4 Point-Based Point Cloud Processing Methods

The point-based 3D point cloud object detection method is 
a method to perform object detection on the raw point cloud 
data. This approach preserves the unstructured form of the 
point cloud, but achieves a more compact representation by 
sampling the point cloud from its original size to smaller fixed-
size N points. Sampling methods usually include random sam‐
pling and FPS, as well as several innovative sampling point 
methods[32].

Random sampling is achieved by randomly drawing points 
until N points are selected. But random sampling suffers from 

the scenario where points in denser regions of the point cloud 
are sampled more frequently than points in sparser regions of 
the point cloud. The FPS algorithm can mitigate this bias by 
using an iterative process to select points based on the fur‐
thest distance criterion. In each iteration, FPS first calculates 
the minimum distance from the unsampled point to the point 
set (the first point is randomly sampled and the second point 
is the point furthest from the first point) and then selects the 
furthest unsampled point .The final result is a more represen‐
tative point cloud, but this method also suffers from expensive 
calculation costs.

The effect of PointNet[11] in point cloud-based methods is 
similar to that of VoxelNet in voxel-based methods. PointNet 
is a neural network-based approach that directly processes 
point cloud data for classification and segmentation. Operat‐
ing directly on the raw point cloud eliminates unnecessary 
transformations of the data representation.

PointNet is a simple yet efficient point cloud feature extrac‐
tor. It has three key modules: the symmetry function for unor‐
dered input, local and global information aggregation, and 
alignment network. Key to PointNet is that it can process un‐
sorted point cloud data, when the disorder of point cloud is 
challenging in point cloud processing.

Based on Pointnet, Pointnet++[12] provides a hierarchical 
point cloud processing method that can effectively learn the lo‐
cal structure in the point cloud. Pointnet++ can handle more 
complex tasks such as scene segmentation, shape part segmen‐
tation, and 3D object detection.

The key technology of Pointnet++ is the introduction of hier‐
archical processing. Pointnet++ adopts a layered architecture. 
The entire point cloud is first sampled and then subdivided 
into smaller local areas and local features are learned on these 
local areas (set abstraction). Finally, these local features are 
aggregated to obtain global features. A Pointnet++ network 
consists of an encoder and a decoder. The encoder contains a 
collection abstraction module and the decoder contains a fea‐
ture propagation module.

These two methods have promoted the application of point 
cloud data in the field of 3D vision and achieved remarkable 
research progress. There are also some extended meth‐
ods[33–35]. Based on the PointNet series network, the feature 
extraction is directly applied to the original point cloud data. 

▼Table 1. Performance of VoxelNet, SECOND, PointPillars and OcTr on the KITTI dataset[31]

Method
VoxelNet[21]

SECOND[22]

PointPillars[24]

OcTr[29]

Modality
LiDAR
LiDAR
LiDAR
LiDAR

APCar
Easy
81.97
83.13
79.05
88.43

Moderate
65.46
73.66
74.99
78.57

Hard
62.85
66.20
68.30
77.16

APPedestrian
Easy
57.86
51.07
52.08
61.49

Moderate
53.42
42.56
43.53
57.17

Hard
48.87
37.29
41.49
52.35

APCyclist
Easy
67.17
70.51
75.78
85.29

Moderate
47.65
53.85
59.07
70.44

Hard
45.11
46.90
52.92
66.17

AP: Average precision
KITTI: Karlsruhe Institute of Technology and Toyota Technological Institute
LiDAR: light detection and ranging

OcTr: Octree-Based Transformer
SECOND: sparsely embedded convolutional detection
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This type of method is generally divided into two steps. The 
first step is often to propose a rough candidate frame and the 
second step is to adjust and refine the position of the candi‐
date frame.

Down-sampling operations are generally required for point 
cloud processing. Down-sampling can not only reduce the 
amount of data, but also remove some noise to improve the 
quality of point cloud data to a certain extent.

Commonly used point cloud down-sampling methods in‐
clude random sampling, uniform sampling, furthest point sam‐
pling, etc. Different sampling methods have different advan‐
tages. Random sampling has the lowest time complexity, but 
retains relatively few point cloud features. Uniform sampling 
can preserve the overall distribution of point clouds, but the 
disadvantage is that it retains fewer point cloud features and 
cannot retain more detailed information. The advantage of fur‐
thest point sampling is that it can retain edge information. It is 
suitable for large-scale data processing and can quickly com‐
plete down-sampling, but it has high time complexity.

1) Improvement of the sampling method. The authors in 
Ref. [36] propose a lightweight and effective point-based 3D 
single stage object detector, named 3DSSD and believe that 
the feature propagation (FP) layer and refining process in the 
PointNet series methods[33, 37–38] will consume more than half 
of the time, but simply removing these modules and leaving 
only the set abstract (SA) layer to directly perform a single-
stage proposal can result in a decrease in accuracy. They also 
believe that the down-sampling operation of the SA layer is 
based on the distance-based furthest point sampling method 
(D-FPS), which tends to retain background points. Therefore, 
they propose a new sampling method named F-FPS to filter 
background points and retain foreground points.

They use both spatial distance and semantic feature dis‐
tance as the criterion in FPS. It is formulated as C ( A, B) =
 λLd( A, B) + Lf ( A, B), where Ld( A, B) is D-FPS, Lf ( A, B) is 
F-FPS, and λ is the balance factor. As shown in Table 2, F-
FPS has the highest recall at λ = 1.0, where λ is the weight of 
D-FPS and F-FPS. Both the spatial distance and semantic fea‐
ture distance are the criterion in FPS. In the experiment, 
3DSSD adopts the method of fusion sampling. The points ob‐
tained by the two sampling methods each occupy half. The 

points are obtained after multi-layer SA as shown in Fig. 6. 
Then the candidate generation layer and two prediction heads 
predict the category and bounding box of the objects. 3DSSD 
greatly improves the speed of 3D object detection, and the 
speed exceeds 25 fps.

2) Combination of point-based and voxel-based methods. 
There are some special methods that combine point-based and 
voxel-based methods[38–39]. Since the two methods have differ‐
ent advantages, their combination can bring more advantages.

The 3D object detector (STD) [38] has three main contribu‐
tions. First, a spherical anchor is used to propose a point-
based proposal generation example, which can achieve a high 
recall rate. Second, the point-based and voxel-based parts use 
the PointsPool link to predict efficiency and effectiveness, 
combining the advantages of VoxelNet[21] and PointNet[11]. 
Last, the alignment between classification scores and localiza‐
tion is achieved through a new 3D IoU prediction branch.

Point-voxel feature set abstraction for 3D object detection 
(PV-RCNN) [39] is a high-performance 3D object detection 
framework. It integrates the method of point-cloud voxeliza‐
tion and convolution and the method of PointNet-based set ab‐
straction to obtain better point cloud features. PV-RCNN di‐
rectly uses the original point cloud, processes the point cloud 
through 3D sparse convolution after voxelization and performs 
classification and box prediction through RPN on the BEV 
plane. At the same time, the FPS is used for key point sam‐
pling, and the key point features and the features of non-
empty voxels around the key points are collected through the 
VSA module. These features are used to make up for the infor‐
mation loss during voxelization. Object category and bounding 
box predictions are refined through a two-part combination.

Both PV-RCNN and STD have achieved good results on the 
KITTI dataset (Table 3), and their performance outperforms ei‐
ther the voxel-based or point-cloud-based method used alone, 

▼Table 2. Points recall among different sampling strategies on the nuS⁃
cenes dataset. “4 096”, “1 024” and “512” represent the number of repre⁃
sentative points in the subset. The first row of results uses only D-FPS.

Method
D-FPS

F-FPS, λ = 0.0
F-FPS, λ = 0.5
F-FPS, λ = 1.0
F-FPS, λ = 2.0

Recall4 096
99.7%
99.7%
99.7%
99.7%

99.7%

Recall1 024
65.9%
83.5%
84.9%
89.2%

86.3%

Recall512
51.8%
68.4%
74.9%
76.1%

73.7%
D-FPS: furthest point sampling based on 3D Euclidean distance 
F-FPS: furthest point sampling based on feature distance

▲ Figure 6. D-FPS is first used to down-sample the point cloud once. 
The point cloud is sampled, grouped, MLP and maximum pooled 
through the 1: 1 combination of D-FPS and F-FPS sampling methods. 
The point cloud can be sampled multiple times in the same way

D-FPS: furthest point sampling based on 3D Euclidean distance F-FPS: furthest point sampling based on feature distance MLP: multi-layer perceptron SA: set abstract
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demonstrating the benefits of combining these two complemen‐
tary methods.

Besides STD and PV-RCNN, the methods proposed in Refs. 
[40] and [41] also combine the point-based and voxel-based 
manners.

Some methods use other networks such as graph neural net‐
works (GNNs). They convert the point cloud into a regular grid 
or voxel and use CNN (point cloud representation in the grid) 
or deep learning technology to process the point cloud (point 
cloud in the point set) after obtaining the point set through 
sampling and other operations (Fig. 7). In addition, Point-
GNN[42] constructs the point cloud into a graph. It has three 
main components: graph construction from point cloud, graph 
neural network for object detection, and bounding box merg‐
ing and scoring. Specifically, the points in the point cloud are 
used as N vertices, with a point as the center and r as the ra‐
dius. Neighboring points in the range are concatenated to con‐
struct a graph G =  (P, E ), for example:

E = {( pi, pj ) |||||| || xi - xj

2 < r}.
In order to reduce complexity, Point-GNN uses voxel opera‐

tions to down-sample point clouds in the actual process and 
the voxels are only used for reducing the point cloud density. 

Once constructed, the point cloud is processed using a multi-
iteration GNN[43].

Point-GNN has achieved excellent performance on the 
KITTI test data set. The average precision of the car, pedes‐
trian and cyclist at the easy level reached 88.33, 51.92 and 
78.60, respectively, at the modality levels 79.47, 43.77 and 
63.48, respectively, and at the hard level 72.29, 40.14 and 
57.08, respectively. The detection performance of the car and 
cyclist surpasses both the radar-only methods such as STD[38] 
and PointRCNN[33] and the radar and image fusion methods 
such as AVOD-FPN[44] and UberATG-MMF[45].

The point-based methods still have several modules that 
need to be improved. One module is sampling, which can re‐
duce the consumption of computing resources by selecting a 
subset of points from the original point cloud. However, sam‐
pling may cause some information loss, which affects the 
quality of the features that can be extracted in subsequent 
operations. Therefore, the choice of the sampling algorithm 
is crucial for the point-based method. For example, Point‐
Net++ uses feature propagation to suppress the information 
loss caused by sampling, and 3DSSD improves different sam‐
pling methods to retain more useful information and improve 
efficiency.

Another module that can be improved is voxelization, which 
is a special method to introduce voxels into point cloud pro‐

cessing. Voxels are small cubes that di‐
vide the three-dimensional space and con‐
tain a certain number of points. The ad‐
vantage of voxelization is to convert point 
clouds into ordered data and also reduce 
computational complexity. However, vox‐
elization may introduce quantization er‐
rors and lose some fine-grained details. 
Therefore, some methods combine the in‐
formation obtained from both voxels and 
points to improve performance. For ex‐
ample, PV-RCNN uses voxel-based RPN 
and point-based RoI feature extractors 
(RoIFEs) to achieve state-of-the-art re‐
sults on 3D object detection.

The third module that can be improved 

▼Table 3. Performance testing on the KITTI test set. Mean average precision is taken as the evaluation metric. The table shows better performance of 
PV-RCNN and STD

Method

SECOND[22]

Fast Point R-CNN[35]

STD[38]

PV-RCNN[39]

APCar‐3D Detection
Easy
83.34
85.29
87.95
90.25

Moderate
72.55
77.40
79.71
81.43

Hard
65.82
70.24
75.09
76.82

APC ar‐BEV Detection
Easy
89.39
90.87
94.74
94.98

Moderate
83.77
87.84
89.19
90.65

Hard
78.59
80.52
86.42

86.14

APCyclist‐3D Detection
Easy
71.33

-

78.69
78.60

Moderate
52.08

-

61.59
63.71

Hard
45.83

-

55.30
57.65

APCyclist‐BEV Detection
Easy
76.50

-

81.36
82.49

Moderate
56.05

-

67.23
68.89

Hard
49.45

-

59.35
62.41

AP: average precision 
BEV: bird’s eye view 
PV-RCNN: point-voxel feature set abstraction for 3D object detection 

R-CNN: Region-CNN 
SECOND: Sparsely Embedded Convolutional Detection 
STD: Sparse-to-Dense 3D Object Detector for Point Cloud

▲Figure 7. Representation of point-cloud grids, sets and graph and their corresponding process⁃
ing methods

CNN: convolutional neural network      GNN: graph neural network

Grids

CNN PointNet GNN

GraphSets
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is the basic network model, which is used to process the point 
cloud data and extract features. Different network models have 
different advantages and disadvantages for point cloud pro‐
cessing. For example, GNN can capture the structure and rela‐
tionship of point cloud data by using nodes and edges. It can 
handle irregular and unordered data better than convolutional 
neural networks.
5 Conclusions

In this paper, we summarize the processing of point clouds 
in object detection. Point cloud processing is the first step in 
most models and it can greatly affect the performance of subse‐
quent detection operations. Point cloud processing can be di‐
vided into two categories: voxel-based and point-based pro‐
cessing, both of which have their own advantages and disad‐
vantages.

Voxel-based processing is a method that divides the three-
dimensional space into small cubes called voxels and assigns 
points to voxels according to their coordinates. The advantage 
of voxel-based processing is that it can convert point clouds 
into ordered data and reduce computational complexity. How‐
ever, voxel-based processing may introduce quantization er‐
rors and lose some fine-grained details. Many works have im‐
proved voxel-based methods by changing the way voxels are 
divided, changing the network for processing voxels, changing 
the data structure for processing data, etc. These approaches 
can reduce time complexity and organize voxel-level features 
well, further improving performance.

Point-based processing is a method that directly operates 
on raw points without any transformation or quantization. The 
advantage of point-based processing is that it can preserve the 
original structure and information of point clouds. However, 
point-based processing may face challenges such as irregular‐
ity and sparsity of point clouds. Many works have improved 
point-based methods by improving the way of point cloud sam‐
pling, introducing some voxel-based features or directly ob‐
taining the graph structure from the structure of the original 
point cloud data. These approaches can enhance the feature 
extraction and representation of points, which can also signifi‐
cantly improve the performance of subsequent detection.
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