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Abstract: Recent years have witnessed that 3D point cloud compression (PCC) has become a research hotspot both in academia and industry. 
Especially in industry, the Moving Picture Expert Group (MPEG) has actively initiated the development of PCC standards. One of the adopted 
frameworks called geometry-based PCC (G-PCC) follows the architecture of coding geometry first and then coding attributes, where the region 
adaptive hierarchical transform (RAHT) method is introduced for the lossy attribute compression. The upsampled transform domain predic⁃
tion in RAHT does not sufficiently explore the attribute correlations between neighbor nodes and thus fails to further reduce the attribute re⁃
dundancy between neighbor nodes. In this paper, we propose a subnode-based prediction method, where the spatial position relationship be⁃
tween neighbor nodes is fully considered and prediction precision is further promoted. We utilize some already-encoded neighbor nodes to fa⁃
cilitate the upsampled transform domain prediction in RAHT by means of a weighted average strategy. Experimental results have illustrated 
that our proposed attribute compression method shows better rate-distortion (R-D) performance than the latest MPEG G-PCC (both on refer⁃
ence software TMC13-v22.0 and GeS-TM-v2.0).
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1 Introduction

Rapid progress in 3D graphic technologies and capture 
devices has enabled high-precision digital representa⁃
tions of 3D objects or scenes. Point clouds, as one of 
the mainstream 3D data formats, can effectively indi⁃

cate points in real-world scenes through 3D geometric coordi⁃
nates and corresponding attributes (e.g., color, normal and re⁃
flectance). Considering its flexible representation properties, 
point clouds have been widely applied to various fields, such 
as autonomous driving, free-viewpoint broadcasting, and heri⁃
tage reconstruction[1]. However, in addition to a huge amount 
of data, point clouds are non-uniformly sampled in space, 
which undoubtedly makes it unfeasible to put point clouds 
into applications with limited bandwidth and storage space[2]. 
Therefore, it is necessary to investigate efficient point cloud 
compression (PCC) schemes.

With an increasing demand for point cloud applications, the 

Moving Picture Expert Group (MPEG) standardization commit⁃
tee started to conduct PCC-dedicated standards and issued a 
Call for Proposals (CfP) in 2017[3]. After intensive develop⁃
ments involving academic and industrial meetings, two inde⁃
pendent point cloud compression frameworks have been ad⁃
opted to cover a wider range of immersive applications and 
data types. One called video-based PCC (V-PCC) [4] adopts 
projection-based strategies combined with video codecs, 
which aims for handling dense point clouds. Another called 
geometry-based PCC (G-PCC) [5] is more specifically designed 
for relatively sparse point clouds by using the octree-based ar⁃
chitecture. The octree representation first proposed for PCC in 
Ref. [6] can build a progressive 3D structure for point clouds. 
Specifically, by recursively dividing point clouds from the root 
node to leaf nodes, the connectivity information between 
points can be exploited among the unorganized point clouds. 
Moreover, the topological neighbor information makes it easier 
to implement techniques similar to prediction or transforma⁃
tion in video coding. In the current G-PCC scheme, geometry 
and attributes are coded sequentially and multiple coding 
tools can be selected to suit different application scenarios. 

This work was supported in part by China Postdoctoral Science Founda⁃
tion under Grant No. 2022M720234 and in part by the National Natural Sci⁃
ence Foundation under Grant Nos. 62071449 and U21B2012.
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For the geometry information, in addition to octree coding[7], 
the triangle soup (Trisoup) coding[8] is used to approximate the 
surface of point clouds as a complement to the octree decom⁃
position while predictive tree coding[9] is applied to low-delay 
use cases. In terms of attributes, there are mainly two 
branches concerning different advantages. The level of details 
(LODs) -based prediction scheme[10] aims to near-lossless or 
lossless compression and also deliver spatial scalability to G-
PCC. By contrast, the region adaptive hierarchical transform 
(RAHT) scheme[11] is more suitable for lossy compression with 
much lower complexity. Note that the attribute coding frame⁃
work RAHT is our main focus in this paper.

As the mainstream attribute compression scheme, the 
RAHT was first proposed in Ref. [12] to provide a hierarchical 
transform structure. In general, the RAHT is an adaptive vari⁃
ant of the Haar wavelet transform (HWT), which can evolve 
into a 3D version of the Haar transform when all nodes are oc⁃
cupied. To furthermore improve the coding efficiency of the 
RAHT, an upsampled transform domain prediction[13] was pro⁃
posed and has been adopted in the current G-PCC. Specifi⁃
cally, decoded attributes of the nodes at lower levels (i. e., 
lower resolution) are used to predict attributes of the nodes at 
higher levels. Then, the prediction residuals can be further 
quantized and entropically encoded. During the transform do⁃
main prediction stage, in addition to the nodes at lower levels, 
the nodes at current encoding levels can also be applied to 
prediction by means of weighted average[14]. However, the in⁃
formation of surrounding neighbor nodes has not been fully uti⁃
lized in certain search ranges, which means that further ex⁃
ploring the correlations between neighbor nodes can lead to 
better attribute compression performance.

In this paper, we propose a subnode-based prediction 
scheme for point cloud attribute compression, which aims at 
optimizing the upsampled transform domain prediction in 
RAHT. Specifically, we first analyze the spatial distribution 
among neighbor nodes and further explore their reference rela⁃
tionship. Based on this analysis, the prediction accuracy is fur⁃
ther improved by exploiting some already-encoded nodes that 
are not used in the current prediction. Then, a weighted aver⁃
age strategy is introduced for the final attribute prediction of 
the node to be encoded. Extensive simulations are conducted 
and compared with the G-PCC as the anchor. Experimental re⁃
sults have confirmed that our proposed method outperforms 
both Test Model Category 13 (TMC13) and Geometry-Based 
Solid Content Test Model (GeS-TM) platforms in terms of all 
point cloud datasets provided by MPEG.

The remainder of this paper is organized as follows. Section 
2 succinctly reviews the related works on attribute coding in 
PCC and describes the current RAHT scheme of G-PCC in 
particular. Our proposed subnode-based prediction approach 
is then presented in Section 3. Section 4 provides experimen⁃
tal results and analysis and Section 5 concludes this paper.

2 Related Work
In this section, we first review the attribute coding schemes 

for PCC. They can be mainly divided into three categories, 
which are projection-based methods, prediction-based meth⁃
ods and transform-based methods. All of them have been intro⁃
duced to the MPEG PCC standards. To be more specific, the 
V-PCC utilizes projection-based methods while the other two 
strategies have been adopted by the G-PCC. Since our work 
mainly focuses on the geometry-based PCC, the research re⁃
lated to video-based PCC is outside the scope of this paper. 
Moreover, the current RAHT scheme and upsampled trans⁃
form domain prediction of G-PCC are also specifically de⁃
scribed as our background.
2.1 Point Cloud Attribute Coding Technologies

Among the existing attribute coding approaches, the 
prediction-based technology is one of the popular schemes to 
exploit spatial attribute correlations between points. For ex⁃
ample, the attribute prediction framework in G-PCC[10] intro⁃
duces a linear interpolation process by using the k-nearest 
neighbors (KNN) search algorithm. This prediction method is 
based on a LODs structure, which splits the whole point cloud 
into several subsets (i. e., refinement levels) according to the 
distance criterion. Based on the LODs, the point clouds are 
then reordered and encoded, where attributes of points are al⁃
ways predicted by their KNN in the previous LODs. Further⁃
more, an additional flag is provided in Ref. [15] to allow pre⁃
dictions by using points at the same level. On top of the pre⁃
diction framework, a lifting scheme[16] is proposed to promote 
attribute lossy coding. To be more specific, compared with the 
original prediction method, an update operator combined with 
an adaptive quantization strategy is added to improve the pre⁃
diction accuracy. Attributes of points in lower LODs are al⁃
ways assigned much higher influence weights because they 
are used as reference points with higher frequency and prob⁃
ability for predicting points in higher LODs.

Based on the above two prediction schemes, substantial 
works are investigated to further improve the attribute com⁃
pression efficiency. WEI et al. propose an enhanced intra-
prediction scheme[17] by considering the overall geometric dis⁃
tribution of the neighbors set. They introduce the centroid-
based criterion to measure the distribution uniformity of 
points in a predictive reference set. Since this scheme predic⁃
tively encodes the point clouds point by point, the prediction 
errors will accumulate and propagate, especially for points in 
higher LODs. Hence, a bilateral filter is proposed in Ref. [18] 
to update the reconstruction values of decoded points, which 
reduces error propagation when encoding subsequent points. 
In addition, YIN et al. attempt to optimize the predictive 
neighbor set by using the normal of point clouds[19], aiming at 
improving prediction precision for Light Detection and Rang⁃
ing (LiDAR) point clouds.

Besides prediction-based methods, other approaches con⁃
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tribute to reducing the attribute spatial redundancy in a trans⁃
form domain. For instance, to utilize the 2D discrete cosine 
transform (DCT), ZHANG et al. project the point clouds onto 
two-dimensional grids for color compression[20]. This 3D-to-2D-
based method inevitably fails to fully consider three-
dimensional spatial correlations. Hence, 3D-DCT-based meth⁃
ods are developed continuously, such as Refs. [21] and [22].

Apart from DCT, more complex transforms are introduced to 
attribute coding for PCC. The graph Fourier transform (GFT) is 
first applied to PCC in Ref. [23], which is an extension of the 
Karhunen-Loève transform (KLT). The graphs are constructed 
based on octree-decomposed point clouds, where the graph La⁃
placian matrix can be deduced by connecting the points within 
small neighborhoods. Then attributes are transformed, quan⁃
tized, and entropically encoded. Since the coding efficiency of 
the graph-based methods outperforms the DCT-based method, 
extensive follow-up works have been carried out on the attri⁃
bute graph transform coding. Specifically, an optimized graph 
transform method[24] is proposed to improve the Laplacian spar⁃
sity combined with k-dimensional tree partition and an RDO-
based quantization process. Then, XU et al. [25] introduce the 
normal of point clouds, in addition to geometric distance, to 
measure the connectivity between neighbor points. Moreover, 
they propose a predictive generalized graph transform 
scheme[26] to eliminate the temporary redundancy. Although 
the graph-based transform approaches exhibit superior coding 
performance, complicated matrix decomposition leads to real-
time difficulties in PCC.

Taking the complexity into consideration, RAHT is pro⁃
posed in Ref. [12] and finally adopted in G-PCC as the funda⁃
mental framework. Our work is closely related to the RAHT 
and corresponding techniques, which will be concisely de⁃
scribed in Section 2.2.
2.2 RAHT in MPEG G-PCC

RAHT is a Haar-inspired method with a hierarchical struc⁃
ture, which can be regarded as an extension of 1D HWT. The 
core of HWT is to represent functions and signals by using a 
series of wavelets or basis functions. Specifically, suppose a 
signal S has N elements. The HWT decomposes the original 
signal S into low-pass and high-pass components, which can 
be calculated as follows:
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where S2n and S2n + 1 denote two adjacent elements of signal s. 
The direct current (DC) and alternating current (AC) coefficients 
represent the low-frequency and high-frequency parts of the sig⁃
nal respectively. Generally speaking, the energy of the signal af⁃
ter the HWT is mainly concentrated on a few coefficients, espe⁃
cially the DC coefficients, and then appropriate quantization and 
entropy coding can achieve the purpose of compression.

In order to apply HWT for 3D point cloud attribute com⁃
pression, 1D HWT is applied sequentially along the x, y, and z 
directions. Specifically, the RAHT is conducted on a hierar⁃
chical octree based on the geometry information of point 
clouds, which starts from the leaf nodes (i. e., highest resolu⁃
tion level) and proceeds backward until the octree’s root node 
(i. e., lowest resolution level). In each level, the RAHT is ap⁃
plied to each unit node containing 2×2×2 subnodes. As shown 
in Fig. 1, the unit node is transformed along three directions to 
generate both DC and AC coefficients, where the DC coeffi⁃
cients along each direction will continue to be transformed 
while the AC coefficients will be output to be quantized and 
encoded. Note that the number of coefficients is the same as 
the number of occupied subnodes in a unit node, including 
one DC coefficient and several AC coefficients. Then, the DC 
coefficient obtained from the node at Level l will be used as 
the attribute of the node at Level l-1 for further transformation. 
After processing all unit nodes (N occupied nodes) at Level l, 
N generated DC coefficients (denoted as LLL ) continue to be 
transformed until the root node.

It should be noted that, in the current G-PCC, the dyadic 
RAHT decomposition[27] is adopted to adapt to more compli⁃
cated textures. The whole process of the dyadic RAHT is ex⁃
actly the same as the normal RAHT mentioned above, except 
that the AC coefficients obtained in each direction will be fur⁃
ther transformed like the DC coefficients. Another point to be 
emphasized is that, unlike HWT in Eq. (1), the wavelet trans⁃
form kernel for RAHT is modified according to

RAHT (w1, w2 ) = 1
w1 + w2
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▲Figure 1. Transform procedure of a unit node along three directions. 
The DC coefficient is denoted as L and H represents the AC coefficient. 
LL and LH represent the DC coefficient and AC coefficient of DC coeffi⁃
cient respectively, and so on

AC: alternating current     DC: direct current

Along the first direction

AC: alternating current     DC: direct current

Node in Level l

Along the second direction

Along the third direction

DC coefficients L

DC coefficients LL

DC coefficients LLL

Transform for Level-l Quantize and encode

AC coefficients LLH

AC coefficients LH

AC coefficients H
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where w1 and w2 represent the number of points in two adja⁃
cent nodes, which makes the transform more adaptive to the 
sparsity of point clouds.

To further explore the local spatial correlation, the inter-
depth upsampling (IDUS) method[13] is proposed to predict at⁃
tributes of nodes in the transform domain. As shown in Fig. 2, 
the upsampling process is realized by means of a weighted av⁃
erage based on geometric distance in the mean attribute 
space. During the prediction procedure, for each node at 
Level l, there are mainly two types of nodes used for predic⁃
tion, which are parent-level neighbors at Level l-1 and 
subnode-level neighbors at Level l[14]. However, there are still 
some already-encoded neighbors that are not utilized in the 
current prediction and the prediction reference relationship 
can be further refined to improve the attribute compression ef⁃
ficiency.
3 Proposed Approach

Based on the framework described in Section 2.2, we pro⁃
pose a subnode-based transform domain prediction for RAHT 
that considers more accurate spatial correlations among 
nodes. In addition to the parent-level neighbors and subnode-
level neighbors in G-PCC, some other effective neighbors are 
also utilized for upsampled transform domain prediction. As il⁃
lustrated in Fig. 3, the parent-level neighbors at level l-1 in⁃
clude three types of nodes, which are the parent node (Npm), 
co-plane parent neighbor node (sharing a side with the sub⁃
node to be predicted, Ncppnn), and co-line parent neighbor 
node (sharing an edge with the subnode to be predicted, 
Nclpnn). For the subnode-level neighbors at Level l, there are 
the co-plane subnode in the co-plane parent neighbor node 
(Ncpsn), co-line subnode in the co-line parent neighbor node 
(Nclsncl) and proposed co-line subnode in the co-plane parent 
neighbor node (Nclsncp). With these predictive reference 

nodes, we design an optimized transform domain prediction 
for RAHT. Compared with the original prediction scheme in 
G-PCC, we first introduce already-encoded neighbor nodes 
Nclsncp as reference candidates and the neighbor search for 
nodes Nclsncp is described in Section 3.1. Since a new type of 
predictive reference neighbors is added, we further propose a 
geometric distribution-based prediction to refine the original 
node prediction reference relationship, which is then detailed 
in Section 3.2.
3.1 Neighbor Search for Reference Candidates

Since the proposed co-line subnodes (Nclsncp) exist in the 
co-plane parent neighbor nodes (Ncppnn), the neighbor search 
is mainly decomposed into two stages: 1) determining the co-
plane parent neighbor nodes and 2) deciding co-line subnodes 
reference candidates. Specifically, for each subnode to be pre⁃
dicted, the corresponding parent node has at most six co-
plane parent neighbor nodes. Among them, already-encoded 
subnodes Nclsncp can only exist in three parent neighbor 
nodes (Fig. 4), which are located on the left, front and bottom 
of Npn respectively.

Further considering 
the position of each sub⁃
node to be predicted in 
its Npn as well as the 
distribution of corre⁃
sponding Ncppnn, the 
detailed existence of 
Nclsncp of each subnode 
to be predicted is shown 
in Fig. 4. Note that the 
position indexes (from 0 
to 8) are organized ac⁃
cording to the Morton or⁃
der. Specifically, we de⁃
note Ntbp i as the i-th 
subnode to be predicted 
in the same Npn. Then, 
it can be seen that only 
Ntbp 0 contains six 

Parent-level nodes in Level 
l-1

Parent node
Co-plane parent neigh⁃bor node

Co-line parent neighbor node

Subnode-level nodes in Level l

Co-plane subnode
Co-line subnode in Nclpnn

Co‐line subnode 
in Ncppnn

Type Description Symbols in Diagram

Ncppnn

Ncpsn

Nclpnn

Nclsncl
Npn

Nclsncp

▲Figure 3. Notations of different types of nodes for transform domain 
prediction, which include parent-level neighbor nodes at level l-1 and 
subnode-level neighbor nodes at level l 𝑙

▲ Figure 2. Upsampled transform domain prediction for region adaptive hierarchical transform (RAHT) in 
geometry-based point cloud compression (G-PCC), where upsampling prediction is performed in the mean attribute 
space and transformation is performed in the sum attribute space

Neighbors at Level l-1

Neighbors at Level l
Decoded attributes at Level l

at Level l
Original sum of attributes

at Level l-1
Decoded sum of attributes

at Level l-1
Decoded mean attributes

attributes at Level l
Predicted mean

Predicted sum of attributes 
at Level l

Normalization Weighted average

Transform Transform Inverse normalization

Transformed residuals

-
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Nclsncp reference candidates. Ntbp 1, Ntbp 2 and Ntbp 4 in⁃
clude four Nclsncp reference candidates. Ntbp 3, Ntbp 5 and 
Ntbp 6 include two Nclsncp reference candidates. Ntbp 7 has 
no Nclsncp reference candidate. More detailed information is 
listed as follows:

• Ntbp 0 candidates located in No. 5 and No. 6 subnodes of 
the left Ncppnn, No. 3 and No. 5 subnodes of the bottom 
Ncppnn, and No. 3 and No. 6 subnodes of the front Ncppnn.

• Ntbp 1 candidates located in No. 4 and No. 7 subnodes of 
the left Ncppnn and No. 2 and No. 7 subnodes of the front 
Ncppnn.

• Ntbp 2 candidates located in No. 4 and No. 7 subnodes of 
the left Ncppnn and No. 1 and No. 7 subnodes of the bottom 
Ncppnn.

• Ntbp 3 candidates located in No. 5 and No. 6 subnodes of 
the left Ncppnn.

• Ntbp 4 candidates located in No. 2 and No. 7 subnodes of 
the front Ncppnn and No. 1 and No. 7 subnodes of the bottom 
Ncppnn.

• Ntbp 5 candidates located in No. 3 and No. 6 subnodes of 
the front Ncppnn.

• Ntbp 6 candidates located in No. 3 and No. 5 subnodes of 
the bottom Ncppnn.

Among these reference candidates described above, the 
existing occupied (i. e., non-empty node) Nclsncp can be 
searched by using the relative position relationship with each 
corresponding Ntbp i. In addition to the proposed Nclsncp, 
we also introduce a prediction scheme based on geometric 
distribution by using Npn, Ncppnn and Nclpnn at Level l-1 
and Ncpsn and Nclsncl at Level l, which will be detailed in 
the next section.
3.2 Prediction Based on Geometric Distribution

For each subnode to be predicted Ntbp i in its parent node 
Npn, we propose to predict them according to the distribution 
of their neighbor subnodes in the co-plane parent node neigh⁃
bor nodes. First of all, the distribution can be mainly divided 

into the following three categories, a total of six sub-
categories, mainly including:

• Distribution 1: The existing Ncppnn contains Ncpsn, in⁃
cluding three cases: 1) only one Ncpsn, 2) one Ncpsn and one 
Nclsncp, and 3) one Ncpsn and two Nclsncp.

• Distribution 2: The existing Ncppnn does not contain 
Ncpsn but contains at least one Nclsncp, including two cases: 
1) only one Nclsncp and 2) two Nclsncp.

• Distribution 3: The existing Ncppnn does not contain any 
of Ncpsn and Nclsncp.

Then, the corresponding target prediction mode can be de⁃
termined by the three types of neighbor subnode distribu⁃
tions. For each subnode to be predicted, in addition to their 
Npn  that will definitely participate in the prediction, the pre⁃
diction reference of other nodes is shown in Fig. 5. Specifi⁃
cally, for Ncppnn, we will first determine whether it contains 
Ncpsn, and if so (i. e., satisfying Distribution 1), the attribute 
value of Ncpsn will be used as the prediction instead of the at⁃
tribute value of its corresponding Ncppnn whether it contains 
Nclsncp or not. Then, if there is no Ncpsn in Ncppnn, we fur⁃
ther determine whether it contains at least Nclsncp, and if so 
(i.e., satisfying Distribution 2), the average attribute value of 
Nclsncp will be used as the prediction instead of the attribute 
value of its corresponding Ncppnn. If it contains neither of the 
above two conditions (i.e., satisfying Distribution 3), the attri⁃
bute value of Ncppnn will be directly used for prediction. Be⁃
sides Ncppnn, for Ncppnn, the attribute value of Nclsncl will 
be used as the prediction instead of the attribute value of its 
corresponding Nclpnn if it has Nclsncl, which is the same as 
the current G-PCC.
4 Experiments

To validate the effectiveness of the proposed method, we 
implement our subnode-based prediction scheme on top of the 
latest MPEG G-PCC reference software TMC13-v22.0[28] and 
GeS-TM-v2.0[29]. Extensive simulations have been conducted 
in accordance with the common test conditions (CTCs) [30] 

▲Figure 4. Schematic diagram of co-line subnodes of each subnode to be encoded in the same parent node, where the position indexes are organized 
according to the Morton order

Morton order

Subnode to be predicted Co-line subnode Parent node Co-plane parent neighbor node

z

y

x
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where the octree and RAHT configuration are applied for ge⁃
ometry and attribute respectively. In terms of the test condi⁃
tions, as shown in Table 1, C1 (i.e., lossless geometry lossy at⁃
tributes) and C2 conditions (i. e., near-lossless/lossy geometry 

lossy attributes) are both evalu⁃
ated on the reference software 
TMC13-v22.0 and GeS-TM-v2.0.
4.1 Datasets

The test datasets provided by 
MPEG G-PCC can be mainly clas⁃
sified into three categories: Cat⁃
egory 1—Static Objects and 
Scenes datasets (i. e., Cat1), Cat⁃
egory 2—Dynamic Objects datas⁃
ets (i. e., Cat2), and Category 3—
Dynamic Acquisition datasets (i.
e., Cat3). Specifically, sequences 
in Cat1 are further divided based 
on the density and surface conti⁃
nuity of point clouds (i. e., Solid, 
Dense, Sparse, and Scant). For 
Cat2, test classes A, B and C indi⁃
cate the complexity of point 
clouds, where A is the lowest and 
C is the highest. The division of 
Cat3 is more detailed, including 
automotive frame-based data ac⁃
quired by spinning and non-
spinning LiDAR sensors (i.e., Am-
frame) and automotive LiDAR ac⁃

quired data after fused and reprocessed (i.e., Am-fused). Note 
that Am-fused datasets have both color and reflectance attri⁃
butes. In terms of the CTCs, the Cat1 and Cat3 datasets are 
tested on TMC13v22.0 while the Cat2 datasets are tested on 
GeS-TMv2.0. All test sequences mentioned above are avail⁃
able in the MPEG content repository[31].
4.2 Performance Evaluations

The attribute compression performances compared with 
TMC13-v22.0 are shown in Table 2, where the negative Bjon⁃
tegaard delta (BD) rate illustrates the coding gains against the 
anchor. From Table 2, it can be seen that consistent coding 

▼Table 2. Performance of the proposed method against TMC13-v22.0 under C1 and C2 configurations

Dataset Category
Solid average
Dense average
Sparse average
Scant average

Am-fused average
Am-frame spinning average

Am-frame non-spinning average
Overall average

Average encoding/decoding time/%

C1 End-to-End BD-Attribute Rate/%
Luma
−0.4
−0.2
−0.2
−0.2
−0.3

/
/

−0.2

102/103

Chroma Cb
−0.3
−0.2
−0.2
−0.2
−1.2

/
/

-0.3

Chroma Cr
−0.4
−0.2
−0.1
−0.3
−1.1

/
/

-0.3

Reflectance
/
/
/
/

−1.1
−0.3
−0.6
-0.5

C2 End-to-End BD-Attribute Rate/%
Luma
−0.2
−0.2
−0.2
−0.2
−0.1

/
/

-0.2

100/107

Chroma Cb
−0.3
−0.5
−0.1
−0.3
−0.6

/
/

-0.3

Chroma Cr
−0.2
−0.1
−0.3
−0.2
−0.7

/
/

-0.2

Reflectance
/
/
/
/

−0.2
−0.2
−0.2
-0.2

BD: Bjontegaard delta

▼Table 1. Common test conditions in G-PCC

G-PCC Platform
TMC13
GeS-TM

Conditions
C1
√
√

C2
√
√

Datasets
Cat1

√
Cat2

√

Cat3
√

G-PCC: geometry-based point cloud compression

▲Figure 5. Transform domain prediction based on the three types of neighbor subnode geometric distri⁃
butions

Parent-Level node

Proposed
Co-plane parent
neighbor node

Is there a co-plane subnode？

Is there a co-line subnode？
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Use co-line parent neighbor node to predict

Co-line parent
neighbor node

Is there a co-line subnode？
Y

NN

Y

Y

N

Use co-line subnode to predict
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gains can be achieved both under C1 and C2 conditions for all 
categories. Specifically, 0.2%, 0.3% and 0.5% bitrate reduc⁃
tion for luma, chorma and reflectance are obtained under the 
C1 condition respectively. 0.2%, 0.3% and 0.2% bitrate re⁃
duction for luma, chroma Cb and Cr as well as 0.2% bitrate re⁃
duction for reflectance are obtained under C2 condition re⁃
spectively. Especially for Am-fused datasets, there are over 
1% coding gains under the C1 condition for chroma Cb 
(1.2%), chroma Cr (1.1%) and reflectance (1.1%). Besides the 
R-D performance, the computational complexity is evaluated 
by using the average encoding and decoding time. There are 
only 2% and 3% extra increases on the encoding and decod⁃
ing time on the C1 condition, with no complexity increase for 
encoding on the C2 condition.

Apart from TMC13-v22.0, we also compare our proposed 
method with GeSTM-v2.0 for Cat2. As shown in Table 3, 
consistent coding gains can be also achieved both under C1 
and C2 conditions for all Cat2 datasets. Specifically, 0.4%, 
0.4% and 0.5% bitrate reduction for luma, chroma Cb and 
chroma Cr are obtained under the C1 condition respec⁃
tively. 0.3%, 0.3% and 0.4% bitrate reduction for luma, 
chroma Cb and Cr are obtained under the C2 condition re⁃
spectively. In terms of computational complexity, the encod⁃
ing time increases by 6% while the decoding time increases 
by 10%.

To further evaluate the prediction effect of the proposed 
optimization scheme, we also count the errors during the 
transform domain prediction stage. Specifically, for each se⁃
quence in Cat1, prediction errors of all slices are accumu⁃
lated if the upsampled prediction is enabled. As illustrated 
in Fig. 6, the average prediction errors of each type of point 
cloud are all smaller than that of the original prediction 
scheme in TMC13-v22.0. Therefore, our proposed method 
can effectively improve compression efficiency by reducing 
prediction errors.
5 Conclusions

In this paper, a subnode-based prediction is proposed to im⁃
prove the lossy point cloud attribute compression for the 

MPEG G-PCC platform. Based on the original upsampled 
transform domain prediction scheme, we leverage some 
already-encoded neighbor nodes at the same level as the cur⁃
rent node to be encoded to optimize the original prediction 

▼ Table 3. Performance of the proposed method against GeSTM-v2.0 
under C1 and C2 configurations

Dataset Category

Cat2-A average
Cat2-B average
Cat2-C average

Overall average

Avgerage encoding/
decoding time (%)

C1 BD-Rate/%
L

−0.4
−0.3
−0.5
-0.4

106/109

Cb
−0.5
−0.3
−0.4
-0.4

Cr
−0.5
−0.3
−0.5
-0.5

C2 BD-Rate/%
L

−0.3
−0.2
−0.4
-0.3

101/110

Cb
−0.3
−0.2
−0.4
-0.3

Cr
−0.4
−0.2
−0.3
-0.4

BD: Bjontegaard delta

▲ Figure 6. Prediction errors of the proposed method compared with 
the original prediction scheme in geometry-based point cloud compres⁃
sion (G-PCC) (i.e., reference software TMC13-v22.0)
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process. Additionally, a more refined prediction reference rela⁃
tionship is introduced based on the geometric distribution 
among neighbor nodes. Extensive simulation results demon⁃
strate that our proposed method can achieve consistent coding 
gains on all types of point clouds, whether sparse LiDAR point 
clouds, dense colored point clouds, or multi-attribute point 
clouds, compared to the latest G-PCC test models.
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