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Abstract: Point cloud compression is critical to deploy 3D representation of the physical world such as 3D immersive telepresence, autonomous 
driving, and cultural heritage preservation. However, point cloud data are distributed irregularly and discontinuously in spatial and temporal do⁃
mains, where redundant unoccupied voxels and weak correlations in 3D space make achieving efficient compression a challenging problem. In 
this paper, we propose a spatio-temporal context-guided algorithm for lossless point cloud geometry compression. The proposed scheme starts 
with dividing the point cloud into sliced layers of unit thickness along the longest axis. Then, it introduces a prediction method where both intra-
frame and inter-frame point clouds are available, by determining correspondences between adjacent layers and estimating the shortest path using 
the travelling salesman algorithm. Finally, the few prediction residual is efficiently compressed with optimal context-guided and adaptive fast-
mode arithmetic coding techniques. Experiments prove that the proposed method can effectively achieve low bit rate lossless compression of 
point cloud geometric information, and is suitable for 3D point cloud compression applicable to various types of scenes.
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1 Introduction

With the improvement of multi-platform and multi-
resolution acquisition equipment performance, 
light detection and ranging (LiDAR) technology 
can efficiently simulate 3D objects or scenes with 

massive point sets. Compared with traditional multimedia 
data, point cloud data contain more physical measurement in⁃
formation which represents objects from free viewpoints, even 
scenes with complex topological structures. This results in  
strong interactive and immersive effects that provide users 
with a vivid and realistic visualization experience. Addition⁃
ally, point cloud data have stronger anti-noise ability and par⁃
allel processing capability, which seems to have gained attrac⁃
tion from the industry and academia, notably for application 
domains such as cultural heritage preservation, 3D immersive 
telepresence and automatic driving[1–2].

However, point cloud data usually contain millions to bil⁃
lions of points in spatial domains, bringing burdens and chal⁃

lenges to the storage space capacity and network transmis⁃
sion bandwidth. For instance, a common dynamic point 
cloud utilized for entertainment usually comprises roughly 
one million points per frame, which, at 30 frames per second, 
amounts to a total bandwidth of 3.6 Gbit/s if left uncom⁃
pressed[3]. Therefore, the research on high efficiency geom⁃
etry compression algorithms for point clouds has important 
theoretical and practical value.

Prior work tackled this problem by directly building grids 
or on-demand down-sampling, due to limitations in computer 
computing power and point cloud collection efficiency, which 
resulted in low spatio-temporal compression performance and 
loss of geometric attribute feature information. Recent studies 
were mainly based on computer graphics and digital signal 
processing techniques to implement block operations on point 
cloud data[4–5] or combined video coding technology[6–7] for 
optimization. In 2017, the Moving Picture Experts Group 
(MPEG) solicited proposals for point cloud compression and 
conducted subsequent discussions on how to compress this 
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type of data. With increasing approaches to point cloud com⁃
pression available and presented, two-point cloud data com⁃
pression frameworks—TMC13 and TMC2 were issued in 
2018. The research above shows remarkable progress has 
been made in the compression technology of point cloud. How⁃
ever, prior work mostly dealt with the spatial and temporal cor⁃
relation of point clouds separately but had not yet been ex⁃
ploited to their full potential in point cloud compression.

To address the aforementioned challenges, we introduce a 
spatio-temporal context-guided method for lossless point 
cloud geometry compression. We first divide point clouds into 
unit layers along the main axis. We then design a prediction 
mode via a travelling salesman algorithm, by adopting spatio-
temporal correlation. Finally, the residuals are written into bit⁃
streams with a utilized context-adaptive arithmetic encoder. 
Our main contributions are as follows.

1) We design a prediction mode applicable to both intra-
frame and inter-frame point cloud, via the extended travelling 
salesman problem (TSP). By leveraging both the spatial and 
temporal redundancies of point clouds, the geometry predic⁃
tion can make better use of spatial correlation and therefore 
enable various types of scenarios.

2) We present an adaptive arithmetic encoder with fast con⁃
text update, which selects the optimal 3D context from the 
context dictionary, and suppresses the increase of entropy esti⁃
mation. As a result, it enhances the probability calculation ef⁃
ficiency of entropy encoders and yields significant compres⁃
sion results.

The rest of this paper is structured as follows. Section 2 
gives an outline of related work on point cloud geometry com⁃
pression. Section 3 firstly presents an overview of the pro⁃
posed framework. Then, the proposed method is descibed in 
detail. Experimental results and conclusions are presented in 
Sections 4 and 5, respectively.
2 Related Work

There have been many point cloud geometry compression 
algorithms proposed in the literature. CAO et al. [8] and 
GRAZIOSI et al. [9] conduct an investigation and summary of 
current point cloud compression methods, focusing on spatial 
dimension compression technology and MPEG standardization 
frameworks respectively. We provide a brief review of recent 
developments in two categories: single-frame point cloud com⁃
pression and multi-frame point cloud compression.
2.1 Single-Frame Point Cloud Compression

Single-frame point clouds are widely used in engineering 
surveys, cultural heritage preservation, geographic information 
systems, and other scenarios. The octree is a widely used data 
structure to efficiently represent point clouds, which can be 
compressed by recording information through the occupied 
nodes. HUANG et al. [10] propose an octree-based method that 
recursively subdivides the point cloud into nodes with their 

positions represented by the geometric center of each unit. 
FAN et al.[11] further improve this method by introducing clus⁃
ter analysis to generate a level of detail (LOD) hierarchy and 
encoding it in a breadth-first order. However, these methods 
can cause distortion due to the approximation of the original 
model during the iterative process.

To address these limitations, scholars have introduced geo⁃
metric structure features, such as the triangular surface 
model[12], the planar surface model[13–14], and the clustering al⁃
gorithm[15], for inter-layer prediction and residual calculation. 
RENTE et al.[16] propose a concept of progressive layered com⁃
pression that first uses the octree structure for coarse-grained 
encoding and then uses the graph Fourier transform for com⁃
pression and reconstruction of cloud details. In 2019, MPEG 
released the geometry-based point cloud compression (G-
PCC) technology for both static and dynamic point clouds, 
which is implemented through coordinate transformation, vox⁃
elization, geometric structure analysis, and arithmetic coding 
step by step[17].

Since certain octants within an octree may be sparsely popu⁃
lated or even empty, some methods have been proposed to op⁃
timize the tree structure by pruning sub-nodes and therefore 
conserve memory allocation. For example, DRICOT et al. [18] 
propose an inferred direct coding mode (IDCM) for terminat⁃
ing the octree partition based on predefined conditions of spar⁃
sity analysis, which involves pruning the octree structure to 
save bits allocated to child nodes. ZHANG et al. [19] suggest 
subdividing the point cloud space along principal components 
and adapting the partition method from the binary tree, 
quadtree and octree. Compared with the traditional octree par⁃
titioning, the hybrid models mentioned above can effectively 
reduce the number of bits used to represent sparse points, 
therefore saving nodes that need to be encoded. However, com⁃
plex hyperparameter conditions and mode determination are 
required in the process, making it difficult to meet the require⁃
ments of self-adaptation and low complexity.

With deep neural networks making significant strides in im⁃
age and video compression, researchers have explored ways to 
further reduce bit rates by leveraging super prior guidance 
and the redundancy of latent space expression during the com⁃
pression process. QUACH et al. [20] and HUANG et al. [21] pro⁃
pose methods that incorporate these concepts. GUARDA et al.
combine convolutional neural networks and autoencoders to 
exploit redundancy between adjacent points and enhance cod⁃
ing adaptability in Ref. [22]. Recently, WANG et al. [23] pro⁃
pose a point cloud compression method based on the varia⁃
tional auto-encoder, which improves the compression ratio by 
learning the hyperprior and reducing the memory consumption 
of arithmetic coding. The aforementioned methods use neural 
network encoders to capture the high-order hidden vector of 
the point cloud, the entropy model probabilities, and the edge 
probabilities of which fit better, thus reducing the memory 
consumption of arithmetic coding.
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Generally speaking, the research on single-frame point 
cloud geometric compression is relatively mature, but there 
are two challenges that remain yet. Spatial correlation has 
not been utilized effectively, and most methods do not code 
the correlation of point cloud data thoroughly and efficiently. 
Besides, the calculation of the probability model for entropy 
coding appears long and arduous due to the massive number 
of contexts.
2.2 Multi-Frame Point Cloud Compression

Multi-frame point clouds are commonly used in scenarios 
such as real-time 3D immersive telepresence, interactive VR, 
3D free viewpoint broadcasting and automatic driving. Unlike 
single-frame point cloud compression, multi-frame point cloud 
compression prioritizes the use of time correlation, as well as 
motion estimation and compensation. The existing methods for 
multi-frame point cloud compression can be divided into two 
categories: 2D projection and 3D decorrelation.

The field of image and video compression is extensive and 
has been well-explored over the past few decades. Various al⁃
gorithms convert point clouds into images and then compress 
them straightforwardly by FFmpeg and H. 265 encoders, etc. 
AINALA et al[24] introduce a planar projection approximate en⁃
coding mode that encodes both geometry and color attributes 
through raster scanning on the plane. However, this method 
causes changes in the target shape during the mapping pro⁃
cess, making accurate inter-prediction difficult. Therefore, 
SCHWARZ et al. [25] and SEVOM et al. [26] suggest rotated pla⁃
nar projection, cube projection, and patch-based projection 
methods to convert point clouds into 2D videos, respectively. 
By placing similar projections in adjacent frames at the same 
location in adjacent images, the video compressor can fully re⁃
move temporal correlation. In Ref. [27], inter-geometry predic⁃
tion is conducted via TSP, which computes the one-to-one cor⁃
respondence of adjacent intra-blocks by searching for the 
block with the closest average value. MPEG released the 
video-based point cloud compression (V-PCC) technology for 
dynamic point clouds in 2019[28]. This framework divides the 
input point cloud into small blocks with similar normal vectors 
and continuous space, then converts them to the planar sur⁃
face through cubes to record the occupancy image and auxil⁃
iary information. All resulting images are compressed by ma⁃
ture video codecs, and all bitstreams are assembled into a 
single output file. Other attempts have been made to improve 
the effectiveness of these methods. COSTA et al.[29] exploit sev⁃
eral new patch packaging strategies from the perspective of op⁃
timization for the packaging algorithm, data packaging links, 
related sorting, and positioning indicators. Furthermore, 
PARK et al. [30] design a data-adaptive packing method that 
adaptively groups adjacent frames into the same group accord⁃
ing to the structural similarity without affecting the perfor⁃
mance of the V-PCC stream.

Due to the inevitable information loss caused by point cloud 

projection, scholars have developed effective techniques to 
compress the point cloud sequence of consecutive frames us⁃
ing motion compensation technology based on 3D space. 
KAMMERL et al.[31] propose an octree-based geometric encod⁃
ing method, which achieves high compression efficiency by 
performing the exclusive OR (XOR) differences between adja⁃
cent frames. This method has been not only adopted in the 
popular Point Cloud Library (PCL)[32] but also widely used for 
further algorithm research. Other interframe approaches con⁃
vert the 3D motion estimation problem into a feature matching 
problem[33] or use reconstructed geometric information[34] to 
predict motion vectors and identify the corresponding relation⁃
ship between adjacent frames accurately. Recent explosive 
studies[35–36] have shown that the learned video compression 
offers better rate-distortion performance over traditional ones, 
bringing significant reference significance to point cloud com⁃
pression. ZHAO et al.[37] introduce a bi-directional inter-frame 
prediction network to perform inter-frame prediction and bring 
effective utilization of relevant information in spatial and tem⁃
poral dimensions. KAYA et al. [38] design a new paradigm for 
encoding geometric features of dense point cloud sequences, 
optimizing the CNN for estimating the encoding distribution to 
realize lossless compression of dense point clouds.

Despite progress in the compression coding technology of 
multi-frame point cloud models, two problems persist. The 
existing multi-frame point cloud compression approaches 
mainly rely on video coding and motion compensation, which 
inevitably involves information loss or distortion caused by 
mapping and block edge discontinuity. In addition, predic⁃
tive coding exhibits low applicability due to the inconsis⁃
tency of inter-frame point cloud geometry. The apparent off⁃
set of points between frames and the unavoidable noise in⁃
creases the difficulty of effectively using predictive coding in 
inter-frame compression.
3 Proposed Spatio-Temporal Context-Guided 

Lossless Geometry Point Cloud Compres⁃
sion Method

3.1 Overview
The overall pipeline of our spatio-temporal context-guided 

algorithm is shown in Fig. 1. First, we preprocess the input 
point cloud by applying voxelization and scale transformation. 
Then, the point cloud is divided into unit thickness sliced lay⁃
ers along the main axis. Next, we design a prediction mode 
that makes full use of the temporal and spatial correlation in⁃
formation within both intra-frame and inter-frame. We calcu⁃
late the shortest path of points of reference layers (R-layers) 
via travelling salesman algorithms, and the results of the R-
layers are then used to predict spatio-temporally and encode 
the rest of the point clouds, namely predicted layers (P-
layers). Finally, the improved entropy coding algorithms are 
adopted to obtain the compressed binary file.
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3.2 Image Sliced-Based Hierarchical Division
1) Pre-processing 
The pre-processing module includes voxelization and scale 

transformation, for better indexing of each certain point. In 
voxelization, we divide the space into cubes of size N, which 
corresponds to the actual resolution of the point cloud. Each 
point is assigned a unique voxel based on its position. A voxel 
is recorded as 1; if it is positively occupied, it is 0 otherwise.

Scale transformation can reduce the sparsity for better com⁃
pression by zooming out the point cloud, where the distance 
between points gets smaller. We aggregate the point cloud co⁃
ordinates ( x, y, z) using a scaling factor s, i.e.,

P̂n = Pn × s = ( xn × s, yn × s, zn × s) , s ≤ 1 . (1)
To ensure lossless compression, we need to ensure that the 

scaling factor s cannot cause geometry loss and needs to be re⁃
corded in the header file.

2) Sliced-layer division
This module works by dividing the 3D point cloud along 

one of its axes, creating several unit-sliced layers with occu⁃
pied and non-occupied information only that can be further 
compressed using a predictive encoder and an arithmetic 
coder. The function is defined as:

S (a,b) = slice (G, axis) =
ì

í

î

ïïïï

ï
ïï
ï

G ( )x, a, b ,  if axis = X

G ( )a, y, b ,  if axis = Y

G ( )a, b, z ,  if axis = Z , (2)
where G refers to the input point cloud coordinate matrix, axis 
refers to the selected dimension, and S (a, b) is the 2D slice 
extracted by each layer.

In general, we conduct experiments on a large number of 

test sequences, and results suggest that division along the lon⁃
gest axis of point cloud spatial variation yields the lowest bi⁃
trate, i.e.

axis =
ì

í

î

ïïïï

ï
ïï
ï

X,if ( )xmax - xmin ≥ ( )ymax - ymin , ( )xmax - xmin ≥ ( )zmax - zmin
Y,if ( )ymax - ymin > ( )xmax - xmin , ( )ymax - ymin ≥ ( )zmax - zmin

Z, if else .
(3)

3) Minimum bounding box extraction
In most cases, on-occupied voxels are typically unavoid⁃

able and greatly outnumber occupied voxels. As a result, pro⁃
cessing and encoding both types of voxels simultaneously 
burdens the computational complexity and encoding speeds 
of the compression algorithm. Therefore, we adopt the ori⁃
ented bounding box (OBB) [39] to calculate the minimum 
bounding box for each sliced layer, ensuring that the direc⁃
tions of the bounding boxes are consistent across layers. In 
subsequent processing, only the voxels located within the re⁃
stricted rectangle are compressed.
3.3 Spatial Context-Guided Predictive Encoding

The goal of spatial context-guided predictive encoding is to 
encode all the points layer by layer. Inspired by the TSP, we 
design a prediction mode to explore the potential orders and 
correlation within each sliced layer. This module consists of 
partition and the shortest path calculation.

At first, we partition the sliced layers and determine the R-
layer and R-layers for each group. We traverse the point cloud 
layer by layer along the selected axis. When the length of the 
main direction of the minimum bounding box between adja⁃
cent layers differs by a specified unit length, it is recorded as 
the same group. Otherwise, it is used as the reference layer of 

▲Figure 1. Proposed framework for spatio-temporal context-guided lossless point cloud geometry compression
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the next group, and each point cloud in the following group 
uses the same shortest path. In this paper, we set the first 
layer of each group as the R-layer, and the others as P-layers. 
We also carry out experiments on a large number of test se⁃
quences and recommend setting this specified parameter as 3 
units to obtain the best compression.

Afterwards, we conduct the shortest path calculation on the 
R-layers and record the residuals of P-layers. According to the 
distribution regulation of the point cloud of each slice layer, 
we optimally arrange the irregular point clouds for each slice 
layer based on the TSP algorithm. This allows us to efficiently 
compute the shortest path to the point cloud of the R-layers, 
and then record the residuals of the corresponding prediction 
layers. Algorithm 1 shows the pseudo-code of the prediction 
procedure.
Algorithm 1. Spatial context-guided predictive encoding
1: Input: point cloud sliced-layers
2: Output: the shortest path min ∑

i,j = 1

n - 1 dist (pc i, pc j ), the shortest 
path record tables of R-layers, and predictive residuals
3: Definition: dist (pc i, pc j ) = norm(pc i, pc j )
4: Initialization: randomly selected point pc15: while  add a new point pc i do :
6:          path (P, init) = min {path (P - i, i) + dist [ i][ init ]},∀t ∈ P
7: end while

8:  return min ∑
i, j = 1

n - 1 dist (pc i, pc j ) and shortest path record ta⁃
bles of R-layers
9:  for  P-layers under-process do :

10:    R-frame distPC i = min ∑
i, j = 1

n - 1 dist (pc i, pc j )
11:    calculate residuals i = diff (PC i (P,:) )
12:  end for
13:   return residuals i

Firstly, we define the distance calculation rule between 
points in the local area and initialize the path state with a ran⁃
domly selected point pc1. In each iteration, whenever a new 
point pc i is added, the permutation is dynamically updated 
through the state transition equation path (P - i, i ) until all 
added points are recorded in P in the order of the shortest 
path. This process is modified gradually based on the minimal 
distance criterion. After all iterations are completed in the to⁃
tal shortest path, we calculate the min∑i, j = 1

n - 1 dist (pc i, pc j ) in 
each of the R-layers, and return the shortest path record table 
of point clouds in each of the R-layers. For further compres⁃
sion, we calculate the deviation of the P-layers from the short⁃
est path of the R-layer within the same group and record them 
as predictive residuals. Finally, the shortest path of the R-
layer and the residuals of each group are output and passed to 
the entropy encoder to compress prediction residuals further.

3.4 Spatio-Temporal Context-Guided Predictive Encoding
The spatial context-guided prediction mode encodes 

single-frame point clouds individually. However, applying 
spatial encoding to each single-frame point cloud separately 
can miss out on opportunities exposed by the temporal corre⁃
lations across multi-frame point cloud. Considering that 
multi-frame point cloud shares large chunks of overlaps, we 
focus on using temporal redundancy to further enhance the 
compression efficiency. Hence, based on the proposed spa⁃
tial context-guided prediction mode, we can compress multi-
frame point cloud by identifying a correspondence between 
adjacent layers across frames.

1) Inter-frame partition
To enhance the effectiveness of inter-frame prediction 

mode, it is crucial to ensure adequate similarity between adja⁃
cent layers of frames. As a result, we need to partition the 
groups between adjacent frames and determine the R-layers 
and P-layers across frames. By estimating the shortest path of 
the P-layers based on the shortest path of the R-layers, we re⁃
cord the prediction residuals and further compress them 
through the entropy encoder. Algorithm 2 shows the pseudo-
code of the inter-frame partition.
Algorithm 2. Inter-frame partition
1: Input: point cloud sliced-layers S1,S2,⋯,Sn, and principal 
axis lengths hi of Si inter-frame point cloud sliced layers 
SS1,SS2,⋯,SSn, and principal axis lengths hhi of SSi2: Output: correspondence and partition of the adjacent lay⁃
ers’ relationship
3: Initialization: set S1 and SS1 as corresponding layers
4: for  new Si and SSi do :
5：       coarse partition: set Si and SSi as corresponding layers
6：       if | hi - hhi | ≤ 3 :
7：       fine partition: set Si and SSi as corresponding layers
8：       else if
9：       compare | hi - hhi | , | hi - hhi - 1 |, and  | hi - hhi + 1 |, and 

pick the minimum
10：      set the slice layer corresponding to the minimum and 

SSi as corresponding layers
11：      else
12：      set as a single layer
13: end for

Based on sliced-layers orientation alignment, we realize 
coarse partition and fine partition successively. For coarse par⁃
tition, we sort the sliced layers of each frame based on the co⁃
ordinates corresponding to the division axes, from small to 
large. As a result, each slice layer of each frame has a unique 
layer number, allowing us to coarsely partition the slice layers 
with the same number between adjacent frames. Afterward, we 
compute the difference between the principal axis lengths of 
the minimum bounding boxes of adjacent layers with the same 
number. If this value is less than or equal to a specified length 
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unit, the layers will be partitioned into the same group. Other⁃
wise, we compare the difference in the length of the main di⁃
rection axis of the minimum bounding box in the correspond⁃
ing layer of the adjacent frame with the specified layer before 
and after the number in the adjacent frame. The layer with the 
smallest difference is then partitioned into the same group. 
This ensures a fine partition between adjacent layers, and so 
as to realize the fine partition of the adjacent relationship.

2) Spatio-temporal context-guided prediction mode
Based on the partition, we apply and expand the prediction 

mode mentioned in Section 3.3. We incorporate inter-frame 
context in the process, meaning that the first layer of each 
group, which serves as the R-layer, may not necessarily yield 
the best prediction result. To fully explore the potential corre⁃
lation between adjacent layers, we need to expose the optimal 
prediction mode.

Firstly, we calculate the prediction residuals for each 
sliced-layer in the current group when used as the R-layer. By 
comparing the prediction residuals in all cases, we select the 
R-layer with the smallest absolute residual value as the best 
prediction mode. For R-layer shortest path calculation, we use 
the travelling salesman algorithm to compute the shortest path 
of the R-layers under the best prediction mode. Moreover, we 
calculate the prediction residuals for each group under their 
respective best prediction modes. We also record the occu⁃
pancy length and R-layer information of each group for further 
compression in subsequent processing.

In the follow-up operation, we use arithmetic coding based 
on the best context selection for the above information to com⁃
plete the entire process of the multi-frame point cloud geom⁃
etry compression algorithm.
3.5 Arithmetic Coding Based on Context Dictionary

The massive amount of context in point cloud significantly 
burdens the overall compression scheme in terms of arithme⁃
tic coding computational complexity. We improve the arithme⁃
tic coding from the following two modules. 1) We set up a con⁃
text dictionary, and select and update the global optimal value 
according to the entropy estimate, and then 2) we adopt adap⁃
tive encoders to efficiently calculate the upper and lower 
bounds of probabilities.

1) Context dictionary construction

We construct a context dictionary that represents a triple 
queue, consisting of coordinates of the point cloud at each 
sliced-layer and the integer representation of its correspond⁃
ing non-empty context. Thus, we associate the voxels con⁃
tained in the point cloud with the minimum bounding box of 
each layer with its non-empty context. To illustrate the con⁃
struction of the triple queue array of the context dictionary 
clearly, we give an intuitive explanation in Fig. 2.

For the shaded two squares in Fig. 2, only the context map 
positions pc1 and pc2 are considered. The context contribution 
along the x-axis and the y-axis is recorded to the two queues 
Q X - and Q Y - respectively. Thus the context dictionary con⁃
sists of Q X - and Q Y -. Queue elements with the same coordi⁃
nates are integrated into a triplet, the context integer represen⁃
tation of which is computed as the sum of the context contribu⁃
tions of the merged triplet.

Therefore, the context of each voxel can be computed as the 
sum of the independent contributions of occupied voxels in its 
context dictionary. This structure helps determine whether a 
voxel should be added to the context dictionary without te⁃
dious matrix lookups, resulting in a significant reduction in 
computational complexity and runtime.

2) Probability calculation
To calculate entropy probability, both the length of the se⁃

quence and the context of its constituent voxels must be taken 
into account. In this module, we design an adaptive encoder 
that first estimates the upper and lower cumulative probability 
bounds for each group from the context dictionary, and then 
encodes it subsequently.

First of all, we construct a binary tree based on the Markov 
chain model. By traversing the occupancy of voxels, we assign 
values of 1 and 0 to occupied and empty voxels, respectively, 
and calculate the probability based on the tree structure. Start⁃
ing from the root node, when a voxel is occupied, we record 
the left child node as 1. Otherwise, we mark the right child 
node as 0 and proceed to the next step of judgment and divi⁃
sion. The calculation formula for the run probability of occu⁃
pied voxels can be found in Eq. (4).

P ( l) = p (1|ci )∙∏i - 1
l - 1 p (0|ci ) , (4)

where l is the length of the run ending at the occupied voxel.

▲Figure 2. Construction of the context dictionary
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For run lengths less than or equal to n, there may be 2n of 
tree nodes representing the occupancy states of voxels. There⁃
fore, the probability of any occupied voxel is represented by 
the independent joint probability of traversing all states start⁃
ing at the root and ending at any childless node of the tree.

Based on Eq. (4), to perform arithmetic encoding on the oc⁃
cupancy of the voxel sequence, we need the cumulative upper 
and lower probabilities of the sequence, as shown in Eq. (5).

ì
í
î

ïï

ïïïï

Low ( )l = ∑r = 1
l - 1 P ( r ) = ∑r = 1

l - 1 p ( )1|cr ∙∏i = 1
r p (0|ci )

High ( )l = ∑r = 1
l P ( r ) = ∑r = 1

l p ( )1|cr ∙∏i = 1
r p (0|ci ) . (5)

Employing this approach, we can utilize the adaptive prop⁃
erties of arithmetic coding to adjust the probability estimation 
value of each symbol based on the optimized probability esti⁃
mation model and the frequency of each symbol in the current 
symbol sequence. This allows us to calculate the upper and 
lower bounds of the cumulative probability of occupied voxels 
and complete the encoding process.
4 Experiment

4.1 Implementation Details
1) Dataset. To verify the performance of our proposed 

method, extensive experiments were conducted over 16 point 
cloud datasets that can be downloaded from Ref. [40], as 
shown in Fig. 3, in which Figs. 3(a)– 3(l) are portraits with 
dense points, and Figs. 3(m) – 3(p) are architecture with 
sparse points. Figs. 3(a) – 3(h) are voxelized upper bodies 
point cloud data sequences of two spatial resolutions obtained 
from Microsoft. Figs. 3(i)– 3(l) are chosen from 8i voxelized 
full bodies point cloud data sequences. Remaining large-scale 
sparse point clouds in Figs. 3(k)–3(p) are static facade and 
architecture datasets.

2) Evaluation metrics. The performance of the proposed 
method is evaluated in terms of bit per point (BPP). The BPP 
refers to the sum of bits occupied by the coordinate informa⁃
tion attached to the point. The lower the value, the better the 
performance.

BPP = Sizedig
k  , (6)

where Sizedig represents the number of bits occupied by the co⁃
ordinate information of point cloud data, and k refers to the 
number of points in the original point cloud.

3) Benchmarks. We mainly compare our method with other 
baseline algorithms, including: PCL-PCC: octree-based com⁃
pression in PCL; G-PCC (MPEG intra-coders test model) and 
interEM (MPEG inter-coders test model) target single-frame 
and multi-frame point cloud compression respectively; The Sil⁃
houette 3D (S3D) [41] and Silhouette 4D (S4D) [42] target single-
frame and multi-frame point cloud compression, respectively. 

For PCL, we use the octree point cloud compression approach 
in PCL-v1.8.1 for geometry compression only. We set octree 
resolution parameters from point precision and voxel resolu⁃
tion. For G-PCC (TM13-v11.0), we choose a lossless geometry
—lossless attributes condition in an octree-predictive mode, 
leaving parameters as default. For interEM (tmc3v3.0), we 
use the experimental results under lossless geometry and 

▲ Figure 3. Point cloud sequences used in experiments: (a) An⁃
drew_vox09, (b) Andrew_vox10, (c) David_vox09, (d) David_vox10, (e) 
Ricardo_vox09, (f) Ricardo_vox10, (g) Sarah_vox09, (h) Sarah_vox10, (i) 
Longdress_vox10, (j) Loot_vox10, (k) Redandblack_vox10, (l) Sol⁃
dier_vox10, (m) Facade_00009_vox12, (n) Facade_00015_vox14, (o) 
Arco_Valentino_Dense_vox12, and (p) Palazzo_Carignano_Dense_vox14

(a) (b)

(e) (f)  (g)   (h) 

(c) (d)

(i) (j)  (k)   (l) 

(m) (n)

(o) (p)
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lossless attributes conditions as a comparison[43]. For S3D 
and S4D, we follow the default conditions and parameters.

4) Hardware. The proposed algorithm is implemented in 
Matlab and C++ using some functions of the PCL-v1.8.1. All 
experiments have been tested on a laptop with Intel Core i7-
8750 CPU @2.20 GHz with 8 GB memory.
4.2 Results of Single-Frame Point Cloud Compression

1) Compression results of portraits of dense point cloud data 
sequences 

Table 1 shows the performance of our spatial context-
guided lossless point cloud geometry compression algorithms 
compared with PCL-PCC, G-PCC and S3D methods on por⁃
traits of dense point cloud data sequences.

It can be seen from Table 1 that for all the point cloud of 
the same sequences, the proposed method achieves the lowest 
compression BPP compared with other methods. Our algo⁃
rithm offers averaged gains from − 1.56% to − 0.02% against 
S3D, and gains from − 10.62% to − 1.45% against G-PCC. It 
shows a more obvious advantage, that is, the compression per⁃
formance gains of the proposed algorithm range from −10.62% 
to − 1.45%; For PCL-PCC, the proposed algorithm shows a 
nearly doubled gain on all sequences, ranging from −154.43% 
to −85.39%.

2) Compression results of large-scale sparse point cloud data 
Because the S3D cannot work in this case, we only compare 

our spatial context-guided lossless geometry point cloud com⁃
pression algorithm with PCL-PCC and G-PCC methods on 
large-scale sparse point cloud data.

Again, our algorithm achieves considerable performance 
with G-PCC and PCL-PCC, as shown in Table 1. Results have 
shown that averaged BPP gains ranging from − 8.84% to 
− 4.35% are captured compared with G-PCC. For PCL- PCC, 
our proposed algorithm shows more obvious advantages, with 
gains ranging from −34.69% to −23.94%.

3) Summary
To provide a more comprehensible comparison of the single-

frame point cloud compression results, Table 2 presents the 
average results between our spatial context-guided compres⁃
sion method and other state-of-the-art benchmark methods. 
Compared with S3D, our proposed method shows average 
gains ranging from − 0.58% to − 3.43%. As for G-PCC and 
PCL-PCC, the average gains achieve at least − 3.43% and 
−95.03% respectively.

Experimental analysis reveals that our spatial context-
guided compression method exceeds current S3D, G-PCC 
and PCL-PCC by a significant margin. Thus, it can satisfy 
the lossless compression requirements of point cloud geom⁃
etry for various scene types, e. g., dense or sparse distribu⁃
tions, and the effectiveness of our method consistently re⁃
mains.
4.3 Results of Multi-frame Point Cloud Compression

We evaluate our proposed spatial-temporal context-guided 
point cloud geometry compression algorithm against existing 
compression algorithms such as S4D, PCL-PCC, G-PCC and 
interEM. Only portraits of dense point cloud data sequences 
are used in this experiment. The results are illustrated in 

▼Table 1. BPP comparisons of our spatial context-guided compression algorithm and the baseline methods

Point Cloud Data
Andrew_vox09
Andrew_vox10
David_vox09
David_vox10

Ricardo_vox09
Ricardo_vox10
Sarah_vox09
Sarah_vox10

Longdress_vox10
Loot_vox10

Redandblack_vox10
Soldier_vox10

Facade 00009 vox12
Facade_00015_vox14

Arco_Valentino_
Dense_vox12

Palazzo_Carignano_
Dense_vox14

BPP/bit
Single↓
1.118 83

1.010 745
1.058 42
1.028 09
1.037 76

0.965 985
1.063 19
1.012 36
0.945 35

0.909 825
1.014 15

0.958 515
6.941 5
7.937 2
9.077 9

7.647 5

G-PCC↓
1.135 068
1.104 986
1.114 673
1.090 388
1.081 282
1.068 567
1.107 865
1.065 947
1.025 244
0.945 36

1.082 107
1.032 572

7.243 8
8.638 5
9.826 4

8.164 4

PCL-PCC↓
2.074 226
1.952 745
2.105 917
1.974 752
2.046 144
1.944 874
2.101 666
1.978 308
2.347 862
2.314 874
2.400 688
2.423 025

9.349 4
10.030 5
11.251 4

9.943 4

S3D↓
1.12

-

1.06
-

1.04
-

1.07
-

0.95
0.91
1.03
0.96

-

-

-

-

Gains
G-PCC/%

−1.45
−9.32
−5.31
−6.06
−4.19

−10.62
−4.20
−5.29
−8.45
−3.91
−6.70
−7.73
−4.35
−8.84
−8.25

−6.76

PCL-PCC/%
−85.39
−93.20
−98.97
−92.08
−97.17

−101.34
−97.68
−95.42

−148.36
−154.43
−136.72
−152.79
−34.69
−26.37
−23.94

−30.02

S3D/%
−0.10

-

−0.15
-

−0.22
-

−0.64
-

−0.49
−0.02
−1.56
−0.15

-

-

-

-

BPP: bit per point
G-PCC: geometry-based point cloud compression

PCC: point cloud compression
PCL: Point Cloud Library

S3D: Silhouette 3D
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Table 3. As we can see, after optimizations in prediction 
mode and arithmetic encoder, the proposed algorithm shows 
superiority on all test sequences. Specifically, compared with 
interEM and G-PCC, the proposed algorithm shows signifi⁃
cant gains ranging from −51.94% to −17.13% and −46.62% 
to −5.7%, respectively. Compared with S4D, the proposed al⁃
gorithm shows robust improvement ranging from −12.18% to 
−0.33%. As for PCL-PCC, our proposed algorithm has nearly 
halved over all test sequences.

Furthermore, we summarize the compression results and 
gains of the proposed method on the portraits dense point 
cloud data sequences, listed in Table 4. On average, it deliv⁃
ers gains between − 11.5% and − 2.59% compared with the 

spatial context-guided point cloud geometry compression al⁃
gorithm proposed previously. Moreover, it shows superior av⁃
erage gains of − 19% compared with G-PCC, and has 
achieved an average coding gain of −24.55% compared with 
interEM. Additionally, compared with S3D and S4D, it gains 
more than −6.11% and −3.64% on average respectively.

The overall experimental analysis shows that the spatio-
temporal context-guided point cloud compression method 
can make full use of both the spatial and temporal correla⁃
tion of adjacent layers within intra-frames and inter-frames. 
We also improve the global context selection and probability 
model of the arithmetic encoder to obtain a lower bit rate. 
The proposed method surpasses the performance of state-of-

▼Table 3. Bit per point comparisons of our spatio-temporal context-guided compression algorithm and the baseline methods

Point Cloud Sequences
Andrew_vox09
Andrew_vox10
David_vox09
David_vox10

Ricardo_vox09
Ricardo_vox10
Sarah_vox09
Sarah_vox10

Longdress_vox10
Loot_vox10

Redandblack_vox10
Soldier_vox10

BPP/bit
Multiple↓
1.072 25
0.972 24

1.046 565
1.020 547
0.982 66

0.954 235
1.028 745
1.008 465
0.896 585
0.861 815
0.970 43
0.704 24

G-PCC↓
1.135 068
1.104 986
1.114 673
1.090 388
1.081 282
1.068 567
1.107 865
1.065 947
1.025 244
0.945 36

1.082 107
1.032 572

InterEM↓
-

-

-

-

-

-

-

-

1.056 275
1.009 412
1.140 317
1.070 037

PCL-PCC↓
2.074 226
1.952 745
2.105 917
1.974 752
2.046 144
1.944 874
2.101 666
1.978 308
2.347 862
2.314 874
2.400 688
2.423 025

S4D↓
1.08

-

1.05
-

1.02
-

1.04
-

0.95
0.89
1.01
0.79

Gains
G-PCC/%

−5.86
−13.65
−6.51
−6.84

−10.04
−11.98
−7.69
−5.70

−14.35
−9.69

−11.51
−46.62

InterEM/%
-

-

-

-

-

-

-

-

−17.81
−17.13
−17.51
−51.94

PCL-PCC/%
−93.45

−100.85
−101.22
−93.50

−108.23
−103.81
−104.29
−96.17

−161.87
−168.60
−147.38
−244.06

S4D/%
−0.72

-

−0.33
-

−3.80
-

−1.09
-

−5.96
−3.27
−4.08

−12.18
G-PCC: geometry-based point cloud compression
PCC: point cloud compression

PCL: Point Cloud Library
S4D: Silhouette 4D

▼Table 2. BPP comparison with state-of-the-art algorithms on single-frame point cloud data

Point Cloud Data
Microsoft voxelized upper bodies

8i voxelized full bodies
MPEG Facade and architecture

Average BPP/bit
Single↓

1.036 923
0.956 96
1.158 62

G-PCC↓
1.096 097
1.021 321
1.198 392

PCL-PCC↓
2.022 329
2.371 612
2.336 034

S3D↓
1.072 5
0.962 5

-

Average Gains
G-PCC
−5.71%
−6.73%
−3.43%

PCL-PCC
−95.03%

−147.83%
−101.62%

S3D
−3.43%
−0.58%

-

BPP: bit per point
G-PCC: geometry-based point cloud compression

MPEG: Moving Picture Experts Group
PCC: point cloud compression

PCL: Point Cloud Library
S3D: Silhouette 3D

▼Table 4. Bit per point comparison with state-of-the-art algorithms on multi-frame point cloud data
Average BPP/bit

Point cloud data
Microsoft voxelized upper bodies

8i voxelized full bodies
Average Gains

Point cloud data
Microsoft voxelized upper bodies

8i voxelized full bodies

Multiple↓
1.010 713
0.858 268

Single↓
1.036 923
0.956 96

Single
−2.59%

−11.50%

G-PCC↓
1.096 097
1.021 321

G-PCC
−8.45%

−19.00%

InterEM↓
-

1.069 01

interEM
-

−24.55%

PCL-PCC↓
2.022 329
2.371 612

PCL-PCC
−100.09%
−176.33%

S4D↓
1.047 5

0.91

S4D
−3.64%
−6.03%

S3D↓
1.072 5
0.962 5

S3D
−6.11%

−12.14%
G-PCC: geometry-based point cloud compression
PCC: point cloud compression

PCL: Point Cloud Library
S3D: Silhouette 3D

S4D: Silhouette 4D
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the-art algorithms, so as to meet the requirements of point 
cloud geometry lossless compression in multimedia applica⁃
tion scenarios such as dynamic portraits.
4.4 Ablation Study

We perform ablation studies on predictive encoding over 8i 
voxelized full-body point cloud data sequences to demonstrate 
the effectiveness of the partition. It can be seen from Table 5 
that the improvement shows a stable gain of −70% on multi-
frame point cloud compression and − 60% on single-frame 
point cloud compression against the non-partition predictive 
coding.

Next, we perform an ablation experiment on arithmetic 
coding to demonstrate the effectiveness of the context dic⁃
tionary. As shown in Table 6, a robust improvement of 
− 33% on multi-frame point cloud compression and that of 
− 41% on single-frame point cloud compression against the 
arithmetic coding without context dictionary are observed in 

our method.
4.5 Time Consumption

We test the time consumption to evaluate the algorithm 
complexity and compare the proposed methods with others. 
The algorithm complexity is analyzed by encoders and decod⁃
ers independently, listed in Table 7. As we can see, G-PCC, 
interEM and PCL-PCC can achieve an encoding time of less 
than 10 s and a decoding time of less than 5 s for portrait 
dense point cloud data. They also perform well in large-scale 
sparse point cloud data compared with others. Our proposed 
algorithms take around 60 s and 15 s to encode and decode 
portrait sequences, even more on facade and architecture 
point cloud data. There is a trade-off between bitrates and 
compression speed. Compared with S3D and S4D, which take 
hundreds of seconds to encode, our time-consuming method 
can show superiority.

In summary, the time consumption of our proposed methods 
is medium among all the compared algorithms but still neces⁃
sary to be further improved.
5 Conclusions

In this paper, we propose a spatio-temporal context-
guided method for lossless point cloud geometry compres⁃
sion. We consider sliced point cloud of unit thickness as the 
input unit and adopt the geometry predictive coding mode 
based on the travelling salesman algorithm, which applies to 
both intra-frame and inter-frame. Moreover, we make full 
use of the global context information and adaptive arithme⁃
tic encoder based on context fast update to achieve lossless 
compression and decompression results of point clouds. Ex⁃
perimental results demonstrate the effectiveness of our meth⁃
ods and their superiority over previous studies. For future 
work, we plan to further study the overall complexity of the 
algorithm, by reducing algorithm complexity to achieve a 
high-speed compression rate and low bit rate compression 
results. A low bit rate and real-time/low-delay supported 
method is highly desired in various types of scenes.

▼Table 5. Ablation study on predictive encoding

Point Cloud Data

Longdress_vox10
Loot_vox10

Redandblack_vox10
Soldier_vox10

Partition
Multiple↓
0.896 585
0.861 815
0.970 43
0.704 24

Single↓
0.945 35

0.909 825
1.014 15

0.958 515

Non-Partition
Multipl↓
1.501 45
1.477 48
1.620 92
1.521 01

Single↓
1.514 88
1.493 59
1.548 96
1.563 37

Gains/%
Multiple↓

−67.46
−71.44
−67.03

−115.98

Single↓
−60.25
−64.16
−52.73
−63.10

▼Table 7. Time consumption comparison with state-of-the-art algorithms in encoding and decoding

Encoding Time/s
Point cloud data

Microsoft voxelized upper bodies
8i voxelized full bodies

MPEG facade and architecture
Decoding Time/s

Point cloud data
Microsoft voxelized upper bodies

8i voxelized full bodies
MPEG facade and architecture

Multiple
52.1
56.7

-

Multiple
13.7
16.3

-

Single
64.2
66.9

111.2

Single
14.4
17.1
22.4

S4D
806.03
904.67

-

S4D
117.4

194.25
-

S3D
489.72
640.85

-

S3D
74.03

113.95
-

G-PCC
3.813
7.105
15.37

G-PCC
1.031
1.376
2.703

InterEM
-

4.708
-

InterEM
-

4.10
-

PCL-PCC
2.235
3.549
22.4

PCL-PCC
0.809
0.922
7.74

G-PCC: geometry-based point cloud compression
MPEG: Moving Picture Experts Group

PCC: point cloud compression
PCL: Point Cloud Library

S3D: Silhouette 3D
S4D: Silhouette 4D

▼Table 6. Ablation study on arithmetic coding

Point Cloud Data

Longdress_vox10

Loot_vox10
Redandblack_

vox10
Soldier_vox10

With Context 
Dictionary

Multiple↓

0.896 585

0.861 815

0.970 43

0.704 24

Single↓

0.945 35

0.909 825

1.014 15

0.958 515

Without Context 
Dictionary

Multiple↓

1.279 66

1.272 72

1.294 69

1.112 31

Single↓

1.489 1

1.364 27

1.435 11

1.374 98

Gains/%

Multiple↓

−42.73

−47.68

−33.41

−57.94

Single↓

−57.52

−49.95

−41.51

−43.45
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