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1 Introduction
illimeter-wave (mmWave) communication has
emerged as a key technology for fifth-generation
(5G) wireless networks to cope with the dilemma
between scarce sub-6 GHz spectrum resources
and people’ s rapidly growing demand for higher data trans-

-4 MmWave’ s short wavelength makes it conve-

mission
nient to arrange large-scale antenna arrays at the transceiver
end to compensate for the high propagation loss, and thus
massive multiple-input and multiple-output (MIMO) be-
comes attractive in mmWave systems. However, conven-
tional fully digital beamforming (FDBF) requires a separate
radio frequency (RF) chain for each antenna and will result
in huge hardware costs and power consumption in massive
MIMO systems".. Therefore, hybrid beamforming (HBF) that
requires very few RF chains has become a research hotspot

recently® 8,
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HBF has different hybrid architectures depending on differ-
ent connection strategies between antennas and RF chains.
The fully-connected (FC) architecture and the partially-
connected (PC) architecture are two conventional hybrid archi-
tectures. Most previous works considered the FC architecture.
In Ref. [9], the authors applied the orthogonal matching pur-
suit algorithm to design the column vectors of the analog pre-
coding matrix based on codebooks. The authors in Ref. [10]
proposed an HBF' algorithm based on the coordinate update it-
eration method in the narrowband point-to-point MIMO sys-
tem. The authors in Ref. [11] proposed an alternating minimi-
zation algorithm based on manifold optimization (MO) by mini-
mizing the Frobenius norm between the HBF matrix and the
FDBF matrix. The authors in Ref. [12] took the mean square
error minimization as the optimization goal and the designed
HBF algorithms based on MO and generalized eigenvalue de-
composition (EVD).

On the other hand, the PC architecture, where each antenna
is only connected to only one RF chain instead of all RF
chains, can reduce the power consumption and hardware costs
compared with the FC architecture at the cost of certain sys-
tem performance loss. A low-complexity HBF optimization al-
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gorithm based on the positive semi-definite relaxation for the
PC architecture has been proposed in Ref. [11]. The HBF opti-
mization algorithms based on element iteration and MO for the
PC architecture in the broadband system have also been pro-
posed in Ref. [13].

To achieve a good compromise between hardware costs and
system performance, other fixed hybrid architectures have
also attracted research attention recently. The authors in Ref.
[14] proposed a partially-fully connected architecture that
combines the FC and PC architectures and designed algo-
rithms based on continuous interference cancellation and ma-
trix factorization. The authors in Ref. [15] designed an alterna-
tive minimization algorithm for this architecture. An over-
lapped (OL) subarray architecture and a heuristic unified low-
rank sparse recovery algorithm were proposed in Ref. [16].
The authors in Ref. [17] proposed a generalized subarray-
connected architecture, and developed a successive interfer-
ence cancellation-based HBF algorithm along with an exhaus-
tive search algorithm to maximize the system energy efficiency.

Since the hardware costs and power consumption of
switches in mmWave massive MIMO systems are relatively

18191 the dynamic hybrid architecture becomes a

small!
promising approach to achieving a better balance between
hardware costs and system performance. The authors in Ref.
[20] proposed a greedy algorithm with low complexity to par-
tition the antennas over RF chains. A low complexity algo-
rithm to design the optimal partition using statistical chan-
nel state information was proposed in Ref. [21]. The authors
in Ref. [22] considered the scenario of ultra-wideband
mmWave and terahertz frequency band and decomposed the
precoding problem into multiple subproblems under the FC
architecture.

In this paper, we investigate the HBF algorithms with differ-
ent hybrid architectures for broadband mmWave massive
MIMO systems, aiming at maximizing the spectral efficiency.
Based on the equivalence between the spectral efficiency
maximization (SEM) problem and the weighted minimum
mean square error minimization (WMMSE) problem, we de-
sign the beamforming optimization algorithm to directly tackle
the original SEM optimization problem instead of the conven-
tional indirect design approach of approximating the FDBF
matrix with the HBF matrix. We adopt the alternating minimi-
zation method to decompose the joint transmitting and receive-
ing HBF optimization problem into two sub-problems. It shows
that both the digital precoding and combining optimization
sub-problems have closed-form optimal solutions. To further
optimize the analog precoder and combiner, we apply the MO
method to deal with the constant modulus constraint. In con-
trast to Ref. [11], where the MO method was applied to solve
the matrix approximation problem with the objective of mini-
mizing the Frobenius norm between the FDBF matrix and the
HBF matrix of the FC architecture, in our work, the MO
method is applied to solve the HBF problem with the WMMSE
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objective and for arbitrary hybrid architectures by introducing
the Hadamard product of the analog precoder and a connec-
tion matrix. Apart from the conventional FC and PC architec-
tures, we consider the OL architecture and the PC architec-
ture with dynamic subarrays (PC-dynamic architecture). In
particular, we simulate three specific types of fixed OL archi-
tectures with a uniform planar array (UPA) and find that our
proposed HBF optimization algorithm could achieve a compro-
mise between hardware costs and system performance com-
pared with conventional fixed architectures. Besides, for the
PC-dynamic architecture, we derive a lower bound of the origi-
nal WMMSE objective, based on which, and with some ap-
proximations we formulate an eigenvalue maximization prob-
lem. Then, we propose a greedy partition algorithm to optimize
the dynamic partition of subarrays. Simulation results show
that the PC-dynamic architecture with the proposed dynamic
partition algorithm can achieve significant performance im-
provement over the fixed PC architecture.

We denote matrices and vectors by boldface capitals and
lower-case letters respectively. ( - )T and ( - )H denote the
transpose and the complex conjugate transpose of a matrix or

vector, respectively. tr( - ) and |- "r represent the trace and

the Frobenius norm of a matrix, respectively. E[ - ]is the sta-
tistical expectation, © is the Hadamard product of two matri-
ces, I, denotes the N X N identity matrix, and CN (0, K) rep-
resents the circularly symmetric complex Gaussian distribu-
tion with zero mean and covariance matrix K.

2 System Model and Problem Formulation

2.1 System Model

In this paper, we consider the downlink of a broadband
mmWave MIMO-orthogonal frequency division multiplexing
(OFDM) system with HBF, as shown in Fig. 1. The transmitter
first precodes N, data streams, denoted by the vector
s, € C"*', and at the k-th subcarrier uses a digital pre-
coder Fy, , € CY ™™, for k = 0,---, N = 1 with N denoting the
number of subcarriers. Then, Ny, output streams are trans-
formed into the time domain by the N-point inverse fast Fou-
rier transform. After adding cyclic prefixes (CPs), the signals
are further precoded by an analog precoder F, e C"*"v
composed of a number of phase shifters. It is worth noting that
in the HBF design for broadband systems, the digital beam-
formers can be optimized for different subcarriers, in contrast,
the analog one is invariant for the whole frequency band and
thus Fp; is not related to the subcarrier index. It is also worth
noting that F ;. can represent different hybrid architectures. In
connection matrix

particular, we define a

U, e C\J‘M'K‘"‘,[Up]__ € {0,1} to represent the connection strat-
i
egy with any specific hybrid architecture, where [U})] - =1lin-
)
dicates that the j-th RF chain is connected to the i-th antenna.
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CP: cyclic prefix

IFFT: inverse fast Fourier transform

RF: radio frequency

A Figure 1. Downlink single-user mmWave multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with

hybrid beamforming (HBF)

The analog beamformer with any arbitrary fixed hybrid archi-
tecture can be represented by:

FI{F = FIE%® U])’ (1)

Wi = Wi OU,, (2)
where Fi and W represent the analog precoder and com-
biner with the FC architecture, respectively.

We consider four hybrid architectures for analog beam-
forming as depicted in Fig. 2. In the FC architecture shown in
Fig. 2(a), each RF chain is connected to all antenna elements
so that a total of N, Ny, phase shifters are required. In the PC
architecture shown in Fig. 2(b), each RF chain is connected
to an antenna subarray while each antenna is connected to
only one RF chain, so that a total number of N, phase shifters
are required. In the OL architecture shown in Fig. 2(c), the
antenna subarrays connected to each RF chain can overlap,

where the overlapped antennas are connected to multiple RF
chains at the same time. The number of phase shifters re-
quired lies between [Nl, NlNéF}. In the PC-dynamic architec-
ture based on a switch network in Fig. 2(d), the partition of
the antenna subarrays can be dynamically adjusted by turn-
ing on or off the switches according to the system state, and a
total number of N, phase shifters and N,Ny, switches are re-
quired.

The transmitted signal at the k-th subcarrier via N, anten-
nas is represented by x, = F . Fyy s, where Fyp, and F,

2
satisfy the power constraint ” FooF oy, HF < 1. After passing

through the channel matrix at the k-th subcarrier H, € C"*",
the signals reach the receiver which is equipped with N, anten-
nas. The received signals are first processed by an analog com-
biner Wy, € C**"v_ which is also shared by all subcarriers.
Then, after removing CPs and performing the fast Fourier

transform, a digital combiner Wy, , € C"* "V is deployed at

[
---------- &

Nl’%F: ............. N

(d)

RF: radio frequency

A Figure 2. Diagram of four hybrid architectures
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each subcarrier. Finally, the processed signal at the k-th sub-
carrier can be expressed as:

Yi = W[IBIB.,kWI?FHkFRFFBB,kSk + WI,zIB,ka’{,Fnk’
for k=0,---,N -1, (3)

where n,~CN (0, O'kZIN’) denotes the additive white Gaussian

noise at the k-th subcarrier.

2.2 Channel Model

We consider the clustered delay line (CDL) model devel-
oped by 3GPP, which takes the mmWave propagation charac-
teristics into account, and can better characterize spatial corre-
lations for 3D channels. Besides the normalized delay and the
power, the azimuth angle of departure (AOD), the azimuth
angle of arrival (AOA), the zenith angle of departure (ZOD),
and the zenith angle of arrival (ZOA) are also defined in the
CDL model. Three types of the CDL model, i.e., CDL-A, CDL-
B and CDL-C, are constructed to represent different channel
profiles for the non-line of sight (NLOS) scenarios, while two
types, i.e., CDL-D and CDL-E, are constructed for the line-of-
sight scenarios®™. The NLOS channel coefficient of the n-th
cluster with M rays between the transmit and receive antennas
(u and s respectively) at time instant ¢ and delay 7 is given by:
’

P M le,xl,ﬁ( en,m,ZOA ’¢ n,m,AOA )
n

Hyo (1) =
M m=1 Frx,u,d)( Gn,m,ZOA’qannAOA )
exp ( j(pg?m ) J Ko, exp ( j‘PZ‘f,, ) Fu.,uﬂ( 0,1.0200°P r00 ) y

JKL exp(j@7)

exp ( j@‘f‘ﬁl ) me( 0,11.200-Pnron )

exp(jZﬂAB'(r;';.",,"dm))exp(jZW)ual(rZ;_w . dm))exp(jZWU"’mt),
where the definitions of parameters are given in Table 1.

2.3 Problem Formulation

We jointly optimize the hybrid architecture and the hybrid
beamformers to maximize the spectral efficiency over N sub-
carriers subject to the constant modulus constraint of the ana-
log beamformers and the power constraint of the transmitter.
The problem can be formulated as follows:

V Table 1. Definitions of some parameters in the clustered delay line
(CDL) channel model

Parameter Definition
P, Power of the n-th cluster

F.F. Radiation patterns of the receiving and the transmitting antennas

o Random initial phases of different polarization combinations

K., Cross polarization power ratio for the m-th ray in the n-th cluster
Ay Carrier wavelength

Trenm T txnm Spherical unit vectors of the receiving and the transmitting antennas
v, Velocity vector
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maximize
I‘VKI‘I.A 'lallé‘l" Wl’(‘:: ’ WIHU. ’U u

e

1 ]
NEZ: Ry

IF. ;< 19

subject to

(W] §= LYij:

i

“me’= L

[v],

y

[0, ], = Nl0,), = Mo (4)

’[U“]i/ € 0,1,Yiy;

Iy + UZ(WkHWk)_IWkHHkaFfH:Wk

where R, = log is the

achievable spectral efficiency at each subcarrier, and F, =

(F,gg@Up)FBB‘k,Wk =(W,§‘(F:®U(,)WBBY,{. N, and N, are the

;
predetermined numbers of phase shifters used at the transmit-
ter and the receiver, respectively.

It has been proved in Ref. [13] that the SEM problem can
be transformed into an equivalent WMMSE problem, which is
more tractable. The modified mean square error (MSE) is de-
fined as:

EéE[(B_Iy‘S)(ﬁ_'y‘S)H]’ (5)

where B is a scaling factor to be jointly optimized with the hy-
brid beamformers. The WMMSE problem in the broadband
scenario can be formulated as:

minimize
Fy o F i W W U U BT,

I <wn
Nzi\:l (TkEk) - 10g|Tk|
(Fk)i < LVE;

LFi] |- 1.

subject to
i

i

LARCAR

y

(0,) =N (0), =N g

(W] ’= 1.Yij:

{0,1}.Yiy;

where T, and E =1, -B.'F/H'W, -B,'W'HF, +
Bl W/W, + B W/ HF FH'W, are

weight matrix and the MSE matrix for the k-th subcarrier, and

respectively the

Fy, = B;'Fyy,. Since the joint optimization of the hybrid beam-
forming and architecture is hard to solve, we decompose the prob-
lem into two subproblems: the HBF optimization problem with a
fixed architecture and the architecture optimization problem.

3 HBF Optimization with Fixed Architecture
In this section, we apply the alternating minimization

method and the MO method to optimize the hybrid beamform-

ers with a fixed hybrid architecture. The WMMSE problem is

formulated as:
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minimize
l"l,.A ‘l'vﬁl"wl(l" W’HU. ﬁl.’T'A

I <wv
Nz;r\:l (TA"Ek) - 10g|TA~‘

(FL',kFRF)i sBEZka;

Lij e {iJH[UP]j: 1}
Yy 5

subject to

(7], |-
0, else
‘[WRF]_. = l’i”'e{iJ”[Uc]ijl= 1},Vi,j.
! 0, else %

Since the joint optimization problem of the five variables in
Eq. (7) is hard to solve, we adopt the alternating minimization
method to decouple the optimization of the transmitter and re-
ceiver and solve the two subproblems separately.

3.1 Transmitter Design

In this subsection, we fix the hybrid combiner W, and opti-
mize the hybrid precoder. Firstly, the closed form solution of
T, can be obtained as follows by differentiating the objective
function with respect to T,

T, =E;" (8)

Secondly, the optimal digital precoder F;, and the scaling
factor B, at each subcarrier can be derived with fixed F.
Considering the power constraint, it can be proved that the op-
timal B, can only be achieved with the maximum transmit
power, and the optimal 3, is given by:

,Bk =1/ \/H FRFFU,kngFgF ”i (9)

According to the Karush-Kuhn-Tucker (KKT) conditions,
F, has a closed-form solution as follows:

-1
F,, = (FgFGkGI?FRF + kogFFRF) FgFGIN (10)

where ¢, = (ojtr(T,W/'W,)) " and G, = H{'W,.

Thirdly, by substituting T8, and Fy;, back into the origi-
nal objective function, the optimization problem of Fy; can be
obtained as follows:

minimize
FlU"

/(Fy)

Lije {iJII[UP]A}: 1}
v B

subject to ‘[FRF]. =
0, else (11)

q

1 & ) ) -1
where f (Fy) = > tr((Tk "+ EGIF (FILF ) FILG)) )
k=1

Next, we use the MO method to design Fy.. The basic idea
is to define a Riemannian manifold considering the constant

modulus constraint, and iteratively update F; along the direc-
tion of the Riemann gradient in a way similar to the conven-
tional Euclidean gradient descent algorithm?. The key is to
derive the Euclidean conjugate gradient off(FRF) with the FC

architecture, which is given by:

1 N _
VF&-:;f(FRF) = N sz(FRF(FgFFRF) IFII{F - IN,)

k=1

_ -1
Gkﬂkzc:FKF(Fl[{iFFRF) ’ (12)

-1
where (2, A Tk_1 + kame‘(FgFFm‘) FgFGk. Since f(FRF)
is only related to the antennas that are connected to each RF
chain with any specified hybrid architecture and calculating

the gradient involves the derivative with respect to each entry
of F,)'"), with F,, = FESO U, it can be shown that:

Vf (Fr) = Vp,s;zf(FRF)@Up' (13)

Then, we can obtain the Riemannian gradient by projecting
the Euclidean gradient Vf(FRF) onto the tangent space, and
update Fy. with a proper step size determined by the well-
known Armijo backtracking algorithm. Finally, the retraction
operation is applied to make the result satisfy the constant

t[lﬂ

modulus constraint' ' as follows:

(x +/.Ld)l_

i

ud — Retrx(,ud) = vec

It is worth noting that with Egs. (12) and (13), the above al-
gorithm based on the MO method can be adopted in the HBF
design with arbitrary hybrid architectures as there is no spe-
cific requirement to the connection matrix U . Finally, the pre-
coder design with arbitrary fixed hybrid architectures is sum-
marized in Algorithm 1.

Algorithm 1: Hybrid precoder design based on the MO method
Input: §,,G6,.T,,U,

1: Initialize F, with random phases, i = 0
2: repeat
3:  Select the step size u
4: Update Vec(FRF_i il ) according to Eq. (14)
5:  Update the Riemannian gradient g, = Vf (FRF’L. . ,)
according to Egs. (12) and (13)

6: Calculate g/ .d; from x, to x, , |
7:  Select Polak-Ribiere parameter 7, , |
8: Calculate the conjugate directiond,; ,, = —g,,, +
Miad;
9: Update i «<— i + 1
10: until a stopping condition is satisfied
Output: F,
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3.2 Receiver Design

With the fixed hybrid precoder, we can get the optimiza-
tion problem for the hybrid combiner. By differentiating Eq.
(7) with respect to Wy, the closed-form solution of Wy, is
given by:

O - -1 ~
Wi, = (WéIFGkGA{]WRF + kaéIFWRF) W]gFGk’ (15)

where G, =B;'H.F, £, = c?B;>. By substituting Eq. (15)
back into Eq. (7), we can get the optimization problem of W

as follows:

g(Wy) =
minimize % 2”( (IN(+5;_1é;*W,W(Wg,,Wm_)"W(;Fck)")
subject to '[W”]o" _|Lije {iJ”[Uc]J: 1}.

0, else (16)

This problem is difficult to tackle due to the non-convex
constraint. However, since it has a similar form to the design
problem of the analog precoder in Eq. (11), we can also adopt
the MO method to optimize the analog combiner in the same
way as we optimize the analog precoder. Firstly, the key step
is to derive the Euclidean gradient of g(WRF) with the FC ar-
chitecture, which is given by:

N

2 ( RF W:r m)Ing

1

I/vl)ékTAJ/:Zé/?WRF(W{tIFWRFY s (17)

where J, = Tk(IN\ + ngﬂfWKF(WfFWRF)W{:Fék). Secondly,
we can use the formula Vg(WRF) = VW,-(__g(WRF)@UC to ob-

tain the Euclidean gradient of g(WRF) with any specified ar-

chitecture. Finally, with the derived gradient, we can optimize
W by applying a procedure similar to that in Algorithm 1.

3.3 Alternating Optimization

We develop a joint hybrid precoding and combining opti-
mization algorithm based on the WMMSE criterion by itera-
tively and alternatively using Algorithm 1. During each it-
eration, with the fixed hybrid combiner W, and the weight
matrix T, we first optimize F;,Fy;, according to Algorithm
1. Then, with the fixed hybrid precoder, we optimize
W, Wy, Finally, we update T, according to Eq. (8). These
steps are repeated until the stopping condition is satisfied.
The stopping condition could be set as a maximum number
of iterations or it depends on whether the relative difference
between the objective function values of two consecutive it-
erations is smaller than a specific value. The HBF algo-
rithm with a fixed hybrid architecture is summarized in Al-

9 8 ZTE COMMUNICATIONS
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gorithm 2, which is referred to as the hybrid beamforming
algorithm using manifold optimization under the WMMSE
criterion (HBF-WMO algorithm).

Algorithm 2: The HBF-WMO algorithm

Input: o H, Yk € {1, .N},U .U,
1: Initialize Wy 0, F 1y 0T 0-W g 00 = 0
2: repeat:

3:  Compute Fy;; according to Algorithm 1
Compute B3, ,,F . ; according to Egs. (9) and (10)
Compute Wy, according to Algorithm 1
Compute Wy, ; according to Eq. (15)

Compute T, = E;}
8 i+l

A A

9: until a stopping condition is satisfied
10: Fyy ), = B F
Output: Fyy. FBB,kv W e WBB,k

4 Subarray Partition Optimization with the
PC-Dynamic Architecture

In this section, we propose an algorithm to dynamically allo-
cate antennas to each RF chain through a switch network in
accordance with the channel state variation, and under the
constraint that each antenna element is allocated only once.
Since the size of the receive antenna array is relatively small
compared with that of the transmitter, we only consider the ar-
chitecture optimization of the transmitter here. Based on the
1), the WMMSE problem
for the optimization of the subarray partition with the PC-

derived objective function in Eq. (1

dynamic architecture is given by

minimize f(Fiou,)
subject to '[FIEEL_ =1;
[Up]ije{o,l};
(Upi.)l = 1,Viyj, (18)

where U ;. dedicates the i-th row of U . The original problem is
difficult to solve directly, so we transform it into a more trac-
table one. First, let S, denote the antenna subset connected to
the r-th RF chain. We partition N, antennas into Ny, subsets as:

Vi S, =S,

r

> 0.8, NS, =D.Vije{l-.Ni}i #J.

(19)

ant?

where

{1 ;N t}. The optimization problem can be formulated as:
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minimize

1 <y _ -1 -1
NZ}):ItF((Tk] + ng:FRF(FII:FFIH) F:rck) )

()%
) Lies;
subject to ‘[F,”v] 0. else
Ue.S, = SulS.[>0.5.N8,=B.i#j. (20)
It can be shown that the analog precoder with the conven-
. . . - N .
tional fixed PC architecture satisfies FJ.F, = —=1,,, since
RF

the number of antennas connected to each RF chain is as-
sumed to be the same. The equality does not hold in general
with the PC-dynamic architecture since the number of anten-
nas connected to each RF chain is not the same. However, as
all the RF chains are treated equally and the number of RF
chains is assumed to be much less than the number of anten-
nas, it is very likely that the number of antennas connected to
different RF chains tends to be close to each other, i.e.,
FlF =~ %IN;(,. According to the simulation results, the
RF

number of antennas in each subarray varies little with the opti-
mized partition. Thus, by using this approximation, the objec-
tive function in Eq. (20) can be written as:

-1
](FRF): Eletr (]%GI?FRFFI?FGI:) .

(21)

Inspired by Ref. [12], where the authors derived a lower
bound of the original MMSE problem and proposed the EVD
algorithm with the FC architecture, we derive the lower bound

of J(Fyy)as

S =30 3
i NZ(E A(m) s

where M, & T, ' + & GHFM Fl.G,, and A () dedicates the ei-

NZNZ(EA » tr(Mk))_l, (22)

genvalues of a matrix. The equality holds only if the values of
tr(Mk) at all subcarriers are the same. By taking the lower

bound as the objective function and omitting the constants,
the problem becomes:

1 ‘
tr(ﬁz v lgkcgpwpgpck)

maximize
{1,
1ie S,
biject t 'F =10 e
subject to [ RF]i,' {O,else
S = Sl S.[> 08NS =B %) (23)

We can write G, as a combination of Ny, block matrixes:

o[t i, e, |

where G/Zs', = G:(:,Sr) , so the objective function in Eq. (23)

can be written as:

1 <
tr(ﬁz:ﬂ §kGlfIFRFFgFGk):
N z ( HFRT)
1 N H H ’
Nzk RS Gk,S‘fRF,S‘.“Gk,S\, fRF,S\, =

z,ill(ersR ers) (25)

_1 N H N, x 1 _ l,iESj
Without consideration of the constant modulus constraint, the
maximum value of Eq. (25) is given by 2 v /\1(Rs,)v where

A,( - )is the maximum eigenvalue of a matrix. Therefore, we

where

can solve Eq. (23) by maximizing the sum of the maximum ei-
genvalues of R corresponding to each subarray. The optimiza-

tion problem of the subarray partition can be formulated as:

maximize SN oA (R )

" r=1
(
{s.}.2

subjectto UM, S =S

=Di#j. (26)

The optimal solution of Eq. (26) is a complex combinatorial
optimization problem and calculating the eigenvalues leads to
relatively high computational cost. Therefore, two operations
are adopted here to further simplify the optimization problem.
Firstly, according to Ref. [20], the maximum eigenvalue can
be approximated with the /, norm of a matrix as follows:

A(r)e LS iy,

W

ijes,

(27)

where R = N zf,tC“C“ is the average channel covari-

=
ance matrix of all subcarriers. Then, the problem in Eq. (26)

becomes':
- 1
maximize T Duiies [R]i;’
{51 U
subjectto UM\ S, =S,.|S,[> 08NS, =Ti#j (29

Secondly, a greedy algorithm is proposed here to solve the

1 Tt is worth noting that compared with the original optimization objective function in Eq. (20), the omission of the constant modulus constraint and the use of several approximations above

will bring in some performance loss, which is of interest for further investigation in future work.
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problem. Since R is a Hermitian matrix, we only need to con-
sider the upper triangular part when calculating the objective
function in Eq. (28). The main idea of the greedy algorithm is

that the objective function does not decrease after adding
(K],

rithm consists of two steps. The first one is to define an initial

,1 <Jj into or removing it out of the subset S,. The algo-

full antenna set S, = {l,---,Nt} and sort all the elements

[R],

,1 <Jj in descending order. To ensure that the con-

to [R]ij are partitioned into S, in order. The second step is to

consider different cases of partitioning antenna i, into differ-
ent subsets and choose the one that maximizes the objective
function. In this process, if two antennas i andj belong to two
different subsets, only four cases related to two subsets are
considered. Otherwise, Ny; cases are considered if both anten-
nas belong to S,. For simplicity of description, we define a
function f as follows:

fRS' ( Sr’nx(’,[’r) =

Oor{ = Ngp,andr = }

ERRET DN

[R],,

1(2,.@,

'S

), otherwise,

(29)

r

where n_, denotes the number of subsets that already have ele-

sel

ments, and R is the upper triangular part of R. The partition

up
optimization algorithm is summarized in Algorithm 3. With

Nig .
{S,} _» We can easily get U, and then use the HBF-WMO al-
gorithm proposed in Section 3 to optimize Fpy. with the PC-
dynamic architecture.

Algorithm 3: Dynamic subarrays partition optimization

Input: R, Ny, Sgony = 0
1: Sort R, in descending order:

&1, [®], (K]

Ly ik
N,K=N,(N,-1))/2
2: For k = 1:K repeat:
3. Ifi,.j, e Sy
4: If 1 < Nyt
Sn“, A {ikz]'k} S \{imjk} Mg < ng + 1
5: Else:r,, = argmax (fR (S, U {Lh,‘]k} n.,7))
S, H{mh} S \{lmh}
6: Else 1kaeSm,]keSl,lee{0,1, -
Uy sz (S nsel’m) +fR (Sl’nscl7l)
nij fR (S U {Jk} sPl’m) +fR (S \{ } ﬂP]’l)
U ewi fR (S \{I'A} MM )+fR (S U{ }’nsel7)

>

>

= 0. >

J<i, <j, <

Lkl

E}m#l
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newt/ ( ]k}’nsel’m) +

fR (( { }) U{ } nsehl)

u= |: U oW pewjsWnewi "W newij ]
max(u) = u,, andm # 0, S, < {jk},Sl\{jk}
max(u) = u,,;andl # 0, S \{Lk},SlH{ik}
max (u) and m,l # 0,

newij

(S i) L ($n L)) fi

i

Output: {S }r )

S Simulation Results

In this section, we first provide some simulation results
to show the spectral efficiency performance of the proposed
HBF-WMO algorithm in Section 3 with fixed hybrid archi-
tectures, in comparison with the optimal fully-digital one.
Then, we compare the spectral efficiency performance of
fixed and dynamic partitions of antenna subarrays with the
PC architecture.

Considering an mmWave MIMO-OFDM system as that in
Fig. 1, we assume that the transmitter takes a half-wavelength
spaced UPA with N, = 512 antennas for the transmission of
N, =2 data streams. Five fixed hybrid architectures at the
transmitter are evaluated, including the FC and PC architec-
tures, and three types of the OL architecture. Considering the
issue of practical implementation of the HBF architecture, we
propose three specified OL architectures when four RF chains
are employed with a 16 X 32 UPA at the transmitter, which
are shown in Fig. 3. The numbers indicate the antenna in-
dexes, and the units in the same color mean that the corre-
sponding antenna elements are connected to the same RF
chain. The antennas within framed squares are overlapped
and connected to multiple RF chains. The receiver takes a
UPA with N, =8 antennas and Ny, =2 RF chains with a
fixed PC architecture. The number of subcarriers is set to
N = 64, the bandwidth is 100 MHz and the center fre-
quency is 28 GHz. The signal-to-noise ratio (SNR) is de-

1
fined as — We take CDL-A as the channel model to evalu-
o

ate the system performance in a more practical NLOS sce-
nario. In the simulation, the stopping condition is set as the
relative difference between the objective function values of
two consecutive iterations becomes smaller than § = 107°.

5.1 Performance with Different Fixed Hybrid Architectures

Fig. 4 shows the performance of spectral efficiency as a
function of SNR for the proposed HBF-WMO algorithm with
different fixed architectures in CDL-A when four RF chains
are equipped at the transmitter. The performance curves of the
FC, PC, and OL architectures are labeled as “FC”, “PC”, and
“OL”, respectively. For comparison, two FDBF algorithms,
namely the FDBF with singular value decomposition (SVD) on
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A Figure 3. Diagram of three types of the overlapped subarray-
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A Figure 4. Spectral efficiency vs SNR for the hybrid beamforming (HBF-
WMO) algorithm with different fixed hybrid architectures for a massive
multiple-input multiple-output-orthogonal frequency division multiplexing
(MIMO-OFDM) system with N=64, N=512, N =8, Ny, = 4, Ny, = 2, N =2

each subcarrier and the FDBF with zero-forcing (ZF), are ad-
opted, and their performance curves are labeled as “FD-SVD”
and “FD-ZF”, respectively.

It can be seen from this figure that the proposed HBF-WMO
algorithm with the FC architecture performs well with far fewer
RF chains than antenna elements, and its performance gain
over the PC architecture is about 4 dB in CDL-A. The reason is
that there are much fewer entries that can be optimized in the
HBF matrix of the PC architecture than the FC architecture,
since the PC architecture employs far fewer phase shifters. Re-
sults also show that the OL architecture achieves the compro-
mise between the system performance and hardware costs,
when compared with the FC and PC architectures. In particu-
lar, it achieves higher spectral efficiency than the PC architec-
ture at the cost of higher power consumption and implementa-
tion complexity introduced by more phase shifters. For ex-
ample, with 192 more phased shifters employed, the first type
of OL architecture has a performance gain of about 1 dB over
the PC architecture. According to Ref. [24], based on the state-
of-the-art technique, the power consumed by each phase shifter
is about 10 mW. With the size of overlapped antennas among
different subarrays growing, the performance improvement of
the OL architecture over the PC architecture gets bigger. For ex-
ample, with the third type of OL architecture, the performance
gain is about 3 dB over the PC one.

To verify the generality of the proposed HBF-WMO algo-
rithm, we provide in Figs. 5 and 6 the spectral efficiency per-
formance with different numbers of transmit antennas and RF
chains under fixed hybrid architectures. The label “OL 1/2”

15 I

Spectral efficiency/(bites™ *Hz™")

32 96 160 224 288 352 400
N

'
SNR: signal to noise ratio

SVD: singular value decomposition
ZF: zero forcing

FC: fully-connected
FD: fully-digital

OL: overlapped

PC: partially-connected

A Figure 5. Spectral efficiency vs number of transmit antennas for the
HBF-WMO algorithm with different fixed hybrid architectures for a
massive multiple-input multiple-output-orthogonal frequency division mul-
tiplexing (MIMO-OFDM) system with SNR=0 dB, N=64, N,=8, N =
Nip =2,N=2
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A Figure 6. Spectral efficiency vs number of transmit RF chains for the
HBF-WMO algorithm with different fixed hybrid architectures for a mas-
sive multiple-input multiple-output-orthogonal frequency division multi-
plexing (MIMO-OFDM) system with SNR=0 dB, N=64, N=512, N =8,
Nip = 2,N=2

refers to the case where the number of overlapped antennas
equals half the number of transmit antennas in the OL archi-
tecture. As shown in Fig. 5, the performance of the HBF-
WMO algorithm improves with more transmit antennas. Fig. 6

also shows that the gap between the performance of the HBF-
WMO algorithm and the optimal FDBF algorithm narrows with
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AFigure 7. Diagram of four fixed subarray types with the partially-connected architecture at the transmitter with N =512, Ny
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more RF chains equipped at the transmitter.

5.2 Performance with Different Partitions of Antenna
Subarrays

Next, we compare the performance of fixed and dynamic
partitions of antenna subarrays with the PC architecture. Four
types of partitions under the fixed PC architecture are consid-
ered at the transmitter, as shown in Fig. 7. For the HBF sys-
tem with the PC-dynamic architecture, the antenna subarrays
are first dynamically partitioned based on the algorithm pro-
posed in Section 4 and then the HBF matrices are optimized
based on the HBF-WMO algorithm in Section 3. Fig. 8 shows
the average spectral efficiency performance as a function of
SNR with fixed and dynamic antenna subarrays. It can be
seen that of the four fixed partition types, the third one
achieves the best performance. This is mainly due to the bal-
anced horizontal and vertical angle resolution of the subarray
in the third type and the original distribution of angles in CDL-
A. Tt is also shown that the dynamic partition outperforms the
third fixed partition type with about 1 dB at the cost of more
power consumption and the associated complex circuit
brought by N, =512 more switches employed in the switch
network. According to Ref. [24], the power consumed by each
switch is about 5 mW.

6 Conclusions

With relatively small hardware costs and performance loss
compared with FDBF, HBF for mmWave communication sys-
tems has attracted much attention. Meanwhile, the design of
hybrid architecture has also become a research hotspot consid-
ering the practical implementation complexity. We have inves-
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A Figure 8. Spectral efficiency vs SNR for the HBF-WMO algorithm with
different partitions of subarrays for a massive multiple-input multiple-out-
put-orthogonal frequency division multiplexing (MIMO-OFDM) system
with N=64, N=512, N =8, N, = 4, Ny = 2, N =2

tigated HBF with different hybrid architectures in this paper.
After transforming the original SEM problem to a more trac-
table equivalent WMMSE problem, we propose the HBF-
WMO algorithm with different fixed architectures. Simulation
results have shown that the OL architecture achieves a com-
promise between the hardware costs and system performance
compared with the conventional fixed architectures. We have
also proposed a low-complexity subarray partition optimiza-
tion algorithm based on the maximum eigenvalue approxima-
tion with the PC-dynamic architecture and combined it with
the HBF-WMO algorithm. Simulation results show that the
PC-Dynamic architecture achieves some performance gain
over the fixed PC architecture.

In this paper, certain problems in the practical implementa-
tion of the proposed architecture and HBF-WMO algorithm
under massive MIMO-OFDM systems have not been investi-
gated. On one hand, the dynamic architecture and the OL ar-
chitecture would lead to more power consumption and inser-
tion power loss with more required phase shifters, splitters,
combiners and switches than the conventional PC architec-
ture, and thus the energy efficiency could be considered for
HBF optimization. On the other hand, some studies have made
efforts to alleviate the effect of beam squint while developing
hybrid precoding schemes for massive MIMO-OFDM systems,
such as carrying out a phase compensation operation at each

subcarrier'®

or projecting all frequencies to the central fre-
quency. In future work, we will make efforts to study the en-
ergy efficiency performance of different HBF architectures
and extend our investigation to the scenario when the system

is subject to the beam squint effect.
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