
ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican

Research Papers Log Anomaly Detection Through GPT-2 for Large Scale Systems

Log Anomaly Detection Through GPTLog Anomaly Detection Through GPT--22 for for
Large Scale SystemsLarge Scale Systems

JI Yuhe1, HAN Jing2, ZHAO Yongxin1,

ZHANG Shenglin1, GONG Zican2

(1. Nankai University, Tianjin 300071, China；
 2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202303010

https://kns.cnki.net/kcms/detail/34.1294.TN.20230802.1731.004.html,
published online August 3, 2023

Manuscript received: 2022-12-08

Abstract: As the scale of software systems expands, maintaining their stable operation has become an extraordinary challenge. System logs are
semi-structured text generated by the recording function in the source code and have important research significance in software service anomaly
detection. Existing log anomaly detection methods mainly focus on the statistical characteristics of logs, making it difficult to distinguish the se⁃
mantic differences between normal and abnormal logs, and performing poorly on real-world industrial log data. In this paper, we propose an unsu⁃
pervised framework for log anomaly detection based on generative pre-training-2 (GPT-2). We apply our approach to two industrial systems. The
experimental results on two datasets show that our approach outperforms state-of-the-art approaches for log anomaly detection.
Keywords: hybrid beamforming; hybrid architecture; weighted mean square error; manifold optimization; dynamic subarrays

Citation (Format 1): JI Y H, HAN J, ZHAO Y X, et al. Log anomaly detection through GPT-2 for large scale systems [J]. ZTE Communications,
2023, 21(3): 70–76. DOI: 10.12142/ZTECOM.202303010
Citation (Format 2): Y. H. Ji, J. Han, Y. X. Zhao, et al., “Log anomaly detection through GPT-2 for large scale systems,” ZTE Communications,
vol. 21, no. 3, pp. 70–76, Sept. 2023. doi: 10.12142/ZTECOM.202303010.

1 Introduction

As the scale of software systems expands, maintaining
their stable operation has become an extraordinary
challenge. System logs are the text generated in the
process of software running, which records the status

information of the program[1–2]. Traditional log anomaly detec⁃
tion relies on manual analysis by operation engineers. The in⁃
crease in software systems leads to a surge in a log volume,
manual analysis of logs and the design of regular expressions
can consume considerable time, and the traditional log analy⁃
sis is no longer feasible. In recent years, researchers have pro⁃
posed a variety of automated log anomaly detection meth⁃
ods[3–8]. Early research on log exceptions focused on auto⁃
matic exception rule generation and simple statistical meth⁃
ods[9]. Then, researchers divided log analyses into three direc⁃
tions: template extraction, model training, and anomaly detec⁃
tion. In recent years, many intelligent log analysis methods
have been proposed with the rapid development of machine
learning, especially deep neural networks. For example, mod⁃
els based on convolutional neural networks (CNN) and recur⁃
rent neural networks (RNN) can effectively capture the se⁃
quence characteristics and frequency characteristics of log
text, and apply them to the detection of new logs[3–5]. How⁃
ever, the application of the deep learning model in practical
scenarios faces the following challenges:

1) The normal pattern of logs is difficult to model. Most ex⁃
isting methods try to learn the normal pattern of log sequence
and frequency. The team’s O&M engineers pointed out that
the semantics of logs in real-world scenarios are of consider⁃
able analytical importance. Since the production environment
for generating and recording logs is not ideal, relying solely on
sequence as well as frequency to encode logs can lead to a
large number of false positives.

2) Complex log data contains massive noise. Due to the high
concurrency of the software system and the uncertainty of net⁃
work response, the log generated can be disordered and con⁃
tain lots of noise.

To tackle the limitations of existing methods, in this paper, we
propose an efficient and robust framework for log anomaly detec⁃
tion based on generative pre-training-2 (GPT-2) [10]. Inspired by
the excellent performance of GPT-2 in serialization text genera⁃
tion and multiple types of downstream task processing, we lever⁃
age this model to capture patterns of normal log sequences.

The main contributions of this paper can be summarized as
follows:

1) To tackle the first challenge, we generate sentence vec⁃
tors for each log template to represent their semantic informa⁃
tion. Specifically, we first apply Siamese Bidirectional En⁃
coder Representations from Transformers (SBERT) networks
to generate sentence vectors for all log templates and then in⁃

70

ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican

Log Anomaly Detection Through GPT-2 for Large Scale Systems Research Papers

put the vectors into GPT-2 as the representation of templates.
In this way, the models can study both sequential and seman⁃
tic features of input logs.

2) To address the second challenge, we design an alarm
strategy layer for this framework. This step will analyze the sta⁃
tistical characteristics through the existing log data to effec⁃
tively reduce the impact of noise on model judgment and re⁃
duce the false positive rate.

The remainder of this paper is organized as follows. Section
2 introduces the background of log anomaly detection. Section
3 describes our approach. In Section 4, we present our experi⁃
mental design and results. Section 5 surveys related works
and Section 6 concludes this paper.
2 Background

2.1 Logs Description
Logs, which are produced by the running program and con⁃

tain information generated from the logging module, are a type
of semi-structured text. They reflect the running flow and real-
time status of the program, and can be used to detect and lo⁃
calize anomalies by operators. Logs consist of a structured
part (constant) and an unstructured part (variable), as shown
in Fig. 1. A structured part is fixed by the designer at the be⁃
ginning according to certain designed rules, and can reflect
the event of the log, such as the level of logs (e.g., warning and
error), the logger name (e.g., root) and so on. This part would
not change into the same module. The unstructured part con⁃
tains specific information on logs and varies according to the
input of the program and running status. An unstructured part
would reflect the real-time status of the system, and it is essen⁃
tial to use this part to analyze the system and detect anomalies
in the system. To make full use of the important features in
logs, the semi-structured texts need to be parsed into the struc⁃
tured text with a parsing algorithm. The useless messages in
the raw log would be filtered out, and the valuable information
would be extracted out from the left information to train the
model and detect the anomaly.

Generally speaking, the logs generated by normally operat⁃
ing hardware and software systems have a good regularity.
Therefore, some logs that do not match the pattern of previous
characteristics are considered anomalous. In the actual data⁃
set studied in this paper, log exceptions can be broadly classi⁃
fied into two categories: 1) Business exceptions caused by net⁃
work blocking, resource usage, etc. When such exceptions are

generated, the program will actively retry the process, so some
logs will be repeatedly generated several times in a short pe⁃
riod of time. 2) Exceptions triggered by service deployment or
termination failure. This type of exception usually generates
only a few error logs, which can be evidenced by the fact that
the sequence of logs is abnormal, and the semantics of the er⁃
ror logs differ significantly from the normal logs.
2.2 Challenges and Analysis

1) Challenge 1 is modeling the normal patterns of logs. Tra⁃
ditional anomaly detection algorithms always work on learning
the normal patterns of logs and finding out logs different from
normal patterns. Most studies mainly focus on building the
normal pattern according to the sequence and frequency of
logs, however, these two features are not comprehensive
enough to evaluate the overall state of the system, hence the
normal patterns built on these two features are not accu⁃
rate[3–4]. Intuitively, each log has its semantic characteristics
through the log message, and these would describe the log
meaning, such as inserting in a dataset, deleting from a data⁃
set, and failure reporting. Besides, logs are generated by trig⁃
gering corresponding events, and an event always triggers a se⁃
ries of logs. So, there is a sequential relation between logs,
which would become different from the usual and could repre⁃
sent the status of logs and systems. As above, if we could com⁃
bine the semantic information and sequential message with
other statistical information, it could perform better in detect⁃
ing anomalies in logs.

2) Challenge 2 is massive noises in the log. Logs are pro⁃
duced by a software system, which is highly concurrent and
greatly influenced by the network. A working software system
can run a large number of programs at the same time. These
programs can produce a series of logs as well as useless mes⁃
sages, such as test output, and these messages have no effect
on evaluating the log status. Some programs need to interact
with other programs in the network, and thus the status of the
network would affect the log sequence and delays can disrupt
the order of logs. The disordered log and useless information
are collectively called noise. Dealing with noise properly is
necessary to improve anomaly detection in logs, and the sim⁃
plest way is to remove the noise, which, however, roughly
brings lots of missing areas in logs and could bring new prob⁃
lems to the model. Based on the above observation, intuitively,
if we can filter out the false positive alarms instead of roughly
removing these noises, log anomaly detection can achieve
higher accuracy and lower the false alarm rate.
2.3 Preliminaries

1) The log parsing algorithm. To parse the semi-structured
log into a structured text, the log parsing algorithm focuses on
fetching the unstructured part from the structured part and ex⁃
tracting the features of logs. Specifically, the log parsing algo⁃
rithm would replace meaningless information (e.g., IP address, ▲ Figure 1. Log instances, where black words are the structured part

and red words are the unstructured part

71

ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican

Research Papers Log Anomaly Detection Through GPT-2 for Large Scale Systems

machine ID, etc.) with markers and extract the template of the
log to distinguish between logs. In this paper, we adopt
Drain[11], a heuristic log parsing algorithm, to parse logs. Drain
parses the template of logs by maintaining a tree, which keeps
the leaves as log groups with different heuristic rules in inter⁃
nal nodes. New logs would be distributed into log groups in
leaves according to the corresponding tree path.

2) GPT-2. The GPT algorithm works based on the decoder
of the transformer, and it pre-trains unsupervisedly on massive
corpus data and then finetunes the model according to the spe⁃
cific tasks. GPT-2 removes the finetune step and increases the
size of the training dataset and model, which makes the model
perform well in multi-tasking.
3 Approach

In this section, we will introduce our log anomaly detection
framework. Inspired by GPT-2, we employ transformer decod⁃
ers to encode the normal pattern of system logs. Our framework
is divided into four main parts: log parsing, sentence vector gen⁃
eration, model training and detection, and the alerting strategy
layer. For Challenge 1, we embed each log template into a vec⁃
tor representing the semantic information. We use vectors in⁃
stead of tokens as input to GPT-2, so the model can capture
both semantic and sequence information to encode normal pat⁃
terns. For Challenge 2, we design an alarm strategy layer for the
framework, which can filter out false positives by the statistical
characteristics of log data. The structure of the framework of our
work is shown in Fig. 2. The raw logs collected are first trans⁃
formed into structured logs by the log parser. Then a sentence
vector generation model will be used to generate sentence vec⁃
tors for each extracted log template.
3.1 Log Parser

System logs obtained from the database are semi-structured
text, which is difficult to be used for model training. Therefore,
before processing logs, we need to use a parser to convert logs
into structured text. In this paper, we use Drain as our log
parser, which can divide logs into templates and dynamic vari⁃
ables. Drain is an online log template miner, employing a parse
tree with a fixed depth, and it can extract templates and vari⁃
ables from a stream of log messages. Drain first sorts logs into
different buckets by length and then matches similar portions of
the log from front to back in each bucket. Eventually, logs be⁃

longing to the same template will end up on the same leaf node.
The structure of the depth-fixed tree is shown in Fig. 3. In the
figure, sys is an abbreviation for system, and HEX and NUM
are variables matched during the parsing process, representing
hexadecimal and decimal numbers, respectively.
3.2 Sentence Vector Generation

To make GPT-2 better at encoding normal patterns, we gen⁃
erate semantically relevant sentence vectors for each log tem⁃
plate. We choose SBERT[12] as our embedding model, which
has been widely used in text similarity calculation and sen⁃
tence classification problems and has achieved excellent re⁃
sults. SBERT modifies the pre-trained BERT model, and it
implements Siamese or triplet net frameworks to generate se⁃
mantically meaningful sentence embedding. Sentence vectors
generated by templates with similar meanings have smaller co⁃
sine distances or Euclidean distances. Table 1 shows the Eu⁃
clidean distance of sentence vectors in five log templates.
3.3 Detection Model

1) Model framework. We choose GPT-2 as our log anomaly
detection model in this work. GPT-2 is an unsupervised Natu⁃
ral Language Processing (NLP) model stacked from the trans⁃
former’s decoders. The structure of GPT-2 is shown in Fig. 4.
Each decoder has a masked self-attention layer, a feed-
forward neural network, and two normal layers. The structure
of each decoder is the same, but each module maintains sepa⁃
rate parameters. Different from the ordinary self-attention
layer, the masked self-attention layer does not allow a node to

▲Figure 2. Approach overview EoF: end-of-file

▲Figure 3. Structure of the depth-fixed tree

Templates
httprequest except <*> permission denied
httprequest except <*> <*> permission denied
httprequest except <*> no such file or directory
httprequest except <*>

httprequest except EoF occurred in violation of protocol
httprequest except <*> connection reset by peer

Euclidean Distance
-

0.147 629 340 284 133 4
0.595 852 332 701 891 4
0.621 201 472 867 456 3
0.838 852 193 154 771 3
0.880 359 580 380 884 6

▼ Table 1. Euclidean distance of sentence vectors of similar semantic
templates

Log data Structured log

Error logs

Log parser

Alarmstrategy layer

Embedding model

Model

Root

Length: 4 Length: 5 Length: 6

sys mmcs

<NUM>…

Log groups
Log group Log group

…

Log group
template: sys <NUM> at <HEX> mask

<HEX>
ID: [1,3,34,56,57,59,…]

Sentencevectors

72

ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican

Log Anomaly Detection Through GPT-2 for Large Scale Systems Research Papers

get information from subsequent nodes. This feature makes
the model perform well in sequence prediction tasks.

2) Input representation. Like most NLP models, GPT-2
looks up the embedding vector corresponding to the word from
the embedding matrices, and the embedding matrices are also
part of the model training results. GPT-2 maintains two em⁃
bedding matrices: a token embedding matrix and a position
embedding matrix. Each row of the token embedding matrix is
a vector that represents a token, and these vectors are ran⁃
domly initialized and continuously adjusted during training.
Each row of the position embedding matrix represents the posi⁃
tion information of the token. Tokens in the same position in
different sentences have the same position embedding vector.
Each template embedding inputted into GPT-2 is the sum of
position embedding and token embedding. In our framework,
we initialize the token embedding matrix with sentence vec⁃
tors generated by SBERT, which unlike the original random
initialization, can make the model catch the initial semantic
information of log templates more accurately. Besides, this ap⁃
proach gives operations more control over the model. We can
adjust the dimension or generation method of sentence vectors
according to the characteristics of logs and actual business re⁃
quirements.

3) Model training. The core concept of GPT-2 is language
modeling. Language modeling refers to distribution estimation
from a group of unsupervised samples (x_1, x_2, x_3, …).
Each sample consists of symbol sequences of variable length
(s_1, s_2, s_3, …). Because there are explicit sequential rela⁃
tionships between phrases in natural languages, language mod⁃
eling typically decomposes the joint probability of symbols as
a product of conditional probabilities.

p()x = ∏
i = 1

n

p ()si|s1, s2,…,sn - 1 . (1)
Transforming the above equation into a logarithmic form,

the goal of the language model is to maximize the probability
of the following equation.

p (x) = ∑
i = 1

n log p ()si|s1, s2,…,sn - 1 ; θ , (2)
where n is the length of the language sequence, and the condi⁃
tional probability p is modeled by the neural network with pa⁃
rameter θ. These parameters are trained by the stochastic gra⁃
dient descent.

The input of the decoder at the first layer consists of the to⁃
ken embedding vector and position embedding vector of log
templates. The output of each decoder is processed from the
previous layer’s output. The output probability obtained by
the model can be expressed as follows:

h0 = XWe + Wp,
hl = Decoder ()hl - 1 ∀l ∈ []1,n ,
p ()x = softmax (hnW

T
e), (3)

where hl represents the output of the l-th layer decoder, X is
the matrix composed of the unique thermal encoding of the in⁃
put log sequence, We is the token embedding matrix, and WP
is the position embedding matrix. To maximize the prediction
probability, the model adjusts the decoder parameters of each
layer during the learning process.
3.4 Alarm Strategy

Analyzing the actual data, we find that in the production en⁃
vironment, the logs printed by the machine are not always se⁃
quential. The main differences between these noises and se⁃
vere systems are as follows: logs corresponding to noise ap⁃
pear frequently and usually have a certain seasonality, while
severe anomalies occur infrequently and are difficult to pre⁃
dict. Based on the above observation, we use frequency and
periodicity as criteria to determine whether model error report⁃
ing is noisy or a true anomaly.

For the abnormal log templates detected by the model, we
first calculate the time interval of their occurrence in the train⁃
ing data and then use the auto-correlation coefficient to ana⁃
lyze whether the time interval of template occurrence has a
specific pattern. The auto-correlation coefficient is a common
parameter for finding repetitive patterns (e.g., periodic signals
masked by noise) and is often used in signal processing prob⁃
lems. The sequence consisting of the auto-correlation coeffi⁃
cients is known as the auto-correlation function. For the ob⁃
tained template interval sequence, its autocorrelation function
is calculated, and the peak of the function is the possible pe⁃
riod of the corresponding template. If the value of the function
at a certain time is higher than a threshold value set based on
expert experience, we consider the template to be periodic
and its basic impossibility to be an error log template.

Then, for non-periodic templates, we go through the statis⁃

▲Figure 4. Structure of generative pre-training-2 (GPT-2)

Decoder

Decoder 3

Decoder 2

Decoder 1

Normal layerDecoder 4

Feed forward neural network

Normal layer

Masked self-attention

Input

Output

73

ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican

Research Papers Log Anomaly Detection Through GPT-2 for Large Scale Systems

tics of their daily frequency of occurrence. Based on the obser⁃
vation of the data and the communication with the operation
and maintenance staff, we have learned that the probability of
daily serious anomalies in a smoothly running system is ex⁃
tremely low. An exception log with a high frequency is often
caused by minor errors such as network blocking and data
locking. The system can often recover from such errors
quickly, so such alarms are not necessary. Therefore, for ex⁃
ception log templates that occur more frequently than a cer⁃
tain threshold, the alert policy layer will filter them out as less
serious exception logs. The selection of this frequency thresh⁃
old is strongly correlated with the type of machine logs and re⁃
lies on the involvement of business experts.

In this layer, error logs detected by GPT-2 will be analyzed,
and if their characteristics are more like noise, the exception
will not be reported. This step can greatly reduce the model
false positives caused by noise, improve the accuracy of the
log anomaly detection framework, and reduce the disturbance
to operation engineers.
4 Experiment and Evaluation

4.1 Experimental Setup
1) Research questions. In this section, we evaluate the per⁃

formance of our framework with the following research ques⁃
tions (RQs):

a) RQ1: How effective is our framework in log-based
anomaly detection?

b) RQ2: How effective is the sentence vector generation and
alerting strategy layer in improving the effectiveness of the
model.

2) Datasets. We evaluate our approach on two large-scale
systems called Ada and Bob. Ada is a framework for microser⁃
vice deployment applications. Bob is a hardware network con⁃
sisting of a large number of switch systems. The statistics of
the datasets are shown in Table 2.

3) Baselines. We compare our framework with two base⁃
lines, LogAnomaly[4] and NeuralLog[8]. LogAnomaly is a log
anomaly detection method based on a long short-term memory
(LSTM) network. LogAnomaly first uses a Frequent Term Tree
(FT-Tree) to analyze the semi-structured log text. Then, Tem⁃
plate2Vec is implemented to generate vectors for each log tem⁃
plate. Finally, the vectors representing log semantics and fre⁃
quency are input into the LSTM to enable the model to learn
the normal pattern of logs. NeuralLog is a novel log-based
anomaly detection framework. Different from the traditional
process, the algorithm does not require template parsing. Neu⁃

ralLog generates semantic vectors for row logs. These repre⁃
sentation vectors are then used to detect anomalies through a
transformer-based classification model.

4) Evaluation metrics. We use Precision, Recall, and F1-
Score (F1S) as our evaluation metrics, which are defined as fol⁃
lows. True Positive (TP) is the number of abnormal logs that
are correctly detected by the model, False Positive (FP) is the
number of normal logs that are wrongly identified as anoma⁃
lies, and False Negative (FN) is the number of abnormal logs
that are not detected by the model.

Precision = TP
TP + FP . (4)

Recall = TP
TP + FN . (5)

F1S = 2*Precision*Recall
Precision + Recall . (6)

4.2 Experimental Results
In this section, we will give response to the RQs mentioned

above.
1) RQ1: How effective is our framework in log-based

anomaly detection?
In this RQ, we evaluate whether our framework can work ef⁃

fectively on logs generated in the production environment. We
compare our framework with two baselines: LogAnomaly[4] and
NeuralLog[8].

Table 3 shows the results of our method as well as two base⁃
lines on Ada and Bob. Both LogAnomaly and NeuralLog show
poor Precision and Recall performance on Ada. LogAnomaly
has very limited learning capability due to the limitation of
model size, which makes it difficult to obtain good results on
log datasets with a large number of templates and complex pro⁃
cesses. Also, in the production environment logs, log tem⁃
plates that are not present in the training data often appear in
the test set, making LogAnomly generate a large number of
false positives often[18]. NeuralLog tends to consider every log
unlikely to be anomalous on large unsupervised datasets due
to the problem of data dilution. Our framework analyzes and
learns the actual semantics of the logs, and designs an alert
policy layer that incorporates the actual business characteris⁃
tics of the machine. These measures make our model more ca⁃
pable of capturing the normal patterns of real logs in a produc⁃

▼Table 2. Statistics of evaluation datasets

Dataset
Ada
Bob

Training Data
6 626 865
7 021 577

Number of
Templates

599
84

Test Dataset
Normal

7 911 944
1 067 850

Anomalous
2 648
904

▼Table 3. Evaluation results of our method vs the other two methods

Approach
LogAnomaly
NeuralLog

Our method

Ada
Precision

0.394
0.297
0.738

Recall
0.190
0.354
1.00

F1S
0.256
0.323
0.850

Bob
Precision

0.353
0.638
0.857

Recall
0.332
0.872
1.00

F1S
0.342
0.736
0.923

74

ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican

Log Anomaly Detection Through GPT-2 for Large Scale Systems Research Papers

tion environment.
The complexity of Bob is much less than that of Ada,

mainly because of less templates and a relatively fixed log se⁃
quence. However, due to problems such as network latency
and data washout, the logs generated by the switch have a
large number of errors and retry messages. In most cases,
these error messages are not of concern because the program
can be restored to normal after several retries and will not
have a significant impact on the execution of the business.
Also, these alarms of variable duration can disrupt the log se⁃
quence, making it more difficult to learn the normal pattern of
the logs purely from frequency or sequence. The sequence
confusion greatly affects the learning ability of LogAnomaly
on this dataset, and NeuralLog has a lower Precision due to
the report of the unimportant exceptions. Our framework cap⁃
tures the normal characteristics of logs from multiple perspec⁃
tives and designs alerting policies based on the frequency and
periodicity of logs, thus achieving good performance on the
Bob dataset.

The experimental results show that our framework has good
performance for complex log datasets in practice. The analysis of
log semantics makes the model show good robustness on poor
stability sequences, and the addition of the alert policy layer re⁃
duces the model’s disturbance to engineers and screens out
some of the exceptions that can be fixed automatically.

2) RQ2: How effective is the sentence vector generation and
alerting strategy layer in improving the effectiveness of the
model?

As mentioned in the previous sections, we add the sen⁃
tence vector matrix as well as the alert alarm strategy layer to
GPT-2. In this RQ, we will verify the effect of the main parts
of the framework on its effectiveness, by removing one or two
components, namely the sentence vector (SV) and the alarm
strategy (AS).

OM w/o SV & AS: We remove the sentence vector genera⁃
tion and alert policy layers from our framework. That is, we
use only the GPT-2 model for sequence prediction to diagnose
anomaly logs.

OM w/o AS: We remove the alarm strategy generation from
our framework.

OM w/o SV: We remove the sentence vector layer from our
framework.

OM: Anomaly detection work on logs using the completed
framework proposed in this paper.

The experimental results in Table 4 show that the sentence
vector generation part of the framework can improve the accu⁃
racy of the model to some extent and greatly enhance Recall.
Because GPT-2 achieves better results in capturing the seman⁃
tic information of normal and abnormal templates after receiv⁃
ing the sentence vectors of the templates as prior knowledge.
This is demonstrated by the fact that log templates containing
the same abnormal keywords, the vector representations of
which have a closer distance, are easily detected together in

the anomaly detection stage. At the same time, log templates
that symbolize normal patterns are more difficult for the model
to detect as false positives because they often contain positive-
meaning words. Since the alarm strategy layer is built based
on expert experience and has accurate filtering rules, it can fil⁃
ter out a large number of false abnormal logs and effectively
improve the Recall of the model.

With the inclusion of both components, the effectiveness of
our framework has been significantly improved. For complex
logging environments, more accurate exception identification,
very low FPs and a fairly high Recall can be achieved.
5 Related Work

As a kind of operational data, logs are widely used for sys⁃
tem anomaly detection in practice. To take advantage of the
logs, previous work mainly focuses on detecting abnormal logs
with artificial rules, which is not appropriate in scenarios with
a large number of logs[5]. And deep learning is widely used in
automatic anomaly detection in logs. DeepLog[3] uses LSTM to
learn the normal pattern of the system and predict the next log
template by log sequence. LogAnomaly[5] uses a word embed⁃
ding model to mine semantic information of log templates and
learn the sequential patterns and quantitative relationships for
logs with LSTM. LogRobust[13] represents the semantic infor⁃
mation of the log by word vector and takes advantage of the bi⁃
directional LSTM to learn the normal pattern of the log.
OneLog[14] merges components (such as parsers and classifi⁃
ers) into a deep neural network to detect log anomalies. Log⁃
Merge[15] learns the semantic similarity of multi-syntax logs to
realize the transfer of log exception patterns across log types,
which greatly reduces the overhead of exception annotation.
Transformers could also be used to represent the semantics of
the log and model the log sequence, and anomalies would be
detected with learned information[10, 15–17]. GPT-2[10] is pro⁃
posed for unsupervised learning of text information based on
transformers and performs well on text generation, text classifi⁃
cation, semantic judgment, etc.
6 Conclusions and Future Work

In practical scenarios, large-scale systems produce logs that
are different from the vast majority of laboratory open-source
datasets. The log sequence is more complex, and normal pat⁃
terns are harder to capture. In this work, we introduced a way
▼Table 4. Experimental results

Approach
OM w/o SV & AS

OM w/o AS
OM w/o SV

OM

Ada
Precision

0.128
0.427
0.627
0.738

Recall
0.835
1.00

0.807
1.00

F1S
0.222
0.598
0.705
0.850

Bob
Precision

0.510
0.718
0.833
0.857

Recall
0.940

1
0.940
1.00

F1S
0.661
0.836
0.883
0.923

AS: alarm strategy
OM: our method

SV: sentence vector

75

ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican

Research Papers Log Anomaly Detection Through GPT-2 for Large Scale Systems

to input semantic analysis data into GPT-2 and designed an
alarm strategy layer. Through these ways, we improved the
complex log sequence learning ability of the model and re⁃
duced the noise effect on the model prediction. Experimental
results on two industrial datasets have shown that the false
alarm rate of the model is significantly reduced, and our frame⁃
work shows good performance in the actual operation scenario.

In the future, we will continue to improve the performance
of the model on multiple datasets and reduce the dependence
of the alarm strategy layer on expert experience.

References
[1] ZHANG S L, LIU Y, PEI D, et al. Rapid and robust impact assessment of soft⁃

ware changes in large Internet-based services [C]//The 11th ACM Conference
on Emerging Networking Experiments and Technologies. ACM, 2015: 1– 13.
DOI: 10.1145/2716281.2836087

[2] ZHU J M, HE S L, LIU J Y, et al. Tools and benchmarks for automated log pars⁃
ing [C]//IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2019: 121– 130. DOI:
10.1109/ICSE-SEIP.2019.00021

[3] DU M, LI F F, ZHENG G N, et al. DeepLog: anomaly detection and diagnosis
from system logs through deep learning [C]//ACM SIGSAC Conference on Com⁃
puter and Communications Security. ACM, 2017: 1285–1298. DOI: 10.1145/
3133956.3134015

[4] MENG W B, LIU Y, ZHU Y C, et al. LogAnomaly: unsupervised detection of se⁃
quential and quantitative anomalies in unstructured logs[C]//The 28th Interna⁃
tional Joint Conference on Artificial Intelligence. ACM, 2019, 19(7): 4739 –
4745

[5] ZHANG X, XU Y, LIN Q W, et al. Robust log-based anomaly detection on un⁃
stable log data [C]//The 27th ACM Joint Meeting on European Software Engi⁃
neering Conference and Symposium on the Foundations of Software Engineer⁃
ing. ACM, 2019: 807–817. DOI: 10.1145/3338906.3338931

[6] EKELHART A, EKAPUTRA F J, KIESLING E. The SLOGERT framework for
automated log knowledge graph construction [C]//European Semantic Web Con⁃
ference. ESWC, 2021: 631–646. DOI: 10.1007/978-3-030-77385-4_38

[7] GUO H X, YUAN S H, WU X T. LogBERT: log anomaly detection via BERT
[C]//Proceedings of 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2021: 1–8. DOI: 10.1109/IJCNN52387.2021.9534113

[8] LE V H, ZHANG H Y. Log-based anomaly detection without log parsing [C]//
The 36th IEEE/ACM International Conference on Automated Software Engi⁃
neering. ACM, 2021: 492–504. DOI: 10.1109/ASE51524.2021.9678773

[9] HE S L, HE P J, CHEN Z B, et al. A survey on automated log analysis for reli⁃
ability engineering [J]. ACM computing surveys, 54(6): 1–37. DOI: 10.1145/
3460345

[10] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised mul⁃
titask learners [EB/OL]. [2023-03-10]. https://www.semanticscholar.org/paper/
Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/
9405cc0d6169988371b2755e573cc28650d14dfe

[11] HE P J, ZHU J M, ZHENG Z B, et al. Drain: an online log parsing approach
with fixed depth tree [C]//IEEE International Conference on Web Services
(ICWS). IEEE, 2017: 33–40. DOI: 10.1109/ICWS.2017.13

[12] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using
Siamese BERT-networks [C]//Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural
Language Processing. Association for Computational Linguistics, 2019: 3982–
3992. DOI: 10.18653/v1/d19-1410

[13] HASHEMI S, MÄNTYLÄ M. OneLog: towards end-to-end training in software
log anomaly detection [EB/OL]. [2022-12-12]. https://arxiv.org/abs/2104.07324

[14] CHEN R, ZHANG S L, LI D W, et al. LogTransfer: cross-system log anomaly
detection for software systems with transfer learning [C]//IEEE 31st Interna⁃
tional Symposium on Software Reliability Engineering. IEEE, 2020: 37–47.
DOI: 10.1109/ISSRE5003.2020.00013

[15] HUANG S H, LIU Y, FUNG C, et al. HitAnomaly: Hierarchical transformers
for anomaly detection in system log [J]. IEEE transactions on network and ser⁃
vice management, 2020, 17(4): 2064 – 2076. DOI: 10.1109/
TNSM.2020.3034647

[16] YANG H T, ZHAO X, SUN D G, et al. Sprelog: log-based anomaly detection
with self-matching networks and pre-trained models [C]//International Confer⁃
ence on Service-Oriented Computing. 2021: 736–743

[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]//
Proceedings of the 31st International Conference on Neural Information Pro⁃
cessing Systems. ACM, 2017: 6000–6010. DOI: 10.5555/3295222.3295349

[18] LE V H, ZHANG H Y. Log-based anomaly detection with deep learning: how
far are we? [C]//IEEE/ACM 44th International Conference on Software Engi⁃
neering (ICSE). IEEE, 2022: 1356–1367

Biographies
JI Yuhe received his bachelor’s degree in software engineering from the Col⁃
lege of Software, Nankai University, China in 2022. He is now pursuing his mas⁃
ter’s degree at the School of Software, Nankai University. His research interests
include anomaly detection and natural language processing.

HAN Jing (han.jing28@zte.com.cn) received her master’s degree from Nanjing
University of Aeronautics and Astronautics, China. She has been with ZTE Cor⁃
poration since 2000. She had been engaged in 3G/4G key technologies, from
2000 to 2016, and has become a technical director responsible for intelligent
operation of cloud platforms and wireless networks since 2016. Her research in⁃
terests include machine learning, data mining, and signal processing.

ZHAO Yongxin received her bachelor’s degree in software engineering from
Nankai University, China in 2021. She is currently pursuing her master’s de⁃
gree at the School of Software, Nankai University. Her research interests in⁃
clude anomaly detection and failure diagnosis.

ZHANG Shenglin received his BS degree in network engineering from the
School of Computer Science and Technology, Xidian University, China in 2012
and PhD degree in computer science from Tsinghua University, China in 2017.
He is currently an associate professor with the College of Software, Nankai Uni⁃
versity, China. His current research interests include failure detection, diagno⁃
sis and prediction for service management. He is an IEEE Member.

GONG Zican received his master’s degree in professional computing and arti⁃
ficial intelligence from the Australian National University in 2019. He has been
a machine learning engineer in ZTE Corporation since 2020. His research inter⁃
ests include machine learning, professional computing and system architecture.

76

