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Abstract: As the scale of software systems expands, maintaining their stable operation has become an extraordinary challenge. System logs are 
semi-structured text generated by the recording function in the source code and have important research significance in software service anomaly 
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mantic differences between normal and abnormal logs, and performing poorly on real-world industrial log data. In this paper, we propose an unsu⁃
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experimental results on two datasets show that our approach outperforms state-of-the-art approaches for log anomaly detection.
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1 Introduction

As the scale of software systems expands, maintaining 
their stable operation has become an extraordinary 
challenge. System logs are the text generated in the 
process of software running, which records the status 

information of the program[1–2]. Traditional log anomaly detec⁃
tion relies on manual analysis by operation engineers. The in⁃
crease in software systems leads to a surge in a log volume, 
manual analysis of logs and the design of regular expressions 
can consume considerable time, and the traditional log analy⁃
sis is no longer feasible. In recent years, researchers have pro⁃
posed a variety of automated log anomaly detection meth⁃
ods[3–8]. Early research on log exceptions focused on auto⁃
matic exception rule generation and simple statistical meth⁃
ods[9]. Then, researchers divided log analyses into three direc⁃
tions: template extraction, model training, and anomaly detec⁃
tion. In recent years, many intelligent log analysis methods 
have been proposed with the rapid development of machine 
learning, especially deep neural networks. For example, mod⁃
els based on convolutional neural networks (CNN) and recur⁃
rent neural networks (RNN) can effectively capture the se⁃
quence characteristics and frequency characteristics of log 
text, and apply them to the detection of new logs[3–5]. How⁃
ever, the application of the deep learning model in practical 
scenarios faces the following challenges:

1) The normal pattern of logs is difficult to model. Most ex⁃
isting methods try to learn the normal pattern of log sequence 
and frequency. The team’s O&M engineers pointed out that 
the semantics of logs in real-world scenarios are of consider⁃
able analytical importance. Since the production environment 
for generating and recording logs is not ideal, relying solely on 
sequence as well as frequency to encode logs can lead to a 
large number of false positives.

2) Complex log data contains massive noise. Due to the high 
concurrency of the software system and the uncertainty of net⁃
work response, the log generated can be disordered and con⁃
tain lots of noise.

To tackle the limitations of existing methods, in this paper, we 
propose an efficient and robust framework for log anomaly detec⁃
tion based on generative pre-training-2 (GPT-2) [10]. Inspired by 
the excellent performance of GPT-2 in serialization text genera⁃
tion and multiple types of downstream task processing, we lever⁃
age this model to capture patterns of normal log sequences.

The main contributions of this paper can be summarized as 
follows:

1) To tackle the first challenge, we generate sentence vec⁃
tors for each log template to represent their semantic informa⁃
tion. Specifically, we first apply Siamese Bidirectional En⁃
coder Representations from Transformers (SBERT) networks 
to generate sentence vectors for all log templates and then in⁃
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put the vectors into GPT-2 as the representation of templates. 
In this way, the models can study both sequential and seman⁃
tic features of input logs.

2) To address the second challenge, we design an alarm 
strategy layer for this framework. This step will analyze the sta⁃
tistical characteristics through the existing log data to effec⁃
tively reduce the impact of noise on model judgment and re⁃
duce the false positive rate.

The remainder of this paper is organized as follows. Section 
2 introduces the background of log anomaly detection. Section 
3 describes our approach. In Section 4, we present our experi⁃
mental design and results. Section 5 surveys related works 
and Section 6 concludes this paper.
2 Background

2.1 Logs Description
Logs, which are produced by the running program and con⁃

tain information generated from the logging module, are a type 
of semi-structured text. They reflect the running flow and real-
time status of the program, and can be used to detect and lo⁃
calize anomalies by operators. Logs consist of a structured 
part (constant) and an unstructured part (variable), as shown 
in Fig. 1. A structured part is fixed by the designer at the be⁃
ginning according to certain designed rules, and can reflect 
the event of the log, such as the level of logs (e.g., warning and 
error), the logger name (e.g., root) and so on. This part would 
not change into the same module. The unstructured part con⁃
tains specific information on logs and varies according to the 
input of the program and running status. An unstructured part 
would reflect the real-time status of the system, and it is essen⁃
tial to use this part to analyze the system and detect anomalies 
in the system. To make full use of the important features in 
logs, the semi-structured texts need to be parsed into the struc⁃
tured text with a parsing algorithm. The useless messages in 
the raw log would be filtered out, and the valuable information 
would be extracted out from the left information to train the 
model and detect the anomaly.

Generally speaking, the logs generated by normally operat⁃
ing hardware and software systems have a good regularity. 
Therefore, some logs that do not match the pattern of previous 
characteristics are considered anomalous. In the actual data⁃
set studied in this paper, log exceptions can be broadly classi⁃
fied into two categories: 1) Business exceptions caused by net⁃
work blocking, resource usage, etc. When such exceptions are 

generated, the program will actively retry the process, so some 
logs will be repeatedly generated several times in a short pe⁃
riod of time. 2) Exceptions triggered by service deployment or 
termination failure. This type of exception usually generates 
only a few error logs, which can be evidenced by the fact that 
the sequence of logs is abnormal, and the semantics of the er⁃
ror logs differ significantly from the normal logs.
2.2 Challenges and Analysis

1) Challenge 1 is modeling the normal patterns of logs. Tra⁃
ditional anomaly detection algorithms always work on learning 
the normal patterns of logs and finding out logs different from 
normal patterns. Most studies mainly focus on building the 
normal pattern according to the sequence and frequency of 
logs, however, these two features are not comprehensive 
enough to evaluate the overall state of the system, hence the 
normal patterns built on these two features are not accu⁃
rate[3–4]. Intuitively, each log has its semantic characteristics 
through the log message, and these would describe the log 
meaning, such as inserting in a dataset, deleting from a data⁃
set, and failure reporting. Besides, logs are generated by trig⁃
gering corresponding events, and an event always triggers a se⁃
ries of logs. So, there is a sequential relation between logs, 
which would become different from the usual and could repre⁃
sent the status of logs and systems. As above, if we could com⁃
bine the semantic information and sequential message with 
other statistical information, it could perform better in detect⁃
ing anomalies in logs.

2) Challenge 2 is massive noises in the log. Logs are pro⁃
duced by a software system, which is highly concurrent and 
greatly influenced by the network. A working software system 
can run a large number of programs at the same time. These 
programs can produce a series of logs as well as useless mes⁃
sages, such as test output, and these messages have no effect 
on evaluating the log status. Some programs need to interact 
with other programs in the network, and thus the status of the 
network would affect the log sequence and delays can disrupt 
the order of logs. The disordered log and useless information 
are collectively called noise. Dealing with noise properly is 
necessary to improve anomaly detection in logs, and the sim⁃
plest way is to remove the noise, which, however, roughly 
brings lots of missing areas in logs and could bring new prob⁃
lems to the model. Based on the above observation, intuitively, 
if we can filter out the false positive alarms instead of roughly 
removing these noises, log anomaly detection can achieve 
higher accuracy and lower the false alarm rate.
2.3 Preliminaries

1) The log parsing algorithm. To parse the semi-structured 
log into a structured text, the log parsing algorithm focuses on 
fetching the unstructured part from the structured part and ex⁃
tracting the features of logs. Specifically, the log parsing algo⁃
rithm would replace meaningless information (e.g., IP address, ▲ Figure 1. Log instances, where black words are the structured part 

and red words are the unstructured part
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machine ID, etc.) with markers and extract the template of the 
log to distinguish between logs. In this paper, we adopt 
Drain[11], a heuristic log parsing algorithm, to parse logs. Drain 
parses the template of logs by maintaining a tree, which keeps 
the leaves as log groups with different heuristic rules in inter⁃
nal nodes. New logs would be distributed into log groups in 
leaves according to the corresponding tree path.

2) GPT-2. The GPT algorithm works based on the decoder 
of the transformer, and it pre-trains unsupervisedly on massive 
corpus data and then finetunes the model according to the spe⁃
cific tasks. GPT-2 removes the finetune step and increases the 
size of the training dataset and model, which makes the model 
perform well in multi-tasking.
3 Approach

In this section, we will introduce our log anomaly detection 
framework. Inspired by GPT-2, we employ transformer decod⁃
ers to encode the normal pattern of system logs. Our framework 
is divided into four main parts: log parsing, sentence vector gen⁃
eration, model training and detection, and the alerting strategy 
layer. For Challenge 1, we embed each log template into a vec⁃
tor representing the semantic information. We use vectors in⁃
stead of tokens as input to GPT-2, so the model can capture 
both semantic and sequence information to encode normal pat⁃
terns. For Challenge 2, we design an alarm strategy layer for the 
framework, which can filter out false positives by the statistical 
characteristics of log data. The structure of the framework of our 
work is shown in Fig. 2. The raw logs collected are first trans⁃
formed into structured logs by the log parser. Then a sentence 
vector generation model will be used to generate sentence vec⁃
tors for each extracted log template.
3.1 Log Parser

System logs obtained from the database are semi-structured 
text, which is difficult to be used for model training. Therefore, 
before processing logs, we need to use a parser to convert logs 
into structured text. In this paper, we use Drain as our log 
parser, which can divide logs into templates and dynamic vari⁃
ables. Drain is an online log template miner, employing a parse 
tree with a fixed depth, and it can extract templates and vari⁃
ables from a stream of log messages. Drain first sorts logs into 
different buckets by length and then matches similar portions of 
the log from front to back in each bucket. Eventually, logs be⁃

longing to the same template will end up on the same leaf node. 
The structure of the depth-fixed tree is shown in Fig. 3. In the 
figure, sys is an abbreviation for system, and HEX and NUM 
are variables matched during the parsing process, representing 
hexadecimal and decimal numbers, respectively.
3.2 Sentence Vector Generation

To make GPT-2 better at encoding normal patterns, we gen⁃
erate semantically relevant sentence vectors for each log tem⁃
plate. We choose SBERT[12] as our embedding model, which 
has been widely used in text similarity calculation and sen⁃
tence classification problems and has achieved excellent re⁃
sults. SBERT modifies the pre-trained BERT model, and it 
implements Siamese or triplet net frameworks to generate se⁃
mantically meaningful sentence embedding. Sentence vectors 
generated by templates with similar meanings have smaller co⁃
sine distances or Euclidean distances. Table 1 shows the Eu⁃
clidean distance of sentence vectors in five log templates.
3.3 Detection Model

1) Model framework. We choose GPT-2 as our log anomaly 
detection model in this work. GPT-2 is an unsupervised Natu⁃
ral Language Processing (NLP) model stacked from the trans⁃
former’s decoders. The structure of GPT-2 is shown in Fig. 4. 
Each decoder has a masked self-attention layer, a feed-
forward neural network, and two normal layers. The structure 
of each decoder is the same, but each module maintains sepa⁃
rate parameters. Different from the ordinary self-attention 
layer, the masked self-attention layer does not allow a node to 

▲Figure 2. Approach overview EoF: end-of-file

▲Figure 3. Structure of the depth-fixed tree

Templates
httprequest except <*> permission denied
httprequest except <*> <*> permission denied
httprequest except <*> no such file or directory
httprequest except <*>

httprequest except EoF occurred in violation of protocol
httprequest except <*> connection reset by peer

Euclidean Distance
-

0.147 629 340 284 133 4
0.595 852 332 701 891 4
0.621 201 472 867 456 3
0.838 852 193 154 771 3
0.880 359 580 380 884 6

▼ Table 1. Euclidean distance of sentence vectors of similar semantic 
templates

Log data Structured log

Error logs

Log parser

Alarmstrategy layer

Embedding model

Model

Root

Length: 4 Length: 5 Length: 6

sys mmcs

<NUM>…

Log groups
Log group Log group

…

Log group
template: sys <NUM> at <HEX> mask

<HEX>
ID: [1,3,34,56,57,59,…]

Sentencevectors
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get information from subsequent nodes. This feature makes 
the model perform well in sequence prediction tasks.

2) Input representation. Like most NLP models, GPT-2 
looks up the embedding vector corresponding to the word from 
the embedding matrices, and the embedding matrices are also 
part of the model training results. GPT-2 maintains two em⁃
bedding matrices: a token embedding matrix and a position 
embedding matrix. Each row of the token embedding matrix is 
a vector that represents a token, and these vectors are ran⁃
domly initialized and continuously adjusted during training. 
Each row of the position embedding matrix represents the posi⁃
tion information of the token. Tokens in the same position in 
different sentences have the same position embedding vector. 
Each template embedding inputted into GPT-2 is the sum of 
position embedding and token embedding. In our framework, 
we initialize the token embedding matrix with sentence vec⁃
tors generated by SBERT, which unlike the original random 
initialization, can make the model catch the initial semantic 
information of log templates more accurately. Besides, this ap⁃
proach gives operations more control over the model. We can 
adjust the dimension or generation method of sentence vectors 
according to the characteristics of logs and actual business re⁃
quirements.

3) Model training. The core concept of GPT-2 is language 
modeling. Language modeling refers to distribution estimation 
from a group of unsupervised samples (x_1, x_2, x_3, …). 
Each sample consists of symbol sequences of variable length 
(s_1, s_2, s_3, …). Because there are explicit sequential rela⁃
tionships between phrases in natural languages, language mod⁃
eling typically decomposes the joint probability of symbols as 
a product of conditional probabilities.

p( )x =  ∏
i = 1

n

p ( )si|s1, s2,…,sn - 1 . (1)
Transforming the above equation into a logarithmic form, 

the goal of the language model is to maximize the probability 
of the following equation.

p ( x) =  ∑
i = 1

n log p ( )si|s1, s2,…,sn - 1 ;  θ  , (2)
where n is the length of the language sequence, and the condi⁃
tional probability p is modeled by the neural network with pa⁃
rameter θ. These parameters are trained by the stochastic gra⁃
dient descent.

The input of the decoder at the first layer consists of the to⁃
ken embedding vector and position embedding vector of log 
templates. The output of each decoder is processed from the 
previous layer’s output. The output probability obtained by 
the model can be expressed as follows:

h0 = XWe +  Wp,
hl =  Decoder ( )hl - 1   ∀l ∈ [ ]1,n  ,
p ( )x = softmax (hnW

T
e ), (3)

where hl represents the output of the l-th layer decoder, X is 
the matrix composed of the unique thermal encoding of the in⁃
put log sequence, We is the token embedding matrix, and  WP 
is the position embedding matrix. To maximize the prediction 
probability, the model adjusts the decoder parameters of each 
layer during the learning process.
3.4 Alarm Strategy

Analyzing the actual data, we find that in the production en⁃
vironment, the logs printed by the machine are not always se⁃
quential. The main differences between these noises and se⁃
vere systems are as follows: logs corresponding to noise ap⁃
pear frequently and usually have a certain seasonality, while 
severe anomalies occur infrequently and are difficult to pre⁃
dict. Based on the above observation, we use frequency and 
periodicity as criteria to determine whether model error report⁃
ing is noisy or a true anomaly.

For the abnormal log templates detected by the model, we 
first calculate the time interval of their occurrence in the train⁃
ing data and then use the auto-correlation coefficient to ana⁃
lyze whether the time interval of template occurrence has a 
specific pattern. The auto-correlation coefficient is a common 
parameter for finding repetitive patterns (e.g., periodic signals 
masked by noise) and is often used in signal processing prob⁃
lems. The sequence consisting of the auto-correlation coeffi⁃
cients is known as the auto-correlation function. For the ob⁃
tained template interval sequence, its autocorrelation function 
is calculated, and the peak of the function is the possible pe⁃
riod of the corresponding template. If the value of the function 
at a certain time is higher than a threshold value set based on 
expert experience, we consider the template to be periodic 
and its basic impossibility to be an error log template.

Then, for non-periodic templates, we go through the statis⁃

▲Figure 4. Structure of generative pre-training-2 (GPT-2)

Decoder

Decoder 3

Decoder 2

Decoder 1

Normal layerDecoder 4

Feed forward neural network

Normal layer

Masked self-attention

Input

Output
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tics of their daily frequency of occurrence. Based on the obser⁃
vation of the data and the communication with the operation 
and maintenance staff, we have learned that the probability of 
daily serious anomalies in a smoothly running system is ex⁃
tremely low. An exception log with a high frequency is often 
caused by minor errors such as network blocking and data 
locking. The system can often recover from such errors 
quickly, so such alarms are not necessary. Therefore, for ex⁃
ception log templates that occur more frequently than a cer⁃
tain threshold, the alert policy layer will filter them out as less 
serious exception logs. The selection of this frequency thresh⁃
old is strongly correlated with the type of machine logs and re⁃
lies on the involvement of business experts.

In this layer, error logs detected by GPT-2 will be analyzed, 
and if their characteristics are more like noise, the exception 
will not be reported. This step can greatly reduce the model 
false positives caused by noise, improve the accuracy of the 
log anomaly detection framework, and reduce the disturbance 
to operation engineers.
4 Experiment and Evaluation

4.1 Experimental Setup
1) Research questions. In this section, we evaluate the per⁃

formance of our framework with the following research ques⁃
tions (RQs):

a) RQ1: How effective is our framework in log-based 
anomaly detection?

b) RQ2: How effective is the sentence vector generation and 
alerting strategy layer in improving the effectiveness of the 
model.

2) Datasets. We evaluate our approach on two large-scale 
systems called Ada and Bob. Ada is a framework for microser⁃
vice deployment applications. Bob is a hardware network con⁃
sisting of a large number of switch systems. The statistics of 
the datasets are shown in Table 2.

3) Baselines. We compare our framework with two base⁃
lines, LogAnomaly[4] and NeuralLog[8]. LogAnomaly is a log 
anomaly detection method based on a long short-term memory 
(LSTM) network. LogAnomaly first uses a Frequent Term Tree
(FT-Tree) to analyze the semi-structured log text. Then, Tem⁃
plate2Vec is implemented to generate vectors for each log tem⁃
plate. Finally, the vectors representing log semantics and fre⁃
quency are input into the LSTM to enable the model to learn 
the normal pattern of logs. NeuralLog is a novel log-based 
anomaly detection framework. Different from the traditional 
process, the algorithm does not require template parsing. Neu⁃

ralLog generates semantic vectors for row logs. These repre⁃
sentation vectors are then used to detect anomalies through a 
transformer-based classification model.

4) Evaluation metrics. We use Precision, Recall, and F1-
Score (F1S) as our evaluation metrics, which are defined as fol⁃
lows. True Positive (TP) is the number of abnormal logs that 
are correctly detected by the model,  False Positive (FP) is the 
number of normal logs that are wrongly identified as anoma⁃
lies, and False Negative (FN) is the number of abnormal logs 
that are not detected by the model.

Precision =  TP
TP + FP . (4)

Recall =  TP
TP + FN . (5)

F1S =  2*Precision*Recall
Precision + Recall   . (6)

4.2 Experimental Results
In this section, we will give response to the RQs mentioned 

above.
1) RQ1: How effective is our framework in log-based 

anomaly detection?
In this RQ, we evaluate whether our framework can work ef⁃

fectively on logs generated in the production environment. We 
compare our framework with two baselines: LogAnomaly[4] and 
NeuralLog[8].

Table 3 shows the results of our method as well as two base⁃
lines on Ada and Bob. Both LogAnomaly and NeuralLog show 
poor Precision and Recall performance on Ada. LogAnomaly 
has very limited learning capability due to the limitation of 
model size, which makes it difficult to obtain good results on 
log datasets with a large number of templates and complex pro⁃
cesses. Also, in the production environment logs, log tem⁃
plates that are not present in the training data often appear in 
the test set, making LogAnomly generate a large number of 
false positives often[18]. NeuralLog tends to consider every log 
unlikely to be anomalous on large unsupervised datasets due 
to the problem of data dilution. Our framework analyzes and 
learns the actual semantics of the logs, and designs an alert 
policy layer that incorporates the actual business characteris⁃
tics of the machine. These measures make our model more ca⁃
pable of capturing the normal patterns of real logs in a produc⁃

▼Table 2. Statistics of evaluation datasets

Dataset
Ada
Bob

Training Data
6 626 865
7 021 577

Number of 
Templates

599
84

Test Dataset
Normal

7 911 944
1 067 850

Anomalous
2 648
904

▼Table 3. Evaluation results of our method vs the other two methods

Approach
LogAnomaly
NeuralLog

Our method

Ada
Precision

0.394
0.297
0.738

Recall
0.190
0.354
1.00

F1S
0.256
0.323
0.850

Bob
Precision

0.353
0.638
0.857

Recall
0.332
0.872
1.00

F1S
0.342
0.736
0.923
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tion environment.
The complexity of Bob is much less than that of Ada, 

mainly because of less templates and a relatively fixed log se⁃
quence. However, due to problems such as network latency 
and data washout, the logs generated by the switch have a 
large number of errors and retry messages. In most cases, 
these error messages are not of concern because the program 
can be restored to normal after several retries and will not 
have a significant impact on the execution of the business. 
Also, these alarms of variable duration can disrupt the log se⁃
quence, making it more difficult to learn the normal pattern of 
the logs purely from frequency or sequence. The sequence 
confusion greatly affects the learning ability of LogAnomaly 
on this dataset, and NeuralLog has a lower Precision due to 
the report of the unimportant exceptions. Our framework cap⁃
tures the normal characteristics of logs from multiple perspec⁃
tives and designs alerting policies based on the frequency and 
periodicity of logs, thus achieving good performance on the 
Bob dataset.

The experimental results show that our framework has good 
performance for complex log datasets in practice. The analysis of 
log semantics makes the model show good robustness on poor 
stability sequences, and the addition of the alert policy layer re⁃
duces the model’s disturbance to engineers and screens out 
some of the exceptions that can be fixed automatically.

2) RQ2: How effective is the sentence vector generation and 
alerting strategy layer in improving the effectiveness of the 
model?

As mentioned in the previous sections, we add the sen⁃
tence vector matrix as well as the alert alarm strategy layer to 
GPT-2. In this RQ, we will verify the effect of the main parts 
of the framework on its effectiveness, by removing one or two 
components, namely the sentence vector (SV) and the alarm 
strategy (AS).

OM w/o SV & AS: We remove the sentence vector genera⁃
tion and alert policy layers from our framework. That is, we 
use only the GPT-2 model for sequence prediction to diagnose 
anomaly logs.

OM w/o AS: We remove the alarm strategy generation from 
our framework.

OM w/o SV: We remove the sentence vector layer from our 
framework.

OM: Anomaly detection work on logs using the completed 
framework proposed in this paper.

The experimental results in Table 4 show that the sentence 
vector generation part of the framework can improve the accu⁃
racy of the model to some extent and greatly enhance Recall. 
Because GPT-2 achieves better results in capturing the seman⁃
tic information of normal and abnormal templates after receiv⁃
ing the sentence vectors of the templates as prior knowledge. 
This is demonstrated by the fact that log templates containing 
the same abnormal keywords, the vector representations of 
which have a closer distance, are easily detected together in 

the anomaly detection stage. At the same time, log templates 
that symbolize normal patterns are more difficult for the model 
to detect as false positives because they often contain positive-
meaning words. Since the alarm strategy layer is built based 
on expert experience and has accurate filtering rules, it can fil⁃
ter out a large number of false abnormal logs and effectively 
improve the Recall of the model.

With the inclusion of both components, the effectiveness of 
our framework has been significantly improved. For complex 
logging environments, more accurate exception identification, 
very low FPs and a fairly high Recall can be achieved.
5 Related Work

As a kind of operational data, logs are widely used for sys⁃
tem anomaly detection in practice. To take advantage of the 
logs, previous work mainly focuses on detecting abnormal logs 
with artificial rules, which is not appropriate in scenarios with 
a large number of logs[5]. And deep learning is widely used in 
automatic anomaly detection in logs. DeepLog[3] uses LSTM to 
learn the normal pattern of the system and predict the next log 
template by log sequence. LogAnomaly[5] uses a word embed⁃
ding model to mine semantic information of log templates and 
learn the sequential patterns and quantitative relationships for 
logs with LSTM. LogRobust[13] represents the semantic infor⁃
mation of the log by word vector and takes advantage of the bi⁃
directional LSTM to learn the normal pattern of the log. 
OneLog[14] merges components (such as parsers and classifi⁃
ers) into a deep neural network to detect log anomalies. Log⁃
Merge[15] learns the semantic similarity of multi-syntax logs to 
realize the transfer of log exception patterns across log types, 
which greatly reduces the overhead of exception annotation. 
Transformers could also be used to represent the semantics of 
the log and model the log sequence, and anomalies would be 
detected with learned information[10, 15–17]. GPT-2[10] is pro⁃
posed for unsupervised learning of text information based on 
transformers and performs well on text generation, text classifi⁃
cation, semantic judgment, etc.
6 Conclusions and Future Work

In practical scenarios, large-scale systems produce logs that 
are different from the vast majority of laboratory open-source 
datasets. The log sequence is more complex, and normal pat⁃
terns are harder to capture. In this work, we introduced a way 
▼Table 4. Experimental results

Approach
OM w/o SV & AS

OM w/o AS
OM w/o SV

OM

Ada
Precision

0.128
0.427
0.627
0.738

Recall
0.835
1.00

0.807
1.00

F1S
0.222
0.598
0.705
0.850

Bob
Precision

0.510
0.718
0.833
0.857

Recall
0.940

1
0.940
1.00

F1S
0.661
0.836
0.883
0.923

AS: alarm strategy
OM: our method

SV: sentence vector
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to input semantic analysis data into GPT-2 and designed an 
alarm strategy layer. Through these ways, we improved the 
complex log sequence learning ability of the model and re⁃
duced the noise effect on the model prediction. Experimental 
results on two industrial datasets have shown that the false 
alarm rate of the model is significantly reduced, and our frame⁃
work shows good performance in the actual operation scenario.

In the future, we will continue to improve the performance 
of the model on multiple datasets and reduce the dependence 
of the alarm strategy layer on expert experience.
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