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Abstract: Satellite communications has been regarded as an indispensable technology for future mobile networks to provide extremely high 
data rates, ultra-reliability, and ubiquitous coverage. However, the high dynamics caused by the fast movement of low-earth-orbit (LEO) satel⁃
lites bring huge challenges in designing and optimizing satellite communication systems. Especially, admission control, deciding which users 
with diversified service requirements are allowed to access the network with limited resources, is of paramount importance to improve network 
resource utilization and meet the service quality requirements of users. In this paper, we propose a dynamic channel reservation strategy 
based on the Actor-Critic algorithm (AC-DCRS) to perform intelligent admission control in satellite networks. By carefully designing the long-
term reward function and dynamically adjusting the reserved channel threshold, AC-DCRS reaches a long-run optimal access policy for both 
new calls and handover calls with different service priorities. Numerical results show that our proposed AC-DCRS outperforms traditional 
channel reservation strategies in terms of overall access failure probability, the average call success rate, and channel utilization under vari⁃
ous dynamic traffic conditions.
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1 Introduction

With the increasing number of users and service 
types in terrestrial wireless communication net⁃
works, it is impractical to provide wireless commu⁃
nication services anytime and anywhere alone[1]. 

The satellite communication network has the prominent advan⁃
tages of long-distance communications, ubiquitous coverage, 
large capacity and high reliability, and can be a complement to 
terrestrial networks. It is not restricted by complex geographic 
conditions and harsh environments and can provide broadband 
multimedia services to user terminals (UT) in any area, even 
where terrestrial network resources are insufficient[2].

Due to the advantages of shorter propagation delay and 
lower operational expenditure, low-earth-orbit (LEO) satellite 
communication systems have been commonly used to provide 
user terminals with full coverage and real-time wireless com⁃

munication services[3]. Usually, LEO communication systems 
can exploit multi-beam technology to irradiate lots of blocks of 
cellular networks in their coverage area, which are called 
beam cells. When a UT establishes a communication connec⁃
tion with an LEO satellite, one challenge faced is the frequent 
handover from one beam cell to another, due to the fast move⁃
ment of LEO satellites. If there are insufficient channel re⁃
sources in the targeted beam cell, the connection would be in⁃
terrupted. Frequent handover failure and new call blocking 
would severely degrade the network performance and/or qual⁃
ity of service (QoS) of users. Moreover, with the rapid develop⁃
ment of multimedia applications, diversified service require⁃
ments pose a great challenge to the network[4–6]. On the other 
hand, the satellite channel resources are limited, which usu⁃
ally cannot satisfy the requirements of all services. Consider⁃
ing the diversified service requirements with multi-priority ser⁃
vices, admission control is particularly critical, as it decides 
which services are allowed to be admitted.

A typical solution for admission control of multi-priority ser⁃This work was supported by the ZTE Industry⁃University⁃Institute Cooper⁃
ation Funds.
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vices in satellite systems is to allocate channel resources of 
beam cells by a priority-based channel reservation strategy, 
which has been intensively investigated in satellite communi⁃
cation systems[4–10]. The basic idea is to reserve a certain num⁃
ber of channels for handover calls and new calls with different 
service priorities, to guarantee the priority of handover calls 
and delay-sensitive services to ensure the continuity of calls 
for moving UTs.

Existing channel reservation strategies are mainly classified 
into two categories, fixed channel reservation (FCR) and dy⁃
namic channel reservation (DCR). A guaranteed handover 
FCR strategy was proposed in Ref. [7], which reserves a por⁃
tion of channel resources dedicated to handover calls. Some 
improvements have been made later, such as the channel 
status-based reservation strategy (CSRS) [8] and time-based 
channel reservation algorithm (TCRA)[9], which set the number 
of reserved channels based on the information including the 
status of the cell and/or the remaining time. However, fixed re⁃
served channels cannot adapt to the dynamic environment and 
multi-service requests, causing a high blocking rate for new 
calls. In Refs. [10–15], the authors proposed adaptive DCR 
strategies based on different prior information to dynamically 
change the number of channels reserved. The authors of Ref. 
[10] proposed to adjust the number of reserved channels, ac⁃
cording to the current number of ongoing calls (voice or video 
traffic) and the localization of users. In Ref. [11], a grey model 
was used to decide whether the calls need to handover and 
then dynamically adjust the channel reservation number 
based on the counter. The authors of Ref. [12] leveraged the 
number of mobile stations in neighbor locations and the aver⁃
age handover call arrival rate to reserve channels. Ref. [13] 
considered the varying characteristics of the wireless channel 
to allocate resources, aiming at maximizing spectral effi⁃
ciency. The authors of Ref. [15] proposed an adaptive 
probability-based reservation strategy (APRS) based on mo⁃
bile users’ location information and the handover probability, 
to improve the utilization of reserved channels in reservation 
time. Due to the imbalance between the new call blocking rate 
and handover call failure rate, the system performance is not 
satisfactory. Some researchers have used heuristic algorithms 
to adjust the thresholds, and the authors of Ref. [4] proposed a 
probability-based channel reservation strategy for improving 
the quality of service. The authors of Ref. [5] proposed a 
threshold-based DCR scheme to set optimal thresholds for 
different-priority services by the genetic algorithm.

However, all aforementioned schemes cannot respond 
quickly to dynamic changes and uneven distribution of service 
requirements, since they only consider finding the optimum in 
the current state, while a long-term optimization is needed to 
improve the system performance. With this regard, some re⁃
searchers resort to exploiting machine learning algorithms for 
designing intelligent channel reservation schemes to achieve 
long-term performance improvement for complex satellite net⁃

works. The authors of Ref. [15] proposed a dynamic channel 
allocation algorithm based on deep reinforcement learning 
(DRL), which uses convolutional neural networks to extract 
useful features to make accurate admission decisions. It can 
effectively reduce the blocking rate and improve system 
throughput. But this work focused on processing the connec⁃
tion relationship of the UT in the beam and considered only a 
single service type. The authors of Ref. [6] proposed a multi-
service DCR strategy based on the deep Q network to improve 
the overall service quality of the system, by examining the im⁃
pact of current channel reservation results on the future envi⁃
ronment. They mainly considered how to reserve channels for 
new calls, while ignoring the impact of handover calls. Unfor⁃
tunately, all the aforementioned works lack consideration of 
multi-priority services and frequent handovers in highly dy⁃
namic LEO satellite networks. Therefore, it is imperative to de⁃
velop an intelligent admission control scheme to maximize 
long-term system performance by performing appropriate 
channel resource allocation for LEO satellite networks.

In this paper, we propose an intelligent DCR strategy based 
on the Actor-Critic algorithm (AC-DCRS), which dynamically 
adjusts the reserved channel thresholds for multi-service 
calls. While traditional solutions only obtain the optimal solu⁃
tion of the current state in a memoryless system, our proposed 
AC-DCRS based on reinforcement learning can consistently 
approach the long-term optimal solution by considering the 
Markov property of the channel reservation problem. Specifi⁃
cally, the Actor-Critic algorithm is leveraged to deal with con⁃
tinuous state space and high-dimensional action space. 
Through interactions with the network environment, AC-
DRCS can well balance the admission of handover calls and 
new calls of multiple priorities by setting corresponding 
thresholds under the current traffic state.

The rest of the paper is structured as follows. Section 2 pres⁃
ents the system model and problem formulation. Section 3 
elaborates on the proposed AC-based DCR strategy. We evalu⁃
ate the performance of the proposed strategy in Section 4 and 
finally conclude the paper in Section 5.
2 System Model and Problem Formulation

We consider a typical LEO communication network shown 
in Fig. 1. The coverage area of a single moving LEO satellite 
consists of multiple adjacent beam cells. A UT in the beam 
cell establishes a connection to the LEO satellite directly or 
through the base station in the beam cell. Handover call re⁃
quests will arrive during the movement of the UT and satel⁃
lites. At the same time, new call requests may also arrive re⁃
quiring channel resources from the connected beam cell.
2.1 LEO Mobility Model

Without loss of generality, we consider a one-dimensional 
square continuous beam cell model, which can be readily ex⁃
tended to high-dimensional models. Since the moving speed of 
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the UT is much slower than that of the LEO satellites, it can 
be regarded as relatively static. Hypothetically, a LEO satel⁃
lite moving horizontally to the left at a speed vsat relative to UT 
is equivalent to UT moving to the right at the same speed rela⁃
tive to beam cells. We further adopt a cyclic mechanism to 
simplify the periodicity of satellite movement and the simpli⁃
fied satellite movement model is shown in Fig. 2. When the 
UT leaves the rightmost cell N as it moves, it will enter the 
leftmost cell 1. Handover call arrivals, new call arrivals, and 
call termination may constantly occur during the movement.
2.2 Channel Reservation Model for Multi-Priority Service

We assume that there are s types of services, and the num⁃
ber of new calls of the i-th service follows a Poisson distribu⁃
tion with an average arrival rate λi

n. Then the total arrival rate 
of the i-th service is given as the sum of the arrival rates of 
new calls and handover calls as follows:

λi = λi
n + λi

h , (1)
where λi

h is the arrival rate of the i-th service for handover 
calls. Obviously, the handover calls of the i-th service come 
from the previous beam cell and its arrival rate λi

h can be de⁃
rived as follows[5]:

λi
h = λi

n

(1 - Pi
af )Ph1

1 - (1 - Pi
hf )Ph2  , (2)

where Ph1, Ph2, Paf and Phf are the handover success probabil⁃
ity of the source cell, that of the target cell, the new call block⁃
ing rate of the i-th service, and the handover call failure rate 

of the i-th service, respectively.
Besides, we denote the proportion of new calls of i-th ser⁃

vice as pi , and then the arrival rate of the i-th service can be 
expressed as:

λi
n = λn ×  pi , (3)

where λn is the average arrival rate of total new calls and pi satisfies p1 + p2 + p3 + ⋅ ⋅ ⋅ +ps = 1. We further assume that 
the duration of all calls obeys an exponential distribution of a 
parameter u, so the average duration of the call is 1/u s.

We adopt a threshold-based channel reservation strategy to 
realize the admission control of satellite beam cells. We con⁃
sider that the available bandwidth in a cell is equally allo⁃
cated to all the channels, and each channel can be assigned to 
a call. Then, each admitted call will be assigned a channel 
with enough power to guarantee the quality of service. In this 
work, we focus on developing an intelligent admission control 
mechanism for LEO satellite communications. Thus, for sim⁃
plifying the analysis, we just assume that there is enough 
power in a cell to guarantee the service quality of each admit⁃
ted call. For a new call or a handover call, if the number of oc⁃
cupied channels in the current beam cell is less than the corre⁃
sponding threshold, the call will be admitted successfully and 
assigned a channel with power and bandwidth resources, and 
the number of occupied channels is updated. Otherwise, the 
call will be blocked. After each decision period, the threshold 
will be updated according to our adjustment algorithm. We set 
a threshold k′i for handover calls of the i-th service, while a 
threshold ki is set for new calls of the i-th service. As hando⁃
ver calls are prior to new calls[16], we have ki ≤ k′i. We also 
consider that the s types of services have certain priorities, in 
the way that the type with larger index numbers will be re⁃
served for more channels than those with smaller index num⁃
bers. Therefore, the relationship between thresholds of all ser⁃
vices satisfies 0 ≤ k1 ≤ k′1 ≤ ⋅ ⋅ ⋅ ≤ ks ≤ k′s ≤ C, where C is the 
total number of beam cell channels. To maximize utilization of 
the channels, k′s = C is assumed in our model. Fig. 3 illus⁃
trates the proposed multi-priority service threshold-based 
channel reservation strategy.

The set of all thresholds is denoted by K =
{ k1, k′1, k2, k′2,⋯, ks, k′s }. Intuitively, dynamically adjusting the 
thresholds K to control call admission can effectively improve 
the overall system performance. On the one hand, if the low-
priority service threshold is set too low, low-priority service 
calls will be hard to get admission, even if there are no high-

▲ Figure 1. Basic mobility scenario of low-earth-orbit (LEO) satellite 
communication system

▲Figure 2. Simplified mobility model of low-earth-orbit (LEO) satellite 
communication system

▲Figure 3. Illustration of multi-priority service threshold-based chan⁃
nel reservation strategy
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priority service calls. Some channel resources may be wasted, 
resulting in low system channel utilization. On the other hand, 
if the low-priority service threshold is set too high, excessive 
low-priority service calls may be admitted to occupy too many 
channels. This will decrease the admission success rate of 
high-priority services in the future. Therefore, in this paper, 
we focus on designing a channel reservation strategy to dy⁃
namically adjust the thresholds of multi-priority calls, to real⁃
ize intelligent admission control.
2.3 Problem Formulation

The overall access failure probability at time t, denoted by 
O ( t ), as a system performance metric, is defined as:

O ( t ) = α0 Paf ( t ) + α1 Phf ( t ) =
α0∑

i = 1

s

βi P
i
af ( t ) + α1∑

i = 1

s

βi P
i
hf ( t ), (4)

where α0 and α1 are the balance factors of new calls and han⁃
dover calls respectively, which are used to measure the differ⁃
ent impacts of new call blockage and handover call failure. 
And βi is the balance factor of the i-th priority service, which 
is used to judge the significance of multi-priority services. 
Meanwhile, we modify Pi

af ( t ) and Pi
hf ( t ) as long-term metrics 

of the i-th service as follows:
Pi

af ( t ) = N i
af /N i

a, (5)

Pi
hf ( t ) =  N i

hf /N i
h, (6)

where N i
af , N i

a , N i
hf and N i

h represent the number of new calls 
blocked for the i-th service, the total number of new calls for 
the i-th service, the number of handover calls failed for the i-
th service, and the total number of handover call for the i-th 
service, respectively.

To improve the overall system performance, we minimize 
O ( t ), i.e., minimize Pi

af ( t ) and Pi
hf ( t ) in the long term. As men⁃

tioned above, the setting of K directly affects the failure rate of 
new calls and handover calls. When the state space of each 
beam cell is modeled as a continuous-time M/M/C/C Markov 
chain, the closed-form relationship of the new call blocking 
rate, handover call failure rate and K can also be proved[5]. 
Therefore, we formulate our optimization problem as follows:

  max          - O ( t ) ,                                                                                                                                                   
s. t.         0 < k1 < k′1 < ⋯ < ks < k′s ≤ C                            (7 .1),
                        ki, k′i ∈ Z ,     i = 1, 2,⋯, s                                                      (7 .2 ), (7)

where each threshold is limited to an integer for the conve⁃
nience of adjustment in the dynamic channel reservation strat⁃
egy. As the number of system channels C and that of services s 
can be large in real environments, using the brute force 
method to calculate the optimal thresholds in the current state 

will cause an exponential increase in time and space complex⁃
ity. In addition, due to the rapid changes in the environment, 
optimal thresholds should be derived in real time. Thus, using 
static optimization to solve Problem (7) is infeasible and thus 
we resort to a learning-based solution.
3 Intelligent Admission Control Based on 

Dynamic Channel Reservation Strategy
In this section, we control service call admission by adjust⁃

ing the reserved channel thresholds and model the problem of 
dynamically adjusting reserved channel thresholds as a Mar⁃
kov decision process (MDP). First, we slot the time as decision 
periods with the slot length TΔ. In each time slot, multiple 
calls arrive according to the Poisson distribution. The system 
will adjust the reservation thresholds at the end of each deci⁃
sion period. The maximum number of calls in a decision pe⁃
riod is set to N, and even if the decision period is not over, the 
decision will be made immediately.
3.1 MDP Model

An MDP model consists of a five-tuple < S, A, P, R, π >, 
where S, A, P, R and π represent state space, action space, 
transition probability between states, reward function, and 
policy for selecting actions based on the state, respectively, 
which are defined as follows:

1) State(S): we assume that the channel resources of the 
beam cell remain unchanged. The state is defined as:

s ( t ) ∈ { c ; λ ; K }                  t = nTΔ,  n = 0,1,2,⋯, (8)
where c is the normalized number of channels that have been 
occupied in the considered beam cell and satisfies c ≤ C; λ =
{ λ1

n, λ1
h,⋯, λs

n, λs
h } is the set of the call arrival rates of new 

calls and handover calls that satisfies Eq. (2); K =
{ k1, k′1,⋯, ks, k′s } is the set of the normalized reserved channel 
thresholds of new calls and handover calls that satisfies 
Eq. (7.1).

2) Action(A): we define the action as current normalized re⁃
served channel thresholds, which can be expressed as:

a ( t ) = K T = { k1, k′1,⋯, ks, k′s }T. (9)
In each decision period, action will be taken based on the 

current state, which will control the admission by setting re⁃
served channel thresholds.

3) Transition Probability(P): generally, the state transition 
function of the Markov decision process is a certain function 
P: S × A × S → [0, 1], which represents the probability of the 
transition to the state s′ given state s after taking action a. 
Since state transition depends on not only the last action but 
also the traffic changes caused by the movement of satellites 
and UTs and call termination in the channel, it cannot be ex⁃
plicitly expressed in our problem.

4) Reward(R): for a single service call within a decision pe⁃
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riod, the reward function is defined as:

r =
ì

í

î

ïïïï

ïïïï

0                                                                                          access   successfully
-α0 βi     or     - α1 βi                          access   failed
-L                                                                                     (7.1) not meet . (10)

As is defined in Eq. (10), when a new call or a handover 
call is blocked, a negative value -α0 βi / -α1 βi will be given 
as a punishment. L is a very large constant as a penalty for dis⁃
satisfying the constraint (7.1). Thus, the reward function of a 
decision period can be defined as:

rΔ = ∑
α, β, i

r/N i
α, β = -α0∑

i = 1

s βi N
i
af

N i
a

- α1∑
i = 1

s βi N
i
hf

N i
h  . (11)

Substituting Eqs. (4)–(6) can be further expressed as:
rΔ = -( )α0∑

i = 1

s

βi P
Δ
afi

+ α1∑
i = 1

s

βi P
Δ
hfi

= -OΔ ( t ) . (12)
Then our optimization problem of maximizing -O ( t ) can be 

approximately solved by maximizing the accumulated reward ∑T
rΔ in the long run.

5) Policy(π): we use a random policy π (a|s) → [0, 1] to 
represent the probability of selecting the action a given the 
current state s.

In our MDP model, we use the state-value function to evalu⁃
ate the value of state s, which can be expressed as:

Vπ ( s) = Eπé

ë
ê
êê
ê ù

û
ú
úú
ú∑

k = 0

∞
γkrt + k ( st + k, at + k )|st  , (13)

where γ is the discount factor representing the discount contri⁃
bution of the future states to the current state. Besides, the 
action-value function is used to evaluate the selected action a 
in the current state s, and can be expressed as:

Qπ ( s, a ) = Eπé

ë
ê
êê
ê ù

û
ú
úú
ú∑

k = 0

∞
γkrt + k ( st + k, at + k )|st , at  . (14)

Assuming that the MDP starts from the state st ∈ S, it expe⁃
riences a trajectory as:

κ~ { st, at, st + 1, at + 1,⋯, st + T, at + T } . (15)
Since the policy is stochastic, the trajectory κ is uncertain. 

Denote the probability of trajectory κ as πξ (κ ), and the cumu⁃
lative reward of trajectory κ is R (κ ) = ∑k = 0

T γkrt + k. As a re⁃
sult, the objective function can be rewritten as:

max      - O ( t ) ≈ U (πξ ) = Eκ~πξ (κ ) [ R (κ ) ] = ∫
κ~πξ (κ )

R (κ )dκ.
(16)

3.2 Actor-Critic-Based Dynamic Channel Reservation 
Strategy

This MDP problem can be solved by using the reinforce⁃
ment learning (RL) algorithm. Specifically, we use the Actor-
Critic framework[17] to model high-dimensional discrete action 
space, which is a combination of the Actor and the Critic. The 
Critic uses a neural network to approximate the state-value 
function and to judge the actions by temporal difference (TD) 
errors. The Actor uses another neural network to approximate 
the optimal policy and then selects the action while interact⁃
ing with the environment.

1) Actor: The Actor will constantly improve the policy by 
TD errors. In our MDP problem, the policy πξ is modeled as a 
conditional probability distribution parameterized by ξ. Thus 
the process of modifying the policy is equivalent to the pro⁃
cess of updating the parameter ξ. Through the back-
propagation algorithm, ξ is updated as follows:

ξnew = ξold + αactor∇ξU (πξ ) , (17)
where αactor is the learning rate of the Actor, and the gradient 
∇ξU (πξ ) is as follows:

∇ξU (πξ ) = ∇ξ log πξ (a|s) × Aπ ( s, a ), (18)
where Aπ ( s, a ) is the advantage function.

In this problem, we use Gaussian probability distribution to 
formulate the policy, which can be expressed as:

πξ (a|s) = 1
2π σ

exp (- (a - μ ( s) ) 2

2σ2 ) , (19)
where μ ( s) is the expectation and σ is the standard deviation 
of the selected action. Meanwhile, μ ( s) is the action with the 
highest probability at the state s and σ represents the extent of 
exploration over all actions. Exploration and exploitation can 
be well balanced by exploiting the Gaussian distribution. Thus 
the policy can be modified through the process of updat⁃
ing μ ( s).

To update μ ( s), we extract a feature vector ϕ ( s) from the 
current state as the input of the Actor neural network, which is 
expressed as:

ϕ ( s) = (c ; λ ; K )T. (20)
The neural network will then output the normalized average 

of reserved channel thresholds, which is denoted by μ ( s) =
(u1, u′1,⋯, us, u′s )T. Thus the policy can be further derived as a 
2s-dimensional Gaussian probability distribution:

πξ (a|s) = 1
( 2π ) s ( ||Cov ) 1

2
e(- 1

2 (a - u ( s) )TCov-1 (a - u ( s) ) )

 , (21)
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where Cov is the covariance matrix with diagonal σ2. Based on 
the policy, an action vector will be generated and the system 
will transit to a new state after a decision period TΔ.

2) Critic: The Critic is used to approximate the state-value 
function Vπ ( s). Traditional RL uses Q-value tables to record 
state values, which will face the problem of dimensional explo⁃
sion under the scenario of large state space. To cope with this 
problem, a neural network parameterized by θ is utilized to ap⁃
proximate the state-value function Vθ ( s). In the critic process, 
Vθ ( s) will be updated by updating parameters θ.

To evaluate the gap between the actual value and the ap⁃
proximated value of the state-value function in the state s, the 
definition of TD-error is given as follows:

δt = Vπ ( st + 1 ) - Vθ ( st ), (22)
where Vπ ( st + 1 ) = r t + 1 + γVθ ( st + 1 ) according to the bootstrap⁃
ping method in the RL framework. To guide the updating of 
parameters and improve the performance, the objective of the 
critic process is designed to minimize the TD-error δt and can 
be re-expressed as:

min   1 2 ( δt )2 . (23)
θ is updated by the gradient descent method as follows:
θnew = θold - αcritic|δt|∇θoldVθold ( st ), (24)

where αcritic is the learning rate of the Critic.
3) Actor-Critic: The Actor updates the policy based on the 

state-value estimated by the Critic, while the Critic updates the 
state-value function according to the actions selected by the Ac⁃
tor and the state transitions generated by interactions with the 
environment. Besides, the performance of the Actor can be im⁃
proved by replacing δt with an advantage function. Then the pa⁃
rameter update process in Actor can be rewritten as:

∇ξU (πξ ) = ∇ξ log πξ (at|st ) δt, (25)

ξnew = ξold + αactor∇ξold log πξold (at|st )δt. (26)
In summary, the proposed AC-DCRS is summarized as follows:

Algorithm 1. AC-DCRS

Input: N, M, T, TΔ, σ, αactor, αcritic, λ, γ.
Output: Optimal dynamic adjustment policy πξ.
Initialize: t = 0, n = 1, ξ = ξ0, θ = θ0, a = a0, s = s0, Φ ( s0 );
Repeat:

1. Action selection:
Input Φ ( st ) into the Actor network to get μ ( st ) and 
select action a, i.e., adjust the threshold once.

    2. According to the threshold adjusted by action, con⁃
trol incoming calls, while (t ≤ nTΔ):

1) if a service call arrives, judge its service type and 
priority

2) determine whether the call access is successful 
by the corresponding threshold:
a) if c is less than the corresponding threshold, 
the call is admitted successfully and can be allo⁃
cated a channel resource c ← c + 1;
b) else the call is blocked.

3) record the result of this call
4)  t ← t + 1.

3. State transition and reward feedback:
1) obtain the access result in this TΔ2) transition into the new state st + 1, get a reward rt + 1
3) update state feature vector Φ ( st + 1 )
4) calculate the state-value function Vθ ( st + 1 ), Vθ ( st ).

4. Update policy:
1) Critic network calculates and outputs TD-error δt =
rt + 1 + γVθ ( st + 1 ) - Vθ ( st )
2) update Critic network parameters θ ← θ -
αcritic|δt|∇θVθ ( st )
3) update Actor network parameters
 ξ ← ξ + αactor∇ξ log πξ (at|st )δt .5. n ← n + 1,  st ← st + 1.

Until: t ≥ T.
3.3 Complexity Analysis

In this subsection, we analyze the computing and space 
complexity of AC-DCRS and compare it with three baseline al⁃
gorithms, i. e., FCR, handover priority fixed channel reserva⁃
tion strategy (HPFCR), and DCR.

In FCR and HPFCR, the thresholds are fixed. In HPFCR, 
the handover calls are given higher priority, and the thresh⁃
olds for new calls are set to the same value. After the initial 
setting, the thresholds of DCR will dynamically change accord⁃
ing to the proportion of the number of calls of various services 
after the decision period TΔ has passed. Its normalized thresh⁃
old can be expressed as:

KDCR = c′ + 1 - c′
n [ n1, n1 + n′1,…, n1 + … + n′s ] , (27)

where c′ represents the normalized number of shared chan⁃
nels, which can be used by all calls, n represents the total 
number of calls arrived, and ni and n′i represent the number of 
new calls and handover calls of the i-th service respectively. 
As both FCR and HPFCR use a fixed threshold, the comput⁃
ing complexity is O (1)and the space complexity is O ( s). On 
the other hand, DCR will dynamically change the threshold ac⁃
cording to Eq. (27), and thus the computing complexity and 
space complexity are both equal to O ( s).

In our AC-DCRS, the neural networks are introduced to fit 
the policy function and the threshold is obtained according to 
the output feature vector. Specifically, we use a fully-
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connected neural network including two dense hidden layers. 
Suppose the number of neurons of the two layers is NL1 andNL2. The dimension of the input feature vector is 4s + 1 and the di⁃
mension of the output feature vector is 2s. Therefore, the com⁃
puting complexity is O ( s2 × NL1 × NL2 ). We need to store the 
weights and bias of the middle layer and the values of thresh⁃
olds, which results in a space complexity of O (NL1 + NL2 + s). 
By using additional space and computing resources, our AC-
DCRS can intelligently adjust the threshold and achieve a bet⁃
ter performance.
4 Performance Evaluation

4.1 Simulation Setting
We use a typical satellite system mobility model and basic 

assumptions, the parameters for the satellite communication 
network and the AC algorithm are shown in Tables 1 and 2 re⁃
spectively.
4.2 Numerical Results

First, we examine the relationship between overall access 
failure probability O ( t ), which is approximately equal to the 
negative long-term accumulated reward, with the varying total 
call arrival rate λ. As shown in Fig. 4, since our optimization 
objective is to minimize O ( t ), the greater O ( t ), the worse over⁃
all system performance. We can see that the proposed AC-

DCRS algorithm can learn better admission control strategies 
and achieve better overall system performance, compared with 
FCR, HPFCR, and DCR in most traffic scenarios. However, 
there is no obvious advantage in the scenarios of very low and 
high traffic loads. This is because AC-DCRS needs some trial-
and-error interactions with the environment. Reducing the 
thresholds of low-priority services causes some call failures in 
low-traffic scenarios, and multiple next-highest priority ser⁃
vices get admission to quickly filling up the channel, which af⁃
fects the overall access failure probability in high-traffic load 
scenarios.

Next, we explore the relationship between the channel utili⁃
zation and the average call success rate with the varying total 
call arrival rate λ. From Figs. 5 and 6, we can find that the 
channel utilization increases with the traffic load, and the av⁃
erage call success rate decreases with the traffic load. We can 

▼Table 1. Simulation parameters
Parameter

Number of services s
Number of beam cell channels

Average call duration parameter u
Call arrival rate ratio p1: p2: p3

Decision period TΔ
Maximum number of calls N

Balance factor α0, α1
Balance factor β1, β2, β3

FCR normalized fixed threshold setting
HPFCR normalized fixed threshold setting
DCR normalized initial threshold setting

Number of periods played
Total call arrival rate λ

Value

3
100

1/30 s
0.2:0.3:0.5

5 s
50

0.4, 0.6
0.2, 0.3, 0.5

[0.73, 0.75, 0.82, 0.85, 0.86, 1]
[0.73, 0.75, 0.73, 0.85, 0.73, 1]
[0.73, 0.75, 0.82, 0.85, 0.86, 1]

20 000TΔ
2–25 calls/s

DCR: dynamic channel reservation 
FCR: fixed channel reservation 
HPFCR: handover priority fixed channel reservation
▼Table 2. AC algorithm parameters

Parameter

Discount factor γ
Learning rate of policy αactor

Learning rate of value function αcritic
Action selection variance σ

Value

0.99
0.002
0.005
0.05

AC: Actor-Critic

▲Figure 4. O(t) with varying λ

AC-DCRS: DCR strategy based on Actor-Critic algorithm
DCR: dynamic channel reservation
FCR: fixed channel reservation
HPFCR: handover priority fixed channel reservation strategy

▲Figure 5. Channel utilization with varying λ

AC-DCRS: DCR strategy based on Actor-Critic algorithm
DCR: dynamic channel reservation
FCR: fixed channel reservation
HPFCR: handover priority fixed channel reservation strategy
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also find that AC-DCRS outperforms FCR, HPFCR, and DCR 
in these two aspects. This is because AC-DCRS can well bal⁃
ance the call admission of all services from the level of the en⁃
tire system. Ensuring the admission of high-priority service 
calls makes as many calls of multiple services as possible get 
admission.

We assume that the total call arrival rate changes dynami⁃
cally at a certain time frequency. The initial total call arrival 
rate is 8 calls/s, and the range of change is [ λt - 2, λt + 2 ], 
where λt is the current total call arrival rate. As shown in Fig. 7, 
the AC-DCRS can achieve better system performance in differ⁃
ent dynamic scenarios, compared with comparison algorithms. 
This is because our AC-DCRS can learn the optimal admis⁃
sion control strategy under the current traffic and can adjust 
the threshold in real time.

Finally, we show the convergence of the value function in 
the AC-DCRS algorithm. We separately consider the conver⁃
gence in the small state space (C = 20) and big state space (C=
100) cases. We observe the dynamic change of the state-value 
function at a certain state as the Critic evolves. As shown in 
Fig. 8, we can find that after certain training steps, the value 
function converges. The convergence speed varies with the 
sizes of state space, for the reason that it requires more itera⁃
tions to traverse a larger state space to reach optimal strategy. 
In addition, the obtained strategy through training can be ap⁃
plied to similar scenarios in different satellite beam cells. The 
training data of different satellite beam cells in similar sce⁃
narios can be shared for migration training, which will acceler⁃
ate the convergence to the optimal strategy.
5 Conclusions

In this paper, we have proposed a dynamic channel reserva⁃
tion strategy AC-DCRS based on the Actor-Critic algorithm to 
realize intelligent admission control in a satellite network. AC-
DCRS can learn an optimal admission policy for both new 
calls and handover calls with different service priorities, 
which will improve the performance of both the user side and 
the network. Numerical results show that our proposed AC-
DCRS algorithm achieves better long-term overall system per⁃
formance, average call success rate, and channel utilization 
under different traffic conditions and dynamic scenarios com⁃
pared with traditional channel reservation strategies.
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