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Abstract: Offline reinforcement learning (ORL) aims to learn a rational agent purely from behavior data without any online interaction. One 
of the major challenges encountered in ORL is the problem of distribution shift, i. e., the mismatch between the knowledge of the learned 
policy and the reality of the underlying environment. Recent works usually handle this in a too pessimistic manner to avoid out-of-distribution 
(OOD) queries as much as possible, but this can influence the robustness of the agents at unseen states. In this paper, we propose a simple but 
effective method to address this issue. The key idea of our method is to enhance the robustness of the new policy learned offline by weakening 
its confidence in highly uncertain regions, and we propose to find those regions by simulating them with modified Generative Adversarial Nets 
(GAN) such that the generated data not only follow the same distribution with the old experience but are very difficult to deal with by them⁃
selves, with regard to the behavior policy or some other reference policy. We then use this information to regularize the ORL algorithm to pe⁃
nalize the overconfidence behavior in these regions. Extensive experiments on several publicly available offline RL benchmarks demonstrate 
the feasibility and effectiveness of the proposed method.
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1 Introduction

Reinforcement learning (RL) is one of the major 
branches of machine learning that has been success⁃
fully applied in various fields in recent years, such as 
power grid control[1], recommendation systems[2], and 

robotics[3]. RL training usually involves a large number of try-
and-error interactions with underlying systems. However, such 

“interaction hungry” behavior could have a serious negative 
impact on many real-world applications, especially when the 
online data are either costly or dangerous to collect, e. g., in 
healthcare[4], autonomous driving[5], and so on. To address this 
problem, the idea of offline RL (ORL) is to learn a new policy 
only from data based on offline dataset without online interac⁃
tion. Unfortunately, the direct employment of the common off-
policy strategy often fails to achieve the same level of perfor⁃
mance as in the online setting[6–7].

The extrapolation error from out-of-distribution (OOD) ac⁃

tions is generally thought of as the main reason responsible for 
the aforementioned performance degradation[6]. The OOD ac⁃
tions here mean the actions taken by a model or system that is 
outside the range of the examples it was trained on. Since the 
dataset used for ORL training is generated by a behavior 
policy different from the new policy, possibly working in a dif⁃
ferent environment as well, it is not always possible for the 
agent to generalize the knowledge learned from the data to un⁃
seen real online situations. This is not uncommon in practice 
and usually manifests as the overestimated Q-value of OOD 
actions and such error compounds, leading to potentially dan⁃
gerous consequences. The problem is usually referred to as 
distribution shift. To address this, many recent works, such as 
Conservative Q-Learning (CQL) [8] and Implicit Q-Learning 
(IQL) [9], take a conservative strategy by trying to prevent the 
agent from taking overestimated OOD actions, with the idea 
that if most of the states visited are familiar to us, the chance 
of error and the subsequent error compounding phenomenon 
could be greatly reduced. However, taking OOD actions on⁃
line is almost inevitable, and avoiding the queries on them 
may significantly reduce the robustness of the agent. Actually, 
not all OOD data is non-generalizable[10].

This work is partially supported by the National Key R&D program of Chi⁃
na under Grant No. 2021ZD0113203 and National Science Foundation of 
China under Grant No. 61976115.
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This observation motivates some works[11–12] to formulate 
the ORL problem as an uncertainty-penalizing policy optimi⁃
zation problem, where some self-supervised methods are usu⁃
ally adopted. These methods utilize the model prediction to 
provide the supervised signal for OOD data. However, such a 
prediction could be unreliable, highlighting the necessity of 
carefully balancing the tradeoff between the so-called radical⁃
ism and conservatism when dealing with OOD data.

In this paper, we propose a novel method, named Boundary 
Conservative Q Learning (Boundary-CQL; BCQL), to improve 
the robustness of the learned policy while keeping conserva⁃
tive when dealing with the OOD data. Our key idea is to 
weaken the agent’s confidence in highly uncertain regions 
while doing offline learning. To find those regions, we propose 
simulating them with a modified Generative Adversarial Net 
(GAN) such that the generated data follow the same distribu⁃
tion as the old experience but are very difficult to be dealt 
with by themselves, with regard to some reference policies. In 
practice, the reference policy could be an empirical behavior 
policy or a pre-trained high-capacity policy, such as a CQL 
policy. As the found uncertain region generated data is visu⁃
ally located at the boundary of the distribution of the original 
data, we call them boundary OOD data. Finally, we learn the 
new policy via the Bellman operator while simultaneously 
maximizing its entropy at the generated boundary OOD data, 
hence decreasing the confidence in the estimation of the opti⁃
mal actions. In this way, we effectively maintain a balance be⁃
tween the minimization of Bellman error and policy conserva⁃
tism. Extensive experiments on several publicly available of⁃
fline RL benchmarks demonstrate the feasibility and effective⁃
ness of the proposed method.

It is worth noting that our method can also be thought of as 
a self-supervised offline RL method but is unsupervised in na⁃
ture, as we only use the reference policy to identify the most 
difficult regions within the distribution defined by the training 
experience, without showing the algorithm the exact actions to 
be taken there. This is similar to those methods in machine 
learning that improve their generalization capability by nega⁃
tive sample mining[13–15] but has never been used in the case 
of offline RL, to the best of our knowledge.

In what follows, a brief review of related work is given in 
Section 2, and a concise introduction to the background of of⁃
fline RL is provided in Section 3. The description of the 
boundary OOD data and BCQL method is presented in detail 
in Section 4. Experimental results are presented in Section 5 
to evaluate the effectiveness and properties of the proposed 
method from multiple aspects. Finally, the paper concludes 
with a summary of the findings and contributions.
2 Related Work

In this section, we briefly review some works most relevant 
to our method in literature, which mainly involve offline RL 
methods and OOD simulation methods.

2.1 Offline Reinforcement Learning
Offline reinforcement learning is one of the hottest research 

directions in RL in recent years, where, as mentioned before, 
the major challenge is how to handle the distribution shift 
problem. This can be roughly divided into three categories: 
the policy constraint, uncertainty-based, and regularization of 
the value function. Regarding the policy constraint method, 
the BCQ algorithm[16] addresses the exploration error caused 
by the distribution shift through batch-constrained restriction. 
The bootstrapping error accumulation reduction (BEAR) algo⁃
rithm[17] solves the problem of mismatch between the learning 
strategy, optimal strategy, and sampling strategy through a 
support set matching method and can achieve better results 
even when the sampling strategy is poor. The behavior regu⁃
larized actor critic (BRAC) algorithm[18] tries to combine the 
advantages of both BCQ and BEAR algorithms for better 
learning efficiency. On the uncertainty-based approach, a 
typical representative method is the random ensemble mix⁃
ture (REM) [19] method, which uses multiple parameterized Q 
functions to estimate Q values while enforcing Behrman con⁃
sistency during learning.

CQL[8] is one of the most representative methods of the third 
category. It uses a regularization term to the traditional Q-
value network so as to learn a relatively conservative Q func⁃
tion. However, since CQL sets a strict restriction on OOD ac⁃
tion evaluation, it could be overly conservative. There are 
some works like IQL[9] and Mildly Conservative Q-learning 
(MCQ) [20] trying to fix this issue, where instead of directly 
learning actions out of data, known state action experience is 
used to learn how action values vary and future outcomes are 
averaged with random dynamics.
2.2 OOD Solution Based on Generative Model

OOD data in machine learning usually refer to the data that 
are significantly different from the training data on which a 
model is trained. These data are harmful to a machine learn⁃
ing model as they could mislead the model to make incorrect 
predictions. Hence, they have drawn the attention of many re⁃
searchers in recent years[21]. Generative networks are useful 
tools for high-dimensional sampling and have been widely 
used to generate OOD data. The most popular generative mod⁃
els include adversarial generation networks[22] and the autoen⁃
coder/variational autoencoder[23].

The work based on auto-encoder/variational auto-encoder 
(PIDHORSKYI et al.) [24] used the variational auto-encoder to 
calculate reconstruction errors to identify OOD. First, the 
parametric manifold structure implied by the normal distribu⁃
tion is linearized to calculate OOD probability. Next, the 
method of probability decomposition is given, and then the lo⁃
cal coordinates of the tangent space of the manifold are used 
to calculate the reconstruction error. Competitive Reconstruc⁃
tion Autoencoder (CoRA)[25] trained two autoencoders on the 
in-distribution and abnormal data, respectively, and used the 
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reconstruction error of the two autoencoders as the suspicious 
identification signal.

On the other hand, based on an adversarial generation net⁃
work, Anomaly Detection with Generative Adversarial Net⁃
works (ADGAN) [26] generates OOD samples by checking 
whether the sampled data are satisfactory in a hidden space, 
while PNET[27] uses the generation network to generate and 
identify OOD samples based on their reconstruction errors.
2.3 Generative Model for Offline Reinforcement Learning

Generative models have been widely used in offline rein⁃
forcement learning for different usages. In BCQ[16] and BEAR[17] 
algorithms, conditional variational autoencoders generate data 
that satisfies the constraint. Action-conditioned Q-learning 
(AQL) [28] replaces the conditional variational autoencoder in 
BEAR with a residual generative model to improve fitting per⁃
formance. MCQ[20] uses a generative model such as conditional 
GAN to estimate the sampling policy. Diffusion Q-learning[29] 
uses a diffusion model to constrain target policy and add a loss 
of maximum action value to the original diffusion loss. Select⁃
ing from Behavior Candidates (SfBC) [30] also uses a diffusion 
model combined with an in-sample planning technique to fur⁃
ther avoid selecting out-of-sample actions and increase compu⁃
tational efficiency. Unlike prior work, we use a generative 
model to generate data not only following the same distribution 
as the experience but also in uncertain regions for agents.
3 Preliminaries

A Markov decision process (MDP) can be specified by a 
tuple S, A, r, T, γ , where S regards the state space, A is 
the action space, r: S × A → R is the reward function, 
which is used to evaluate the action under state s, T: S ×
A → S is the transition, and γ represents the discount fac⁃
tor. Reinforcement learning 
aims to find a policy to maxi⁃
mize the expected cumulative 
rewards. Q function Qπ ( s, a ) =
Eπ [∑t = 0

∞  γtrt|s, a ] measures 
the discounted long-term re⁃
ward given the state-action 
pair ( s, a ) and the policy π. Q-
learning is a classic method 
that trains the Q-value func⁃
tion by minimizing the Bell⁃
man error over Q [31]. In the set⁃
ting of continuous action 
space, Q-learning methods use 
an exact or approximate maxi⁃
mization scheme, such as the 
cross entropy method (CEM)
[32], to recover the greedy 
policy as follows:

Q ← arg min
Q

E [ B^ π

Q ( s, a ) - Q ( s, a ) ]2 ,
π ← arg max

π
EsEa ∼ π ( )⋅|s Q ( )s, a  , (1)

where B^ π

Q ( s, a ) represents the empirical Bellman target, de⁃
fined as B^ π

Q ( s, a ) = r ( s, a ) + γEa' ∼ π (⋅|s')Q ( s', a').
In the setting of offline reinforcement learning, Eq. (1) 

would be performed on a dataset D, and the result is collected 
via a behavior policy πβ. Due to the aforementioned distribu⁃
tion shift issue, OOD queries usually yield incorrectly esti⁃
mated Bellman targets. CQL, as a representative OOD-
constraint offline RL algorithm, tries to underestimate the Q-
values for OOD state-action pairs to prevent the agent from 
the extrapolation error[6] as follows:

Q ← arg min
Q

α ⋅ (Es ∼ D, a ∼ π ( )a|s [Q ( s, a) ] -
E s, a ∼ D[Q ( s, a) ] ) + 1

2 Es, a, s' ∼ D
é

ë

ê
êê
ê(Q ( s, a) - B  π

Q
  

( s, a) ) 2ù

û

ú
úú
ú

 , (2)
where π is the new policy to be learned and α is the balance-
coefficient. CQL tries to prevent the Q-value of OOD actions 
from being overestimated, but avoiding OOD queries would 
degrade the robustness when the agent faces an unseen state.
4 Method

In this section, we first introduce the boundary OOD data 
in our work. Then we illustrate the primary approach that is 
utilized to generate the boundary OOD data. Finally, we give 
the detailed design of the proposed method BCQL. The frame⁃
work of our proposed method is shown in Fig. 1, where the 

▲ Figure 1. Overall architecture of the proposed Boundary Conservative Q Learning (Boundary-CQL, 
BCQL) method, where the left column illustrates the pipeline to generate boundary OOD data based on an 
adversarial generative model, while the right column performs Offline RL with the generated data
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generator is optimized via the discriminator and the pre-
trained reference policy simultaneously, and then the gener⁃
ated data is provided for the offline RL algorithm to enhance 
its robustness.
4.1 Motivation

As mentioned before, to enhance the robustness of the 
new policy, it is necessary to generate more OOD data. Con⁃
sidering that not all the OOD data are generalizable in the 
offline setting, we generate certain OOD states that are not 
very far away from the training dataset and require that the 
pre-trained reference policy has high entropy in making de⁃
cisions at these states. In other words, our generated data 
should have two features: 1) OOD, which means that the dis⁃
tribution should be different from the training dataset, such 
that the reference agent would be confused about what to do 
at these states, and 2) boundary, which means that the gener⁃
ated data should not be totally unrelated to the offline data⁃
set. Hence we name this kind of OOD data as boundary 
OOD data.
4.2 Generating Boundary OOD Data

In this section, we describe how to generate boundary OOD 
data within the adversarial generative framework.

First, recall that the loss function of GAN is defined as fol⁃
lows:

min
G

max
D

EP in ( )x [ log D ( x) ] + EPpri ( )z
[ log (1 - D (G ( z ) ) ) ] , (3)

where G denotes the generator, D the discriminator, P in  refers 
to the distribution of in-distribution (ID) data while Ppri( z ) re⁃
fers to some prior distributions such as a Gaussian distribu⁃
tion. The loss function minimizes the error rate of the discrimi⁃
nator for the real data while maximizing the error rate of the 
discriminator for the generated data until a Nash equilibrium 
is achieved.

To generate the desired boundary OOD data described in 
the previous section, we adopt the following loss function:

min
G

max
D

é
ë
EP in ( )s [ log D ( s) ] + EPGB

( )s' [ log (1 - D ( s') ) ]ùû +
βGEPGB( )s' H [πpre( ⋅ |s') ], (4)

where s' refers to the generated OOD state and πpre refers to 
the pre-trained reference policy. The first term of Eq. (4) re⁃
quires that the generated distribution PGB

(⋅) should still follow 
the distribution P in (⋅) of the offline dataset, but under the con⁃
straint defined by the second term of Eq.(4), which forces the 
generated data to satisfy the requirement that the reference 
policy has high entropy H [ πpre (⋅| s') ] over them, where the en⁃
tropy of the reference policy πpre is defined as H [ πpre (⋅| s') ] =
∑a

 πpre (a | s')log πpre (a | s'). The tradeoff between the above 

two terms is controlled by another parameter βG, which should 
be set based on the specific applications.

In implementation, we use Conditional GAN[33] to generate 
s' conditioned on the origin state s and use the pre-trained 
CQL as the reference policy πpre.
4.3 Boundary Conservative Q-Learning

To enhance the robustness of the new policy learned offline, 
we aim to weaken its confidence at the generated boundary 
OOD states mentioned before. A direct way to realize this is to 
add regularization LBCQL to maximize the entropy of the new 
policy when making decisions at these states:

LBCQL = H é
ë
êêêê

ù
û
úúúúπ ( )a |

|
|||| s

^ = -∑a
 π ( )a |

|
|||| s

^ log π ( )a |
|
|||| s

^
, (5)

where s
^  is the boundary OOD state generated and π is the 

new policy. Then the whole loss function of the policy network 
is as follows:
Lπ = -Es ∼ D, a ∼ π ( )a|s Q

  

( s, a) - λLBCQL, (6)
where λ is the balance-coefficient of the BCQL term, π is the 
new policy, and Q^  is the target Q network.

As Eq. (6) shows, we can keep the new policy conservative 
as commonly done in normal offline RL training, but it has to 
be uncertain as the reference policy does when facing the gen⁃
erated boundary OOD data. Then the loss function of Q net⁃
works can be formulated as follows:
LQ = αEs ∼ DéëEa ∼ π ( )a|s [Q ( s, a) ] - Ea ∼ πβ( )a|s [Q ( s, a) ]ùû +
1
2 Es, a, s' ∼ D

é

ë

ê
êê
ê(Q - B  π

Q
  ) 2ù

û

ú
úú
ú

 , (7)
where α is the weight of the CQL term and πβ denotes the em⁃
pirical behavior policy.
Algorithm 1. Boundary-CQL
Input: Q networks Q, pre-trained reference policy πpre, prior 
distribution ppri ( z ), generator GB, offline dataset D, generative 
coefficient βG, and OOD punishment coefficient λ
1: Train GB via Eq. (4) using πpre and βG2: for each iteration do
3:  Sample a mini-batch B = ( s, a, r, s') from D
4:  Sample z from ppri ( z ) and generate s^ = GB ( z )
5:  Update the new policy π with s^  and B via Eq. (6)
6:  Update the Q networks Q with B via Eq. (7)
7: end for
8: Output the new policy π

Algorithm 1 summarizes the main pipeline of the proposed 
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method. To be specific, we first train the generator GB via Eq. (4), 
and then we enter the offline RL loop, where we update the 
policy network π via Eq. (6) and the Q networks Q via Eq. (7) 
alternately. Finally, we output the policy network π for the 
testing stage.
5 Experiments

This section starts with an introduction to the datasets used 
in our research. Subsequently, the efficacy of our proposed 
framework is demonstrated through its assessment on Datasets 
for Deep Data-Driven Reinforcement Learning (D4RL) bench⁃
marks. Further, an examination of the behavior of our genera⁃
tor and its impact on the new policy is conducted. Finally, a 
sensitive analysis is performed to elucidate the contribution of 
each parameter.
5.1 Datasets

The experiments presented in this study are carried out 
on the OpenAIGYM subset of the D4RL[34] tasks. For perfor⁃
mance evaluation, we utilize datasets that are a combination 
of multiple policies, namely medium, medium-replay, 
medium-expert, and expert. To ensure the robustness of our 
findings, we conduct all experiments at four distinct random 
seeds.
5.2 Comparative Study

To demonstrate the superiority of our proposed framework, 
we conduct a comparative analysis with several state-of-the-
art algorithms, including behavior cloning (BC), BEAR[17], Soft 
Actor-Critic (SAC) [35], twin-delayed deep deterministic policy 
gradient (TD3)+BC[36], and CQL[8]. In particular, we obtain the 
results for CQL and BEAR using our implementation, while 
the effects of BC and SAC are taken from Clean Offline Rein⁃

forcement Learning (CORL)37] and MCQ[20], respectively. Addi⁃
tionally, we obtain the results for TD3+BC from its original 
publication. Table 1 presents the results, with the highest 
mean value being denoted in bold.

As is evident from the results presented in Table 1, our pro⁃
posed algorithm outperforms the other state-of-the-art ap⁃
proaches in the medium, medium-expert, and medium-replay 
datasets, which exhibit diverse characteristics. In comparison 
with the basic version of CQL, our approach demonstrates su⁃
perior performance in estimating OOD data. However, in an 
expert setting, although we employ a generative network to 
simulate OOD data, with the constraint on the OOD data, our 
approach performs better than the original CQL but worse 
than TD3+BC when employing behavior cloning in the half 
cheetah task. Overall, these findings highlight the excellent ef⁃
ficiency of our proposed framework in both complex tasks and 
expert environments.

Fig. 2 displays the performance of BCQL and CQL during 
the training process. As illustrated by the curves, our pro⁃
posed algorithm outperforms both BC and basic CQL in the 
medium, medium-replay, and medium-expert environments, 
owing to the utilization of augmented data. In contrast, BC em⁃
ploys data obtained through behavior cloning. In the expert en⁃
vironment, the regularization imposed on the generated low-
confidence data leads to a minimal impact on the performance 
of high-confidence data.
5.3 Behaviors of Generator

The present study employs a GAN-based generator to gen⁃
erate data in various environments, and the real and gener⁃
ated states are visualized, as shown in Fig. 3. The generated 
data is observed to be irregular yet maintained its validity in 
comparison to the original data. To assess the effectiveness 

▼Table 1. Performance of BCQL and prior methods on MuJoCo tasks from D4RL, on the normalized return metric (the highest means are bolded)
Task Name

Halfcheetah-medium-v2
Hopper-medium-v2

Walker2d-medium-v2
Halfcheetah-medium-replay-v2

Hopper-medium-replay-v2
Walker2d-medium-replay-v2

Halfcheetah-medium-expert-v2
Hopper-medium-expert-v2

Walker2d-medium-expert-v2
Halfcheetah-expert-v2

Hopper-expert-v2
Walker2d-expert-v2

Total average

BC

42.4±0.2
53.5±2.0

63.2±18.8
35.7±2.7
29.8±2.4

21.8±11.7
56.0±8.5
52.3±4.6

99.0±18.5
91.8±1.5

107.7±0.7
106.7±0.2

63.3

BEAR

37.1±2.3
30.8±0.9
56±8.5

36.2±5.6
31.1±7.2
13.6±2.1

44.2±13.8
67.3±32.5
43.8±6.0

100.2±1.8

108.3±3.5
106.1±6.0

56.2

SAC

55.2±27.8

0.8±0.0
-0.3±0.2
0.8±1.0
7.4±0.5
-0.4±0.3

28.4±19.4
0.7±0.0
1.9±3.9
-0.8±1.8
0.7±0.0
0.7±0.3

7.9

TD3+BC

48.3±0.3
59.3±4.2
83.7±2.1
44.6±0.5

60.9±18.8
81.8±5.5
90.7±4.3
98.0±9.4

110.1±0.5
96.7±1.1
107.8±7

110.2±0.3

82.7

CQL

47.1±0.2
64.9±4.1
80.4±3.5
45.2±0.6

87.7±14.4
79.3±4.9
96±0.8

93.9±14.3
109.7±0.5
96.3±1.3

109.5±14.3
108.5±0.5

83.8

BCQL

47.1±0.7
66.1±5.2

84.6±2.5

46.1±1.5

93.9±11.8

82.5±7.3

97.5±3.2

95.9±13.3
110.2±1.0

98.4±3.2
111.7±8.3

109.7±1.0
87.0

BC: behavior cloning 
BCQL: Boundary Conservative Q Learning 
BEAR: bootstrapping error accumulation reduction 
CQL: Conservative Q-Learning 

D4RL: Datasets for Deep Data-Driven Reinforcement Learning 
SAC: Soft Actor-Critic 
TD3: twin-delayed deep deterministic policy gradient
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of the generator, experiments 
are conducted in a halfcheetah 
environment. Fig. 4 demon⁃
strates that the generated data 
closely approximates the origi⁃
nal data, although the two are 
not identical. This finding satis⁃
fies the boundary requirements 
of the experiment. Moreover, 
the distribution of action possi⁃
bility depicted in the figure indi⁃
cates that the generated data ad⁃
heres to the low confidence cri⁃
teria of a pre-trained RL net⁃
work. Thus, the generator is ca⁃
pable of producing data with the 
features described in Section 3.
5.4 Parameter Sensitivity 

Analysis
We conduct several experi⁃

ments to evaluate the sensitiv⁃
ity of the following two param⁃
eters in our algorithm: the pa⁃
rameter βG in Eq. (4) and the 
BCQL weight λ in Eq. (6).
5.4.1 Study of Parameter βGThe parameter βG plays a 
crucial role in training the gen⁃
erator, as it affects its perfor⁃
mance. We illustrate this by 
considering the task of walker2
d-medium. We set the iteration 
number K for the generator at a 
fixed value of 5 000 to avoid 
any confounding effects. As de⁃
picted in Fig. 5 and Table 2, 
the generator’s performance is 
sensitive to changes in βG. Spe⁃
cifically, increasing βG leads to 
a decrease in the trained 
policy’s confidence, while si⁃
multaneously increasing the KL 
divergence. The KL divergence 
represents the distance be⁃
tween the generated distribu⁃
tion and the original distribu⁃
tion. In order to strike a bal⁃
ance between being close to the 
original data and having low 
confidence, we use the smallest 
possible value for βG that still 
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BCQLCQL

Halfcheetah-medium-replay-v2
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▲Figure 2. Policy performance during training in different environments

BCQL: Boundary Conservative Q Learning                   CQL:Conservative Q-Learning

▲Figure 3. Visualization of data generated in different environments
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▲Figure 4. Distribution of generated states and real states in different environments
KL: Kullback-Leibler
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satisfies the low confidence requirement.
5.4.2 Study of Parameter λ

The parameter λ in Eq. (6) affects the behavior of the net⁃
work when using generated data. Specifically, a higher value 
of λ results in a more conservative behavior, while a lower 
value leads to greater flexibility. To investigate the impact of 
λ on the performance of the network, we conduct experiments 
while keeping the other parameters constant, and the results 
are presented in Table 3, which indicates that a large value of 
λ can be detrimental to performance when the environment is 
diverse, and therefore, a milder value of λ may be more appro⁃

priate. Based on the results, a value of λ = 1.0 should be suit⁃
able in most situations.
6 Conclusions

The proposed method BCQL improves the robustness of of⁃
fline reinforcement learning algorithms while maintaining con⁃
sistency with the original data distribution, based on a novel 
OOD simulation technique using a GAN. Extensive experi⁃
ments are performed on several publicly available offline RL 
benchmarks, showing that the proposed BCQL method 
achieves state-of-the-art performance while maintaining high 
robustness and conservation. Our work highlights the benefits 
of improving the robustness of offline reinforcement learning 
algorithms, which is an important research direction given the 
increasing interest in offline RL applications.
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