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Abstract: At present, the parameters of radar detection rely heavily on manual adjustment and empirical knowledge, resulting in low automa⁃
tion. Traditional manual adjustment methods cannot meet the requirements of modern radars for high efficiency, high precision, and high auto⁃
mation. Therefore, it is necessary to explore a new intelligent radar control learning framework and technology to improve the capability and 
automation of radar detection. Reinforcement learning is popular in decision task learning, but the shortage of samples in radar control tasks 
makes it difficult to meet the requirements of reinforcement learning. To address the above issues, we propose a practical radar operation rein⁃
forcement learning framework, and integrate offline reinforcement learning and meta-reinforcement learning methods to alleviate the sample 
requirements of reinforcement learning. Experimental results show that our method can automatically perform as humans in radar detection 
with real-world settings, thereby promoting the practical application of reinforcement learning in radar operation.
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1 Introduction

The advent of modern radar systems has brought forth a 
demand for higher efficiency, precision, and automa⁃
tion[1]. However, the current radar detection parameters 
heavily depend on manual adjustment and empirical 

knowledge, which significantly hampers automation[2]. Tradi⁃
tional manual adjustment methods are increasingly inadequate 
to meet these growing demands. This inadequacy necessitates 
the exploration of a new intelligent radar control learning frame⁃
work and technology that can enhance the capability and auto⁃
mation of radar detection.

One promising learning approach is reinforcement learning, 
which has gained popularity in decision-task learning. Rein⁃
forcement learning is a major paradigm within the machine 
learning field, distinct from perceptual learning typified by im⁃
age processing. Perceptual learning primarily involves super⁃
vised learning, while reinforcement learning seeks to address se⁃
quential decision-making problems through rewards. The rein⁃

forcement learning algorithm, based on the Bellman equation, 
continually learns and improves through trial and error within an 
environment, thereby accumulating experience and developing 
superior strategies for given tasks[3]. In recent years, deep rein⁃
forcement learning (DRL), with its powerful feature representa⁃
tion and function-fitting capabilities, has shown remarkable pro⁃
ficiency in various areas such as gaming and robotics. Notable 
accomplishments include AlphaGo’s consecutive victories over 
human world champions in Go[4], AlphaStar’s top master rank in 
StarCraft II[5], Suphx’s rise to the top ten sections of the profes⁃
sional Japanese Mahjong platform “Tianfeng” developed by Mi⁃
crosoft Research Asia[6], and the flexible and universal tokamak 
magnetic controller architecture developed by the DeepMind 
team for nuclear fusion projects[7]. Furthermore, deep reinforce⁃
ment learning has been progressively implemented across vari⁃
ous industries.

However, the application of reinforcement learning in radar 
control tasks is hindered by the shortage of samples. The effec⁃
tiveness of deep reinforcement learning is currently heavily reli⁃
ant on the availability of extensive learning data and substantial 
computing resources. For instance, the chess benchmark algo⁃
rithm, MuZero, requires approximately 106 steps of data[8] to 
achieve initial results in training. This process takes roughly 11 
days at a sampling rate of 60 steps per second. Furthermore, 
DeepMind utilized 384 tensor processing units (TPUs) running 
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in parallel over a span of about 44 days to complete the rein⁃
forcement learning training for AlphaStar, the StarCraft II algo⁃
rithm[5]. The high training cost associated with deep reinforce⁃
ment learning significantly restricts its range of applications.

This paper aims to address these challenges by proposing a 
practical radar operation reinforcement learning framework that 
integrates offline reinforcement learning and meta-reinforcement 
learning methods. The framework consists of the environment 
modeling of radar detection, the integrated learning structure 
and the learning objectives. Our experimental results of the 
MATLAB radar detection simulator indicate that the ability of 
our method in automatic radar detection has basically reached 
the level of humans, thus promoting the practical application of 
reinforcement learning in radar detection. This paper is struc⁃
tured as follows. First, in Section 2, we introduce the related 
works. Then, in Section 3, we demonstrate our reinforcement 
learning framework for automatic radar detection. In Section 4, 
the experimental settings and results are introduced. Finally,  in 
Section 5, we draw a conclusion.
2 Related Works

In this section, we introduce the background and related 
works about our proposed framework, including reinforcement 
learning and its correlational research with radar control.
2.1 Reinforcement Learning

Reinforcement learning is one of the popular paradigms of ma⁃
chine learning. The framework of reinforcement learning is 
shown in Fig. 1, which mainly includes two parts: agent and envi⁃
ronment. The operation of reinforcement learning is a process of 
continuous interaction between agents and the environment, 
where the environment provides agents with the current state and 
numerical rewards, while agents output actions to the environ⁃
ment according to existing information (usually the current state). 
The environment gives the state and rewards after the action is 
executed, and so forth until the environment terminates (done). 
In this process, agents often choose actions and learn strategies 
to maximize expected cumulative rewards.

The environment model of reinforcement learning is generally 
based on the Markov decision process (MDP). MDP is defined 
by a quaternion S, A, R, T , where S is the set of environmental 
states, A is the set of optional actions, the state transition func⁃
tion T: S × A × S → [ 0, 1 ] gives the probability of transition 
from state s and action a to state s', and the reward function R:

S × A × S → R provides the reward value for each step.
The agent algorithm of reinforcement learning aims to learn a 

policy π, and the policy determines the execution of action a 
(deterministic policy) or the execution probability (non-
deterministic policy) in each state s. The classical reinforcement 
learning algorithm considers that the MDP model of the environ⁃
ment is given in advance, and the optimization goal of the policy 
π is to maximize the expected cumulative discount reward. The 
parameters of the parameterization policy πθ are θ, and the for⁃
mula for calculating the optimal parameters θ* is:

θ* = arg max
θ

 Eπθ[∑t = 0
T γtrt ] , (1)

where T refers to the number of time steps that the environ⁃
ment runs, and the discount factor γ ∈ [0,1] is used to bal⁃
ance long-term rewards and short-term rewards. γ signifi⁃
cantly stabilizes the reinforcement learning algorithm in an en⁃
vironment with excessive T.

Reinforcement learning algorithms can be divided into two 
categories: value function-based and policy gradient-based. The 
reinforcement learning algorithm based on the value function 
makes decisions according to the state action value function 
Qπ( s,a). In the DRL algorithms based on the value function, 
Qπ( s,a) is constructed by a neural network, supplemented by 
some designs to enhance the stability of the algorithm[9]. Note 
that deep networks enable policies to adapt to tasks with a much 
wider range. This kind of algorithm performs better in the dis⁃
crete action environment, but it is difficult to expand to the con⁃
tinuous action environment. Common algorithms include the 
deep Q-network (DQN) [9], dueling double deep Q-network 
(D3QN)[10], deep recurrent Q-network (DRQN)[11], etc. Reinforce⁃
ment learning algorithms based on policy gradients directly cal⁃
culate the policy function πθ(a|s) modeling and optimization. 
Commonly used algorithms based on policy gradients are actor-
critic architectures, which perform better in continuous action 
environments, including deep deterministic policy gradient 
(DDPG) [12], proximal policy optimization (PPO) [13], soft actor-
critic (SAC) [14], twin-delayed deep deterministic policy gradient 
(TD3)[15], etc.

While reinforcement learning algorithms have demonstrated 
effective performance in simulated environments, two primary 
challenges exist in copying this performance to real-world sce⁃
narios: 1) The inconsistency between the simulator and the ac⁃
tual environment, which is often referred to as the Sim2Real 
gap, tends to result in catastrophic failure of deploying simulator-
trained policies in the real world; 2) the high cost of real-world 
sampling and the complexity of the real-world tasks result in a 
significant difference between the collected data and the actual 
situation. Especially in intelligent radar detection tasks, due to 
the large scale of the actual environment, it is difficult to collect 
sufficient training data that are needed. The actual environment 
can change greatly at any time with factors such as weather, ter⁃▲Figure 1. Framework of reinforcement learning
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rain, and goals, which brings learning difficulties. Therefore, we 
introduce two research directions that help to solve this problem: 
offline reinforcement learning and meta-reinforcement learning.
2.1.1 Offline Reinforcement Learning

Offline reinforcement learning is a data-driven subset of the 
broader reinforcement learning field. Its primary objective is to 
optimize the same objective as reinforcement learning. However, 
in this context, intelligent agents cannot use behavioral strate⁃
gies to interact with the environment or gather additional data. 
Instead, a learning algorithm provides a static transition dataset, 
denoted as D = ( s, a, r, a'), which is used to learn the most ef⁃
fective strategies. This approach is more akin to the standard su⁃
pervised learning problem, with D serving as the policy training 
set. Essentially, offline reinforcement learning requires the 
learning algorithm to fully understand the dynamic system that 
underlies the Markov decision process, using a fixed dataset to 
formulate a policy. When this policy is applied to interact with 
the Markov decision process, it aims to yield the maximum cu⁃
mulative return.

Several existing model-free offline reinforcement learning 
methods regularize the learned policy to align closely with the 
behavior policy. This is achieved through techniques such as 
distributional matching[16], support matching[17], importance sam⁃
pling[18–19], and learning the lower bounds of true Q-values[20]. 
On the other hand, model-based algorithms learn policies by le⁃
veraging a dynamic model derived from the offline dataset. Ref. 
[21] directly restricts the learned policy to the behavior policy, 
similar to model-free algorithms. To penalize the policy for visit⁃
ing states where the learned model may be incorrect, MOPO[22] 
and MoREL[23] adjust the learned dynamics, which ensures that 
the value estimates are conservative when the model uncertainty 
exceeds a certain threshold. To eliminate the need for uncer⁃
tainty quantification, COMBO[24] combines model-based policy 
optimization[25] and conservative policy evaluation[20]. In this pa⁃
per, we employ a distributional matching method, specifically 
the straightforward and effective behavior cloning (BC) method, 
as it simplifies the learning process of meta-reinforcement learn⁃
ing methods.
2.1.2 Meta-Reinforcement Learning

Meta-reinforcement learning methods learn meta-policy on 
multiple meta-training tasks, aiming to quickly adapt to previ⁃
ously unseen meta-testing tasks, and thus improving the effec⁃
tiveness and generalizability of reinforcement learning methods. 
The process of meta-reinforcement learning mirrors that of meta-
learning, which consists of two stages: the meta-training stage 
and the meta-testing stage. During the meta-training stage, the 
algorithm learns from the meta-training task and prepares the 
model for the next stage. In the meta-testing phase, the trained 
model is adaptively applied to the meta-testing task to achieve 
testing results. Each task corresponds to a reinforcement learn⁃
ing environment model, typically an MDP. The meta-training 

task is presented in the form of task distribution p (T ). At the be⁃
ginning of meta-training, a certain number of meta training tasks 
{ T train } are sampled from the task distribution p (T ), that is, 
TTrain ~ p (T ). The set of meta-training tasks may be fixed by one 
sampling, or may be generated repeatedly by samplings in mul⁃
tiple rounds of meta-training.

Existing works in this field can be broadly categorized into 
three types: the model-agnostic-meta-learning-based (MAML-
based), recurrent-based, and context-based. Some research fo⁃
cuses on improving and extending the meta-learning framework 
MAML[26]. For instance, FINN et al. proposed a simplified algo⁃
rithm FO-MAML that only uses first-order derivatives in their 
MAML work[26]; NICHOL et al. proposed a more versatile first-
order derivative algorithm Reptile[27]; The ES-MAML algorithm 
proposed by SONG et al. uses an evolutionary algorithm instead 
of derivation in outer optimization[28]; ANTONIO et al. con⁃
ducted extensive experiments and concluded on the training 
problem of MAML[29].

Some other research reduces the uncertainty of inferring the 
state from observation by memorizing the history of tasks, thus 
improving the performance of strategies on unknown tasks. For 
example, the RL2 algorithm builds a policy model based on the 
recurrent neural network with memory and trains between mul⁃
tiple tasks[30]; MISHRA et al. combined time series convolution 
and soft attention mechanisms to form a new depth architec⁃
ture[31]; PARISOTTO uses the transformer model as a cross epi⁃
sodic memory module[32].

Recent popular research extracts the task context to guide 
policy across various tasks. SÆMUNDSSON et al. used the 
Gaussian process and variational inference to model the hidden 
variables of tasks, combined with the model-based reinforce⁃
ment learning algorithm to achieve a fast meta-training algo⁃
rithm ML-GP[33]; ZINTGRAF et al. [34] and LAN et al. [35] com⁃
bined the MAML algorithm with a task context encoder to im⁃
prove performance; HUMPLIK et al. utilized long short-term 
memory (LSTM) to construct a task feature inference module 
and implemented algorithms similar to PEARL[36]; FAKOOR et 
al. used gated recurrent units as the history encoder to train 
their reinforcement learning algorithm meta-Q-learning (MQL) 
based on the multi-task objective[37]. The PD-VF algorithm pro⁃
posed by RAILEANU et al. used the prediction environment cu⁃
mulative reward to supervise the training task hidden variable 
module[38]; ZINTGRAF et al. used a variational autoencoder to 
train the task feature inference module and proposed the 
VariBAD algorithm[39]. Some studies improve the generalization 
ability of context-based methods through comparative learning. 
FU et al. constructed the algorithm named contrastive learning 
augmented context-based meta-RL (CCM) based on MoCo[40] 
and CURL[41]. WANG et al. proposed a method similar to CCM, 
TCL, where positive and negative samples are divided according 
to sampling trajectories rather than task types[42].

In this paper, we utilize the context-based VariBAD algorithm[39] 
to consider radar detection task characteristics and requirements.
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2.2 Radar Control with Reinforcement Learning
Reinforcement learning methods enable automatic learning of 

complex behaviors, and several studies have focused on intro⁃
ducing deep reinforcement learning into radar control. AZIZ et 
al. provided a survey of literature proposing the application of re⁃
inforcement learning to radar to overcome jamming[2]. WANG et 
al. suggested a cognitive frequency design method for a 
compressed-sensing-based frequency agile radar using reinforce⁃
ment learning[43]. PATTANAYAK et al. introduced an inverse re⁃
inforcement learning approach to meta-cognitive radars in an ad⁃
versarial setting[44]. ZHAI et al. proposed a reinforcement 
learning-based approach for multi-input multi-output (MIMO) 
cognitive radar[45]. OTT et al. proposed an uncertainty-based 
meta-reinforcement learning approach with out-of-distribution 
environment detection[46]. In the context of multi-agent systems, 
SNOW et al. proposed a multi-objective inverse reinforcement 
learning approach for tracking targets with a cognitive radar net⁃
work[47]. MENG et al. examined the issue of target assignment 
when a phased-array radar network detects hypersonic-glide ve⁃
hicles in near space and proposed a method for target assign⁃
ment based on deep reinforcement learning[48].

The aforementioned studies illustrate that deep reinforcement 
learning has extensive potential applications in various aspects 
of radar systems. However, these related works are conducted in 
simple simulated scenarios, and thus it remains challenging to 
implement reinforcement learning methods in real-world situa⁃
tions. In this paper, we concentrate on the framework for exten⁃
sive single radar parameter control, and we introduce realistic 
sample-limited settings and corresponding reinforcement learn⁃
ing methods to tackle this problem.
3 Reinforcement Learning Framework for 

Automatic Radar Detection

3.1 Environment Modeling
Environment modeling is the foundation of reinforcement 

learning. Existing modules of traditional radar control are: a) 
analog signal → plot processing; b) plot → track processing; c) 
track → radar parameter control module. The intelligent radar 
control system mainly requires intelligent automatic control of 
the radar while observing the processed radar data (e. g., plots, 
tracks, etc.), and its framework is shown in Fig. 2. In order to en⁃
hance the universality and generalization performance of our re⁃
inforcement learning algorithm, our agent focuses on processing 
the input data composed of original analog signals, processed 
plots, and mixed tracks as states, and outputs controllable radar 

parameters.
The radar point and track processing algorithms typically op⁃

erate in cycles. After each radar scan is completed and before 
the next one begins, our agent makes its decisions. In this con⁃
text, the input state s = ( s1,s2,s3 ) includes:

a）A 3-dimensional raw echo analog signal, denoted as 
s1 ∈ [ H, W, V ]. Here, H, W, and V represent the distance, devia⁃
tion angle, and amplitude of the signal, respectively. This analog 
signal is the radar’s echo signal in each direction. The data for 
each cycle is a position peak matrix.

b）Dots denoted as s2 = {( x1,y1,v1 ) , ( x2,y2,v2 ) ,…,( xn,yn,vn )}. 
These are a series of points identified as target points in the ana⁃
log signal. Each point has features, such as position and signal-
to-noise ratio, extracted by algorithms. The number of points in 
the plot data for each cycle is uncertain. Each point has one row 
of features. Although there are much more clutter points in dots 
compared with tracks, it may cover more potential targets.

c）Tracks denoted as s3 = {( x'1,y'1,v'1,l'1 ) ,( x'2,y'2,v'2,l'2 ) ,…,(x'n',y'n',v'n',l'n')}. 
A track is a series of points in a historical track where the 
target point is recognized as a real target. Each point has fea⁃
tures, such as position and velocity, extracted by algorithms. 
Similar to the format of dots, there are multiple dots in each 
cycle of dot data, each with a single line of features. How⁃
ever, each target is additionally marked with a unique batch 
number. The trajectory is the main basis for decision-
making, but it often lacks some difficult-to-detect target in⁃
formation and performs with a certain lag.

The system’s output is the radar’s parameter control informa⁃
tion, which includes frequency point, speed, pitch angle, and tim⁃
ing transmission. Note that these are generally discrete variables.
3.2 Learning Framework

As Fig. 3 illustrates, the framework’s primary process is di⁃
vided into two stages:

The first stage involves data collection and offline pre-
training. Although offline reinforcement learning algorithms do 
not impose strict requirements on offline training data, existing 
research indicates that the diversity of offline training data sig⁃
nificantly impacts the learning outcome[49]. Hence, we aim to 
conduct offline reinforcement learning pre-training for the deci⁃
sion model, denoted as πθ (where θ represents model param⁃
eters), based on as many diverse and abundant offline training 
data as possible. This stage initiates with model parameters θ0 and results in pre-training parameters θ'.

The second stage involves running the pre-trained decision 

▲Figure 3. Process of learning framework▲Figure 2. Environment interaction framework
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model πθ' in an actual radar scenario and performing rein⁃
forcement learning iterations online. To facilitate a smooth 
transition from offline data to online scenarios for the decision 
model, we incorporate a meta-reinforcement learning algo⁃
rithm to enhance the model’s generalization. Given that radar 
detection requires precise environmental cognition, the intro⁃
duced inference-based meta-reinforcement learning algorithm 
includes a task feature inference module and an auxiliary 
training target. This new meta-reinforcement learning network 
structure is also utilized in the offline pre-training phase, 
which indicates the combination of offline reinforcement learn⁃
ing and meta-reinforcement learning.
3.3 Reinforcement Learning Method

Network design: Our design integrates a fundamental RL algo⁃
rithm and a variational autoencoder (VAE)[50] to encode different 
task scenarios automatically. These encoded features are subse⁃
quently inputted into the intelligent agent[39]. The VAE model 
consists of an encoder qϕ( st,at - 1,rt,ht - 1 ) → zt and two decod⁃
ers pR

ψ( zt,si,ai,si + 1 ) → ri + 1, pT
ψ( zt,si,ai ) → si + 1. This model le⁃

verages the reconstruction constraints of rewards and states, 
along with constrained dimension to compress the original in⁃
puts ot = {st,at - 1,rt} into low-dimensional representation zt effi⁃
ciently. The posterior distribution of a task can be interpreted as 
a representation of specific task characteristics, such as meteoro⁃
logical features, ship-type tendencies and radar models. The de⁃
coder takes a posterior distribution of tasks and some prior 
knowledge as input to predict the subsequent state. The context 
encoder qϕ is required to encode an indefinite length historical 
sequence. Therefore, a recurrent neural network (RNN) model is 
employed for approximation, and other models can be approxi⁃
mated using a multi-layer perceptron (MLP). The VAE model 
outputs a low-dimensional representation of tasks zt to policy 
model πθ( st, zt ) → at. The complete network structure is shown 
in Fig. 4.

Offline reinforcement learning: Although a variety of offline 
reinforcement learning algorithms are available, we have opted 
for the behavioral cloning (BC) objective due to its ease of use 
and scalability. In practice, our policy model takes all historical 
trajectories as input. Let’s denote the previously collected data⁃

set as D = {(oi,ai )}, where the equivalent new state is the his⁃
torical trajectory oi = {si,ai - 1,ri}, si = ( s1

i ,s2
i ,s3

i ). Thus, the of⁃
fline training objective is:

J1 = -E( )s,a Dist (πθ(oi ) ,ai ), (2)
where E( )s,a  is the expectation, Dist (∙) is the distance calcula⁃
tion function, which can be set as a 0– 1 function for dis⁃
crete variables. Behavioral cloning targets enable the policy 
model’s decision actions, πθ(oi ), to be closer to expert ac⁃
tions, thereby allowing the parameters θ to learn a certain 
level of strategic knowledge.

Meta-reinforcement learning: We employ reconstruction and 
the information bottleneck objective to constrain feature informa⁃
tion. The forms of reward and state reconstruction objective func⁃
tions are:

J2 = -Eri
Dist ( pR

ψ(qϕ( si,ai - 1,ri,hi - 1 ) ,si,ai,si + 1 ) ,ri ),
J3 = -Esi

Dist ( pT
ψ(qϕ( si,ai - 1,ri,hi - 1 ) ,si,ai) ,si ) . (3)

Dist (∙) can be set as the L2 distance function for continuous 
variables such as the state and reward. The desired feature of 
the target, zi = qϕ( si,ai - 1,ri,hi - 1 ), retains the original input in⁃
formation.

Moreover, the reconstruction objective involves the simultane⁃
ous optimization of two models, which may result in gradient de⁃
scent optimization not achieving the expected results. To expe⁃
dite training, we additionally introduce the information bottle⁃
neck method optimization objective[36], which is in the form of:

J4 = -Ei DKL(qϕ( si,ai - 1,ri,hi - 1 ) , r ( z) ), (4)
where r ( z) is the normal distribution.

During the offline pre-training stage, the overall optimization 
objective is J1 + J2 + J3 + J4 as the VAE is also trained. In the 
online training phase, the offline reinforcement learning objec⁃
tive is replaced by the traditional reinforcement learning objec⁃
tive JRL, and the overall optimization objective is JRL + J2 +
J3 + J4. Note that due to the existing initialization parameters, 
we need to reduce the learning rate by an order of magnitude 
during online tuning.
4 Experiment

Experimental tasks: Despite the universality of our con⁃
structed method, we require explicit task scenarios and objec⁃
tives for the experiment. Our primary experimental scenario 
involves enhancing the average signal-to-noise ratio (SNR) of 
radar detection targets by manipulating the radar’s frequency 
points. Given the radar’s relatively short rotation time (either ▲Figure 4. Network structure of the agent
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1 s or 10 s), we assume that the environment will remain 
largely unchanged even if the radar scans every alternate turn. 
As for the reward setting issue, we alternate between a circle 
set as a frequency point generated by the algorithm and the 
next circle as a fixed frequency point. This approach provides 
a relatively standardized reward for the reinforcement learning 
algorithm, rt(a) = SNR ( st,a) - SNR ( st,a fix ).

Evaluation setting: For offline data, actions are expert strat⁃
egies, and we compare the overlap between algorithm output 
actions and offline data actions. For online learning, consider⁃
ing the practical application, we involve relevant radar opera⁃
tion experts to compare the algorithm’s parameter control re⁃
wards with the expert’s parameter control rewards. We ask 
both the algorithm and experts to test each other on the same 
task, compare the cumulative rewards of the algorithm with 
the cumulative rewards of the experts, and take the average of 
three experiments. To benchmark real-world sample-limited 
applications, in the online training stage, the sample number 
is limited to 10 rounds, i.e. 10 000 steps.

Implementation: We employ proximal policy optimization 
(PPO) as the reinforcement learning algorithm during the on⁃
line training phase. We use MATLAB as it supports the Radar 
Toolbox to construct a simulation environment. We achieve 
code communication between Python and MATLAB via the 
user datagram protocol (UDP). The environment and algo⁃
rithms ran on a 2.5 GHz CPU and a single NVIDIA GeForce 
RTX 3080 graphics card. For offline training data, we have ex⁃
perts control the selection of radar parameters in the task, but 
we also aim to cover as many action intervals as possible, 
thereby obtaining data with a total of 100 000 steps with a 
wide distribution of action.

Experimental results: After achieving convergence in the of⁃
fline training phase, the action similarity between the decision 
model and offline data is 99%. In online tests, the average cu⁃
mulative reward of the proposed method reaches 91% of the 
experts’ method, and the performance of a random policy is 
unstable and obviously weaker. Detailed online testing results 
with average cumulative reward are shown in Table 1. Addi⁃
tionally, we observe that the decision model can control differ⁃
ent parameters for different targets, and it tends to favor some 
commonly used radar parameters. The experimental results in⁃
dicate that the decision model has learned the preliminary ra⁃
dar control policy, but the potential of deep learning may not 
be fully exploited due to the limitation of the training sample 
size. According to our experience and expert judgment, our 
method can act as humans in basic radar automatic detection, 

and therefore has the potential to be applied in practical radar 
operation tasks. In future research, we will focus on further en⁃
hancing the effectiveness of reinforcement learning and aim to 
apply it to actual radar.
5 Conclusions

In this paper, we have presented a novel practical approach to 
radar operation that leverages the power of reinforcement learn⁃
ing. By integrating offline reinforcement learning and meta-
reinforcement learning methods, we have developed a practical 
radar operation reinforcement learning framework that can 
quickly adapt to unseen real-world tasks. Our experimental re⁃
sults have demonstrated the ability to act as humans in basic ra⁃
dar automatic detection with real-world settings, thereby validat⁃
ing our approach. Our work not only addresses the current chal⁃
lenges in radar operation but also paves the way for the practical 
application of reinforcement learning in radar operation. The 
proposed method has the potential to revolutionize radar detec⁃
tion by enhancing its efficiency, precision, and automation. Fu⁃
ture work will focus on further refining our framework and ex⁃
ploring its application in real-world radar systems.
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