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Abstract: The increasing adoption of renewable energy has posed challenges for voltage regulation in power distribution networks. Grid-
aware energy management, which includes the control of smart inverters and energy management systems, is a trending way to mitigate this 
problem. However, existing multi-agent reinforcement learning methods for grid-aware energy management have not sufficiently considered 
the importance of agent cooperation and the unique characteristics of the grid, which leads to limited performance. In this study, we propose a 
new approach named multi-agent hierarchical graph attention reinforcement learning framework (MAHGA) to stabilize the voltage. Specifi⁃
cally, under the paradigm of centralized training and decentralized execution, we model the power distribution network as a novel hierarchical 
graph containing the agent-level topology and the bus-level topology. Then a hierarchical graph attention model is devised to capture the com⁃
plex correlation between agents. Moreover, we incorporate graph contrastive learning as an auxiliary task in the reinforcement learning pro⁃
cess to improve representation learning from graphs. Experiments on several real-world scenarios reveal that our approach achieves the best 
performance and can reduce the number of voltage violations remarkably.
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1 Introduction

The increasing shortage of fossil fuels and growing 
awareness of the need for environmental protection 
have made the adoption of solar photovoltaic (PV) 
power generation an important trend in the develop⁃

ment of renewable energy. In recent years, more and more PV 
systems have been integrated into power distribution net⁃
works, owing to their low-carbon, clean, and economical ben⁃
efits. However, the growing popularity of PV systems poses sig⁃
nificant challenges to the stability of the power grid voltage. 
Thus, the need to make optimal use of the existing control⁃
lable resources in the power grid to ensure safe and reliable 
operation, reduce energy waste, and improve the acceptance 
of renewable energy has gained widespread attention. Prior re⁃
search has suggested that using an inverter to control PV 
power conversion can alleviate this issue[1–2]. In addition, vari⁃

ous energy storage and energy demand responses are also rec⁃
ommended as a means of voltage regulation[3–4]. Therefore, a 
comprehensive scheme is required to coordinate the control 
among these resources to ensure the stable operation of the en⁃
tire power system with high PV penetration, which is referred 
to as grid-aware energy management[5].

Meanwhile, multi-agent reinforcement learning (MARL) 
has demonstrated impressive efficacy not only in games[6–8] 
but also in real-world applications[9–10]. Recently, MARL has 
also been employed to tackle issues in the power grid[11]. Un⁃
der a data-driven and model-free setting, MARL does not 
need precise environment modeling and can be applied in 
situations with high PV penetration compared with tradi⁃
tional methods[11]. Moreover, using MARL in the power grid 
also potentially reduces costs and is regarded to have plug-
and-play capability[12].

For grid-aware energy management, buildings established 
on a specific node in a power distribution network are consid⁃
ered as agents, which need to control the charge/discharge 
rate or electric energy conversion rate of multiple components, 
such as PV and battery. As the electric energy consumed or 
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generated will pass through the distribution network and 
cause voltage fluctuations, the goal of grid-aware energy man⁃
agement is to control these components inside buildings to 
keep the voltage within the safe range while satisfying build⁃
ing users’ energy demands. And grid-aware energy manage⁃
ment can be formulated as a cooperative task since all agents 
share one common objective which is to stabilize voltages at 
every node in the whole distribution network. Ref. [5] applied 
deep reinforcement learning to grid-aware energy management 
as they used independent proximal policy optimization and 
rule-based control to stabilize voltage.

However, it is a non-trivial task to directly apply reinforce⁃
ment learning algorithms to grid-aware energy management, be⁃
cause of the following challenges. 1) Cooperation among agents. 
The distribution network is a complex and nonlinear system, 
which results in a ripple effect to the voltage of all nodes within 
the distribution network if one agent takes action. Agents in pre⁃
vious work have been limited in their ability to learn coopera⁃
tion by only utilizing their own observations during both the 
training and execution phases. This has resulted in difficulty in 
stabilizing voltage across all nodes. 2) Large state space from 
the large-scale agent system. There are hundreds of households 
on the power distribution network in reality. Directly learning a 
centralized agent system in a training process requires handling 
large state space and high-dimensional environments, which 
will cause serious scalability and efficiency problems[13]. 3) To⁃
pology of the distribution network. In the distribution network, 
each node is connected with some other nodes, forming a tree 
graph structure. The voltage of each node is affected by all 
other nodes, but the impact declines as the distance increases. 
Therefore, introducing the topology of the distribution network 
to algorithms can assist the agents in learning better correla⁃
tions with each other. 4) The importance of different agents. 
Each building is regarded as an agent, but the building types 
are various and different types of buildings have different en⁃
ergy demands. For instance, typically, restaurants have more 
energy demand at noon for people to have meals, which indi⁃
cates restaurants must pay more attention than offices when 
making decisions at noon.

To address the above challenges, we propose a multi-agent 
hierarchical graph attention reinforcement learning framework 
(MAHGA) to better stabilize voltage in a power distribution 
network. Our major contributions are summarized as follows: 
1) We approach this task with the paradigm of centralized 
training and decentralized execution, enabling agents to learn 
better cooperation. 2) We model the whole distribution net⁃
work as agent-level topology and bus-level topology. Based on 
these topologies, we construct an elaborate hierarchical graph 
attention architecture to extract correlations from agents and 
power grids. And it can facilitate the MARL-based methods 
deployed to the realistic power system. 3) Graph contrastive 
learning with two graph augmentations considered RL charac⁃
teristics is designed as an auxiliary task in the reinforcement 

learning (RL) process to improve representation learning from 
graphs. 4) To the best of our knowledge, this is the first work 
to consider the topology characteristics to tackle voltage and 
energy tasks with large-scale agents. Experiments on several 
real-world datasets reveal that our approach achieves the best 
performance and can significantly mitigate voltage violations. 
The paper is organized as follows: In Section 2, we give the 
background of grid-aware energy management with the MARL 
formulations and introduce centralized training and decentral⁃
ized execution. We describe the details of our method in Sec⁃
tion 3. In Section 4, we demonstrate the results of the experi⁃
ments, and in Section 5, we give a literature review of the re⁃
lated work. We conclude our work in Section 6.
2 Problem Formulation

2.1 Grid-Aware Energy Management
In the power system field, power distribution networks are 

modeled as a tree graph structure, where the node and edge 
represent a bus and a branch, respectively[14]. More specifi⁃
cally, a bus refers to a node in a power distribution network 
where power lines, buildings, and other electrical devices join 
together, and electrical power will be generated, distributed, 
or consumed here. The distribution network example is shown 
at the bottom of Fig. 1. For instance, the third bus in this fig⁃
ure is connected with the second bus, the fourth bus, and the 
eleventh bus. Hundreds of various buildings are distributed on 
these buses, and each building contains multiple controllable 
components: 1) HVAC: heating, ventilation, and air condition⁃
ing system, which consumes electricity primarily to control the 
temperature, humidity, and purity of the air inside a building 
affiliated with the storage to save cooling or thermal energy; 2) 
DHW: domestic hot water system, which can generate hot wa⁃
ter by consuming electricity, affiliated with a tank to store hot 
water; 3) Battery: used for electricity storage or electricity sup⁃
ply to other equipment; 4) PV: photovoltaics, which is a micro-

▲Figure 1.  An illustrative example of grid-aware energy management
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generation device comprising solar cells.
The example of buildings and controllable components are 

shown at the top of Fig. 1. For instance, there are some build⁃
ings located on the third bus, and each building has the above 
four components to control to stabilize voltage after satisfying 
users’ energy demands. Energy demand, including the use of 
HVAC and DHW, and other electric equipment/appliances 
(non-shiftable loads), as these components may constantly con⁃
sume electricity from the power grid.

In terms of constructing the power models, grid-aware en⁃
ergy management environment GridLearn[5], grid models and 
AC power flows, etc., are modeled using Pandapower. The 
Pandapower library models the loads of the buildings with real 
and apparent power specifications; the PV arrays (and corre⁃
sponding inverters) are modeled as PQ-controlled generators, 
which are defined to hold the active power P and reactive 
power Q constant while the voltage is allowed to vary over the 
limited range. It also calculates real and reactive power at 
each bus, load, and generator along with voltages at each bus. 
These values can be adapted to the state space or reward func⁃
tion. And they apply the preconfigured IEEE network model 
in it.

A large number of PV inside buildings will continuously in⁃
ject power into the power grid and the power grid also needs to 
supply power frequently to meet the various users’ energy de⁃
mands, which may lead to frequent undervoltage or overvolt⁃
age problems in the power grid. Specifically, the voltage of 
each bus will be varied if it is injected with active power and 
reactive power. The exact numerical change of voltage is cal⁃
culated with these two types of power through certain power 
flow formulas in the power flow model[5]. The formulas with 
physical quantities in the distribution network are compli⁃
cated and non-linear in order to satisfy power system dynam⁃
ics regulations[2].

The traditional control techniques for large-scale, com⁃
plex, and non-linear systems are inadequate for real-time 
decision-making, particularly in systems with high penetra⁃
tion of renewable energy sources[11]. As a result, the employ⁃
ment of deep reinforcement learning algorithms has emerged 
as a potential and effective method in the literature to miti⁃
gate these difficulties.
2.2 MARL Formulations

The cooperative control process of grid-aware energy man⁃
agement can be modeled as a decentralized partially observ⁃
able Markov decision process (DEC-POMDP) [15]. A DEC-
POMDP is an extension of an MDP in decentralized multi-
agent settings with partial observability. It can be defined by 
S, A, O, R, P, N, γ , where S is the state space, Ai is the ac⁃

tion space for agent i, oi = O ( s ; i) is the local observation for 
agent i at global state s, P ( s'|s, A) denotes the transition prob⁃
ability from S to S' given the joint action A = (a1,…,an ) for all 
N agents, R ( s, A) is the shared reward function and can also 

be called a global reward function, and γ ∈ [0,1) is the dis⁃
count factor. In a DEC-POMDP, each agent takes observation 
from the environment and executes an action generated by its 
policy to the environment. In turn, the environment provides 
one global feedback reward to all agents. During the interac⁃
tion with the environment, the agents constantly adjust their 
policies to achieve the best decisions according to the re⁃
wards. Considering the grid-aware energy management prob⁃
lem, we describe specific elements in the DEC-POMDP in de⁃
tail as follows, similar to Ref. [5].

Agent: As shown in Fig. 1, each building is regarded as an 
agent and will make control decisions on four components to 
maintain the voltage of all buses within a safe range.

Observation: The agent’s observation incorporates 18 state 
spaces such as outdoor temperature, indoor temperature, volt⁃
age magnitude at the located bus, electricity generated by pho⁃
tovoltaic current, electricity consumed by base loads, current 
energy demand, time of day and the charging states of an 
HVAC storage device, a DHW storage device, and a battery.

Action: Each building controls four components, namely  
HVAC energy storage, DHW energy storage, battery storage, 
and inverters. The action made on each component is continu⁃
ous and is all set in range [-1,1 ]. For the three energy storage 
components, the action denotes the increase (action>0) or de⁃
crease (action<0) of the energy’s rate stored in the correspond⁃
ing storage device. For the inverter, the action made on the in⁃
verter is used to scale the active power and reactive power sup⁃
plied by PV and the battery.

Reward function: The reward function is mainly based on 
the voltage deviation from 1 p.u. for each bus. The term p. u. 
referred to “per unit” is used to express the voltage level in 
terms of a percentage of the nominal voltage. To alleviate the 
overvoltage and undervoltage problem across all buses, the re⁃
ward function is calculated through the voltages on all buses. 
Specifically, let B denote the set of all buses in the distribu⁃
tion network, vi denote the voltage on i’s bus, and δi a weight⁃
ing factor to approximately normalize the reward function. The 
global reward function is calculated as follows:

R = -∑
i ∈ B

(δ i( vi - 1) ) 2
. (1)

Note that this function limits the reward to 0 or negative 
and is devised to penalize the voltage rise deviation and the 
voltage drop deviation from 1 p.u. followed by Ref. [5]. Volt⁃
age deviations are typically measured from 1 p.u. (or 100% 
of the nominal voltage). For instance, if a 4% voltage devia⁃
tion is allowed, the voltage safe range is from 0.96 p.u. to 1.04 p.u.
2.3 Centralized Training Decentralized Execution

Centralized training and decentralized execution (CTDE) is 
one of the paradigms in MARL which assumes that global in⁃
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formation is available during training and that each agent can 
only use local information during execution to achieve decen⁃
tralized execution[6–7,16]. In this paper, grid-aware energy man⁃
agement is formulated as a cooperative task because all agents 
share one common objective, which is to stabilize voltages at 
every bus in the whole distribution network. If each agent only 
observes local information on its located bus in the training 
phase, it is usually difficult to learn to control voltage within 
the safety range and guarantee service quality[2, 11]. One reason 
is that the environment is non-stationary if only considering 
the local observation where one agent’s action can actually af⁃
fect the whole distribution network[17].

As a result, we approach grid-aware energy management with 
the paradigm of CTDE. In CTDE, agents’ information is shared 
in the training phase. In the execution phase and the time we 
evaluate the algorithm performance, agents are only allowed to 
make decisions based on their local observation. Specifically, in 
this paper, we improve and introduce our algorithms all based 
on the actor-critic class. After combining the structure of CTDE 
with actor-critic RL algorithms, the critic mainly assists the ac⁃
tor in learning during training, and the input of the critic is 
global information; while the input of the actor is local informa⁃
tion, and the actor needs to make decisions independently in 
the execution phase. The advantages of CTDE for grid-aware 
energy management are twofold. On one hand, the centralized 
training process can motivate multiple agents to learn coopera⁃
tion by perceiving a more comprehensive landscape. On the 
other hand, the execution process is fully decentralized without 
requiring complete information in the training phase, which 
guarantees efficiency and flexibility in online management. By 
applying CTDE, the learned strategies can be deployed to the 
power grid and achieve cooperative control without any commu⁃
nication device. Note that the paradigm of centralized training 
and centralized execution does not apply to this task due to 
commercial settings and users’ privacy provision[18].
3 Method

In order to address the aforementioned challenges, we ap⁃
proach this grid-aware energy management task with the CTDE 
paradigm and propose a novel MAHGA approach. In the follow⁃
ing, we first introduce the construction of the graph topology. 
After that, we discuss our hierarchical graph attention architec⁃
ture for the critic to better extract agents’ correlations. Finally, 
graph contrastive learning is devised as an auxiliary task in the 
training process to improve representation learning from graphs. 
The overview of MAHGA is shown in Fig. 2, where the agent 
takes action depending on its own observation by using the 
policy. In the training phase, the critic predicts global value 
based on all agents’ observations and is updated by RL loss 
and graph contrastive loss. The policy is updated by correspond⁃
ing RL loss with the predicted value from the critic. When in 
the execution phase, only the policy is used and it makes deci⁃
sions by solely using agents’ local observation.

3.1 Graph Topology Modeling
To capture the correlation between agents, we consider the 

unique characteristics of distribution networks and construct 
two graph structures, agent-level graph topology G1(V 1,D1 ) 
and bus-level graph topology G2(V 2,D2 ), respectively. Note 
that G represents graph topology, V represents the set of all 
nodes in the graph, and D represents the adjacency matrix 
which indicates how nodes are connected. For instance, if 
node i is connected to node j, Dij equals 1; otherwise, Dij equals 0. As for the agent-level graph topology, every agent is 
modeled as a node. The node set V1 consists of all agents in 
the environment. We devise two types of operations to connect 
edges. The first is the operation of nodes on the same bus 
where all nodes on the same bus are connected with each 
other. Nodes on the same bus form a complete graph. The first 
operation for connecting edges is defined as follows:

D1'
ij = ì

í
î

1,  b (i ) = b ( j )
0,  otherwise  , (2)

where b ( i) denotes the bus, on which node i is located.
The second operation is to connect nodes from the adjacent 

buses. In detail, all nodes on bus i will be connected to the 
nodes on bus j, if bus i and bus j are connected in the distribu⁃
tion network. Different from the first operation, this operation 
makes all nodes on two adjacent buses form a complete bipar⁃
tite graph. The second operation for connecting edges is de⁃
fined as follows:

D1'
ij = ì

í
î

1,  if b (i ) and b ( j ) are adjacent
0,  otherwise . (3)

Then the adjacency matrix obtained from these two opera⁃
tions is taken as the union to form the final adjacency matrix 
for agent-level graph topology:

D1
ij = D1'

ij ∪ D1''
ij . (4)

To sum up, the first operation is to model the relationship of 
all the buildings on the same bus, and the second is to model 

▲ Figure 2. Overview of multi-agent hierarchical graph attention 
(MAHGA), where each agent has one policy and shares the same critic

RL: reinforcement learning
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the relationship of different buildings on adjacent buses.
As for the bus-level graph topology, the agents from the 

same bus are treated as a cluster and thus every bus is mod⁃
eled as a node. The node set V2 consists of all the buses in a 
power distribution network. If two buses are connected in the 
distribution network, the corresponding node is set to be con⁃
nected in G2. The operations for connecting edges are defined 
as follows:

D2
ij = ì

í
î

1,  if i and j are adjacent
0,  otherwise . (5)

For better illustration, we visualize one example of graph to⁃
pology in Fig. 3, where nodes enclosed in the red dotted circle 
are one of the buses and all the agents located on it.
3.2 Hierarchical Graph Attention Architecture

We now present the architecture that exploits the graph to⁃
pology to handle various observations. The pipeline of the ar⁃
chitecture is shown in Fig. 4. The architecture consists of four 
main components: 1) the agent-level attention module that ex⁃
tracts agent-level representations from the agents’ observa⁃
tions based on the agent-level graph topology G1(V 1,D1 ); 2) 
the aggregation layer that clusters the agent-level nodes to⁃
gether and aggregates the representations to the embedding 

from the buses’ point of view; 3) the bus-level attention mod⁃
ule that extracts bus-level representations with the bus-level 
graph topology G2(V 2,D2 ); 4) the readout layer and concatena⁃
tion that scales down the size of representations and aggre⁃
gates the representations from the above two attention layers 
to distill the final representations. The hierarchical character⁃
istics of our architecture are mainly reflected in the different 
graph attention modules and readouts with corresponding pool⁃
ing operations.
3.2.1 Agent-Level Attention Module

We first extract representations from agents’ observations 
through an agent-level attention module using the agent-level 
graph topology mentioned above. Similar to Ref. [19], in graph 
attention networks, the importance of node j’s feature to node 
i is calculated as:

ek
ij = cT(W k


o i ||W k


o j ), (6)

where cT and W k are learnable parameters, k is the k-th head 
among K multi-attention heads, ⋅T represents transposition and 
|| is the concatenation operation. Then, the coefficients com⁃
puted by the attention mechanism is defined as:

αk
i,j = exp ( )LeakyReLU ( )ek

ij

∑
v ∈ N 1i

exp ( )LeakyReLU ( )ek
iv

 
, (7)

where N 1
i  represents the set of node i’s one-hop neighbor 

nodes in the graph topology G1 and the LeakyReLU nonlinear⁃
ity is applied.

Note that the mask graph attention is adopted and only the 
neighbor node is allowed to participate in the node i’s atten⁃
tion coefficient calculations. The final output of node i in the 
attention network is formulated as:


h1i = σ ( 1

K ∑
k = 1

K ∑
j ∈ N 1j

αk
ijW

k

oj )  

, (8)▲Figure 3. Visualized example of agent-level topology and bus-level to⁃
pology in one case

▲Figure 4. An overview of hierarchical graph attention architecture
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where σ represents the softmax nonlinearity. By applying the 
above steps to every node in G1, we can get the agent-level 
representations h1 for all nodes.
3.2.2 Aggregation Module and Bus-Level Attention Module

The implementation of a graph attention network is intrinsi⁃
cally flat, as it only propagates information across the edges of a 
graph. The purpose of this architecture is to define a strategy in 
a power distribution network that allows one to use two or more 
graph attention networks hierarchically to extract representa⁃
tions from the graph structure. Formally, given the input embed⁃
ding, which is the output of the upper network, we seek to de⁃
fine a strategy to output a new coarsened graph embedding.

The new graph embedding contains fewer nodes and node 
connectivity and can then be used as input to another graph at⁃
tention module.

As a result, the aggregation module is designed primarily to 
cluster the agent-level nodes into the classes of buses which 
means that the agent-level embedding h1 will be transformed 
to the bus-level embedding h1' via this module. The aggrega⁃
tion process is demonstrated in the upper part of Fig. 4. Spe⁃
cifically, bus j’s embedding h1'

j  is the calculation of the em⁃
bedding of all the agents situated on bus j.

h1'
j = ϕ ( V 1

v,b ( )v = j (h1
v ) ), (9)

where ϕ denotes the projection function in the aggregation 
module and b(v) indicates the bus where node v is located.

Then, the bus embedding h1' is transformed into the bus rep⁃
resentation h2 through the bus-level attention module with the 
graph topology G2 . The structure of the bus-level graph atten⁃
tion module is similar to that of the agent-level attention mod⁃
ule which utilizes Eqs. (6)–(8) to calculate the representation 
but the topology inserted is G2 .
3.2.3 Readout Layer and Concatenation

Inspired by JK-net architecture[20], which has proposed a 
readout layer that aggregates node features to make a fixed-
size representation, we apply a permutation-invariant read⁃
out layer to an extracted and integrated representation of 
agents. The summarized output feature of the readout layer 
after the agent-level attention module is as follows:


f 1 = 1

||V 1 ∑
i = 1

||V 1

h1
i max ||V 1

i = 1 h1
i , (10)

where ‖ is the concatenation operation. The pooling opera⁃
tion in the readout layer is mainly to distill essential informa⁃
tion of the state into latent representation while dropping re⁃
dundant information.

Similarly, we can obtain the integrated representation f 2 
after the bus-level graph attention module. As shown in Fig. 

4, we apply a readout layer after each attention module. Then 
the concatenation of each readout layer is applied to aggre⁃
gate the features.

h3 = é
ë f1 f2 ù

û. (11)
The final representation h3 is then fed into the linear func⁃

tion to predict the global state value.
3.3 Graph Contrastive Learning

According to the large-scale energy management environ⁃
ment where hundreds of agents lead to a high dimension of 
model input, it can be difficult to learn representations 
through RL objectives as it only depends on reward from the 
environment. Graph contrastive learning, which has proven its 
effectiveness on graph prediction tasks[21], has not yet been ex⁃
plored in reinforcement learning, mainly due to the different 
nature of the problem. Inspired by graph contrastive learning 
already used in graph prediction tasks and image contrastive 
learning used in a pixel-based environments[22], we devise a 
graph contrast learning objective as an auxiliary task in our re⁃
inforcement learning task. The objective is devised mainly to 
stimulate the MAHGA to learn better representation from 
high-dimensional and various observation inputs.

To apply graph contrastive learning to MARL, we first intro⁃
duce augmentations that should be made to the graph. The 
graph augmentation methods include: 1) Observation masking. 
We randomly select agents and mask certain ratios of agents’ 
observations. Observation masking drives models to recover 
masked agent observation using their unmasked information. 
The underlying assumption is that missing partial node attri⁃
butes does not influence the model performance much. 2) 
Edge dropping. It is devised to remove the connectivity in G1 by randomly dropping a certain ratio of edges. It indicates that 
the semantic meaning of G1 has certain robustness to the edge 
connectivity pattern variances. We also follow an independent 
and identically distributed (i.i.d.) uniform distribution to drop 
each edge.

Specifically, given the graph data Zq composed of graph to⁃
pology G1 and observations of all nodes from the training 
batch of the size N, Zq will undergo graph data augmentations 
mentioned above to obtain two correlated graphs Z i

q as a posi⁃
tive pair. The other N–1 graphs in the batch are also aug⁃
mented to generate N–1 augmented graphs. Then, we utilize 
the normalized temperature-scaled cross-entropy loss (NT-
Xent) for graph Zq as:

ln = -log exp ( )Z q
i Ws Z

q
j /τ

∑
k = 1,k ≠ q

N exp ( )Z q
i Ws Z

k
j /τ , (12)

where we employ a bilinear product to evaluate the similarity 

16



ZTE COMMUNICATIONS
September 2023 Vol. 21 No. 3

FENG Bingyi, FENG Mingxiao, WANG Minrui, ZHOU Wengang, LI Houqiang 

Multi-Agent Hierarchical Graph Attention Reinforcement Learning for Grid-Aware Energy Management   Special Topic

of pairwise instances. In the formula, τ denotes the tempera⁃
ture parameter, N denotes the size of the training batch and Ws are learnable parameters. Objective ln will be taken as an aux⁃
iliary task to be jointly optimized with the RL objective. Here 
we select multi-agent proximal policy optimization (MAPPO)[8] 
as the base algorithm to describe the RL objective. Specifi⁃
cally, following the settings in PPO’s clipped surrogate objec⁃
tive[23], we let rt (θ ) be the probability ratio calculated by the 
agent’s policy and Ât be an estimator of the advantage func⁃
tion at timestep t calculated by the global state value. ε is a 
hyperparameter that implicitly restricts Kullback-Leibler (KL) 
divergence[23]. The RL objective lr  is defined as:

lr = min ( rt(θ ) Ât , clip ( rt(θ ) , 1 - ε , 1 + ε) Ât) . (13)

4 Experiments
In this section, we first introduce the experiment setup. 

Then we demonstrate and analyze experiment results about 
overall performance and ablation study. All the experiments 
have been conducted based on the GridLearn open-source 
platform[5] with the IEEE 33-bus system[24].
4.1 Experiment Setup

4.1.1 Data Description
We conduct experiments on four real-world scenarios with 

different climate zones respectively. Each scenario includes 
192 buildings distributed on buses, and the corresponding 
data for the whole year in the specific climate zone[12] (climate 
zone 2A: hot-humid; climate zone 3A: warm-humid; climate 
zone 4A: mixed-humid; climate zone 5A: cold-humid).

For each scenario, we select four months from four different 
seasons for training, as different seasons have quite different 
temperatures, humidity, solar radiation, and users’ energy de⁃
mands, which probably leads to different control strategies. 
The four training months are mixed and used to train algo⁃
rithms until convergence. The rest eight months are used for 
testing. Each month containing 2 880 timesteps is regarded as 
an episode. The training phase lasts sixteen episodes and each 
experiment is conducted using 5 random seeds. After the train⁃
ing phase, we evaluate the learned strategy on the test dataset.
4.1.2 Comparison Algorithms

The methods that we evaluated include rule-based control 
(RBC), independent advantage actor-critic (IA2C), indepen⁃
dent proximal policy optimization (IPPO), multi-agent advan⁃
tage actor-critic (MAA2C), and MAPPO. Specifically, RBC de⁃
vised by the used environment[5, 12] makes decisions mainly 
based on the time of day. For example, at 6 a.m., the battery 
charges and the charge value is 0.138 3. Most of the devices 
will choose to discharge in the daytime and early evening, and 
charge at night. The IA2C and IPPO are actor-critic algo⁃

rithms that directly apply single-agent reinforcement learning 
algorithms A2C[25] and PPO[23] to MARL. All agents are com⁃
pletely independent. The critic network approximates the ex⁃
pected return only depending on agent-specific observation. 
MAA2C and MAPPO[8], as an extension of A2C and PPO, are 
actor-critic algorithms but are in the CTDE paradigm. As ex⁃
tensions of independent algorithms, their critic learns a joint 
state value function where this centralized critic conditions on 
all agents’ observations rather than the individual observa⁃
tion. And their actor can only use local observation to generate 
actions same as IA2C and IPPO. In contrast to MAA2C, 
MAPPO’s main advantage is its combination of on-policy opti⁃
mization with its surrogate objective function.
4.1.3 Evaluation Metrics

Following the evaluation settings in GridLearn[5], we use 
four metrics to evaluate the performance of algorithms. For 
better demonstration, we name these four metrics as follows.

1) The number of soft voltage violations (NSVV). It calcu⁃
lates the number of all buses’ voltage that is not under control 
within the soft safe range. Note that the soft safe range of volt⁃
age is between 0.96 p.u. and 1.04 p.u.

2) Soft reduction rate (SRR). It calculates the proportion of 
the algorithm to reduce the number of voltages compared with 
the rule-based control strategy with the soft safe range. Specifi⁃
cally, for the learned algorithm C, SRR is defined as:

SRRC = NSVVRBC - NSVVCNSVVRBC , (13)
where NSVVRBC and NSVVC represent the number of soft volt⁃
age violations using the rule-based control and the learned al⁃
gorithm C.

3) The number of hard voltage violations (NHVV). It calcu⁃
lates the number of all buses’ voltage that is not under control 
within the hard safe range. Note that the hard safe range of 
voltage is between 0.97 p.u. and 1.03 p.u.

4) Hard reduction rate (HRR). It calculates the proportion 
of the algorithm to reduce the number of voltages compared 
with the rule-based strategy with the hard safe range. Similar 
to SRR, for the learned algorithm C, HRR is defined as:

HRRC = NHVVRBC - NHVVCNHVVRBC
 , (14)

where NHVVRBC and NHVVC represent the number of hard 
voltage violations using rule-based control and the learned al⁃
gorithm C.

Note that NSVV and NHVV evaluate how the algorithm can 
do to prevent the voltage of all buses from getting out of the 
safe range, and the lower number represents the better. SRR 
and HRR describe how much performance the algorithm can 
enhance compared with the rule-based control method and the 
higher represents the better. There are two safe voltage ranges: 
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the soft one and the hard one. The hard range is a more chal⁃
lenging one to evaluate algorithms’ performance. Exceeding 
the safe range frequently will cause lots of problems such as 
equipment damage and regional power outages.
4.2 Overall Performance

Table 1 reports the median NSVV, SRR, NHVV, and HRR 
of all algorithms. HMAA2C and HMAPPO refer to MAA2C 
and MAPPO applied with MAHGA. As shown in the table, our 
MAHGA framework improves MAA2C and MAPPO and is su⁃
perior to all other baseline algorithms on four different sce⁃
narios concerning four metrics. Owing to the CTDE paradigm 
and the better learned representations correlative to the grid-
aware energy management task, HMAPPO and HMAA2C 
achieve the best performance among all other algorithms. 
These two algorithms reduce the number of voltage violations 
significantly and increase the reduction rate considering both 
the soft safe range and the hard safe range.

CTDE algorithms, like MAPPO and MAA2C, all perform 
better compared with independent learning algorithms like 
PPO and A2C. This proves that centralized critic integrating 
all agents’ observations to have a global perspective can as⁃
sist agents to implicitly learn better cooperation. Furthermore, 
HMAPPO and HMAA2C consistently perform better than 
MAPPO and MAA2C, which validates that MAHGA can make 
further improvements and motivate the agent to learn a better 
policy in multiple ways. More analysis of MAHGA will be dis⁃
cussed in an ablation study. As RBC is a well-crafted strategy, 
independent learning algorithms only show slightly better per⁃
formance, especially in climate zone 4A.
4.3 Ablation Study

In this section, we conduct an ablation study on MAHGA to 
further verify the significance of each component. As MAPPO 
performs better in most scenarios than MAA2C, we choose 
MAPPO as a representative algorithm to conduct ablation ex⁃
periments. And the experimental result that MAPPO outper⁃

forms PPO according to Table 1 shows that cooperation is im⁃
plicitly learned and plays an important role in decision making. 
The following variants of HMAPPO are evaluated on all sce⁃
narios: 1) HMAPPOS removes the hierarchical graph atten⁃
tion architecture but uses a single graph attention network 
with the corresponding readout layer so as to only extract the 
agent-level representations from the graph attention network; 
2) HMAPPOC removes the auxiliary task of graph contras⁃
tive learning. As can be seen in Fig. 5, removing any compo⁃
nent will cause performance degradation. If we do not con⁃
sider extracting representations from the bus-level topology, 
the performance will be significantly degraded. If the bus 
level and agent level are neither considered, where the algo⁃
rithm is the original MAPPO, the algorithm will suffer from a 
large state space where all agents’ observations are concat⁃
enated and are unaware of the two topologies, which finally 
leads to low performance. Moreover, introducing attention 
mechanisms into graphs can implicitly let agents learn how 
to make decisions with the surrounding agents of different 
types. These demonstrate that the application of a hierarchi⁃
cal graph attention framework in grid-aware energy manage⁃
ment tasks is significantly effective. Besides, we can observe 
that removing auxiliary tasks of graph contrastive learning 
will also lead to performance degradation, which indicates 
that graph contrastive learning can assist the framework to 
learn representations better.
5 Related Work

1) Multi-agent reinforcement learning in power systems. Re⁃
cently, efforts have been made to apply reinforcement learning 
to power systems for voltage regulation and energy manage⁃
ment due to the progress of machine learning. Ref. [2, 26–
27] introduce reinforcement learning in the active voltage con⁃
trol tasks. These works have considered managing a small 
number of agents and optimizing only reactive power compo⁃
nents. In Refs. [2, 26], the load is inflexible and only the PV 

▼Table 1. Overall performance on four scenarios, where HMAA2C and HMAPPO refers to MAA2C and MAPPO applied with multi-agent hierarchi⁃
cal graph attention (MAHGA) (↓ denotes the lower the better, and↑ denotes the higher the better)

RBC
A2C
PPO

MAA2C
MAPPO

HMAA2C

HMAPPO

Climate Zone 2A
NSVV↓
86 181
79 905
79 601
73 264
73 919
64 516

63 320

SRR↑
0.0%
7.3%
7.6%

15.0%
14.2%
25.1%

26.5%

NHVV↓
158 736
154 662
153 849
139 654
139 210
125 497

123 116

HRR↑
0.0%
2.6%
3.1%

12.0%
12.3%
20.9%

22.4%

Climate Zone 3A
NSVV↓
110 902
101 102
100 954
89 423
88 236
78 158

77 724

SRR↑
0.0%
8.8%
9.0%

19.4%
20.4%
29.5%

29.9%

NHVV↓
193 751
185 201
184 365
162 249
160 345
146 392

145 946

HRR↑
0.0%
4.4%
4.8%

16.3%
17.2%
24.4%

24.7%

Climate Zone 4A
NSVV↓
83 648
81 648
81 224
74 569
74 126
63 105

62 865

SRR↑
0.0%
2.4%
2.9%

10.9%
11.4%
24.6%

24.8%

NHVV↓
162 076
158 902
155 645
144 274
144 316
122 568

121 829

HRR↑
0.0%
2.0%
4.0%

11.0%
11.0%
24.4%

24.8%

Climate Zone 5A
NSVV↓
106 823
93 365
92 920
79 369
78 314
60 766

59 887

SRR↑
0.0%

12.6%
13.0%
25.7%
26.7%
43.1%

43.9%

NHVV↓
195 277
174 671
173 997
154 786
150 322
127 494

125 386

HRR↑
0.0%

10.6%
10.9%
20.7%
23.0%
34.7%

35.8%

A2C: advantage actor critic
HMAA2C: multi-agent advantage actor critic applied with MAHGA
HMAPPO: multi-agent proximal policy optimization applied with MAHGA
HRR: hard reduction rate

MAA2C: multi-agent advantage actor critic
MAPPO: multi-agent proximal policy optimization
NHVV: number of hard voltage violations
NSVV: number of soft voltage violations

PPO: proximal policy optimization
RBC: rule-based control
SRR: soft reduction rate
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inverter can be controlled. In Ref. [27], demand is regarded to 
be constant. CityLearn[12] is a platform that satisfies residential 
energy demands by controlling various shiftable components 
inside buildings. This environment has been widely used 
mainly to experiment with various reinforcement learning algo⁃
rithms and their improvements, in comparison with reinforce⁃
ment learning baselines and rule-based control. Besides, 
GridLearn[5], as an extension of CityLearn, considers both the 
grid-level and building-side objectives and introduces a more 
realistic environment where hundreds of agents are involved, 
and agents should control multiple components with corre⁃
sponding resources to stabilize voltage in a power distribution 
network after satisfying the residential energy demand. 
IA2C[25] and IPPO[23] are used, which shows some effective⁃
ness compared with the rule-based control method. In our pa⁃
per, all experiments are conducted based on GridLearn. Apart 
from the power system field, in game-like environments, works 
have been proposed to better motivate the cooperation of 
agents, such as MAA2C and MAPPO[8], and they have shown 
good performance in some multi-agent game-like environ⁃
ments. Another approach to achieving agents’ cooperation is 
to learn communication among multiple agents[28–30]. How⁃
ever, such approaches always lead to high communication 
overhead because of the large amount of information transfer.

2) Graph neural networks (GNNs) have been applied suc⁃
cessfully to solve prediction and classification tasks in many 
real-world applications, including recommender systems, 
chemistry and bioinformatics[21, 31–32]. However, GNN has not 

yet been fully explored 
in MARL, mostly due to 
the different nature of 
the problem. Former 
works in Refs. [33–35] 
attempt to apply GNN to 
extract better represen⁃
tations from agents in 
game-like environments 
and Ref. [35] considers 
the unique nature of 
competitive games to ex⁃
tract information hierar⁃
chically. Their methods 
show encouraging per⁃
formance with a few 
agents in games.

However, it is not yet 
clear whether MARL 
with GNN can still 
achieve competitive per⁃
formance if applied to 
fully cooperative tasks 
with large-scale agents 
in real-world applica⁃

tions such as power systems. In the smart grid field, there are 
few works related to GNN. In Refs. [36– 37], mask mecha⁃
nisms and graph convolutional networks are applied to regu⁃
late voltage in single-agent reinforcement learning tasks.
6 Conclusions and Future Work

In this paper, we propose MAHGA, a novel multi-agent re⁃
inforcement learning framework for grid-aware energy manage⁃
ment. Specifically, we first resolve the problem with the CTDE 
paradigm aiming to stimulate agents to learn cooperation strat⁃
egy. Then, depending on modeling the distribution network to 
two different kinds of topology, we propose a hierarchical at⁃
tention architecture to better extract agents’ correlations from 
high-dimensional environment and capture the characteristics 
of grid. In addition, graph contrastive learning is designed to 
learn a more effective representation in the reinforcement 
learning training phase. Extensive experiments on four large-
scale real-world scenarios have demonstrated the effective⁃
ness of MAHGA where voltage violations can be significantly 
reduced compared with other baselines.

In our future work, we will explore the generalization over 
different climates and grid topologies, as well as the possibil⁃
ity of adding more energy control components that buildings 
can control, like electric vehicles.
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