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Abstract: Brain-computer interfaces (BCI) use neural activity as a control signal to enable direct communication between the human brain 
and external devices. The electrical signals generated by the brain are captured through electroencephalogram (EEG) and translated into neu‑
ral intentions reflecting the user 􀆳s behavior. Correct decoding of the neural intentions then facilitates the control of external devices. Rein‑
forcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals (rewards) from the environment, building 
a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments. However, using traditional 
reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization. Therefore, in this paper, we 
use deep reinforcement learning to construct decoders for the correct decoding of EEG signals, demonstrate its feasibility through experi‑
ments, and demonstrate its stronger generalization on motion imaging (MI) EEG data signals with high dynamic characteristics.
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1 Introduction

Brain-computer interface (BCI) offers the possibility of 
direct communication between the human brain and 
external devices that perform operational tasks[1]. Re‑
searchers capture the electrical signals generated by 

the brain through the electroencephalogram (EEG) and con‑
vert them into neural intentions, which will be correctly de‑
coded and used to control external devices, such as wheel‑
chairs, robotic arms, and automatic vehicles[2–4]. Among other 
things, the correct decoding of the neural intention is a crucial 
step toward this goal, and the correct interpretation of brain ac‑
tivity can provide the external device with the required com‑
mands so that it can perform expected tasks. Within the differ‑
ent EEG systems, the motor imagery (MI) BCI[5–6] is a very 
flexible EEG paradigm, which can be used to distinguish be‑
tween different intracerebral instructions and to control exter‑
nal devices to execute commands by “what is in mind”.

Many methods based on traditional machine learning have 
been used for MI decoding and feature extraction. Among 
them, filter bank common spatial patterns (FBCSP) [5, 7] based 
on the characteristics of common spatial patterns (CSP) have 
achieved good performance. And some researchers have inves‑

tigated an improved feature extraction method based on CSP 
to further improve the performance of BCI system[8–9]. In addi‑
tion, linear discriminant analysis (LDA), support vector ma‑
chines (SVM), etc., are used to find a projection or hyperplane 
to separate different categories by analyzing feature distribu‑
tion[10–11]. Due to the limited spatial resolution, low signal-to-
noise ratio (SNR), and high dynamic characteristics of MI, as 
well as the existence of a large amount of noise in EEG sig‑
nals, the extraction of robust features from EEG data is a cru‑
cial step for the successful implementation of BCI. In recent 
years, the success of deep learning methods has alleviated the 
need for manual feature extraction to a large extent. As a re‑
sult, many scholars have explored the application of deep 
learning in EEG signals. For example, the multi-layer percep‑
tron (MLP) was used to correctly classify EEG signals[12]. 
Since convolutional neural networks (CNNs) can perceive mul‑
tiple small domain features with the convolution process pro‑
ceeding layer by layer and can automatically extract rich fea‑
tures to obtain a depth representation, many studies have tried 
to use CNNs into BCI to build end-to-end EEG decoding mod‑
els and achieved good performance[13–14].

Supervised learning is a popular paradigm to implement 
BCI, but it requires an explicit supervised signal to learn. 
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Even so, frequent calibration (retraining) is necessary due to 
the plasticity of the brain. Therefore, some scholars have fo‑
cused on developing an adaptive BCI architecture that allows 
interaction with a dynamic environment[15–17], where BCI us‑
ers learn by trial-and-error to adjust their brain activity to the 
decoder by observing how the external device performs the 
task (using feedback information). Among them, reinforcement 
learning (RL) [18] is the general framework that makes the sys‑
tem adapt to the new environment. It is an interactive learning 
paradigm that can improve policies through constant interac‑
tion with the environment, aiming to learn the best mapping re‑
lationship from the environmental state to the action. Thus, an 
RL-based BCI framework is explored, which provides a gen‑
eral framework for constructing dynamic mappings from neu‑
ral intentions to actions adapted to changing environments, re‑
quiring only a scalar signal (reward) feedback from the envi‑
ronment to strengthen the decoder to complete the task, rather 
than a specific permanently available supervisory signal[19]. At 
the same time, an RL-based BCI architecture is a more reason‑
able learning solution to those patients unable to produce pre‑
cise limb movements. In this case, they only need to under‑
stand which action will yield the greatest return when reach‑
ing the goals in their environment.

Multiple studies have shown that RL can be used in the rat 
EEG signal[20–21] and neuronal activity to control the basic 
BCI system[19, 22]. DIGIOVANNA et al.[19] first proposed a Q(λ)-
learning algorithm with the temporal difference (TD) error in 
an RL-based BCI paradigm, which experimentally trained rats 
to control prostheses in a two-target selection task. Further‑
more, SANCHEZ et al.[23] applied Q(λ)-learning to predict one-
step actions, extending the RL-based BCI framework to pri‑
mates performing center-out tasks. In addition, the BCI para‑
digm using RL has been successfully applied to closed-loop 
experiments of intracortical signals in monkeys[24–25]. BAE et 
al. [26] combined the kernel temporal differences (KTD) (λ) al‑
gorithm with the Q-learning algorithm to obtain a reinforce‑
ment learning-based neural decoding algorithm (Q-KTD), and 
the feasibility of this method for BCI decoding was demon‑
strated in a center-out extension task of intracortical signals in 
monkeys. THAPA et al. [27] further investigated the applicabil‑
ity and feasibility of Q-KTD in an EEG-based BCI system, 
demonstrating that the Q-KTD algorithm can correctly learn 
the mapping between neural intentions in EEG signals and ex‑
ternal device control commands. However, there are still some 
challenges in EEG-based RL interface using Q-KTD: 1) The 
number of kernel units increases with the number of samples; 
2) the curse of dimensionality limits the decoding capability of 
the Q-KTD algorithm; 3) the Q-KTD decoding technique 
based on Q-Learning has a generalization problem and re‑
quires a long training time.

To overcome the above problems, this paper proposes to use 
double deep Q-network (DDQN), a deep reinforcement learn‑
ing algorithm, to decode EEG. DDQN[28], as a variant of deep 

Q-networks (DQN) [29], uses a neural network to approximate 
the value function and takes into account the generalization 
while dealing with high-dimensional inputs. In addition, the 
dual-value network architecture of DDQN can effectively sup‑
press the influence of overestimation of action values on the 
decision-making process and is robust to EEG signals that 
may have random interference.

In section 2, this paper introduces the DDQN algorithm and 
the basic paradigm based on reinforcement learning brain-
computer interface. In section 3, the EEG decoder based on 
DDQN is described and the network structure diagram is 
given. In section 4, the feasibility and advantages of DDQN 
for EEG signal decoding are verified by comparative experi‑
ments. In section 5, this paper is summarized, and the pros‑
pect of future research is discussed.
2 Preliminary

This paper mainly adopts DDQN to perform the end-to-end 
decoding operation of EEG, and the related concepts and ba‑
sic knowledge are introduced as follows.
2.1 Reinforcement Learning

RL is a learning framework for dealing with sequential deci‑
sion problems, which can usually be modeled as a Markov De‑
cision Process (MDP) that can be represented by a five-tuple 
(S, A, P, R, γ ), where:
1) S denotes the state space and st ∈ S represents the state of 
the agent at the moment t;
2) A denotes the action space and at ∈ A represents the action 
executed by the agent at time t;
3) P: S × A × S → [ 0, 1 ] denotes the state transition probabil‑
ity, and P ( st + 1| st, at ) denotes the probability that the agent 
executes the action at in state st to the next state st + 1;4) R: S × A → R denotes the reward function and R ( st,  at ) represents the immediate reward obtained by the agent by ex‑
ecuting the action at in the state st;5) γ ∈ [ 0, 1 ] is the discount factor used to balance immediate 
and delayed rewards.

The action selection of an agent in reinforcement learning 
obeys the policy π, which is expressed as the mapping rela‑
tionship π: S → A between the state and the executable ac‑
tion of the agent. RL algorithms can be classified into two cat‑
egories, policy-based and value-based methods. In the value-
based RL method, the policy will not be updated explicitly, 
but a value table or value function is maintained, and new 
policies are derived from this value table or value function. 
The state-action value function is Qπ: S × A → R. Qπ( st, at ) 
represents the expected cumulative reward obtained by the 
agent executing action at in state  st  and following the cur‑
rent policy π until the end of the episode, which can be ex‑
pressed as:

Qπ( st, at ) = Eπ{∑t
γt R ( st, π ( st ) ) | st = s,  at = a }. (1)
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The ultimate goal of the agent is to learn an optimal policy 
π*, and the value function obtained under the optimal policy 
satisfies the Bellman optimality equation: V *( st ) =
max
a ∈ A

 Q* ( s, a ), i.e., the optimal value of the state is equal to the 
expected cumulative reward obtained by taking the optimal ac‑
tion in that state, and the optimal policy can be obtained from 
π* ∈ argmax

a
 Q* ( s, a ).

Q-learning is an RL algorithm based on value iteration, 
which directly estimates the optimal state-action value func‑
tion Q*. It updates the Q-function by the following rule:

Q ( st, at ) ← Q ( st, at ) + α (R ( st, at ) +
 γ max

a
 Q ( st + 1, a) - Q ( st, at ) ) , (2)

where st + 1 represents the next state reached by the agent ex‑
ecuting action at in state  st , and α ϵ [ 0, 1 ] represents the 
learning rate. A common approach to deriving a policy based 
on the Q-function is the ε‑greedy policy, which selects an ac‑
tion greedily with the probability of 1 - ε based on the Q-
function and performs any action randomly with the probabil‑
ity of ε. This facilitates the exploration of the agent in the envi‑
ronment and avoids falling into a local optimum.
2.2 Double Deep Q⁃Networks

When the state space is large or continuous, it is impractical 
to directly use the tabular Q-function for storing the values of all 
state-action pairs. A common solution is to approximate the Q-
function using a function approximator, e. g., Q ( st, at ) ≈
Q ( st, at, θ ), where Q ( st, at, θ ) represents the parametrized ap‑
proximation of the Q-function. Specifically, DQN is a method 
that approximates the state action value function by the Q-
learning algorithm through a neural network. In DQN, deep 
learning and reinforcement learning are combined through a con‑
volutional neural network to approximate the state action value 
function, and high-dimensional states can be input, which solves 
the dimensional disaster problem faced by traditional Q-learning.

In the traditional Q-learning algorithm and DQN algorithm, 
directly selecting the action with the maximum Q value may 
cause the Q-value overestimation problem, which leads to 
over-optimistic estimation. DDQN[28] separates action selec‑
tion and action value evaluation to avoid the overestimation 
problem. Like DQN, DDQN has two important ideas: the tar‑
get network and experience replay mechanism. At each time 
step t in DDQN, the agent executes action  at  in current state 
 st  based on the current policy, receives the reward R ( st , at ), and transforms to the next state  st + 1 . The transition 
( st , at , R ( st , at ),  st + 1 ) is added to the experience pool D. The 
neural network parameters are continuously updated by a gra‑
dient descent minimization loss function. The neural network 
parameters are continuously updated by minimizing the loss 

function through gradient descent, where the loss function is 
expressed as the mean square error between the target value 
and the evaluated value, which is defined as:

L (θ ) = E ( st , at , R ( st , at ),  st + 1 ) [ ( yDQN - Q ( st , at ; θ ) ) 2 ] , (3)
where the target value yDQN is defined as:

yDQN =  R ( st , at ) +  γ max
a'

 Q ( st + 1, a' ; θ- ) . (4)
In Eqs. (3) and (4), θ denotes the online network param‑

eters, θ- denotes the target network parameters. Q ( st, at ; θ ) 
denotes the online network output, and Q ( st, at ; θ- ) denotes 
the target network output, which is used to calculate the target 
value, where the target network has the same structure as the 
online network, except that its parameter values are replicated 
from the online network without τ steps, and the parameter 
representations of the target network remain unchanged dur‑
ing τ time steps.

The idea of DDQN is to decouple the action of selecting the 
maximum value in the target value and evaluating the value of 
the action, thus avoiding the problem of overestimation. 
DDQN uses the target network in DQN as the network for 
evaluation, without having to introduce an additional network. 
Therefore, in DDQN, the action is selected using the current 
Q-network, and then its value is evaluated using the target net‑
work. Its target value yDDQN is:

yDDQN =  R ( st , at ) +  γQ ( st + 1, arg max
a

 Q ( st + 1, a ;  θ) ; θ-). (5)
The difference between DDQN and DQN is that the selec‑

tion of the optimal action in DDQN is based on the online net‑
work Q with parameter θ, whereas the selection of the optimal 
action in DQN is based on the target network with parameter 
θ-. VAN HASSELT et al.[28] have experimentally demonstrated 
that compared with DQN, DDQN can effectively reduce over‑
estimation and obtain more stable learning.
2.3 Reinforcement Learning Brain Computer Interfaces

In recent years, RL has become a significant research inter‑
est in artificial intelligence. Through trial and error, the RL 
agent must discover which actions yield the maximum ex‑
pected reward. Thus, the RL-based BCI attempts to allow BCI 
control algorithms to learn to complete tasks from interactions 
with the environment rather than explicit training signals. In 
fact, for many patients using BCI, the only signals available 
are their internal brain intention to complete the motor task 
and external feedback after completing the task, as opposed to 
specific supervised signals. The RL-based BCI attempts to 
learn a control policy by which, at any time t, the neural de‑
coder observes a neural state st ∈ S, and the neural decoder 
outputs an action at ∈ A based on the current policy, which 
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generates a control signal to the external device. After the ex‑
ternal device completes the action, the neural decoder receives 
a feedback signal Rt. In future tasks, the neural decoder uses 
this feedback to continuously adjust the policy, which learns 
the optimal function mapping of the neural state to the action di‑
rectly. The decoding structure is shown in Fig. 1.
3 DDQN-Based EEG Decoder

An EEG signal decoder based on the Q-KTD RL algorithm 
provides the possibility of continuous learning of BCI, but its 
generalization is not negligible for a continuously useful de‑
coder. Therefore, we try to use DDQN to decode the EEG sig‑
nal correctly in this paper.

For the decoding task of EEG signals, a BCI decoder is con‑
sidered a reinforcement learning agent, and the decoding of 
EEG signals is modeled as a common center-out task for BCI, 
associating the class of MI data with a specific direction, mod‑
eled as a single-step reinforcement learning problem, as 
shown in Fig. 2. A reinforcement learning environment lo‑
cated at the center of the origin (0, 0) with a radius of 1 is set 
up. In the center-out task, the reinforcement learning agent 
(the green square in Fig. 2) is located at the center of the ori‑
gin (0, 0) at the beginning of each trial. By decoding each 

trial’s MI data, the BCI decoder generates a specific action
(one of up, down, left, and right), and the agent (located at the 
origin position (0, 0)) moves a distance of length 1 in the corre‑
sponding direction to a corresponding location (one of the 
purple circles in Fig. 2), and then receives an immediate re‑
ward based on the location reached by the agent. This paper 
uses a double deep Q-networks algorithm to train the agent to 
obtain a BCI decoder to decode EEG signals correctly.

The state vector of DDQN is the EEG signal, and the agent 
takes action based on the current state. The optional action of 
the agent is the same as the label set of the EEG signal. Ac‑
cording to the label information of the EEG signal, the feed‑
back from the environment can be received, and the reward of 
the environment feedback contains two values of −1 and 1. If 
the current action performed by the agent is consistent with 
the label of the EEG signal, the environment feeds a positive 
reward value. Otherwise, the environment provides a negative 
value to the agent. The pseudocode of the algorithm is given 
by Algorithm 1. Moreover, we give the network architecture of 
the DDQN-based EEG signal decoder in Fig. 3.
Algorithm 1. DDQN-based EEG decoding
Input: the empty replay buffer D, initial network parameters θ, 
copy of θ θ-, EEG signal sequences X, the training batch 
size Nb, explore probabilistic decay frequency Nε, and target 
network replacement frequency N-.
Output: action at

For episode=1 to M do
Randomly initialize EEG signal sequences X
If episode mod Nε = 0
    ε = ε ×  RLepsilonDecayRate
End if
For t=0 to T do
       Set state st← X and select action at based on the ε-
greedy policy
       Execute action at and observe reward rt        Store (st, at, rt, st + 1) in D
        Sample a minibatch of Nb tuples ( s, a, r, s') ~ Unif (D)
        Construct target values, one for each of the Nb tuples:
y DDQN

j = ì
í
î

ïï

ïïïï

                             rj ,                 if   sj + 1 is terminal
rj +  γQ ( )st + 1, arg max

a
 Q ( )st + 1, a ;  θ ; θ- ,  otherwise

        Do a gradient descent step with loss ‖yDDQN
j -

Q ( sj, aj ;  θ )‖2

        Replace target parameters θ- ← θ every N- steps
End

End

4 Experimental Analysis

4.1 Experimental Data
We conducted experiments on two publicly available data 

sets: Nature’s Scientific Data[30] and BCI Competition IV-2a 

BCI: brain-computer interface      EEG: electroencephalogram
▲Figure 1. Reinforcement learning (RL)-based BCI decoding structure

▲Figure 2. (a) Classical dataset and (b) BCI Competition IV-2a (BCI-
2a) dataset are set to a center-out task. The center is located at the ori⁃
gin (0, 0), represented by a green square, and each class target is a 
purple circle
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(BCI-2a)[31].
1) Experiment on Nature’s Scientific Data: 21 electrodes 

were used to record EEG data from 13 healthy subjects, in‑
cluding 8 males and 5 females. This data set provided five dif‑
ferent BCI paradigm data sets to imagine the movement of dif‑
ferent body parts, such as the left hand, the right hand, or dif‑
ferent finger movements. Among these available EEG data 
sets, we considered the first classical motor imagination data‑
set (Classical, CLA). The CLA dataset consisted of three types 
of motor imagination data using EEG signals, corresponding to 
left-hand movement, right-hand movement, and maintaining 
neutrality respectively. That is, the participants did not imag‑
ine anything. Six subjects in the CLA data were considered, 
specific to A to F subjects, since the “CLASubjectF1509163
StLRHand” data file contained only two category labels and 
was therefore not considered. The sampling frequency of the 
EEG signal was 200 Hz, and each collected data file con‑
tained 15 min sessions. Each 15-minute session included 300 
trials. The total time of each trial was 3 s, which started with a 
one-second motion MI cue, and each trial lasted 1.5–2.5 s.

2) Experiment on BCI Competition IV-2a: This dataset is a 
publicly available dataset for BCI Competition IV, which is de‑
scribed in detail by TANGERMANN et al.[31] for the data char‑
acteristics of the competition. The BCI-2a dataset, which re‑
corded EEG data from nine subjects using 22 electrodes, pro‑
vided four different types of motor imagination data: left-hand 
movement, right-hand movement, exercise of both feet, and 
tongue movement imagination. The EEG signal was sampled 
at a frequency of 250 Hz, and the data for each subject con‑
sisted of two files, each consisting of six EEG recording blocks 
containing 48 trials, for a total of 576 trials.
4.2 Experimental Methods

The collection of the CLA data set is to extract the brain 
imagination data of 21 channels continuously for 0.85 s at a 
sampling frequency of 200 Hz, starting from the action stimu‑
lus for each subject[30]. For the BCI-2a dataset, some research‑
ers have tried to use a relatively large window (about 3 s to 4 s) 
for their studies[32–33], but a relatively small window is more re‑
alistic for online BMI[27]. Therefore, the proposed method uses 

a 0.85-second EEG window to decode subjects’ motor images. 
We first cropped the 0.85-second EEG signal at [0, 0.85] after 
the beginning of the trial for CLA and at [2, 2.85] after the be‑
ginning of the visual cue for BCI-2a. The CLA data consists of 
21 channels, where the number of samples in each channel is 
170 (the same as sampling frequency 200 Hz × 0.85 s), and 
the BCI-2a data set has a total of 22 channels, in which the 
number of samples per channel is 213 (about sampling fre‑
quency 250 Hz × 0.85 s).

For the CLA dataset, we evaluated the performance of the 
EEG signal within 0.85 s by dividing it into a training set and 
a test set, respectively, and as in Ref. [27], we executed 10 
Monte Carlo trials at 100 episodes, and in each trial, the se‑
quences of the trials were randomized. The performance was 
observed on the training set based on the success rate of the 
trials, which was calculated as the ratio of the number of suc‑
cessful trials at each step to reach the specified goal to the to‑
tal number of trials considered. For the BCI-2a dataset, the 
performance was evaluated directly based on the existing 
training and test sets of each subject. In DDQN, we adopted 
the ε-greedy method for the exploration strategy, where the ex‑
ploration probability of the intelligence was set to ε = 0.1 at 
the beginning of the trial and decays every 20 episodes, with 
each exploration probability decaying to half of the original 
one, so that the agent would be more inclined to be exploited 
as the trial progressed.
4.3 Feature Extraction

In order to illustrate the advantages of DDQN for EEG de‑
coding, this paper compares the DDQN algorithm with classi‑
cal supervised learning algorithms (the SVM, decision tree, 
and random forest) and the Q-KTD algorithm based on tradi‑
tional reinforcement learning. In order to make the experiment 
more convincing, we follow the feature extraction approach in‑
troduced in Ref. [27] to construct Features 1 and 2, which is 
constructed as follows :

Feature 1: In order to obtain the complete information held 
in the EEG data, Feature 1 was extracted by first cropping the 
EEG signal data for 0.85 s, and then concatenating each chan‑
nel of the cropped data as one motor imagery state vector for 

▲Figure 3. Network structure of electroencephalogram (EEG) signal decoder based on double deep Q-network (DDQN)
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each experiment. For example, for the BCI-2a dataset which 
has 22 channel numbers, each channel has 213 samples, so 
the size of the motion imagery state vector in each experiment 
is 4 686 (equal to 213 samples × 22 channels). Alternatively, 
for the CLA data, which has 21 channels, each channel con‑
tains 170 samples, so the size of the state vector in each experi‑
ment is 3 570 (equal to 170 samples × 21 channels).

Feature 2: It has been proved that EEG signals contain fre‑
quency information[34], therefore, this paper adopts the same 
way as Ref. [27] to extract the frequency information as Feature 
2. For the dataset BCI-2a and CLA 
dataset, firstly, the fast Fourier trans‑
form is performed on the EEG data 
with a cropped duration of 0.85 s, 
and then the selected complex fre‑
quency components correspond to 
the real and imaginary values, re‑
spectively. For the BCI-2a data, the 
real and imaginary values of the 
transformed 0 – 15 Hz were used 
for frequency classification, yield‑
ing a 550 dimensional feature state 
vector for each experiment. For the 
CLA dataset, using the frequency 
components between 0 – 5 Hz, a 
complex frequency feature with 5 
dimensions of real values and 4 di‑
mensions of imaginary values for 
each channel is obtained, and the 
components for each channel are 
concatenated to obtain a feature 
state vector with a dimension of 189 
(equal to 9 × 21 channels).
4.4 Experimental Results and 

Analysis
Firstly, the reinforcement learn‑

ing agent is trained on the CLA and 
BCI-2a training sets, respectively, 
and its learning curve is observed. 
Fig. 4 shows the learning curves of 
the first subject on each of the two 
datasets. The learning curves show 
that the DDQN algorithm can cor‑
rectly learn the correct mapping of 
EEG signals to actions directly in 
the MI center-out task with full 
learning by the agent as the experi‑
ment progresses.

Secondly, the generalization ef‑
fect of the DDQN algorithm on the 
test set was compared with that of 
the traditional supervised learning 

algorithms (the SVM, decision tree, and random forest) and 
the Q-KTD algorithm. The result was shown in Fig. 5. For the 
same EEG data set, under different feature extraction, the gen‑
eralization effect of DDQN algorithm on EEG decoding was 
significantly better than Q-KTD algorithm. Moreover, due to 
the small sample size and high dynamic characteristics of 
EEG signals, the classification performance of traditional su‑
pervised learning algorithms is poor, compared with DDQN-
based EEG decoding.

Thirdly, the running time of DDQN and Q-KTD algorithms 
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▲ Figure 5. The generalizability of DDQN is compared with other classical algorithms for decoding 
based on Feature 1 (left) and Feature 2 (right) on the (a)(b)BCI-2a dataset and (c)(d) Classical (CLA) 
dataset, respectively
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is compared when training the agent, and the learning time of 
the agent under the two datasets is shown in Tables 1 and 2. 
According to the results, it is clear that the agent using DDQN 
learns much faster compared with the Q-KTD algorithm using 
Feature 1, and the learning time is not much different from 
the Q-KTD algorithm using Feature 2. However, the general‑
ization of DDQN is much better than the Q-KTD algorithm.

Finally, in order to reflect the stability of decoding based on 
the deep reinforcement learning algorithm, we conducted 10 
repeated experiments under different random seeds, and de‑
scribed their mean and standard deviation. The experimental 
results are shown in Fig. 6.
5 Conclusions

This paper investigates the applicability and feasibility of 
the deep double Q reinforcement learning algorithm in the 
brain-computer interface. We use two different EEG signal da‑
tasets and evaluate the performance of DDQN on both the da‑
tasets. The experimental results show that DDQN performs 
well in the correct decoding of EEG signals and has better gen‑
eralization. This indicates that deep reinforcement learning 
can learn the correct decoding of EEG signals through feed‑
back signals and has better generalization than the Q-KTD re‑
inforcement learning algorithm. In the future, we will investi‑
gate further applications of deep reinforcement learning in 
EEG signals.
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