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Abstract: The emerging new services in the sixth generation (6G) communication system impose increasingly stringent requirements and 
challenges on video transmission. Semantic communications are envisioned as a promising solution to these challenges. This paper pro⁃
vides a highly-efficient solution to video transmission by proposing a scalable semantic transmission algorithm, named scalable semantic 
transmission framework for video (SST-V), which jointly considers the semantic importance and channel conditions. Specifically, a seman⁃
tic importance evaluation module is designed to extract more informative semantic features according to the estimated importance level , fa⁃
cilitating high-efficiency semantic coding. By further considering the channel condition, a cascaded learning based scalable joint semantic-
channel coding algorithm is proposed, which autonomously adapts the semantic coding and channel coding strategies to the specific signal-
to-noise ratio (SNR). Simulation results show that SST-V achieves better video reconstruction performance, while significantly reducing the 
transmission overhead.
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1 Introduction

The wireless communication paradigm is envisioned 
to shift from connecting things to connecting intelli⁃
gence, imposing new challenges on the developing 
sixth generation (6G) communication systems. On 

the one hand, new intelligent applications, such as the digi⁃
tal twin and the smart city, emerge with a surging number of 
terminals and explosively increasing data[1], bringing a great 
burden to existing communication systems. At the same 
time, to achieve real-time intelligent decision and control, 
communications are expected to be extremely low-delay and 
reliable. These challenges become more stringent when it 
comes to video data, which accounts for more than 80% of 
Internet traffic[2] and is further rising driven by the demand 
for ultra-high definition (HD) video. For example, a 1 080P 
HD video with 50 frames per second requires a bandwidth of 

60–70 Mbit/s in the advanced H.265 format encoding. As a 
result, existing coding and transmission strategies, aiming at 
transmitting every bit, face the dual challenges of bandwidth 
and delay and are not capable enough of meeting the future 
demands of ultra-low delay and even real-time video trans⁃
mission. It is urgent to develop a more efficient video com⁃
pression and transmission paradigm.

In recent years, the semantic communication driven by arti⁃
ficial intelligence (AI), which is regarded as one of the poten⁃
tial technologies of 6G, has shown great potential due to its su⁃
perior performance in data compression and transmission. 
WEAVER and SHANNON[3] divided the communication prob⁃
lems into three levels, namely the technical problem, semantic 
problem, and effectiveness problem, which corresponds to the 
definition of syntactic, semantic, and pragmatic in the theory 
of signs[4]. Based on the syntactic level of information, existing 
communication systems are developed, aiming at achieving 
complete and correct transmission of every symbol. Differ⁃
ently, semantic communication systems focus on the semantic 
level of information and aim at delivering the goal-related 
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parts of messages, which reduces the communication overhead 
to a great extent. Recently, semantic communications have 
been widely studied for the text[5], speech[6], and image[7], and 
demonstrated to be a powerful solution to high-efficiency com⁃
pression and transmission.

For the video, existing source coding methods, like H.264, 
take the numerical difference between pixels as the evaluation 
index of the reconstruction quality, and all pixels are sup⁃
posed to be transmitted completely. When researchers are cop⁃
ing with the phenomenon of lag due to the limited bandwidth, 
the clarity of the reconstructed video often gives place to flu⁃
ency. However, for the human visual perception system, eyes 
tend to be attracted by some specific parts, e.g., the dynamic 
information in the foreground of the picture, and are not very 
sensitive to others like absolute errors between pixels of back⁃
ground. Inspired by this, the trade-off between visual experi⁃
ence and communication overhead can be better achieved in 
video compression and transmission by preserving the informa⁃
tive and significant parts, i.e., semantic information. Some re⁃
searchers have investigated the effectiveness of semantic-
enabled video compression and transmission. LU et al. pro⁃
posed the first semantic compression framework for video, 
named Deep Video Compression (DVC) [8], which implements 
the video compression modules with convolutional neural net⁃
works (CNN) and optimizes them in an end-to-end manner. In 
Ref. [9], the effect of channel transmission is taken into con⁃
sideration by jointly designing the semantic and channel cod⁃
ing for video transmission, and the coding rate of semantic in⁃
formation is determined by the entropy model, which is further 
expanded to frame-level control in Refs. [10] and [11]. Al⁃
though these works provide efficient solutions to channel-
aware semantic transmission, they ignore the change of trans⁃
mission environments and are suboptimal under dynamic 
channel conditions.

To improve the efficiency in semantic communications of 
videos under dynamic channels, this paper proposes a scal⁃
able semantic transmission framework for video (SST-V), 
which achieves adaptive control of the coding rate towards 
dynamic channels. Specifically, a semantic importance esti⁃
mation (SIE) module is proposed to evaluate the importance 
of different semantic features, where the semantic features of 
higher significance are given higher weights in the succes⁃
sive coding. To improve the efficiency and robustness of se⁃
mantic transmission, we design a scalable multi-level joint 
semantic-channel (S-JSC) coding algorithm, where the cod⁃
ing rate of semantic feature is adaptively adjusted according 
to the corresponding importance level and the specific chan⁃
nel condition. In addition, a cascade-learning-based training 
strategy is applied for S-JSC, which greatly reduces the train⁃
ing and storage overhead.

The rest of the paper is as follows. Section 2 summarizes 
the existing video compression standard and semantic trans⁃
mission methods for video. In Section 3, a basic framework for 

SST-V is proposed, including an SIE module and an S-JSC 
coding algorithm. Section 4 gives specific implementation de⁃
tails, simulation results, and performance analysis. Finally, 
Section 5 concludes the paper.
2 Overview of Video Transmission

In this section, we introduce the research status and prog⁃
ress of relevant fields, including existing video compression, 
semantic communication, and semantic transmission of video. 
Meanwhile, some private opinions are given about problems of 
current research and possible directions for improvement.
2.1 Existing Video Compression Coding Method

Relevant standards in the field of video coding are mainly 
formulated by two major organizations: the International Orga⁃
nization for Standardization/the International Electrotechnical 
Commission (IOS/IEC) and the International Telecommunica⁃
tion Union (ITU-T). The Moving Picture Experts Group 
(MPEG) of ISO/IEC has formulated the MPEG series of video 
coding standards for motion image compression. ITU-T has for⁃
mulated the H.26x series of video coding standards, which is 
mainly used for low-bit-rate video telephony. There are also 
some standards that are formulated jointly by IOS/IEC and 
ITU-T, such as H.264/MPEG-4 part10 and H.265/HEVC.

Jaswant. R. JAIN and Anil. K. JAIN proposed a hybrid cod⁃
ing framework based on block motion compensation (MC) and 
transform coding such as discrete cosine transform (DCT) in 
Picture Coding Symposium (PCS) in 1979, which has become 
the main framework of almost all later video coding standards. 
The framework is also known as the MC/DCT hybrid coding. 
The core modules in MC/DCT hybrid coding include predic⁃
tive coding and transform coding. In order to reduce the com⁃
plexity of coding and make the operation of video coding easy 
to execute, each frame is divided into fixed-size blocks first, 
and then the blocks are compressed and encoded. In addition, 
there are quantization, entropy coding, and other modules. For 
example, the H.264 video coding framework is shown in Fig. 1.

In order to reduce the time redundancy among video 
frames, inter-frame prediction and motion compensation are 
usually used. MPEG series compression coding standards di⁃

▲Figure 1. H.264 coding framework[12]
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vide different video frames into intra-frames (I-frame), predic⁃
tive frames (P-frame), and bi-directional interpolated predic⁃
tion frames (B-frame). For different types of frames, different 
compression ratios are used to achieve a balance between com⁃
pression efficiency and video quality. The I-frame is the key 
frame. In the H.264 standard, video frames of fixed length are 
divided into a Group of Pictures (GOP) to prevent error propa⁃
gation among reconstructed frames. The first frame in each 
GOP, as the key frame, is independently compressed by the 
Joint Photographic Experts Group (JPEG) or other image en⁃
coding methods to maximize the preservation of frame informa⁃
tion. The previous I-frame or P-frame is used as a reference 
frame for the subsequent P-frame. Huffman encoding is per⁃
formed on the motion vector, and a higher degree of compres⁃
sion is performed on the residual by using approximate JPEG 
encoding. The B-frame uses the front and back frames for bidi⁃
rectional interpolation prediction, which has the highest de⁃
gree of compression, but the decoding complexity and distor⁃
tion are higher.

However, existing video compression methods have trouble 
dealing with increasing video data and the reasons are as fol⁃
lows. Firstly, existing standards take minimizing pixel error as 
the reconstruction goal and ignore the semantic information 
contained in the video. Secondly, they adopt fixed modular de⁃
signs in which each module is independent of the others, such 
as DCT transform and entropy coding. As a result, they cannot 
obtain an overall performance gain. Benefiting from the devel⁃
opment of deep learning, which has a strong nonlinear charac⁃
terization ability, the latest evolution schemes of mainstream 
coding methods such as H.265, AVS2, and AVS3 have taken 
it into consideration to improve the coding performance.
2.2 Video Semantic Communication

The development of semantic information theory[3, 13–18] has 
supported the rapid growth of semantic communications in re⁃
cent years. Studies on different modalities[19–21] have shown that 
joint source-channel coding can improve the overall perfor⁃
mance of the system, and efficiently handle wireless channel 
fading and interference. Inspired by the joint design, joint 
semantic-channel coding schemes are widely adopted in seman⁃
tic communication systems, which combines the semantic repre⁃
sentation of the source with the link state of the physical layer.
2.2.1 Semantic Compression for Video

Video semantic compression and re⁃
construction can be divided into two cat⁃
egories: optimizing the existing video 
compression framework and extracting 
key information from videos to be com⁃
pressed. The optimization of the existing 
compression framework mainly considers 
the method with a delay constraint, which 
means the reference frame is only from 

previous frames. This makes it more suitable for actual appli⁃
cation scenarios like streaming media. Specific modules in the 
existing video coding framework have been considered to be 
replaced by neural networks (NN). In Ref. [22], the existing 
video compression algorithm based on DCT is combined with 
video frame interpolation based on deep learning. According 
to the threshold of peak signal-to-noise ratio (PSNR), the en⁃
coded data can be selected to provide adjustable compression 
for residuals. In Ref. [23], four kinds of deformation of atten⁃
tion mechanisms are proposed, which respectively use the I-
frame, motion vector, residual error, audio signal, and other 
mode information for video action recognition. Different types 
of information are processed in different ways and compared 
with each other. In 2019, LU et al. proposed an end-to-end 
deep video compression (DVC) model for the first time[8], 
which combines the optimization of video compression mod⁃
ules and uses CNN to optimize the network. The CNN network 
implements an encoder, a decoder, and a motion compensa⁃
tion network and uses a highly nonlinear transformation to rep⁃
resent residuals, which improves compression efficiency. 
Based on DVC, network modules such as feature prediction, 
loop filter, and discriminator[24–28] are added to further im⁃
prove compression performance, making end-to-end video 
compression an important research trend. Multiple frames pre⁃
diction for learned video compression (MLVC) [24] calculates 
relative motion using multiple previous frames, thus reducing 
coding residuals. A deep contextual video compression 
(DCVC) is proposed in Ref. [25], which uses the feature do⁃
main context as a condition and performs conditional coding 
instead of sub-optimal residuals. Considering the similarity of 
spatial dependencies, advanced learned video compression 
(ALVC) [28] predicts the current frame from previous frames 
without consuming any bits, further reducing coding overhead.

For the second category, key semantic features are ex⁃
tracted from original videos. There are relatively mature at⁃
tempts for certain types of data sets. Based on the semantic 
segmentation technology, frames are divided into different se⁃
mantic units, each of which has a specific spatial arrangement 
and visual characteristics, and is coded separately[29]. ZHANG 
et al. extract the semantic features of football video games 
from the elements of foreground, background, and the relation⁃
ship between different objects[30]. The encoded sequences of 

▲Figure 2. Semantic communication systems [17]
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these features are decoded at the receiving end correspond⁃
ingly, and then fused by a U-net network to generate a com⁃
plete video. A semantic video conferencing (SVC) [31] network 
is proposed to extract key points of speakers to realize the se⁃
mantic transmission of the video conference. CHEN et al. pro⁃
pose a framework for Interactive Face Video Coding (IFVC)[32] 
where each talking frame is expressed by highly-independent 
facial features such as mouth motion and eye blinking, achiev⁃
ing superior performance for face videos.
2.2.2 Semantic Transmission for Video

The above works consider video semantic compression 
schemes under the condition of sufficient bandwidth and ideal 
channels. Considering practical communication scenarios, 
new video semantic transmission schemes have been devel⁃
oped to facilitate joint optimization of semantic coding and 
channel coding. To achieve the balance between video quality 
and transmission delay in real-time video transmission sce⁃
narios, CUI et al.[33] use reinforcement learning (RL) to gener⁃
ate inferencing models based on playback and cache informa⁃
tion when network throughput fluctuates. ELGAMAL et al. [34] 
manage to carry out targeted video coding according to spe⁃
cific downstream tasks in edge computing and cloud comput⁃
ing scenarios. They focus on capturing the target object in the 
picture. When the target object has a violent change (e.g., ve⁃
hicle entering or leaving the picture), a new I-frame is se⁃
lected, and only the I-frame is retrieved under specific tasks 
to reduce computing and transmission overhead. For surveil⁃
lance videos[35], only the salient zones are encoded with high 
resolution, therefore the calculation ability of fog nodes can be 
reasonably allocated to obtain low delay while maintaining the 
video quality.

The joint design under specific scenarios considers 
schemes with a fixed rate, and there is still room for perfor⁃
mance improvement for dynamic coding. Therefore, some 
works have studied variable-length semantic coding methods 
for the video to further improve the efficiency of semantic en⁃
coding. In Ref. [36], the resource allocated to different video 
frames is determined by the position in 
GOPs. According to the distance between 
the video frame and the key frame, a hier⁃
archical learned video compression 
(HLVC) method is established with three 
hierarchical quality layers and a recur⁃
rent enhancement network. However, this 
allocation strategy treats the frame as the 
rate control unit and does not go deep 
into the level of semantic features, which 
ignores the importance of different se⁃
mantic information and is difficult to fur⁃
ther compress the content redundancy 
within frames. In Ref. [9], an entropy 
model is used to obtain the rate-adaptive 

transmission strategy, which has several parallel autoencoders 
with a different number of output channel symbols. Although 
the proposed framework achieves adaptive control towards the 
importance of semantic features, which, however, is evaluated 
with a syntactic information entropy, leading to suboptimal 
rate control strategies for semantic coding. In Ref. [29], a se⁃
mantic bit allocation model based on RL is proposed, which 
aims at improving the rate-semantic-sensing performance by 
encoding a certain semantic concept. Different features are 
put into the semantic decoder at different quantization levels 
according to the allocated resources and then reconstruct the 
image. These two works achieve a variable length encoding of 
semantic features, while the bit rates are changed through mul⁃
tiple parallel encoders, which greatly increases the complexity 
of neural network architecture. In Ref. [37], a rate allocation 
network is introduced to analyze the semantic information and 
anti-noise capability of the frame features. Features are coded 
and transmitted in a descending order of semantic importance 
according to the mask generated following the rate allocation 
network, and features with lower importance may be discarded 
to achieve video transmission of different bit rates. The above 
works mainly study variable-length coding schemes with dif⁃
ferent semantic features from the perspective of reconstruc⁃
tion. However, it is still an unsolved problem how to imple⁃
ment a flexible and scalable video semantic transmission 
scheme when the channel dynamically changes.
3 Proposed Framework of Scalable Seman⁃

tic Transmission
In this section, we first present the basic framework of scal⁃

able video semantic transmission, and then introduce the pro⁃
posed SIE module and S-JSC coding algorithm. The cascaded 
training strategy for the proposed system is finally presented.
3.1 Proposed Framework

The total framework of the proposed SST-V is shown in 
Fig. 3. The transmitter consists of a semantic feature extrac⁃

▲Figure 3. Framework of scalable semantic transmission for video

Semantic featureextraction

Semantic importanceestimation

Semantic synthesis transform

Transmission/communication requirements

Scalable joint semantic-channel encoder

Scalable joint semantic-channel decoder

Channel
It I͂ t - 1
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Î t
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tion module S (·), a SIE module A(·) and 
a S-JSC encoder E (·). The receiver 
mainly consists of a S-JSC decoder D (·) 
and a semantic synthesis transform T (·). 
The video I = {I1,I2,⋯,IT} is input into 
the semantic feature extraction module by 
frames, while the input image can be ex⁃
pressed as It ∈ RW × H, where W and H are 
the width and height of the images, respec⁃
tively. The semantic feature extraction 
module compares the semantic informa⁃
tion changes between the current image It and the previous reference frame I͂ t - 1 and 
calculates the semantic information re⁃
quired to reconstruct the video s t =
S ( It, It - 1 ) ∈ RN ×MW × MH, where N is the 
number of the semantic features and MW ×
MH is the size of each feature map. The weight of different se⁃
mantic information w t = A(s t ) ∈ RN ×MW × MH is given by SIE. 
The semantic information to be transmitted can be expressed as 
c t = s t × w t. The S-JSC encoder encodes c t as x t = E (c t ) ∈ Cl, 
where l is the number of the transmission symbols, the value of 
which is chosen among the set L = {l1,l2,⋯,lC} according to 
the channel state or different communication demands.

In this paper, we consider both the additive white Gaussian 
noise (AWGN) channel and the Rayleigh fading channel. As for 
the AWGN channel, a received sequence can be expressed as 
y t = x t + n t ∈ Cl. The noise vector n t consists of independent 
and equally distributed cyclic symmetric complex Gaussian ran⁃
dom variables ni which follows ni~CN (0,σ2 ), i = 1,⋯,l, and 
σ2 is the average noise power. For Rayleigh fading channels, 
the single point fading model is considered in this paper and all 
transmission symbols experience the same channel response. 
Clarke Model[38] shows that a flat fading channel is composed of 
several multipath signals under a rich-scattering electromag⁃
netic environment. According to the central limit theorem, both 
the I-path and Q-path of the channel response can be approxi⁃
mated as Gaussian random processes when the number of paths 
is large enough. Similar to Refs. [5] and [7] , the received se⁃
quence can be expressed as y t = htx t + n t ∈ Cl, where 
ht~CN (0,σt

2 ) is a random variable satisfying a cyclic symmet⁃
ric complex Gaussian distribution.

At the receiver side, the received sequence is decoded as ĉ t =
D (y t ) ∈ RN ×MW × MH by the S-JSC decoder, which selects differ⁃
ent decoder structures according to the number of symbols re⁃
ceived. Finally, the decoded sequence of semantic information 
is transmitted to the semantic synthesis transform module to re⁃
construct the original video frame Î t ∈ RW × H = T (c t ).
3.2 Semantic Feature Extraction

The framework of the semantic feature extraction module 
S (·) is shown in Fig. 4, which is referred to the end-to-end 

video compression structure in Ref. [8]. The extracted seman⁃
tic feature s t is mainly obtained from the motion vector (MV) v t and the residual vector (RES) r t.The current frame It and the reference frame I͂ t - 1 are first 
fed into the motion estimation module to get the motion vector 
v t

[39]. A semantic feature map of the motion vector with new 
distribution is obtained in MV SIE and further encoded in an 
MV S-JSC encoder. In particular, the semantic feature map 
needs to pass through a virtual channel at the transmitter and 
then the decoding process is simulated. The decoded semantic 
sequence x͂vt is considered to be approximately consistent with 
the semantic sequence obtained by the receiver. Therefore, 
the semantic synthesis transform module can predict the re⁃
ceived frame from x͂vt and It - 1. By comparing the error be⁃
tween the simulated reconstructed frame I͂ t and the original 
frame It, the residual error vector r t of the current motion vec⁃
tor can be calculated. The encoded motion vector and residual 
vector are spliced together to get the final sequence s t =
{ v t, r t }. Decoded semantic sequence ŝ t after joint semantic 
channel decoder can be divided into decoded motion vector v̂ t and residual error r̂ t correspondingly. The semantic synthesis 
firstly carries out motion estimation based on the previous ref⁃
erence frame Î t - 1 and v̂ t to generate frame IMC - t, followed by 
correction using r̂ t to obtain the final reconstructed frame Î t.
3.3 Semantic Importance Estimation

For video frames, semantic feature vectors indicate what is 
present in each frame and what has changed compared with 
the previous frame. However, it is worth noting that these se⁃
mantic feature vectors have different importance. In the case 
of street surveillance video, we care more about the movement 
of cars and pedestrians that dominate the video than the sway⁃
ing leaves in the wind.

Therefore, we design the SIE module A(·) based on squeeze-
and-excitation networks (SE-Net) shown in Fig. 5. Following 
the semantic features extraction, SIE is firstly used to compre⁃

▲Figure 4. Framework of semantic feature extraction module
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hensively analyze the relationship between different feature 
maps to estimate the importance degree of different features, 
and provide different weights for each feature. Since the se⁃
mantic information s t consists of two parts, SIE estimates the 
semantic importance of v t and r t respectively, and the output 
is w t = { wv t, wr t }. Then, the extracted semantic feature is mul⁃
tiplied by the weights to produce a new feature map. On the 
one hand, more power can be allocated to important informa⁃
tion during an actual communication process to reduce the ef⁃
fect of noise. On the other hand, important semantic informa⁃
tion needs more strict protection by the S-JSC coding algo⁃
rithm explained below. When the channel conditions are se⁃
vere with a low SNR, the correct transmission of important se⁃
mantic features can be guaranteed with the same number of 
channel symbols to realize the reconstruction of basic seman⁃
tic information despite the interference of noise.
3.4 Scalable Joint Semantic-Channel Coding Algorithm

Joint semantic-channel coding is supposed to be used for 
end-to-end overall optimization, which further enhances the 
accuracy of the semantic reconstruction of transmitted videos 
and protects the semantic information obtained in Sections 3.2 
and 3.3. In particular, existing video semantic coding methods 
based on deep learning cannot adjust the code rate flexibly. 
To solve this problem, the S-JSC coding algorithm is designed, 
which can adjust the code rate adaptively according to the ac⁃
tual transmission requirements.

According to the training strategy of cascade learning[40], sev⁃
eral different source channel coding rates are designed. With 
the increase in coding level, the output dimension of the S-JSC 
coding algorithm is continuously reduced while the compres⁃
sion ratio is continuously improved. Higher-level algorithms 
with fewer symbols manage to maintain the maximum transmis⁃
sion quality within limited resources. Instead of indiscrimi⁃
nately compressing the encoding output of the upper level, se⁃
mantic features of different importance obtained from SIE are 
protected with different degrees. The redundancy of semantic 
information with less importance may be decreased greatly to 
realize reliable transmission of the most important information, 
therefore achieving more efficient video semantic transmission.

The coding level is used as the control parameter and input 
into the S-JSC encoder/decoder together with the information 
to be encoded. According to the coding level, the scalable au⁃

toencoder layer specifies the neural network architecture to 
change the dimensions of output. The training and storage 
overhead is greatly reduced with multilevel coding algorithms 
stored in a serial structure, improving the deployment effi⁃
ciency of the model.
3.5 Training Strategy

During the training process, it is of limited significance for 
the subsequent layers to participate in the training before the 
semantic feature extraction module becomes basically stable, 
due to the relatively complex network architecture and the 
large correlation between the front and back layers. Therefore, 
the semantic feature extraction module with relatively stable 
performance can be obtained by separating the training first. 
After it is basically stable, SIE and levels of the S-JSC coding 
algorithm are added successively. Due to the random distribu⁃
tion of parameters of the newly added layer, the semantic fea⁃
ture extraction module is frozen, which makes the subsequent 
structure converge quickly. When lower levels of S-JSC are 
trained, there are epochs where all preceding components are 
updated to achieve an end-to-end gain.

With the gradual addition of the new JSC coding layer, the pa⁃
rameters of the trained S-JSC coding layers and SIE will also be 
frozen to ensure that the output of the lower coding level is not 
damaged as much as possible during the training of the higher 
coding level. The update of parameters will not be carried out in 
the back propagation, and only the new coding layers will be 
trained. SIE and the low-level S-JSC encoder layers get the over⁃
all gain through the joint training, which improves the anti-
interference ability from the perspective of semantic information 
protection. The high-level S-JSC coding layers mainly further re⁃
duce the transmission symbol error rate from the perspective of 
transmission under insufficient channel carrying capacity.
4 Experiments and Results

In this section, we present the details of training, including 
data set processing, optimization objectives, and evaluation in⁃
dicators. Simulation results are analyzed, which proves the ef⁃

▲Figure 5. Semantic importance estimation (SIE) module structure
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▲Figure 6. Scalable multi-level joint semantic-channel (S-JSC) coding 
architecture based on cascade learning
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fectiveness of the proposed framework.
4.1 Datasets

The proposed system is trained with the Vimeo-90k data⁃
set[41], which is one of the most commonly used video datasets 
built for evaluating different video processing tasks. The com⁃
plete dataset is about 82 G in size, and according to Ref. [8], it 
would take about 7 days to train a single similar semantic fea⁃
ture extraction module using two Titan X GPUs. The dataset 
contains 89 800 independent short films, each of which consists 
of 7 frames. During each epoch, according to the time relativity, 
the relative motion for each frame with respect to its reference 
frame is considered to be approximate and the coding strategy 
is therefore similar among the 7 frames of each video clip. Only 
one frame of each video is selected randomly for our training, to⁃
gether with the previous frame as references. Compared with 
training each group of the frame and its reference frame, the vol⁃
ume of training details decreases to 1/6 of the original volume, 
which greatly reduces the time cost while the performance in 
subsequent validation is basically unchanged.
4.2 Optimization Objective and Metrics

The optimization objective of SST-V is to improve the video 
reconstruction performance with fewer channel symbols. The 
entropy of preliminary semantic information st from the seman⁃
tic feature extraction module is supposed to decrease and 
therefore reduce the difficulty of subsequent module coding. 
Therefore, the rate-distortion (RD) function is adopted as the 
loss function, i.e.,

loss = λlD + lR = λd ( xt,x̂t ) + ( H ( vt ) + H ( rt ) ), (1)
where λ is the Lagrange multiplier that represents the tradeoff 
between bit overhead and video distortion, lR is the coding bit 
rate of the semantic feature extraction module, represented by 
entropies of the moving vector v t and the residual vector r t, and lD is the distortion constraint of video reconstruction qual⁃
ity that consists of mean square error (MSE) of the original 
video frame. Since the reconstruction process includes both 
motion compensation using motion vector and correction using 
residual vector, we need to minimize the errors after motion 
compensation lmc and the overall distortion after reconstruc⁃
tion lre, i.e.,

ld = lmc + lre =
w*MSE( IMC - t, It ) + MSE( It, Î t ), (2)

where w is weight of the distortion of motion-vector-based re⁃
construction that decreases with the training process.

PSNR and multi-scale structural similarity index (MS-
SSIM) are used to measure the distortion degree of recon⁃
structed frames. PSNR is calculated as:

PSNR = 10 log10 (MAX2 /MSE) , (3)

where MSE is the mean square error of the reconstructed im⁃
age and original image, and MAX represents the maximum 
pixel value possible for a frame and is set as 1 during the ex⁃
periment. Compared with PSNR, MS-SSIM is closer to the real 
perception of human eyes that ranges from 0 to 1, where a 
higher value indicates lower distortion. It considers that visual 
distortion is composed of brightness, contrast and structure, 
and the influence of the distance from the viewer to the image 
and the density of pixel information on subjective visual expe⁃
rience are further considered. The detailed calculation of MS-
SSIM can be found in Refs. [42] and [43].

Similar to k/n in Ref. [21], channel symbols per pixel (CPP) 
is defined to measure the coding rate of the system. For a fixed 
resolution W × H, the number of channel input symbols is R, 
and then CPP is calculated as:

CPP = R/ (W × H ). (4)
4.3 Simulation Results

We set up three coding levels, namely Level 1, Level 2, and 
Level 3, and the value of CPP is 0.110, 0.055, and 0.014, re⁃
spectively. The ideal channel environment is first considered, 
where the channel capacity is assumed to always be enough to 
serve the transmission of all the channel input symbols. Fig. 7 
shows the reconstruction performance of the schemes with and 
without SIE under different coding levels. “SIE-L1” indicates 
the scheme at Level 1 with SIE, while “L1” means the scheme 
without SIE.

Since most values of MS-SSIM are distributed densely, we 
will use both raw values and the form of n dB for better visual 
effect, which is calculated by

MS - SSIM(dB) = -10log10 (1 - MS - SSIM). (5)
Under different channel conditions and metrics, the two 

curves at the top are both the results of schemes with SIE, 
which achieve higher performance gain under the metric of 
MS-SSIM. Note that benefitting from SIE, the scheme at Level 
2 performs even better than the non-SIE scheme at Level 1 in 
most cases. Therefore, SIE helps greatly in extracting impor⁃
tant semantic information from the source video, reducing the 
communication cost significantly. The advantage of SIE is also 
shown in Fig. 8, which gives several visual results of the 
schemes with or without SIE at 0 dB with Level 3 under the 
ideal channel.

However, in the practical communication system, the chan⁃
nel capacity is not always sufficient and deteriorates severely 
under bad channel conditions. Hence, the proposed schemes 
are also evaluated under capacity-limited cases. During the 
test process, we make SNR vary uniformly from 0 dB to 10 dB. 
The average PSNR and MS-SSIM of different schemes are 
shown in Table 1, where schemes 1 and 2 perform better than 
schemes 3 and 4 under non-ideal channels, respectively, 
which further demonstrates the effectiveness of the proposed 
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SIE. Scheme 3 performs worse than scheme 4 even if the for⁃
mer uses more symbols for transmission. The reason is that all 
the semantic information is transmitted without considering 
the variation of channel capacity and the important informa⁃
tion is deteriorated with higher probability, exposing the limi⁃
tation of the fixed level coding scheme.

For the proposed scalable multilevel coding scheme, the 
coding level increases for lower SNR. Level 3, Level 2 and 
Level 1 are selected respectively for channel conditions rang⁃
ing in [ 0,3), [ 3,6) and [ 6,10 ]. The number of three levels is 
assumed to be the maximum number of symbols that can be 
accurately transmitted under the corresponding channel condi⁃
tions. For the proposed SST-V, each frame can automatically 

switch to a different coding model accord⁃
ing to the SNR, while the non-scalable 
baselines (schemes 1, 2, 3 and 4) use a 
fixed encoding level at all SNRs.

As shown in Table 1, compared with 
schemes 3 and 4, the proposed SST-V 
with both SIE and S-JSC, i.e., scheme 6, 
achieves performance gains of 2.3 dB 
and 4.6 dB in terms of PSNR and MS-
SSIM, respectively. It shows that when 
the channel capacity is limited, the SST-
V can adapt to the dynamic channel en⁃
vironment, significantly improving the 
transmission efficiency. Note that 
schemes 5 and 6 further evaluate the ef⁃
fectiveness of SIE under the scalable 
multilevel coding rate. With the pro⁃
posed SIE, scheme 6 achieves gains of 
1.3 dB in PSNR and 2.7 dB in MS-
SSIM. It proves that SIE helps the SST-
V focus on the semantic information of 
higher importance, and hence improves 
the reconstruction performance under 
practical dynamic channels.

5 Conclusions
In this paper, we discuss the video transmission problem in 

the future 6G mobile communication scenarios and review the 
existing video coding and semantic-based video coding trans⁃
mission methods. To achieve efficient and robust video trans⁃
mission under dynamic channel conditions, this paper pro⁃
poses a scalable semantic transmission framework for video, 
namely SST-V. Besides semantic information extraction, SST-
V estimates the importance of different semantic features with 
the proposed SIE, and obtains a more compact and robust rep⁃

▼Table 1. PSNR and MS-SSIM of different schemes
Number

1

2

3

4

5

6 (SST-V)

Scheme

Without SIE, fixed Level 1 (L1)

Without SIE, fixed Level 2 (L2)

With SIE, fixed Level 1 (SIE-L1)

With SIE, fixed Level 2 (SIE-L2)

Scalable multilevel coding without SIE

Scalable multilevel coding with SIE

PSNR

23.937 6

27.307 8

26.099 3

28.900 34

29.935 9

31.190 78

MS-SSIM/dB

6.704 7

8.743 6

7.454 1

9.754 9

11.682 3

14.349 9
MS-SSIM： multi-scale structural similarity index
PSNR： peak signal-to-noise ratio
SIE： semantic importance estimation
SST-V： scalable semantic transmission framework for video

▲Figure 8. Examples of the reconstructed frames of the schemes with 
or without semantic importance estimation (SIE)

Original frame

Reconstructed frame 
with importance

Reconstructed frame 
without importance

AWGN: additive white Gaussian noise
MS-SSIM: multi-scale structural similarity index
PSNR: peak signal to noise ratio

SIE: semantic importance estimation
SNR: signal-to-noise ratio

▲Figure 7. Reconstruction performance of the schemes with or without SIE at different coding levels

(a) PSNR under AWGN channel (b) MS-SSIM under AWGN channel

(c) PSNR under Rayleigh fading channel (d) MS-SSIM under Rayleigh fading channel
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resentation of semantic information. An S-JSC coding algo⁃
rithm based on cascading learning is designed, where the cod⁃
ing rate can be adjusted adaptively according to dynamic 
channel states. The simulation results show that SST-V has 
better video reconstruction performance in terms of PSNR and 
MS-SSIM compared with the baseline schemes, and provides a 
more efficient solution to video transmission under bandwidth 
constraints.
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