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Abstract: Device-to-device (D2D) communications underlying cellular networks enabled by unmanned aerial vehicles (UAV) have been re⁃
garded as promising techniques for next-generation communications. To mitigate the strong interference caused by the line-of-sight (LoS) air-
to-ground channels, we deploy a reconfigurable intelligent surface (RIS) to rebuild the wireless channels. A joint optimization problem of the 
transmit power of UAV, the transmit power of D2D users and the RIS phase configuration are investigated to maximize the achievable rate of 
D2D users while satisfying the quality of service (QoS) requirement of cellular users. Due to the high channel dynamics and the coupling 
among cellular users, the RIS, and the D2D users, it is challenging to find a proper solution. Thus, a RIS softmax deep double deterministic 
(RIS-SD3) policy gradient method is proposed, which can smooth the optimization space as well as reduce the number of local optimizations. 
Specifically, the SD3 algorithm maximizes the reward of the agent by training the agent to maximize the value function after the softmax opera⁃
tor is introduced. Simulation results show that the proposed RIS-SD3 algorithm can significantly improve the rate of the D2D users while con⁃
trolling the interference to the cellular user. Moreover, the proposed RIS-SD3 algorithm has better robustness than the twin delayed deep de⁃
terministic (TD3) policy gradient algorithm in a dynamic environment.
Keywords: device-to-device communications; reconfigurable intelligent surface; deep reinforcement learning; softmax deep double determin⁃
istic policy gradient
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1 Introduction

Current communication systems and applications are 
pursuing higher and higher transmission rates, 
which brings greater challenges to the scarce spec⁃
trum resources. Thus, spectrum-efficient communi⁃

cations become increasingly important, which promotes the 
development of the next-generation cellular networks. 
Among the various spectrum-efficient techniques, the device-
to-device (D2D) communication underlying the cellular net⁃
work has been considered a promising technique for boosting 
the communication rates between two neighbor nodes, since 
it allows the two users to transmit signals directly without 
passing through a base station (BS)[1]. To maximize the perfor⁃
mance of the D2D and cellular network, the location of the 
BS usually needs to be optimized, which is difficult to realize 
for the traditional terrestrial cellular network. Fortunately, 

unmanned aerial vehicles (UAVs) have played a critical role 
in 6G networks due to their flexibility. For instance, UAVs 
can work as the aerial BS to improve the network capacity 
and expand the coverage area, and thus help overcome the 
limitations of the terrestrial wireless communication at the 
physical layer[2].

With the UAV aerial BS, the dominant links are usually 
line-of-sight (LoS) links that benefit the intended receivers 
while causes strong interference to the unintended users. In 
this case, reconfigurable intelligent surface (RIS) can be em⁃
ployed to reconstruct the transmission environment and thus 
reach a compromise between the performances of the in⁃
tended and other users[3–5]. RIS consists of many low-cost 
passive reflection elements, where each element can adap⁃
tively adjust its reflection amplitude and/or phase to control 
the intensity and the direction of the electromagnetic wave. 
In this way, RIS can enhance and/or weaken the strength of 
the reflected signal for different users[3]. For the D2D commu⁃
nication system with plenty of low-power terminal devices, This work is supported by the National Natural Science Foundation of 

China under Grant Nos. 62201462 and 62271412.
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RIS can be deployed to improve the quality of the communi⁃
cation links for cellular user equipment (CUE) and mitigate 
the co-channel interference between CUE and D2D users[6]. 
There have been some studies on RIS-assisted D2D commu⁃
nications. For example, the authors in Ref. [7] proposed a 
relaxation-based algorithm called Riemannian manifold 
based alternating direction multiplier (RM-ADMM) to opti⁃
mize the system configuration, which is a quadratic con⁃
straint quadratic optimization (QCQP) problem. This kind 
of proposal adopts traditional optimization methods, which 
may converge to the local optima and cause system perfor⁃
mance loss.

Recently, artificial intelligence (AI) has been regarded as 
a powerful tool to solve complicated non-linear optimization 
problems. In Ref. [8], a deep learning-based method is pro⁃
posed for the effective online configuration of the smart sur⁃
face, where the proposed deep neural network (DNN) model 
maps the target user’s information and the optimal phase ma⁃
trix to maximize the user’s received signal strength by calcu⁃
lating the measurement coordinates. It is worth noting that 
the deep learning method requires large-scale data sets, 
which is impractical for some applications. To overcome the 
limitations of deep learning, deep reinforcement learning 
(DRL), which combines deep learning and reinforcement 
learning, has been widely used in wireless communication 
systems. In Ref. [9], the non-convex optimization problem 
consisting of beamforming design, power control, and inter⁃
ference coordination is jointly optimized by DRL. In Ref. 
[10], the authors investigated the simultaneous wireless infor⁃
mation and power transfer network where the UAV and the 
RIS are deployed. By exploiting the DRL to optimize the RIS 
passive beamforming, the total harvested energy is maxi⁃
mized while meeting the quality of service (QoS) require⁃
ments for communications. Ref. [11] is a very early attempt 
to develop a framework for integrating DRL techniques into 
optimization designs with no need to understand explicit 
models or specific mathematical formulas of the wireless en⁃
vironment to solve large-dimensional optimization problems.

At present, the commonly used algorithms for processing 
continuous action space in DRL are deep deterministic 
policy gradient (DDPG) and its improved version, the twin 
delayed deep deterministic (TD3) policy gradient. But the 
introduction of the underestimation bias by the TD3 algo⁃
rithm will affect the performance. Studies have shown that 
softmax’s smoothing effect can help learn and reduce the 
number of local optima[12]. Thus, the authors in Ref. [13] 
proposed a softmax deep double deterministic (SD3) policy 
gradients algorithm. The analyses show that the error be⁃
tween the value function and the optimal value under the 
softmax operator is bounded.

To overcome the complex problem of traditional algorithm 
calculation, we exploit the SD3 algorithm to jointly design 
the transmit power of the UAV, the transmit power of the 

D2D users, and the RIS phase configuration. The main con⁃
tributions of this paper are summarized as follows:

1) Firstly, we formulate a RIS-assisted UAV-D2D commu⁃
nication system model. In our considered system, the UAV is 
used as an aerial BS to overcome the limitations of conven⁃
tional terrestrial BSs. Besides, to investigate the impact of 
the time-varying channels on the system performance, the 
motion state of the UAV moving from the CUE to the D2D us⁃
ers is taken into consideration.

2) Secondly, we propose a RIS-SD3 algorithm to solve the 
complex optimization problem involved in the RIS-assisted 
UAV-D2D communication system. Unlike the TD3 algo⁃
rithm, SD3 merges the softmax operator into the action key of 
continuous control, which makes the optimization environ⁃
ment smoother and thus is conducive to empirical learning.

3) Finally, unlike previous studies that exploit alternating 
methods to optimize the transmit power and the RIS phase, 
the proposed algorithm optimizes the transmit power and the 
phase of the RIS simultaneously. To be more specific, the 
sum rate of the D2D users is adopted as an immediate reward 
for training the RIS-SD3 algorithm. The sum rate is gradually 
maximized by iteratively adjusting the parameters of the RIS-
SD3 according to the reward.

The remainder of this paper is organized as follows. The 
system model is described in Section 2. In Section 3, the 
RIS-SD3 algorithm is introduced to optimize the phase shift 
and the transmit power. In Section 4, simulation results are 
presented to evaluate the performance of the proposed algo⁃
rithm. The conclusions are given in Section 5.
2 System Model

We consider a practical RIS-assisted UAV-D2D communi⁃
cation network. For example, in a dense urban environment 
with tall buildings, the primary user, like CUE, is close to 
the RIS, while the D2D user is located at the edge of the cell. 
The detailed system description is as follows.
2.1 System Descriptions

The system model is depicted in Fig. 1. We consider a 
downlink cellular transmission assisted by UAV and RIS. 
The system consists of one UAV serving as the BS, one RIS, 
K CUE, and D D2D pairs. To simplify the following analysis, 
only one CUE is considered in this paper, and a scenario 
with multiple CUE will be studied in future work. The BS, 
CUE, D2D transmitter (DT), and the associated D2D receiver 
(DR) are all single antenna devices. Besides, the RIS is 
equipped with M reflecting elements and the reflection coeffi⁃
cient matrix Θ can be described as Θ =
diag ( β1 ejθ1, β2 ejθ2,⋯, βM ejθM ).

The CUE receives the desired signals including the sig⁃
nals sent by the BS and the signals reflected from the RIS. In 
addition, it will receive the interference signals from all the 
D2D pairs. Therefore, the signal received by the CUE can be 
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written as:
yc = (hH

r,cΘhr + hc) Pc s + ∑
d = 1

D

hd,c Pd μd + nc, (1)
where hr ∈ CM × 1, hr,c ∈ CM × 1, hc ∈ C, and hd,c ∈ C represent 
the channel gains of UAV-RIS, RIS-CUE, UAV-CUE, and 
the d-th DT to CUE, respectively; Pc ∈ R and s ∈ C denote 
the transmit power and the transmit signal of the BS-CUE 
link, respectively; Pd ∈ R and μd ∈ C are the transmit power 
of the d-th DT and the data transmitted to the d-th DR, re⁃
spectively; nc~CN (0,σ2

c ) is the additive Gaussian white 
noise at the CUE.

The wireless transmission link between the user and the 
UAV can be either LoS or NLoS. Thus, the received signal 
power at each user’s location is given by Ref. [14].

Pr = ì
í
î

ïï Pcd
-α0,  LoS 

ηPcd
-α0,  NLoS , (2)

where d is the distance between the user and the UAV, α0 is 
the path loss exponent over the user-UAV link, and η is an 
additional factor related to the NLoS link. The LoS probabil⁃
ity can be expressed as PLoS = 1

1 + A exp (-B (θ - A) ) , where 
A and B are constant values that depend on the environment. 
In this paper, we set A = 9.6, B = 0.15, and η = 20 dB ; θ =
180
π sin-1( h

d ) is the elevation angle where h is the altitude 
between the user and UAV. The probability of NLoS is 
PNLoS = 1 - PLoS[14].

For the terrestrial links, we assume that they follow the 
Rayleigh distribution where the path-loss is given by 
ρ ( d

d' )-v

, where ρ, d and v represent the path loss at the refer⁃

ence distance of d′ = 1, the individual link distance, and the 
corresponding path loss exponent, respectively.

Note that the m-th element of the diagonal matrix can be 
written as ϕm = βm ejθm, where θm ∈ [ 0, 2π) is the phase shift. 
Generally speaking, phase-shift control achieves better pas⁃
sive beamforming performance than amplitude control, so we 
assume ideal reflection by the RIS so that the signal power is 
lossless from each reflection element, e.g., the amplitude re⁃
flection coefficient βm = 1[15].

The Signal to Interference plus Noise Ratio (SINR) for the 
received signal of CUE can be calculated as:

SINRc = || hH
r,cΘhr + hc

2
Pc

∑
D

d = 1
|| hd,c
2
Pd + σ2

c . (3)
Thus, the achievable rate of CUE is:

Rc = log2(1 + SINRc ) = log2
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The signals received at the d-th DR consists of the desired 

signal received from the d-th DT, the interference signal 
from the UAV, and the reflected signal from the RIS, in addi⁃
tion to the interference signal received from the other D2D 
pairs. Thus, the signal received at the d-th DR is given by:

yd = τd Pd μd + (hH
r,dΘh r + hd ) Pc s + ∑

D

l ≠ d

λl,d Pl μl + nd, (5)
where hr,d ∈ CM × 1, hd ∈ C, τd ∈ C, and λl,d ∈ C denote the 
channel gains of RIS-DR d, UAV-DR d, DT d-DR d, and 
DT l-DR d, respectively; Pl and μl are the transmit power of 
the l-th DT and the transmit data of D2D to the l-th DR, re⁃
spectively; nd ∼ CN (0,σ2

d ) denotes the additive Gaussian 
white noise at the d-th DR.

Similarly, the received SINR for the d-th DR is given by:
SINRd = || τd

2
Pd

∑
l ≠ d

D

|| λl,d
2

Pl + || hH
r,dΘhr + hd

2
Pc + σ2

d . (6)
The achievable rate of the d-th DR is
Rd = log2(1 + SINRd ) =

log2
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▲ Figure 1. System model of a practical RIS-assisted unmanned aerial 
vehicle (UAV)-D2D communication network

CUE: cellular user equipmentDR: device-to-device receiverD2D: device to device
DT: device-to-device transmitterRIS: reconfigurable intelligent surface
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Accordingly, the sum rate of all the D2D pairs is
R total = ∑

d = 1

D

Rd. (8)

2.2 Problem Formulation
In order to increase the sum rate of the D2D pairs while 

limiting the amount of interference to the CUE, the problem 
is formulated as a non-convex optimization problem as fol⁃
lows

max
p,Θ,pc

∑
D

d = 1 log2(1 + SINRd ) (9)

s.t. ∑
D

d = 1
| hd,c |

2
Pd ≤ IT, (9a)

0 ≤ Pd ≤ Pt, ∀d ∈ {1,2,⋯,D }, (9b)
0 ≤ Pc ≤ Pmax, (9c)
SINRc ≥ SINRthr, (9d)
Rd ≥ Rd-thr, ∀d ∈ {1,2,⋯,D }, (9e)
θm ∈ [ 0, 2π), ∀m ∈ {1,2,⋯,M }, (9f)
| ϕm | = 1, ∀m ∈ {1,2,⋯,M }, (9g)

where P = {P1, P2,⋯, PD} is the transmit power vector for 
D2D pairs; Pt is the maximum transmit power of DT and Pmax is the maximum transmit power of UAV . IT in Constraint (9a) 
indicates the maximum allowable interference to the cellular 
transmission. Constraints (9b) and (9c) denote the transmit 
power limit for each DT and the maximum power limit for the 
UAV BS. Constraints (9d) and (9e) denote 
the QoS requirements for CUE and D2D 
pairs. Constraints (9f) and (9g) specify 
the phase shift and the amplitude con⁃
straint of the RIS.

Due to the non-convexity of the objective 
function and the performance loss of the 
traditional successive convex approxima⁃
tion (SCA) method[16], we propose a DRL-
based framework to solve the non-convex 
optimization problem.
3 Proposed RIS-SD3 Algorithm

3.1 Description of SD3
SD3 is the abbreviation for the deep 

double deterministic policy gradient al⁃

gorithm, which enables a better value estimation by reduc⁃
ing the overestimation bias in DDPG and smoothing the op⁃
timized environment, thus contributing to experiential 
learning[13].

The process of the SD3 algorithm is shown in Fig. 2. SD3 
includes an actor network μ (⋅) and a critic network Q (⋅). The 
actor network consists of two online and two target policy net⁃
works with the different parameters θμ

i ,θμ'
i (i = 1,2). Simi⁃

larly, the critic network consists of two online and two target 
Q-networks with different parameters θQ

i , θQ'
i (i = 1,2).

According to Fig. 2, we can see that at the time step t, the 
agent selects an action at based on the actor network 
μ ( st ; θμ ). Meanwhile, a random noise Nt ∼ N (0,σ ) is added 
to interact with the environment to more fully explore the 
policy. Thus, the action at can be written as

at = μ ( st ; θμ ) + Nt. (10)
After the agent executes the action, it will return a reward 

defined as below
Qt + 1 ( s, a ) = rt ( s,∣a ) + γEs' ∼ p (⋅∣s,a )[Vt( s') ] , (11)

where Vt + 1 ( s) =  softmaxβ(Qt + 1 ( s, ⋅ )) is the softmax opera⁃
tor, which is used to update the value function Qt + 1 ( s,a ) it⁃
eratively. Since the softmax operator itself involves integrals 
and thus is difficult to handle in continuous action space, we 
use the following unbiased estimation to replace the term 
Vt ( s′) as in Ref. [13]:

Ea' ∼ p

é

ë

ê

ê
êê
ê
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êexp ( )βQ̂ ( )s',a'
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,
(12)

where p (a′) is the probability density function of Gaussian 
distribution.

Actor μ(·)
Optimizer

Online policy 1
network θ  μ1

Online policy 2
network θ  μ2

Target policy 1
network θ  μ'1

Target policy 2
network θ  μ'2

Update Policy gradient

Soft update

▲Figure 2. Workflow of the deep double deterministic (SD3) policy gradient algorithm

noise
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(Si , ai, ri, Si+1)
N*(Si , ai, ri, Si+1)Replaymemorybuffer
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Optimizer
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network θ  Q2

Target Q1
network θ  Q'1

Target Q2
network θ  Q'2

Update Policy gradient

Soft updateyi
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For ease of representation, we introduce
Q̂i( s',a') = min (Qi( s',a' ; θQ'

i ) ,Q-i( s',a' ; θQ'-i ) ), (13)
and

Υ -i
SD3( s') = soft maxβ(Q̂i( s', ⋅ ) ). (14)

With Eqs. (13) and (14), the target values for the critic net⁃
work in Fig. 2 can be estimated as:

yi = r + γΥ -iSD3( s') , i = 1, 2. (15)
Then, the critic network optimizes its parameters θQ

i  by 
minimizing the loss function given by:

L = 1
NB

( yi - Qi( s,a ; θQ
i ) ) 2

. (16)
After the critic network updates its parameters, the actor net⁃

work is updated by θi
μ following the applying the chain rule.

∇θμ
i

=
|

|

|

|
||
|

||

|
|
||
|1

NB
∇aQi( )s,a ; θi

Q

s = si,a = μ ( )si ; θi
μ

∇θμ μ ( )s ; θi
μ

s = si, (17)
To make the learning process more stable, the SD3 also 

uses a soft target update approach:
θQ'

i ← τθQ
i + (1 - τ )θQ'

i ,
θμ'

i ← τθμ
i + (1 - τ )θμ'

i , (18)
where τ is the learning rate for updating the target critic net⁃
work and the target actor network.
Algorithm 1: Learning algorithm of RIS-SD3
Input: hr,c, hr, hr,d, hc, hd,c, hd, τd, λl,d
Output: the optimal action
   a = {popt1 ,popt2 ,θopt1 ,θopt2 ,⋯,θopt

M ,popt
c }

1  Initialize actor networks μ1, μ2 and critic networks 
Q1,Q2with random parameters θμ1, θμ2, θQ1 , θQ2 ;

2  Initialize the size of experience replay NR, the size of 
mini-batches NB and replay buffer R;

3  for t = 1,…,T do
4    Select an action with exploration noise Nt~N (0, σ )

based on executing action a, obtained reward r, new 
state s′ and done;

5    Store transition tuple ( s, a, r, s', done) in R;
6    for i = 1, 2 do
7      Sample a random minibatch of N from R;
8      Sample K noises Nt~N (0,σ ) ;
9      Set â' = μ′i( si + 1 ) + clip (Nt, - c,c) ;
10      Set Q̂ ( s',â') = min j = 1,2(Qj( s',â' ; θQ'

j ) ) ;

11      Set softmaxβ(Q̂ ( s',â') ) as Eq. (12)
12      Update critic net via minimizing Eq. (16) ;
13      Update actor net by policy gradient in Eq. (17) ;
14      Update the target networks
               θQ'

i ← τθQ
i + (1 - τ )θQ'

i  ;
               θi

μ' ← τθi
μ + (1 - τ )θi

μ'

15    end
16  end

3.2 Details of RIS-SD3
In this paper, the environment depends on our proposed 

system model. At the time step t, the agent can collect the 
current channel information, and combined with the current 
state, the agent selects the action and calculates the reward 
according to the current policy. There are E episodes in the 
whole training process, and each episode is iterated by T 
times. The detailed workflow of the proposed RIS-SD3 algo⁃
rithm is shown in Algorithm 1. The state space, action space 
and reward function are given as follows.

1) State: The state st at the t-th time step is constructed by 
the received signal of CUE, the UAV’s location at the t-th 
time step, and the SINR of D2D pairs. So the total number of 
the state is D +M + K + 1.

2) Action: The action is constructed by the transmit power 
vector P = {P1,P2,⋯,PD}, the transmit power of BS Pc and 
the phase θi (i = 1,2,⋯,M ) of RIS. In order to reduce the 
complexity of the action space, we convert both phase and 
power into one-dimensional vectors, i. e.,   action =
{P1,P2,…PD,θ1,θ2,…θM,Pc}. So the total number of the action 
is D +M + 1.

3) Reward: In the proposed RIS-SD3 algorithm, the sum 
rate of the D2D pairs is taken as the reward. Furthermore, in 
order to satisfy the minimum signal-to-noise ratio and the 
maximum interference requirements for CUE users and the 
QoS requirements for D2D users, the reward can therefore be 
set as:

Rt =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

 if ∑
d = 1

D

|| hd,c
2

Pd ≤ IT

R total , SINRc ≥ SINRthr
Rd ≥ Rd-thr

 0, else . (19)
The reward for each episode is:
R = ∑

t = 1

T

Rt. (20)

4 Numerical Results
In order to facilitate the analysis, we consider D=2, and 

the other parameters used in the algorithm are shown in 
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Table 1, and the establishment of the coordinate system is 
shown in Fig. 1. After continuous training tests, we then find 
the training work the best when the main hyper-parameters 
in the RIS-SD3 are set as follows: E = 10 000, T = 61, γ =
0.99, and τ = 0.005.
4.1 Impact of Parameters Settings of RIS-SD3

In our proposed RIS-SD3 algorithm, we use a constant 
learning rate and batch size for all networks to investigate 
their effects on the performance and convergence speed for 
the DRL-based approach. Fig. 3 demonstrates the average 
rewards versus time episodes at different learning rates. It 
can be seen that different learning rates have a great impact 

on the performance of the proposed RIS-SD3 algorithm. As 
shown in Fig. 3, RIS-SD3 with actor and critic learning rates 
of 1e-6 performs best. Specifically, when the learning rate is 
too large, the algorithm will be unstable and even cannot 
converge. On the contrary, when the learning rate is too 
small, the convergence rate will be slow or even incapable to 
learn, and thus the training time is wasted.

Batchsize is the number of data used for each update 
when using the optimizer. In short, it is how many data we 
want to put into the model at a time to train. This value is be⁃
tween 1 and the total number of training samples.

As shown in Fig. 4, we explore the impact of batchsize on 
the training model. If the batchsize is too small, time-
consuming and training efficiency is low, the training data 
will be very difficult to converge, resulting in a state of 
under-fitting. In a certain range, generally speaking, the 
larger the batchsize, the more accurate the determined de⁃
scending direction, and the smaller the training shock. The 
batchsize increases to a certain extent, and its determined 
decline direction has basically not changed. Therefore, the 
larger the batch size is, the more stable the gradient will be, 
while the smaller the batch size is, the higher the random⁃
ness of the gradient will be. However, if the batch size is too 
large, the the demand for memory will be higher, and it is 
not conducive to the network jumping out of the local mini⁃
mum. We can see that batchsize = 211 is the best, so this 
value is used in the following simulations.
4.2 Comparisons with Benchmarks

To further demonstrate the performance and the time com⁃
plexity of the proposed RIS-SD3 algorithm, we consider the 
following baseline schemes. Firstly, we use the exhaustive 
searching approach to find the approximate optimal value, 
where the transmit power and the phase are limited to ten 
equally spaced values. Then, for the weighted minimum ▲Figure 3. Effect of the learning rate
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▲Figure 4. Effect of batchsize on the training model
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▼Table 1. Parameters of the proposed system
Parameter

Location

SINRthr
Rd_thr

IT

Pmax
Pt

β

α0

ν

ρ

UAV
RIS
CUE
DT1

Distance of D2D
Size area of D2D

Minimum SINR of CUE
Minimum achievable rate of D2D

Maximum interference of CUE
Max transmit power of UAV
Max transmit power of DT

Path loss coefficient
Path loss exponent over the user-UAV link

Path loss exponent
The path loss at the reference distance

Value
From (0, 0, 1) m to (0, 60, 1) m

(0, 10, 2) m
(20, 0, 1) m

(20, 60, 1) m
5 m

10 m
12 dB
2 dB

−30 dB
30 W

10 W, 20 W, 30 W
−30 dB

3
2.5

0.01
CUE: cellular user equipment
D2D: device-to-device
DT: D2D transmitter

RIS: reconfigurable intelligent surface
SINR: Signal to Interference plus Noise Ratio
UAV: unmanned aerial vehicle
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mean-square error (WMMSE) -power” baseline scheme, we 
use the WMMSE algorithm in Ref. [17] to optimize the trans⁃
mit power of D2D. For the “max-power and random-phase” 
baseline scheme, we assume that the RIS configures the 
phase shifts in a random manner with the maximum D2D 
transmit power. For the “without RIS” baseline scheme, we 
assume that the D2D transmit power is random without the 
deployment of the RIS. Moreover, the TD3 algorithm is also 
introduced. Unless otherwise specified, the learning rate for 
the RIS-SD3 algorithm is set as 1e-6.

As shown in Fig. 5, compared with the TD3 algorithm for 
continuous actions, the proposed RIS-SD3 algorithm is more 
robust under dynamic channel conditions because it refers 
to the soft operator in Ref. [13]. Compared with the more ac⁃
curate exhaustive searching results and the WMMSE algo⁃
rithm, the proposed RIS-SD3 algorithm can obtain a larger 
sum rate. In addition, it can be seen from the figure that the 
proposed algorithm and the exhaustive searching algorithm 
are more robust to the position change of the UAV. Finally, 
by comparing the results of the proposed algorithm with the 

“without RIS” scheme, we improve the system performance 
by introducing RIS, since the RIS provides the additional 
degrees of freedom (DoF) to improve the sum rate. In addi⁃
tion, since exhaustive search only considers partially dis⁃
crete values, its effect is slightly lower than that of the RIS-
SD3 algorithm that considers continuous values.

Moreover, it can be seen from Fig. 5 that the sum rate fluc⁃
tuates as the position of UAVs changes, especially for the 
TD3 and the WMMSE algorithms. Actually, due to the intro⁃
duction of RIS, the system performance is not that sensitive 
to the position of the UAV. The up and down phenomena in⁃
dicate that the performance of the TD3 algorithm is poor for 

the considered scenario, which motivates us to propose the 
RIS-SD3 algorithm. As for the WMMSE algorithm, the reason 
for the fluctuation is that this algorithm only optimizes the D2D 
user’s transmit power, while the phase is random.

To evaluate the time complexity of the proposed method, 
the time consumption of the proposed scheme and the base⁃
line schemes are shown in Table 2, where the device we use 
is NVIDIA GPU RTX 3090. It can be observed that the time 
consumption of the proposed algorithm is less than most of 
the baselines, but a little bit more than the TD3 algorithm.

However, it should be noted that the TD3 cannot adapt to 
the change of the UAV location, as observed in Fig. 5.
4.3 Impact of Parameter Settings on System

To get a better understanding of the RIS-SD3 method, we 
investigate the impact of the max power of DT. When more 
transmitting power is allocated to D2D users, the proposed 
RIS-SD3 algorithm can obtain a higher sum rate. This obser⁃
vation is consistent with the results in the traditional multi-
input single-output (MISO) system. Through the joint design 
of transmit beamforming and phase shift, the common chan⁃
nel interference of multi-user MISO systems can be effec⁃
tively reduced, thereby improving performance.

UAV location/m
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TD3
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WMMSE-power
MAX-power and random-phase
Without RIS
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▲Figure 5. RIS-SD3 in comparison with other baseline schemes

RIS: reconfigurable intelligent surfaceSD3: deep double deterministicTD3: delayed deep deterministic
WMMSE: weighted minimum mean-square errorUAV: unmanned aerial vehicles

▼Table 2. Time consumption comparison
Scheme

Proposed RIS-SD3
TD3

Exhaustive
WMMSE-power

Max-power and random-phase
Without RIS

Time Consumption/s
1.74
1.08

3.79e+05
1.68
3.67
3.98

RIS: Reconfigurable intelligent surface
SD3: softmax deep double deterministic
TD3: delayed deep deterministic
WMMSE: weighted minimum mean-square error

▲Figure 6. Sum Rate under different Pt

UAV location/m0  10 20 30 40 50 60

Sum
 rat

e//(
bit·

s−1 ·H
z−1 )

11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

Pt=10 W
Pt=20 W
Pt=30 W

UAV: unmanned aerial vehicles

67



ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

YOU Qian, XU Qian, YANG Xin, ZHANG Tao, CHEN Ming 

Special Topic   RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning

As can be seen from Fig. 6, during the movement of the 
UAV from (0, 0, 30) m to (0, 60, 30) m, there are also certain 
fluctuations in the system about the sum rate. In fact, the 
UAV only changes continuously by 1 m, while the receiver 
may not have time to feel this change, and then the UAV 
moves to the next position. Therefore, it can be seen from 
Fig. 6 that the undulating change is random.

In addition, we simulate the effect of the maximum trans⁃
mitting power of UAV Pmax on the D2D sum rate. It can be 
seen from Fig. 7 that, as the maximum transmitting power of 
the UAV increases, the D2D sum rate decreases. This is be⁃
cause with the transmit power of the UAV increases, the in⁃
terference of the cellular user to the D2D user increases, so 
the D2D sum rate decreases.

It can also be seen from Fig. 7 that in the process of the 
drone moving from (0,0,30) m to (0,60,30) m, the sum rate 
has certain ups and downs. The specific reason may be that 
the UAV changes less, so the fluctuations are more random, 
but the overall change is not very significant.
5 Conclusions

Based on the latest progress in DRL for continuous action 
space, a RIS-SD3 optimization algorithm is proposed to solve 
the joint power allocation and phase optimization problem in a 
dynamic RIS-assisted UAV-D2D communication network. 
With the RIS-SD3 algorithm, the sum rate of the D2D users is 
maximized while meeting the QoS requirement for the cellular 
user. Specifically, by introducing softmax operators, the pro⁃
posed algorithm learns about the environment more effi⁃
ciently, and thus has better robustness to the change of the en⁃
vironment. Simulation results show that the proposed RIS-SD3 
method can learn from the environment by observing the in⁃
stantaneous reward got from the time-varying wireless chan⁃
nels, and then gradually improves its behavior to the optimal 

result. Compared with the baseline schemes, the proposed 
scheme can increase the sum rate as well as improve the ro⁃
bustness of the transmission environment.
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